301
|
Chiu HJ, Fischman DA, Hammerling U. Vitamin A depletion causes oxidative stress, mitochondrial dysfunction, and PARP-1-dependent energy deprivation. FASEB J 2008; 22:3878-87. [PMID: 18676402 DOI: 10.1096/fj.08-112375] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A significant unresolved question is how vitamin A deprivation causes, and why retinoic acid fails to reverse, immunodeficiency. When depleted of vitamin A, T cells undergo programmed cell death (PCD), which is enhanced by the natural competitor of retinol, anhydroretinol. PCD does not happen by apoptosis, despite the occurrence of shared early events, including mitochondrial membrane depolarization, permeability transition pore opening, and cytochrome c release. It also lacks caspase-3 activation, chromatin condensation, and endonuclease-mediated DNA degradation, hallmarks of apoptosis. PCD following vitamin A deprivation exhibits increased production of reactive oxygen species (ROS), drastic reductions in ATP and NAD(+) levels, and activation of poly-(ADP-ribose) polymerase (PARP) -1. These latter steps are causative because neutralizing ROS, imposing hypoxic conditions, or inhibiting PARP-1 by genetic or pharmacologic approaches prevents energy depletion and PCD. The data highlight a novel regulatory role of vitamin A in mitochondrial energy homeostasis.
Collapse
Affiliation(s)
- Haw-Jyh Chiu
- Ulrich Hammerling, Memorial Sloan-Kettering Cancer Center, Immunology Program, 1275 York Ave., New York, NY 10065, USA
| | | | | |
Collapse
|
302
|
Pellicciari R, Camaioni E, Costantino G, Formentini L, Sabbatini P, Venturoni F, Eren G, Bellocchi D, Chiarugi A, Moroni F. On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem 2008; 3:914-23. [PMID: 18409175 DOI: 10.1002/cmdc.200800010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PARP-1 and PARP-2 are members of the family of poly(ADP-ribose)polymerases, which are involved in the maintenance of genomic integrity under conditions of genotoxic stimuli. The different roles of the two isoforms under pathophysiological conditions have not yet been fully clarified, and this is partially due to the lack of selective inhibitors. We report herein the synthesis and preliminary pharmacological evaluation of a large series of isoquinolinone derivatives as PARP-1/PARP-2 inhibitors. Among them, we identified the 5-benzoyloxyisoquinolin-1(2 H)-one derivative as the most selective PARP-2 inhibitor reported so far, with a PARP-2/PARP-1 selectivity index greater than 60.
Collapse
Affiliation(s)
- Roberto Pellicciari
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Wang S, Xing Z, Vosler PS, Yin H, Li W, Zhang F, Signore AP, Stetler RA, Gao Y, Chen J. Cellular NAD replenishment confers marked neuroprotection against ischemic cell death: role of enhanced DNA repair. Stroke 2008; 39:2587-95. [PMID: 18617666 DOI: 10.1161/strokeaha.107.509158] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE NAD(+) is an essential cofactor for cellular energy production and participates in various signaling pathways that have an impact on cell survival. After cerebral ischemia, oxidative DNA lesions accumulate in neurons because of increased attacks by ROS and diminished DNA repair activity, leading to PARP-1 activation, NAD(+) depletion, and cell death. The objective of this study was to determine the neuroprotective effects of NAD(+) repletion against ischemic injury and the underlying mechanism. METHODS In vitro ischemic injury was induced in rat primary neuronal cultures by oxygen-glucose deprivation (OGD) for 1 to 2 hours. NAD(+) was replenished by adding NAD(+) directly to the culture medium before or after OGD. Cell viability, oxidative DNA damage, and DNA base-excision repair (BER) activity were measured quantitatively up to 72 hours after OGD with or without NAD(+) repletion. Knockdown of BER enzymes was achieved in cultures using AAV-mediated transfection of shRNA. RESULTS Direct NAD(+) repletion in neurons either before or after OGD markedly reduced cell death and OGD-induced accumulation of DNA damage (AP sites, single and double strand breaks) in a concentration- and time-dependent manner. NAD(+) repletion restored nDNA repair activity by inhibiting serine-specific phosphorylation of the essential BER enzymes AP endonuclease and DNA polymerase-beta. Knocking down AP endonuclease expression significantly reduced the prosurvival effect of NAD(+) repletion. CONCLUSIONS Cellular NAD(+) replenishment is a novel and potent approach to reduce ischemic injury in neuronal cultures. Restoration of DNA repair activity via the BER pathway is a key signaling event mediating the neuroprotective effect of NAD(+) replenishment.
Collapse
Affiliation(s)
- Suping Wang
- Department of Neurology, S-507 BST, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Xu B, Chiu J, Feng B, Chen S, Chakrabarti S. PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 2008; 24:404-12. [PMID: 18351623 DOI: 10.1002/dmrr.842] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIMS The development of diabetic complications is associated with increased oxidative stress which may damage DNA leading to the activation of nuclear enzyme poly (ADP-ribose) polymerase (PARP). PARP overactivation may further exacerbate the oxidative state of the cell through its consumption of nicotinamide adenine dinucleotide. In diabetic retinopathy and nephropathy, early characteristic features include increased production of vasoactive factors such as endothelin 1 (ET-1) and increased synthesis of extracellular matrix (ECM) proteins such as fibronectin (FN) and its splice variant extra domain B containing (EDB(+)) FN. We investigated the role of PARP in the development of diabetic retinopathy and nephropathy. METHODS Two models of diabetic complications were used. PARP-1 knockout mice and their respective wild type controls were fed a 30% galactose diet for 2 months. The rats were given injections of PARP inhibitor 3-aminobenzamide (30 mg/kg/day). RESULTS Analysis of the retinal and kidney tissues showed hyperhexosemia-induced oxidative stress and increased expression of ET-1, FN and EDB(+) FN in association with increased transcriptional co-activator p300 along with p300-dependent transcription factors, myocyte enhancing factors 2A and 2C. Furthermore, we showed increased PARP expression in the kidneys and retina of the diabetic rats. PARP blockade in both animal models prevented these hyperhexosemia-induced effects. CONCLUSIONS These findings suggests that hyperhexosemia and diabetes causes upregulation of ET-1, FN and EDB(+) FN at the transcriptional level in the retina and kidney via a signaling pathway mediated by PARP and an epigenetic mechanism involving p300 and MEF2 transcription factors. Understanding these mechanisms is important in identifying novel treatment targets.
Collapse
Affiliation(s)
- Bingying Xu
- Department of Forensic Science, Kunming Medical College, Kunming, Yunnan, PR China
| | | | | | | | | |
Collapse
|
305
|
Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst) 2008; 7:1077-86. [PMID: 18468963 DOI: 10.1016/j.dnarep.2008.03.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the most abundant proteins within mammalian cells. First described more than 45 years ago, PARP-1 has been the subject of many studies and was shown to be involved in multiple aspects of cellular metabolism. Despite many interesting studies that implicate PARP-1 in transcription, chromatin remodelling, apoptosis, DNA repair and several neurological disorders, its precise role is still unclear. This review will discuss the role of PARP-1 in DNA repair and propose a model whereby PARP-1 operates as a modulator of base excision repair capacity.
