301
|
Chapter 1. Promise and progress of central G-protein coupled receptor modulators for obesity treatments. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2002. [DOI: 10.1016/s0065-7743(02)37002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
302
|
Silva AP, Carvalho AP, Carvalho CM, Malva JO. Modulation of intracellular calcium changes and glutamate release by neuropeptide Y1 and Y2 receptors in the rat hippocampus: differential effects in CA1, CA3 and dentate gyrus. J Neurochem 2001; 79:286-96. [PMID: 11677256 DOI: 10.1046/j.1471-4159.2001.00560.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.
Collapse
Affiliation(s)
- A P Silva
- Center for Neuroscience of Coimbra, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
303
|
Zammaretti F, Panzica G, Eva C. Fasting, leptin treatment, and glucose administration differentially regulate Y(1) receptor gene expression in the hypothalamus of transgenic mice. Endocrinology 2001; 142:3774-82. [PMID: 11517153 DOI: 10.1210/endo.142.9.8404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NPY is a potent orexigenic signal and represents a key component of targets through which leptin exerts a regulatory restraint on body adiposity. Part of the orexigenic effects of NPY are mediated by hypothalamic NPY-Y(1) receptors. Here we studied the effect of fasting, leptin, and glucose administration on Y(1) receptor gene expression using a transgenic mouse model carrying a mouse Y(1) receptor/LacZ fusion gene. Transgene expression was determined by quantitative analysis of beta-galactosidase histochemical staining in the paraventricular, arcuate, ventromedial, and dorsomedial hypothalamic nuclei and in the medial amygdala, as a control region. Food deprivation for 72 h decreased transgene expression in the paraventricular nucleus but not in the arcuate nucleus. Leptin treatment, that was per se ineffective, counteracted the decrease of transgene expression induced in the paraventricular nucleus by 72 h fasting. Supplementing the drinking water with 10% glucose increased beta-galactosidase expression both in the paraventricular nucleus and arcuate nucleus of control mice. Finally, none of the treatments altered transgene expression in the dorsomedial hyphothalamic, ventromedial, and amygdaloid nuclei. Results suggest that changes in energetic balance affect Y(1) receptor expression in the paraventricular and arcuate nuclei and that leptin regulates the NPY-Y(1) system in the paraventricular nucleus. Different regulatory signals might modulate the NPY-Y(1) transmission in the dorsomedial hyphothalamic and ventromedial hyphothalamic nuclei.
Collapse
Affiliation(s)
- F Zammaretti
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | | | | |
Collapse
|
304
|
Kask A, Vasar E, Heidmets LT, Allikmets L, Wikberg JE. Neuropeptide Y Y(5) receptor antagonist CGP71683A: the effects on food intake and anxiety-related behavior in the rat. Eur J Pharmacol 2001; 414:215-24. [PMID: 11239922 DOI: 10.1016/s0014-2999(01)00768-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of neuropeptide Y Y(5) receptor antagonist (trans-naphtalene-1-sulphonic acid [4-[(4-amino-quinazolin-2-ylamino)-methyl]-cyclohexylmethyl]-amide hydrochloride; CGP71683A), on food intake, anxiety and locomotor activity were studied. CGP71683A (1-10 mg/kg, i.p.) dose-dependently decreased nocturnal and fasting-induced food intake. CGP71683A did not have an anxiogenic-like effect in the rat social interaction test. In the elevated plus-maze test, where novel neuropeptide Y Y(1) receptor antagonist (2R)-5-([amino(imino)methyl)amino)-2-[(2.2-diphenylacetyl)-amino]-N-[(1R)-1-(4-hydroxyphenyl)ethyl-pentanamide (H 409/22) had anxiogenic-like effect, CGP71683A was inactive. In the open-field test, carried out immediately after the elevated plus-maze test, CGP71683A inhibited horizontal and vertical activity. CGP71683A did modify the habituation of locomotor response in novel environment. These data show that the inhibition of food intake induced by CGP71683A could not be explained by increased fearfulness, a state that is induced by neuropeptide Y Y(1) receptor antagonists. Thus, our data, obtained with first neuropeptide Y Y(5) receptor antagonist CGP71683A, suggest that in contrast to the neuropeptide Y Y(1) receptor, Y(5) receptor is not involved in tonic neuropeptide Y-induced anxiolysis.
Collapse
Affiliation(s)
- A Kask
- Department of Pharmacology, University of Tartu, Ravila 19, Tartu 50090, Estonia.
| | | | | | | | | |
Collapse
|
305
|
Abstract
The NPY system has a multitude of effects and is particularly well known for its role in appetite regulation. We have found that the five presently known receptors in mammals arose very early in vertebrate evolution before the appearance of jawed vertebrates 400 million years ago. The genes Y(1), Y(2) and Y(5) arose by local duplications and are still present on the same chromosome in human and pig. Duplications of this chromosome led to the Y(1)-like genes Y(4) and y(6). We find evidence for two occasions where receptor subtypes probably arose before peptide genes were duplicated. These observations pertain to the discussion whether ligands or receptors tend to appear first in evolution. The roles of Y(1) and Y(5) in feeding may differ between species demonstrating the importance of performing functional studies in additional mammals to mouse and rat.