Collapse
Affiliation(s)
- Bethany C Woodhouse
- Medical Research Council Radiation Oncology & Biology Unit, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
306
|
Martínez-Romero R, Martínez-Lara E, Aguilar-Quesada R, Peralta A, Oliver FJ, Siles E. PARP-1 modulates deferoxamine-induced HIF-1α accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem 2008; 104:2248-60. [DOI: 10.1002/jcb.21781] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
307
|
Tasatargil A, Aksoy NH, Dalaklioglu S, Sadan G. Poly (ADP-ribose) polymerase as a potential target for the treatment of acute renal injury caused by lipopolysaccharide. Ren Fail 2008; 30:115-20. [PMID: 18197552 DOI: 10.1080/08860220701742195] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recent studies have clearly reported that there is a relationship between endotoxemia and acute renal injury. The aim of this study was to investigate whether treatment with the new potent PARP inhibitor PJ34 could prevent the acute renal injury induced by lipopolysaccharide (LPS). Endotoxemia was induced by LPS injection (10 mg/kg, i.v.). LPS increased blood urea nitrogen (BUN) levels from 22 +/- 0.54 mg/dL to 45.7 +/- 5.79 mg/dL (p < 0.05). The plasma creatinine levels were 0.38 +/- 0.02 mg/dL and 0.47 +/- 0.03 mg/dL for the control and LPS groups, respectively. In addition, urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG, a marker of renal tubular damage) was increased after LPS injection. By light microscopy, structural renal damage was observed in the LPS-treated group. However, PJ34 treatment (10 mg/kg, i.p.) attenuated LPS-induced renal injury, as indicated by plasma BUN and creatinine levels, urinary NAG excretion, and renal histology. These results indicated that the overactivation of the PARP pathway may have a role in LPS-induced renal impairment. Hence, pharmacological inhibition of this pathway might be an effective intervention to prevent endotoxin-induced acute renal injury.
Collapse
Affiliation(s)
- Arda Tasatargil
- Department of Pharmacology, Akdeniz University Medical Faculty, Antalya, Turkey.
| | | | | | | |
Collapse
|
308
|
Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies--the link to inflammation and infarction. Exp Gerontol 2008; 43:605-614. [PMID: 18511226 DOI: 10.1016/j.exger.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/27/2022]
Abstract
DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.
Collapse
Affiliation(s)
- Sascha Beneke
- University of Konstanz, Molecular Toxicology Group, Universiteatsstr. 10, Box X911, 78457 Konstanz, Germany
| |
Collapse
|
309
|
Phulwani NK, Kielian T. Poly (ADP-ribose) polymerases (PARPs) 1-3 regulate astrocyte activation. J Neurochem 2008; 106:578-90. [PMID: 18410506 DOI: 10.1111/j.1471-4159.2008.05403.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Besides their traditional role in maintaining CNS homeostasis, astrocytes also participate in innate immune responses. Indeed, we have previously demonstrated that astrocytes are capable of recognizing bacterial pathogens such as Staphylococcus aureus, a common etiologic agent of CNS infections, and respond with the robust production of numerous proinflammatory mediators. Suppression of Poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, has been shown to attenuate inflammatory responses in several cell types including mixed glial cultures. However, a role for PARP-1 in regulating innate immune responses in purified astrocytes and the potential for multiple PARP family members to cooperatively regulate astrocyte activation has not yet been examined. The synthetic PARP-1 inhibitor PJ-34 attenuated the production of several proinflammatory mediators by astrocytes in response to S. aureus stimulation including nitric oxide, interleukin-1 beta, tumor necrosis factor-alpha, and CCL2. The release of all four mediators was partially reduced in PARP-1 knockout (KO) astrocytes compared to wild-type cells. The residual inflammatory mediator expression detected in PARP-1 KO astrocytes was further blocked with PJ-34, suggesting either non-specific effects of the drug or actions on alternative PARP isoforms. Reduction in PARP-2 or PARP-3 expression by siRNA knock down revealed that these isoforms also contributed to inflammatory mediator regulation in response to S. aureus. Interestingly, the combined targeting of either PARP-1/PARP-2 or PARP-2/PARP-3 attenuated astrocyte inflammatory responses more effectively compared to knock down of either PARP alone, suggesting cooperativity between PARP isoforms. Collectively, these findings suggest that PARPs influence the extent of S. aureus-induced astrocyte activation.
Collapse
Affiliation(s)
- Nirmal K Phulwani
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
310
|
Elser M, Borsig L, Hassa PO, Erener S, Messner S, Valovka T, Keller S, Gassmann M, Hottiger MO. Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression. Mol Cancer Res 2008; 6:282-90. [PMID: 18314489 DOI: 10.1158/1541-7786.mcr-07-0377] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is the key transcription factor regulating hypoxia-dependent gene expression. Lack of oxygen stabilizes HIF-1, which in turn modulates the gene expression pattern to adapt cells to the hypoxic environment. Activation of HIF-1 is also detected in most solid tumors and supports tumor growth through the expression of target genes that are involved in processes like cell proliferation, energy metabolism, and oxygen delivery. Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated protein, which was shown to regulate transcription. Here we report that chronic myelogenous leukemia cells expressing small interfering RNA against PARP1, which were injected into wild-type mice expressing PARP1, showed tumor growth with increased levels of necrosis, limited vascularization, and reduced expression of GLUT-1. Of note, PARP1-deficient cells showed a reduced HIF-1 transcriptional activation that was dependent on PARP1 enzymatic activity. PARP1 neither influenced binding of HIF-1 to its hypoxic response element nor changed HIF-1alpha protein levels in hypoxic cells. However, PARP1 formed a complex with HIF-1alpha through direct protein interaction and coactivated HIF-1alpha-dependent gene expression. These findings provide convincing evidence that wild-type mice expressing PARP1 cannot compensate for the loss of PARP1 in tumor cells and strengthen the importance of the role of PARP1 as a transcriptional coactivator of HIF-1-dependent gene expression during tumor progression.
Collapse
Affiliation(s)
- Michael Elser
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Benzamide protects delayed neuronal death and behavioural impairment in a mouse model of global cerebral ischemia. Behav Brain Res 2008; 192:178-84. [PMID: 18501976 DOI: 10.1016/j.bbr.2008.03.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 12/21/2022]
Abstract
The present study is aimed at evaluating the functional and neuroprotective effect of benzamide, a poly-(ADP-ribose) polymerase (PARP) inhibitor on delayed neuronal death (DND) in hippocampus CA1 region and memory impairment following global cerebral ischemia (GCI) in a mouse model. GCI was induced by bilateral common carotid artery occlusion (BCAo) for 20 min followed by reperfusion for 9 days. Postischemic continuous treatment with benzamide (160 mg/kg b w i.p. for 9 days) significantly reversed the GCI-induced anterograde memory impairment in passive avoidance step through and elevated plus maze tasks. The observed memory impairment in vehicle treated ischemia group was found to be well correlated with DND and downregulation of cholinergic muscarinic receptor-1 expression, which was possibly mediated by inflammation and apoptosis, as revealed from inducible nitric oxide synthase (iNOS) expression and number of TUNEL positive neurons in hippocampus CA1 region. It is clear from the present experiment that benzamide treatment significantly decreases the iNOS expression and number of apoptotic neurons and thereby improves the neuronal survival and memory during GCI. Our present findings provide compelling evidence that multiple doses of benzamide treatment is a promising therapeutic approach for cerebrovascular and neurodegenerative diseases, which deserves further clinical evaluation.
Collapse
|
312
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|
313
|
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206. [PMID: 18020963 DOI: 10.1089/ars.2007.1672] [Citation(s) in RCA: 1099] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could belong to the fundamental common mediators of various biological processes, including energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress, gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates energy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis; fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability transition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel paradigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases and slowing the aging process.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
314
|
Masoumi A, Reed-Gitomer B, Kelleher C, Schrier RW. Potential pharmacological interventions in polycystic kidney disease. Drugs 2008; 67:2495-510. [PMID: 18034588 DOI: 10.2165/00003495-200767170-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polycystic kidney diseases (autosomal dominant and autosomal recessive) are progressive renal tubular cystic diseases, which are characterised by cyst expansion and loss of normal kidney structure and function. Autosomal dominant polycystic kidney disease (ADPKD) is the most common life- threatening, hereditary disease. ADPKD is more prevalent than Huntington's disease, haemophilia, sickle cell disease, cystic fibrosis, myotonic dystrophy and Down's syndrome combined. Early diagnosis and treatment of hypertension with inhibitors of the renin-angiotensin-aldosterone system (RAAS) and its potential protective effect on left ventricular hypertrophy has been one of the major therapeutic goals to decrease cardiac complications and contribute to improved prognosis of the disease. Advances in the understanding of the genetics, molecular biology and pathophysiology of the disease are likely to facilitate the improvement of treatments for these diseases. Developments in describing the role of intracellular calcium ([Ca(2+)](i)) and its correlation with cellular signalling systems, Ras/Raf/mitogen extracellular kinase (MEK)/extracellular signal-regulated protein kinase (ERK), and interaction of these pathways with cyclic adenosine monophosphate (cAMP) levels, provide new insights on treatment strategies. Blocking the vasopressin V(2) receptor, a major adenylyl cyclase agonist, demonstrated significant improvements in inhibiting cytogenesis in animal models. Because of activation of the mammalian target of rapamycin (mTOR) pathway, the use of sirolimus (rapamycin) an mTOR inhibitor, markedly reduced cyst formation and decreased polycystic kidney size in several animal models. Caspase inhibitors have been shown to decrease cytogenesis and renal failure in rats with cystic disease. Cystic fluid secretion results in cyst enlargement and somatostatin analogues have been shown to decrease renal cyst progression in patients with ADPKD. The safety and efficacy of these classes of drugs provide potential interventions for experimental and clinical trials.
Collapse
Affiliation(s)
- Amirali Masoumi
- Department of Medicine, Health Sciences Center, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|
315
|
Affiliation(s)
- Maged M. Harraz
- From the Institute for Cell Engineering (M.M.H., T.M.D., V.L.D.), Departments of Neurology (M.M.H., T.M.D., V.L.D.), Neuroscience (T.M.D., V.L.D.), and Physiology (V.L.D.), The Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | - Ted M. Dawson
- From the Institute for Cell Engineering (M.M.H., T.M.D., V.L.D.), Departments of Neurology (M.M.H., T.M.D., V.L.D.), Neuroscience (T.M.D., V.L.D.), and Physiology (V.L.D.), The Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | - Valina L. Dawson
- From the Institute for Cell Engineering (M.M.H., T.M.D., V.L.D.), Departments of Neurology (M.M.H., T.M.D., V.L.D.), Neuroscience (T.M.D., V.L.D.), and Physiology (V.L.D.), The Johns Hopkins University School of Medicine, Baltimore, Md, USA
| |
Collapse
|
316
|
Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 2008; 37:7-38. [PMID: 18066503 DOI: 10.1007/s12035-007-8013-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 11/05/2007] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury triggers multiple and distinct but overlapping cell signaling pathways, which may lead to cell survival or cell damage. There is overwhelming evidence to suggest that besides necrosis, apoptosis do contributes significantly to the cell death subsequent to I/R injury. Both extrinsic and intrinsic apoptotic pathways play a vital role, and upon initiation, these pathways recruit downstream apoptotic molecules to execute cell death. Caspases and Bcl-2 family members appear to be crucial in regulating multiple apoptotic cell death pathways initiated during I/R. Similarly, inhibitor of apoptosis family of proteins (IAPs), mitogen-activated protein kinases, and newly identified apoptogenic molecules, like second mitochondrial-activated factor/direct IAP-binding protein with low pI (Smac/Diablo), omi/high-temperature requirement serine protease A2 (Omi/HtrA2), X-linked mammalian inhibitor of apoptosis protein-associated factor 1, and apoptosis-inducing factor, have emerged as potent regulators of cellular apoptotic/antiapoptotic machinery. All instances of cell survival/death mechanisms triggered during I/R are multifaceted and interlinked, which ultimately decide the fate of brain cells. Moreover, apoptotic cross-talk between major subcellular organelles suggests that therapeutic strategies should be optimally directed at multiple targets/mechanisms for better therapeutic outcome. Based on the current knowledge, this review briefly focuses I/R injury-induced multiple mechanisms of apoptosis, involving key apoptotic regulators and their emerging roles in orchestrating cell death programme. In addition, we have also highlighted the role of autophagy in modulating cell survival/death during cerebral ischemia. Furthermore, an attempt has been made to provide an encouraging outlook on emerging therapeutic approaches for cerebral ischemia.
Collapse
Affiliation(s)
- Venkata Prasuja Nakka
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow, 226001, India
| | | | | | | |
Collapse
|
317
|
Endres M, Dirnagl U, Moskowitz MA. The ischemic cascade and mediators of ischemic injury. HANDBOOK OF CLINICAL NEUROLOGY 2008; 92:31-41. [PMID: 18790268 DOI: 10.1016/s0072-9752(08)01902-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
318
|
Osborne NN. Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. PROGRESS IN BRAIN RESEARCH 2008; 173:339-52. [DOI: 10.1016/s0079-6123(08)01124-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
319
|
von Lukowicz T, Hassa PO, Lohmann C, Borén J, Braunersreuther V, Mach F, Odermatt B, Gersbach M, Camici GG, Stähli BE, Tanner FC, Hottiger MO, Lüscher TF, Matter CM. PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovasc Res 2007; 78:158-66. [PMID: 18093987 DOI: 10.1093/cvr/cvm110] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. METHODS AND RESULTS In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n >or= 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n >or= 6). CONCLUSION Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Tobias von Lukowicz
- Cardiovascular Research, Institute of Physiology, University of Zurich and Cardiology, Cardiovascular Center, University Hospital Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Clark RSB, Vagni VA, Nathaniel PD, Jenkins LW, Dixon CE, Szabó C. Local administration of the poly(ADP-ribose) polymerase inhibitor INO-1001 prevents NAD+ depletion and improves water maze performance after traumatic brain injury in mice. J Neurotrauma 2007; 24:1399-405. [PMID: 17711401 DOI: 10.1089/neu.2007.0305] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an enzyme best known for its role in DNA repair and as a mediator of NAD+ depletion and energy failure-induced cell death. We tested the effect of the potent and selective ideno-isoquinolone PARP-1 inhibitor INO-1001 after controlled cortical impact (CCI) in mice. Anesthetized adult male mice were subjected to moderate CCI (velocity 6 m/sec, depth 1.2 mm) or sham-injury. Immediately after CCI or sham-injury mice received either INO-1001 (1.6 mg/kg) or vehicle via intracerebral injection (5 microl over 5 min) in a randomized fashion. At 2 h, contused brain tissue was dissected and NAD+ levels were measured. Separate mice underwent neuropathological outcome tests that included spatial memory acquisition (Morris water maze days 14-20), and assessment of contusion volume and hippocampal cell death at day 21. Local treatment with INO-1001 preserved brain NAD+ levels 2 h after CCI (vehicle = 67 +/- 7.6, INO-1001 = 95.8 +/- 4.4 % uninjured hemisphere; n = 6/group, p = 0.03). In the Morris water maze, treatment with INO-1001 reduced the latency to find the hidden platform and increased the time spent in the target quadrant versus vehicle after CCI (n = 11/group, p < or = 0.05). Histological damage did not differ between vehicle and INO-1001-treated mice after CCI. Treatment with INO-1001 prevented NAD+ depletion and improved outcome, although modestly, identifying PARP-mediated energy failure as a contributor to the pathological sequelae of TBI. Further study testing the effects of PARP inhibitors is warranted, specifically in models of brain injury where energy failure is seen.
Collapse
Affiliation(s)
- Robert S B Clark
- Department of Critical Care Medicine, the Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
321
|
Pan X, Sun L, Ma W, Tang Y, Long C, Tian L, Liu N, Feng Z, Zheng J. Overactivation of poly(adenosine phosphate-ribose) polymerase 1 and molecular events in neuronal injury after deep hypothermic circulatory arrest: study in a rabbit model. J Thorac Cardiovasc Surg 2007; 134:1227-33. [PMID: 17976454 DOI: 10.1016/j.jtcvs.2007.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/18/2007] [Accepted: 05/09/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Although deep hypothermic circulatory arrest has been known to induce neuronal injury, the molecular mechanism of this damage has not been identified. We studied the key molecular mediators through cellular energy failure, excitotoxicity, and overactivation of poly(adenosine diphosphate-ribose) polymerase 1 in brain tissues of a rabbit model of deep hypothermic circulatory arrest similar to clinical settings. METHODS We established 2 models of cardiopulmonary bypass (n = 15) and deep hypothermic circulatory arrest (n = 15) associated with cerebral microdialysis in rabbits. Deep hypothermic circulatory arrest lasted for 60 minutes. The measurements of glucose, lactate, pyruvate, and glutamate collected by means of microdialysis were quantified by using a microdialysis analyzer and high-performance liquid chromatography. The overactivation of poly(adenosine diphosphate-ribose) polymerase 1 was assessed by detecting immunostaining of poly(adenosine diphosphate-ribose). Histologic studies were used to identify neuronal morphologic changes and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling staining and poly(adenosine diphosphate-ribose) polymerase 1 Western blotting were used to identify apoptotic cells and early apoptotic signals. RESULTS Deep hypothermic circulatory arrest significantly increased the lactate/pyruvate and lactate/glucose ratios and the glutamate value, whereas cardiopulmonary bypass did not (P < .05). Deep hypothermic circulatory arrest significantly increased the numbers of poly(adenosine diphosphate-ribose)-positive and apoptotic neurons compared with cardiopulmonary bypass (P < .05). The cleavage of poly(adenosine diphosphate-ribose) polymerase 1 was only found in the deep hypothermic circulatory arrest group. More injured neurons were found in the deep hypothermic circulatory arrest group (histologic scores, P < .05). CONCLUSIONS This study demonstrated that deep hypothermic circulatory arrest results in an overactivation of poly(adenosine diphosphate-ribose) polymerase 1, and that there were molecular events consisting of cellular energy failure, excitotoxicity, overactivation of poly(adenosine diphosphate-ribose) polymerase 1, and necrosis and/or apoptosis in neuronal injury.
Collapse
Affiliation(s)
- Xudong Pan
- Department of Cardiovascular Surgery and Aortic Surgery Center, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Peking, China
| | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Lai Y, Chen Y, Watkins SC, Nathaniel PD, Guo F, Kochanek PM, Jenkins LW, Szabó C, Clark RSB. Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 2007; 104:1700-11. [PMID: 17996029 DOI: 10.1111/j.1471-4159.2007.05114.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly-ADP-ribosylation is a post-translational modification performed by poly(ADP-ribose) polymerases (PARP), involved in many diverse cellular functions including DNA repair, transcription, and long-term potentiation. Paradoxically, PARP over-activation under pathologic conditions including traumatic brain injury (TBI) results in cell death. We previously demonstrated that intra-mitochondrial poly-ADP-ribosylation occurs following excitotoxic and oxidative injury in vitro. Here we sought to identify mitochondrial proteins modified by poly-ADP-ribosylation after TBI in vivo. Poly-ADP-ribosylation within mitochondria from injured brain after experimental TBI in rats was first verified using western blot and immuno-electron microscopy. Poly-ADP-ribosylated mitochondrial proteins identified using a targeted proteomic approach included voltage-dependent anion channel-1, mitofilin, mitochondrial stress proteins, and the electron transport chain components F1F0 ATPase, cytochrome c oxidase, and cytochrome c reductase. To examine the functional consequences of mitochondrial poly-ADP-ribosylation, isolated rat brain mitochondria were exposed to conditions of nitrosative stress known to activate PARP. PARP activation-induced reductions in State 3 respiration were prevented by the PARP-1 inhibitor 5-iodo-6-amino-1,2-benzopyrone or exogenous poly(ADP-ribose) glycohydrolase. As the effects of PARP activation on mitochondrial respiration appear regulated by poly(ADP-ribose) glycohydrolase, a direct effect of poly-ADP-ribosylation on electron transport chain function is suggested. These findings may be of relevance to TBI and other diseases where mitochondrial dysfunction occurs.
Collapse
Affiliation(s)
- Yichen Lai
- Department of Critical Care Medicine, the Safar Center for Resuscitation Research and the Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Crome O, Doeppner TR, Schwarting S, Müller B, Bähr M, Weise J. Enhanced poly(ADP-ribose) polymerase-1 activation contributes to recombinant tissue plasminogen activator-induced aggravation of ischemic brain injury in vivo. J Neurosci Res 2007; 85:1734-43. [PMID: 17455321 DOI: 10.1002/jnr.21305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recombinant tissue plasminogen activator (rt-PA) treatment improves functional outcome after acute ischemic stroke, inducing reperfusion by its thrombolytic activity. Conversely, there is evidence that rt-PA can mediate neuronal damage after ischemic brain injury in vivo. In addition to other mechanisms, enhancement of N-methyl-D-aspartate (NMDA) receptor signalling has been proposed to underlie rt-PA-mediated neurotoxicity. However, the role of poly(ADP-ribose) polymerase-1 (PARP-1) activation, which mediates postischemic excitotoxic cell death, in rt-PA-mediated aggravation of ischemic brain injury has not been established and was therefore addressed in this study. After permanent focal cerebral ischemia, intravenous rt-PA application significantly increased early postischemic PARP-1 activation within ischemic hemispheres and infarct volumes compared with control mice without affecting cerebral blood flow. Rt-PA induced increase in PARP-1 activation, and infarct volumes could be blocked by the PARP inhibitor 3-aminobenzamide. Moreover, the rt-PA-induced increase in PARP-1 activation was also prevented by the NMDA antagonist MK-801. In summary, we demonstrate that rt-PA treatment enhances postischemic PARP-1 activation, which contributes to rt-PA induced aggravation of ischemic brain injury in vivo. Furthermore, we provide evidence that NMDA receptor activation is required for rt-PA-mediated effects on postischemic PARP-1 activation.
Collapse
Affiliation(s)
- Olaf Crome
- Department of Neurology, University of Goettingen Medical School, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
324
|
Lee MW, Kim WJ, Beardsley DI, Brown KD. N-methyl-N'-nitro-N-nitrosoguanidine activates multiple cell death mechanisms in human fibroblasts. DNA Cell Biol 2007; 26:683-94. [PMID: 17678437 DOI: 10.1089/dna.2007.0594] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Response to genotoxic stress may trigger the activation of distinct mechanisms that serve to promote cell death, including apoptosis and necrosis. In this study we examined the response of human fibroblasts, either proficient or deficient for the damage-activated protein kinase ataxia telangiectasia-mutated (ATM), to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Analysis of both long- and short-term viability shows that both ATM-proficient YZ-5 and ATM-deficient EBS-7 fibroblasts display a cytotoxic response to MNNG. Consistent with activation of apoptosis in response to MNNG, we observed increased caspase-3 cleavage and activity, appearance of fragmented nuclei, and increased staining with annexin V in both ATM-proficient and -deficient fibroblasts. Flow cytometry demonstrated that these cell lines also display a nonapoptotic cell death in response to MNNG. This form of cell death is associated with activation of poly-ADP ribose polymerase (PARP), and analysis of PARP activity indicated increased protein poly(ADP-ribosylation) in YZ-5 when compared to EBS-7. This PARP activity was accompanied by apoptosis-inducing factor release and translocation from the mitochondria to the nucleus. Finally, the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ) or the caspase-3 inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone dramatically diminished the cytotoxic response to MNNG, reinforcing the roles for apoptotic and nonapoptotic cell death in human fibroblasts treated with MNNG. From these findings, we conclude that MNNG induces a heterogeneous death response in human fibroblasts.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Biochemistry and Molecular Biology and the UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | |
Collapse
|
325
|
Ji D, Li GY, Osborne NN. Nicotinamide attenuates retinal ischemia and light insults to neurones. Neurochem Int 2007; 52:786-98. [PMID: 17976861 DOI: 10.1016/j.neuint.2007.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 01/26/2023]
Abstract
The aim of the present studies was to determine whether nicotinamide is effective in blunting the negative influence of ischemia/reperfusion to the rat retina in situ and of light to transformed retinal ganglion cells (RGC-5 cells) in culture. Ischemia was delivered to the retina of one eye of rats by raising the intraocular pressure. Nicotinamide was administered intraperitoneally just before ischemia and into the vitreous immediately after the insult. Electroretinograms (ERGs) of both eyes were recorded before and 5 days after ischemia. Seven days after ischemia, retinas were analysed for the localization of various antigens. Retinal and optic nerve extracts were also prepared for analysis of specific proteins and mRNAs. Also, RGC-5 cells in culture were given a light insult (1000 lux, 48 and 96 h) and evidence for reduced viability and apoptosis determined by a variety of procedures. Nicotinamide was added to some cultures to see whether it reversed the negative effect of light. Ischemia/reperfusion to the retina affected the localization of Thy-1, neuronal nitric oxide synthase (NOS) and choline acetyltransferase (ChAT), the a- and b-wave amplitudes of the ERG, the content of various retinal and optic nerve proteins and mRNAs. Significantly, nicotinamide statistically blunted many of the effects induced by ischemia/reperfusion which included the activation of poly-ADP-ribose polymerase (PARP). Light-induced apoptosis of RGC-5 cells in culture was attenuated by nicotinamide and the PARP inhibitor NU1025. The presented data show that nicotinamide attenuates injury to the retina and RGC-5 cells in culture caused by ischemia/reperfusion and by light, respectively. Evidence is provided to suggest that nicotinamide acts as a PARP inhibitor and possibly an antioxidant.
Collapse
Affiliation(s)
- Dan Ji
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK
| | | | | |
Collapse
|
326
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) catalyze the post-translational modification of proteins with poly(ADP-ribose). Two PARP isoforms, PARP-1 and PARP-2, display catalytic activity by contact with DNA-strand breaks and are involved in DNA base-excision repair and other repair pathways. A body of correlative data suggests a link between DNA damage-induced poly(ADP-ribosyl)ation and mammalian longevity. Recent research on PARPs and poly(ADP-ribose) yielded several candidate mechanisms through which poly(ADP-ribosyl)ation might act as a factor that limits the rate of ageing.
Collapse
Affiliation(s)
| | - Alexander Bürkle
- *To whom correspondence should be addressed.+49 7531 884035+49 7531 884033
| |
Collapse
|
327
|
Gao L, Kwan JC, Macdonald PS, Yang L, Preiss T, Hicks M. Improved poststorage cardiac function by poly (ADP-ribose) polymerase inhibition: role of phosphatidylinositol 3-kinase Akt pathway. Transplantation 2007; 84:380-6. [PMID: 17700164 DOI: 10.1097/01.tp.0000276924.08343.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inhibition of poly(ADP-ribose) polymerase 1 (PARP) has been shown to be effective in minimizing cardiac ischemia reperfusion injury. We investigated the cardioprotective effect of the PARP inhibitor, INO-1153, in isolated working rat hearts after 6 hr of hypothermic storage in Celsior. METHODS Hearts were treated with 1 muM INO-1153 before hypothermic storage, at cardioplegia and storage or after hypothermic storage. Hearts not exposed to INO-1153 served as controls. Another group was pretreated with the phosphatidylinositol 3-kinase inhibitor Wortmannin (0.1 muM) before storage in INO-1153-supplemented Celsior. After baseline measurement of aortic flow, heart rate, coronary flow, and cardiac output were obtained, hearts were arrested and stored in Celsior at 2-3 degrees C for 6 hr. After storage, hearts were reperfused for 15 min before performing work for a further 30 min, at which time poststorage indices of cardiac function were remeasured then heart tissue was stored at -80 degrees C for Western blot analysis. RESULTS The presence of INO-1153 during prestorage perfusion or during cardioplegia and storage significantly improved poststorage cardiac function. Functional improvements produced by INO-1153 were completely abolished by Wortmnanin pretreatment. Western blots showed a significant increase in phospho-Akt in presence of INO-1153, which was inhibited by Wortmannin. CONCLUSION Activation of the prosurvival phosphatidylinositol 3-kinase-Akt pathway was involved in the protective action of PARP inhibition in this model of donor heart procurement and hypothermic storage. Importantly for the logistics of clinical organ procurement, maximum protection is observed when the PARP inhibitor is included in the cardioplegic storage solution.
Collapse
Affiliation(s)
- Ling Gao
- Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
328
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
329
|
Maldonado PD, Chánez-Cárdenas ME, Barrera D, Villeda-Hernández J, Santamaría A, Pedraza-Chaverrí J. Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats. Neurosci Lett 2007; 425:28-33. [PMID: 17723268 DOI: 10.1016/j.neulet.2007.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/16/2007] [Accepted: 08/06/2007] [Indexed: 01/01/2023]
Abstract
Reactive oxygen and nitrogen species formation leads to DNA damage in animals treated with quinolinic acid. Poly(ADP-ribose) polymerase-1 (PARP-1) is a protein involved in the DNA base excision repair system. Its overactivation promotes cellular energy deficit and necrosis. Here, we evaluated the effect of PJ-34, a potent inhibitor of PARP-1, on the neuronal damage induced by quinolinic acid. Animals were administered with PJ-34 (10 mg/kg, i.p.), 1 h before and 1 h after a striatal infusion of 1 microl of quinolinic acid (240 nmol). PJ-34 clearly attenuated the circling behavior produced by quinolinic acid and completely prevented the histological damage induced by the toxin. The protective effect of PJ-34 suggests that PARP-1 activation is playing an active role in the neuronal death induced by quinolinic acid.
Collapse
Affiliation(s)
- Perla Deyanira Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, México, D.F. 14269, Mexico
| | | | | | | | | | | |
Collapse
|
330
|
Poitras MF, Koh DW, Yu SW, Andrabi SA, Mandir AS, Poirier GG, Dawson VL, Dawson TM. Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain. Neuroscience 2007; 148:198-211. [PMID: 17640816 PMCID: PMC2000859 DOI: 10.1016/j.neuroscience.2007.04.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are members of a family of enzymes that utilize nicotinamide adenine dinucleotide (NAD(+)) as substrate to form large ADP-ribose polymers (PAR) in the nucleus. PAR has a very short half-life due to its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). PARP-1 mediates acute neuronal cell death induced by a variety of insults including cerebral ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, and CNS trauma. While PARP-1 is localized to the nucleus, PARG resides in both the nucleus and cytoplasm. Surprisingly, there appears to be only one gene encoding PARG activity, which has been characterized in vitro to generate different splice variants, in contrast to the growing family of PARPs. Little is known regarding the spatial and functional relationships of PARG and PARP-1. Here we evaluate PARG expression in the brain and its cellular and subcellular distribution in relation to PARP-1. Anti-PARG (alpha-PARG) antibodies raised in rabbits using a purified 30 kDa C-terminal fragment of murine PARG recognize a single band at 111 kDa in the brain. Western blot analysis also shows that PARG and PARP-1 are evenly distributed throughout the brain. Immunohistochemical studies using alpha-PARG antibodies reveal punctate cytosolic staining, whereas anti-PARP-1 (alpha-PARP-1) antibodies demonstrate nuclear staining. PARG is enriched in the mitochondrial fraction together with manganese superoxide dismutase (MnSOD) and cytochrome C (Cyt C) following whole brain subcellular fractionation and Western blot analysis. Confocal microscopy confirms the co-localization of PARG and Cyt C. Finally, PARG translocation to the nucleus is triggered by NMDA-induced PARP-1 activation. Therefore, the subcellular segregation of PARG in the mitochondria and PARP-1 in the nucleus suggests that PARG translocation is necessary for their functional interaction. This translocation is PARP-1 dependent, further demonstrating a functional interaction of PARP-1 and PARG in the brain.
Collapse
Affiliation(s)
- M F Poitras
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Broadway Research Building, 733 North Broadway, Suite 731, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Chowdhry MF, Vohra HA, Galiñanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: Role of caspases and poly–adenosine diphosphate–ribose polymerase. J Thorac Cardiovasc Surg 2007; 134:124-31, 131.e1-3. [PMID: 17599497 DOI: 10.1016/j.jtcvs.2006.12.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/07/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Diabetes is an important predictor of morbidity and mortality after cardiac surgery, but the reason is unclear. The aims of these studies, therefore, were to elucidate whether cell death is greater in ischemic and nonischemic diabetic human myocardium than in nondiabetic myocardium and to investigate the underlying mechanism. METHODS The right atrial appendages (n = 8 per group) of patients without diabetes and patients with type 1 and 2 diabetes were subjected to 90 minutes of simulated ischemia and 120 minutes reoxygenation. Tissue injury was measured by the release of creatine kinase into the media, and cellular apoptosis and necrosis were assessed in tissue by the terminal transferase deoxyuridine triphosphate nick-end labeling assay and propidium iodide staining. Initiator and effector caspases activations were also measured. RESULTS Apoptosis and necrosis were greater in the type 2 and type 1 diabetes groups than in the nondiabetes group both in fresh tissue and after simulated ischemia-reoxygenation. Activation of effector caspases was also higher in the diabetes groups than in the nondiabetes group after simulated ischemia-reoxygenation. Caspase-3 inhibition reduced apoptosis in all study groups without influencing necrosis; however, poly-adenosine diphosphate-ribose polymerase inhibition resulted in a similar reduction in apoptosis and in necrosis in all groups, whereas caspase-2 inhibition did not. CONCLUSIONS Diabetes increases both apoptosis and necrosis in human myocardium, both fresh and after being subjected to ischemia-reoxygenation, an effect that is mediated, at least in part, by caspase-3 and poly-adenosine diphosphate-ribose polymerase activation. These results may explain the increased cardiac-related morbidity and mortality associated with cardiac surgery in patients with diabetes.
Collapse
Affiliation(s)
- Mohammed F Chowdhry
- Cardiac Surgery Unit, Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
332
|
Abstract
There have been over 2000 publications in the last year addressing the topic of neuroprotection. Novel and emerging therapeutic targets that have been explored include cerebral inflammation, hypothermia, neural transplantation and repair and gene therapy. Unfortunately, with few exceptions, the successes of experimental neuroprotection have not been translated into clinical practice. The possible reasons for the discrepancy between experimental success and clinical benefit are explored.
Collapse
Affiliation(s)
- D K Menon
- Department of Anaesthesiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
333
|
Cheng A, Shin-ya K, Wan R, Tang SC, Miura T, Tang H, Khatri R, Gleichman M, Ouyang X, Liu D, Park HR, Chiang JY, Mattson MP. Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 2007; 27:3722-33. [PMID: 17409236 PMCID: PMC6672411 DOI: 10.1523/jneurosci.0590-07.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Telomeres are DNA-protein complexes at the ends of eukaryotic chromosomes that play an important role in maintaining the integrity of the genome. In proliferative stem cells and cancer cells, telomere length is maintained by telomerase, and telomere structure and functions are regulated by telomere-associated proteins. We find that telomerase levels are high in embryonic cortical neural progenitor cells (NPCs) and low in newly generated neurons (NGNs) and mature neurons (MNs). In contrast, telomere repeat-binding factor 2 (TRF2) expression is undetectable in early brain development in vivo and in cultured NPCs and is expressed at progressively higher levels as NPCs cease proliferation and differentiate into postmitotic neurons. The telomere-disrupting agent telomestatin induces a DNA damage response and apoptosis in NGNs (which have low levels of TRF2 and telomerase), whereas NPCs (which have high levels of telomerase) and MNs (which have high levels of TRF2) are resistant to telomere damage. Overexpression of TRF2 in NGNs protects them against death induced by telomestatin and other DNA-damaging agents. Knockdown of TRF2 expression in MNs and knock-out of telomerase reverse transcriptase in NPCs increased their sensitivity to telomere- and DNA-damaging agents but did not affect the vulnerability of NGNs. These findings suggest that TRF2 and telomerase function as distinct telomere protection mechanisms during the processes of neurogenesis and neuronal maturation and that hypersensitivity of NGNs to telomere damage results from relative deficiencies of both telomerase and TRF2.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Kazuo Shin-ya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, 113-8656, Japan
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Sung-chun Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Stroke Center, Neurology Department, National Taiwan University Hospital, Taipei, Taiwan, ROC 100
| | - Takumi Miura
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Hongyang Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Rina Khatri
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Marc Gleichman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xin Ouyang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Hae-Rong Park
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, 113-8656, Japan
| | - Jeffrey Y. Chiang
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, and
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
334
|
Skarda DE, Putt KS, Hergenrother PJ, Mulier KE, Beilman GJ. Increased poly(ADP-ribose) polymerase activity during porcine hemorrhagic shock is transient and predictive of mortality. Resuscitation 2007; 75:135-44. [PMID: 17467870 DOI: 10.1016/j.resuscitation.2007.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 11/20/2022]
Abstract
AIM OF THE STUDY The aim of our study was to compare poly(ADP-ribose) polymerase (PARP) activity levels in a porcine model of hemorrhagic shock and resuscitation. MATERIALS AND METHODS We designed a prospective, comparative randomized survival study of hemorrhagic shock using 20 male Yorkshire-Landrace pigs (15-25 kg). In 16 pigs after splenectomy, we induced hemorrhagic shock to a mean arterial pressure of 50 mm Hg ( approximately 35% bleed). Pigs were randomized to receive normotensive resuscitation (SBP 90 mm Hg), mild hypotensive resuscitation (SBP 80 mm Hg), moderate hypotensive resuscitation (SBP 65 mm Hg), or no resuscitation (n=4 in each group). We also included a group of sham animals that were instrumented and had a splenectomy but not bled (n=4). Muscle and liver biopsies were taken prior to hemorrhage, after 45 min of shock, and 8, 24, and 48 h after resuscitation. PARP activity levels in biopsies were measured using chemical quantitation of NAD+. RESULTS Irrespective of our resuscitation strategy or outcome, both muscle and liver PARP activity levels rose after 45 min of shock and then returned to baseline. Excluding our control animals, PARP activity levels were significantly higher during shock in non-survivors compared to survivors. CONCLUSIONS In our model of porcine hemorrhagic shock, PARP activity levels increased during hemorrhagic shock. However, this increase in PARP activity levels was transient as they returned to baseline regardless of resuscitation strategy. Interestingly, PARP activity levels were significantly higher during hemorrhagic shock in non-survivors compared to survivors. These findings suggest that PARP activity may be a part of initial pathways leading from hemorrhagic shock to death.
Collapse
Affiliation(s)
- David E Skarda
- Department of Surgery, University of Minnesota, Minneapolis, MN 55433, USA
| | | | | | | | | |
Collapse
|
335
|
Nottbohm AC, Dothager RS, Putt KS, Hoyt MT, Hergenrother PJ. A colorimetric substrate for poly(ADP-ribose) polymerase-1, VPARP, and tankyrase-1. Angew Chem Int Ed Engl 2007; 46:2066-9. [PMID: 17299820 DOI: 10.1002/anie.200603988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amanda C Nottbohm
- Department of Chemistry, University of Illinois, 600 S. Mathews, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
336
|
Szabó C. Poly (ADP-ribose) polymerase activation and circulatory shock. NOVARTIS FOUNDATION SYMPOSIUM 2007; 280:92-103; discussion 103-7, 160-4. [PMID: 17380790 DOI: 10.1007/0-387-36005-0_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sepsis is associated with increased production of reactive oxidant species. Oxidative and nitrosative stress can lead to activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), with subsequent loss of cellular functions. Activation of PARP may dramatically lower the intracellular concentration of its substrate, NAD thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In addition, PARP enhances the expression of various pro-inflammatory mediators, via activation of NF-kappaB, MAP kinase and AP-1 and other signal transduction pathways. Preclinical studies in various rodent and large animal models demonstrate that PARP inhibition or PAR deficiency exerts beneficial effects on the haemodynamic and metabolic alterations associated with septic and haemorrhagic shock. Recent human data also support the role of PARP in septic shock: In a retrospective study in 25 septic patients, an increase in plasma troponin level was related to increased mortality risk. In patients who died, significant myocardial damage was detected, and histological analysis of heart showed inflammatory infiltration, increased collagen deposition, and derangement of mitochondrial criptae. Immunohistochemical staining for poly(ADP-ribose) (PAR), the product of activated PARP was demonstrated in septic hearts. There was a positive correlation between PAR staining and troponin I; and a correlation of PAR staining and LVSSW. Thus, there is significant PARP activation in animal models subjected to circulatory shock, as well as in the hearts of septic patients. Based on the interventional studies in animals and the correlations observed in patients we propose that PARP activation may be, in part responsible for the cardiac depression and haemodynamic failure seen in humans with severe sepsis. Interestingly, recent studies reveal that the protective effects of PARP inhibitors are predominant in male animals, and are not apparent in female animals. Oestrogen, by providing a baseline inhibitory effect on PARP activation, may be partially responsible for this gender difference.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, UMD NJ-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
337
|
Abstract
The past few decades have revealed that cell death can be precisely programmed with two principal forms, apoptosis and necrosis. Besides pathophysiological alterations, physiologic processes, such as the pruning of neurons during normal development and the involution of the thymus, involve apoptosis. This review focuses on the role of inter- and intracellular signaling systems in cell death, especially in the nervous system. Among neurotransmitters, glutamate and nitric oxide have been most extensively characterized and contribute to cell death in excitotoxic damage, especially in stroke and possibly in neurodegenerative diseases. Within cells, calcium, the most prominent of all intracellular messengers, mediates diverse forms of cell death with actions modulated by many proteins, including IP3 receptors, calcineurin, calpain, and cytochrome c.
Collapse
Affiliation(s)
- Makoto R Hara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
338
|
Kauppinen TM, Swanson RA. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience 2007; 145:1267-72. [PMID: 17084037 DOI: 10.1016/j.neuroscience.2006.09.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that contributes to both neuronal death and survival under stress conditions. PARP-1 is the most abundant of several PARP family members, accounting for more than 85% of nuclear PARP activity, and is present in all nucleated cells of multicellular animals. When activated by DNA damage, PARP-1 consumes nicotinamide adenine dinucleotide (NAD+) to form branched polymers of ADP-ribose on target proteins. This process can have at least three important consequences in the CNS, depending on the cell type and the extent of DNA damage: 1) Poly(ADP-ribose) formation on histones and on enzymes involved in DNA repair can prevent sister chromatid exchange and facilitate base-excision repair; 2) poly(ADP-ribose) formation can influence the action of transcription factors, notably nuclear factor kappaB, and thereby promote inflammation; and 3) extensive PARP-1 activation can promote neuronal death through mechanisms involving NAD+ depletion and release of apoptosis inducing factor from the mitochondria. PARP-1 activation is thereby a key mediator of neuronal death during excitotoxicity, ischemia, and oxidative stress, and PARP-1 gene deletion or pharmacological inhibition can markedly improve neuronal survival in these settings. PARP-1 activation has also been identified in Alzheimer's disease and in experimental allergic encephalitis, but the role of PARP-1 in these disorders remains to be established.
Collapse
Affiliation(s)
- T M Kauppinen
- Department of Neurology, University of California at San Francisco, and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | |
Collapse
|
339
|
Lee JH, Park SY, Shin HK, Kim CD, Lee WS, Hong KW. Poly(ADP-ribose) polymerase inhibition by cilostazol is implicated in the neuroprotective effect against focal cerebral ischemic infarct in rat. Brain Res 2007; 1152:182-90. [PMID: 17433265 DOI: 10.1016/j.brainres.2007.03.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
This study shows that cilostazol displayed a potent inhibition of PARP with IC(50) of 883+/-41 nM in the enzyme assay, and also significantly reversed H(2)O(2)-evoked elevated PARP activity and reduced NAD(+) levels in the PC12 cells with improvement of cell viability. In in vivo study, inhibition of PARP activity by cilostazol prevented cerebral ischemic injury induced by 2-h middle cerebral artery occlusion (MCAO) and 24-h reperfusion. The ischemic infarct was significantly reduced in the rats that received cilostazol (30 mg/kg, twice orally) with improvement of neurological function. Moreover, cilostazol treatment significantly decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)- and poly(ADP-ribose)-positive cells associated with apoptosis-inducing factor (AIF) translocation to the nucleus in the penumbral region. Further, cilostazol significantly reduced myeloperoxidase activity, a marker of neutrophil infiltration. In line with these findings, the OX-42- (a marker of microglia) and TNF-alpha-positive cells (a marker of proapoptotic protein) were markedly increased in the vehicle samples, both of which were significantly attenuated by treatment with cilostazol. Taken together, these results suggest that neuroprotective potentials of cilostazol against focal cerebral ischemic injury are, at least in part, ascribed to its anti-inflammatory effects and PARP inhibitory activity.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Pharmacology, College of Medicine, Pusan National University, Busan 602-739, Korea
| | | | | | | | | | | |
Collapse
|
340
|
Nottbohm A, Dothager R, Putt K, Hoyt M, Hergenrother P. A Colorimetric Substrate for Poly(ADP-Ribose) Polymerase-1, VPARP, and Tankyrase-1. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
341
|
Grote P, Schaeuble K, Ferrando-May E. Commuting (to) suicide: an update on nucleocytoplasmic transport in apoptosis. Arch Biochem Biophys 2007; 462:156-61. [PMID: 17395148 DOI: 10.1016/j.abb.2007.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 12/12/2022]
Abstract
Commuting is the process of travelling between a place of residence and a place of work. In the context of biology, this expression evokes the continuous movement of macromolecules between different compartments of a eukaryotic cell. Transport in and out of the nucleus is a major example of intracellular commuting. This article discusses recent findings that substantiate the emerging link between nucleocytoplasmic transport and the signalling and execution of cell death.
Collapse
Affiliation(s)
- Patricia Grote
- University of Konstanz, Department of Biology, Molecular Toxicology, P.O. Box X911, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
342
|
Affiliation(s)
- Weihai Ying
- University of California, Department of Neurology, San Francisco, CA, USA and, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
343
|
Klawitter V, Morales P, Bustamante D, Gomez-Urquijo S, Hökfelt T, Herrera-Marschitz M. Plasticity of basal ganglia neurocircuitries following perinatal asphyxia: effect of nicotinamide. Exp Brain Res 2007; 180:139-52. [PMID: 17310378 DOI: 10.1007/s00221-006-0842-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/20/2006] [Indexed: 01/21/2023]
Abstract
The potential neuroprotection of nicotinamide on the consequences of perinatal asphyxia was investigated with triple organotypic cultures. Perinatal asphyxia was induced in vivo by immersing foetuses-containing uterine horns removed from ready-to-deliver rats into a water bath for 20 min. Sibling caesarean-delivered pups were used as controls. Three days later tissue from substantia nigra, neostriatum and neocortex was dissected and placed on a coverslip. After a month, the cultures were processed for immunocytochemistry and phenotyped with markers against the NMDA receptor subunit NR1, tyrosine hydroxylase (TH), or neuronal nitric oxide synthase (nNOS). Some cultures were analysed for cell viability. Nicotinamide (0.8 mmol/kg, i.p.) or saline was administered to asphyxia-exposed and caesarean-delivered control pups 24, 48 and 72 h after birth. Perinatal asphyxia produced a decrease of cell viability in substantia nigra, but not in neostriatum or neocortex. Immunocytochemistry confirmed the vulnerability of the substantia nigra, demonstrating that there was a significant decrease in the number of NR1 and TH-positive (+) cells/mm2, as well as a decrease in the length of TH+ processes, suggesting neurite atrophy. In control cultures, many nNOS+ cells were seen, with different features, regional distribution and cell body sizes. Following perinatal asphyxia, there was an increase in the number of nNOS+ cells/mm2 in substantia nigra, versus a decrease in neostriatum including reduced neurite length, and no apparent changes in neocortex. The main effect of nicotinamide was seen in the neostriatum, preventing the asphyxia-induced decrease in the number of nNOS+ cells and neurite length. Nicotinamide also prevented the effect of perinatal asphyxia on TH-positive neurite length. The present results support the idea that nicotinamide can prevent the effects produced by a sustained energy-failure condition, as occurring during perinatal asphyxia.
Collapse
Affiliation(s)
- Verena Klawitter
- Programme of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, PO Box 70000 Santiago 7, Chile.
| | | | | | | | | | | |
Collapse
|
344
|
Abstract
Neuronal death is a key pathological event in multiple neurological diseases. Increasing evidence has suggested that NAD+ and NADH mediate not only energy metabolism and mitochondrial functions, but also calcium homeostasis, aging, and cell death. This article is written to provide an overview about the information suggesting significant roles of NAD+ and NADH in neuronal death in certain neurological diseases. Our latest studies have suggested that intranasal administration with NAD+ can profoundly decrease ischemic brain damage. These observations suggest that NAD+ administration may be a novel therapeutic strategy for some neurological diseases.
Collapse
|
345
|
Zeng J, Yang GY, Ying W, Kelly M, Hirai K, James TL, Swanson RA, Litt L. Pyruvate improves recovery after PARP-1-associated energy failure induced by oxidative stress in neonatal rat cerebrocortical slices. J Cereb Blood Flow Metab 2007; 27:304-15. [PMID: 16736046 DOI: 10.1038/sj.jcbfm.9600335] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous neuron and glial cell culture studies of excessive poly (ADP-ribose) polymerase (PARP-1) activation found NAD(+) depletion, glycolytic arrest, and cell death that could be avoided by exogenous tricarboxylic acid cycle (TCA) metabolites, especially pyruvate (pyr). Pyruvate neuroprotection has been attributed to cytosolic NAD(+) replenishment, TCA metabolism, and antioxidant activity. We investigated the first two mechanisms in respiring cerebrocortical slices after a 1-h H(2)O(2) exposure to activate PARP-1. H(2)O(2) was followed by a 4-h recovery with oxy-artificial cerebrospinal fluid superfusion having either: (1) no glucose (glc) or pyruvate; (2) 10 mmol/L glc only; (3) 10 mmol/L pyruvate only; (4) both 10 mmol/L glc and 10 mmol/L pyruvate. Poly-ADP-ribosylation was quantified from Western blots and immunohistochemistry. Perchloric acid extracts were quantified with 14.1 T (31)P nuclear magnetic resonance spectroscopy. Just after H(2)O(2) exposure, ATP and NAD(+) decreased by approximately 50%, PCr decreased by 75%, and the ADP/ATP ratio approximately doubled. ATP and NAD(+) changes, but not PCr changes, were nearly eliminated if PARP inhibitors accompanied the H(2)O(2). Recovery with both pyruvate and glc was better than with glc alone, having higher ATP (0.161 versus 0.075, P<0.01) and PCr levels (0.144 versus 0.078, P<0.01), and higher viable cell counts in TUNEL and Fluoro-Jade B staining. Two-dimensional [(1)H-(13)C] HSQC spectra showed metabolism during recovery of (13)C glc or pyr. Pyruvate metabolism was primarily via pyruvate dehydrogenase, with some via pyruvate carboxylation. Pyruvate superfusion of PARP-injured brain slices helps replenish NAD(+) while providing metabolic fuel. Although this augments recovery, a strong antioxidant role for pyruvate has not been ruled out.
Collapse
Affiliation(s)
- Jianying Zeng
- Department of Anesthesia, University of California at San Francisco, 94143-0648, USA
| | | | | | | | | | | | | | | |
Collapse
|
346
|
Monks TJ, Xie R, Tikoo K, Lau SS. Ros-induced histone modifications and their role in cell survival and cell death. Drug Metab Rev 2007; 38:755-67. [PMID: 17145700 DOI: 10.1080/03602530600959649] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Much is known about the distal DNA damage repair response. In particular, many of the enzymes and auxiliary proteins that participate in DNA repair have been characterized. In addition, knowledge of signaling pathways activated in response to DNA damage is increasing. In contrast, comparatively less is known of DNA damage-sensing molecules or of the specific alterations to chromatin structure recognized by such DNA damage sensors. Thus, precisely how chromatin structure is altered in response to DNA damage and how such alterations regulate DNA repair processes remain important unanswered questions. In vertebrates, phosphorylation of the histone variant H2A.X occurs rapidly after double-strand break formation, extends over megabase chromatin domains, and is required for stable accumulation of repair proteins at damage foci. We have shown that reactive oxygen species (ROS)-induced DNA single-strand breaks induce the incorporation of 32P specifically into histone H3. ADP-Ribosylation of histones may stimulate local chromatin relaxation to facilitate the repair process, and, indeed, histone ribosylation preceded DNA damage-induced histone H3 phosphorylation. However, H3 phosphorylation occurred concomitant with overall chromatin condensation, as revealed by decreased sensitivity of chromatin to digestion by micrococcal nuclease and by DAPI staining of nuclei. Inhibitors of the ERK and p38MAPK pathways and inhibition of poly(ADP-ribose) polymerase all reduced ROS-induced H3 phosphorylation, chromatin condensation, and cell death. Precisely how changes in the post-translational modification of histone H3 regulate the survival response remains unclear. Attempts to determine the precise site of histone H3 phosphorylation, putative histone H3 kinases, and histone H3 interacting proteins are underway.
Collapse
Affiliation(s)
- Terrence J Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721-0207, USA.
| | | | | | | |
Collapse
|
347
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
348
|
Sugo N, Niimi N, Aratani Y, Masutani M, Suzuki H, Koyama H. Decreased PARP-1 levels accelerate embryonic lethality but attenuate neuronal apoptosis in DNA polymerase beta-deficient mice. Biochem Biophys Res Commun 2007; 354:656-61. [PMID: 17257586 DOI: 10.1016/j.bbrc.2006.12.230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 12/30/2006] [Indexed: 11/28/2022]
Abstract
In mammalian cells, DNA polymerase beta (Polbeta) and poly(ADP-ribose) polymerase-1 (PARP-1) have been implicated in base excision repair (BER) and single-strand break repair. Polbeta knockout mice exhibit extensive neuronal apoptosis during neurogenesis and die immediately after birth, while PARP-1 knockout mice are viable and display hypersensitivity to genotoxic agents and genomic instability. Although accumulating biochemical data show functional interactions between Polbeta and PARP-1, such interactions in the whole animal have not yet been explored. To study this, we generate Polbeta(-/-)PARP-1(-/-) double mutant mice. Here, we show that the double mutant mice exhibit a profound developmental delay and embryonic lethality at mid-gestation. Importantly, the degree of the neuronal apoptosis was dramatically reduced in PARP-1 heterozygous mice in a Polbeta null background. The reduction was well correlated with decreased levels of p53 phosphorylation at serine-18, suggesting that the apoptosis depends on the p53-mediated apoptosis pathway that is positively regulated by PARP-1. These results indicate that functional interactions between Polbeta and PARP-1 play important roles in embryonic development and neurogenesis.
Collapse
Affiliation(s)
- Noriyuki Sugo
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | | | | | | | |
Collapse
|
349
|
Pérez-Rodríguez R, Fuentes MP, Oliván AM, Martínez-Palacián A, Roncero C, González MP, Oset-Gasque MJ. Mechanisms of nitric oxide-induced apoptosis in bovine chromaffin cells: Role of mitochondria and apoptotic proteins. J Neurosci Res 2007; 85:2224-38. [PMID: 17523167 DOI: 10.1002/jnr.21342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this work was to establish the possible involvement of mitochondria in the apoptotic event triggered by nitric oxide (NO) in chromaffin cells. Using bovine chromaffin cells in primary culture and several NO donors (SNP, SNAP, and GSNO) at apoptotic concentrations (50 microM-1 mM), we have shown that NO induces a time-dependent decrease in the mitochondrial transmembrane potential (DeltaPsi(m)), which correlates with the appearance of hypodiploid cells. Disruption in DeltaPsi(m) is followed by cytochrome c release to the cytosol, which in turn precedes caspase 3 activation. In this mechanism participates the Bcl-2 protein family, because NO donors downregulate the expression of anti-apoptotic members of the family such as Bcl-2 and Bcl-XL, and increase the expression of pro-apoptotic members, Bax and Bcl-Xs, inductors of cytochrome c release to cytosol. Different cell signaling pathways seem to regulate Bax induction and Bcl-2 inhibition because decreased Bcl-2 levels are detected later than enhanced Bax expression. The tumour suppressor protein p53 is also upregulated in a very early phase (30 min) of the NO-induced apoptosis and may be responsible for the further induction of Bax expression. Finally, the translocation of NF-kappaB to the nucleus seems to be another early event in NO-induced apoptosis and it may be involved in the regulation of p53 expression. These results support strongly the participation of mitochondrial mechanisms in NO-induced apoptosis in chromaffin cells and suggest that these cells may be good models for the investigation of molecular basis of neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Rocío Pérez-Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
350
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|