Collapse
Affiliation(s)
- D Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
306
|
Burcelin R, Brunner H, Seydoux J, Thorensa B, Pedrazzini T. Increased insulin concentrations and glucose storage in neuropeptide Y Y1 receptor-deficient mice. Peptides 2001; 22:421-7. [PMID: 11287097 DOI: 10.1016/s0196-9781(01)00357-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice lacking NPY Y1 receptors develop obesity without hyperphagia indicating increased energy storage and/or decreased energy expenditure. Then, we investigated glucose utilization in these animals at the onset of obesity. Fasted NPY Y1 knockouts showed hyperinsulinemia associated with increased whole body and adipose tissue glucose utilization and glycogen synthesis but normal glycolysis. Since leptin modulates NPY actions, we studied whether the lack of NPY Y1 receptor affected leptin-mediated regulation of glucose metabolism. Leptin infusion normalized hyperinsulinemia and glucose turnover. These results suggest a possible mechanism for the development of obesity without hyperphagia via dysfunction in regulatory loops involving NPY, leptin and insulin.
Collapse
Affiliation(s)
- R Burcelin
- Institute of Pharmacology and Toxicology, University of Lausanne CH-1005, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
307
|
Grove KL, Campbell RE, Ffrench-Mullen JM, Cowley MA, Smith MS. Neuropeptide Y Y5 receptor protein in the cortical/limbic system and brainstem of the rat: expression on gamma-aminobutyric acid and corticotropin-releasing hormone neurons. Neuroscience 2001; 100:731-40. [PMID: 11036207 DOI: 10.1016/s0306-4522(00)00308-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y displays diverse modes of action in the CNS including the modulation of cortical/limbic function. Some of these physiological actions have been at least partially attributed to actions of neuropeptide Y on the Y5 receptor subtype. We utilized an antibody raised against the Y5 receptor to characterize the distribution of this receptor subtype in the rat cortical/limbic system and brainstem. Y5-like immunoreactivity was located primarily in neuronal cell bodies and proximal dendritic processes throughout the brain. In the cortex, Y5 immunoreactivity was limited to a subpopulation of small gamma-aminobutyric-acid interneurons (approximately 15 microm diameter) scattered throughout all cortical levels. Double label immunofluorescence was also used to demonstrate that all of the Y5 immunoreactive neurons in the cortex displayed intense corticotropin releasing hormone immunoreactivity. The most intense Y5 immunoreactive staining in the hippocampus was located in the pyramidal cell layer of the small CA2 subregion and the fasciola cinerea, with lower levels of staining in the hilar region of the dentate gyrus and CA3 subregion of the pyramidal cell layer. Nearly all of the Y5 immunoreactive neurons in the hilar region of the hippocampus displayed gamma-aminobutyric-acid immunoreactivity. In the brainstem, Y5 immunoreactivity was most intense in the Edinger-Westphal nucleus, locus coeruleus and the mesencephalic trigeminal nucleus. The present study provides neuroanatomical evidence for the possible sites of action of the neuropeptide Y/Y5 receptor system in the control of cortical/limbic function. The presence of Y5 immunoreactivity on cell bodies and proximal dendritic processes in specific regions of the hippocampus suggests that this receptor functions to modulate postsynaptic activity. These data also suggest that the neuropeptide Y/Y5 system may play a role in the modulation of a specific population of GABAergic neurons in the cortex, namely those that contain corticotropin-releasing hormone. The location of the Y5 receptor immunoreactivity fits with the known physiological actions of neuropeptide Y and this receptor.
Collapse
Affiliation(s)
- K L Grove
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA.
| | | | | | | | | |
Collapse
|
308
|
Hastings JA, McClure-Sharp JM, Morris MJ. NPY Y1 receptors exert opposite effects on corticotropin releasing factor and noradrenaline overflow from the rat hypothalamus in vitro. Brain Res 2001; 890:32-7. [PMID: 11164766 DOI: 10.1016/s0006-8993(00)02874-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY), corticotropin releasing factor (CRF) and noradrenaline play important roles in the regulation of a number of endocrine and autonomic functions. NPY is co-localised with noradrenaline in the central nervous system and has been observed to modulate noradrenaline release. Recent morphological and physiological studies also support co-modulatory interactions between NPY and CRF. Earlier in vivo studies in our laboratory showed a potentiation of K(+)-stimulated noradrenaline release following NPY administration, possibly due to an NPY Y1 receptor mechanism. In this study, in vitro superfusion techniques were established to simultaneously monitor the release of endogenous noradrenaline and CRF from the hypothalamus of adult rats and to examine the direct neuromodulatory action of NPY on the overflow of CRF and noradrenaline. Administration of 0.10 microM NPY significantly increased CRF overflow to 395% basal levels and reduced hypothalamic noradrenaline overflow to 61% of basal levels. These effects were blocked by prior administration of the NPY Y1 receptor antagonist GR231118. Thus, this study suggests that NPY, working through a Y1 receptor, has dual and opposing effects on CRF and noradrenaline overflow in vitro.
Collapse
Affiliation(s)
- J A Hastings
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | |
Collapse
|
309
|
Migita K, Loewy AD, Ramabhadran TV, Krause JE, Waters SM. Immunohistochemical localization of the neuropeptide Y Y1 receptor in rat central nervous system. Brain Res 2001; 889:23-37. [PMID: 11166683 DOI: 10.1016/s0006-8993(00)03092-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diverse effects of neuropeptide Y (NPY) are mediated through interaction with G-protein coupled receptors. Pharmacological analysis suggests the Y1 receptor mediates several of NPY's central and peripheral actions. We sought to determine the distribution of Y1 protein throughout the rat central nervous system by means of indirect immunofluorescence using the tyramide signal amplification method and a novel, amino terminally-directed Y1 antisera. This antisera was verified as specific for Y1 by solution-phase competition ELISA, Western blot and in situ blocking experiments. High concentrations of Y1 immunoreactivity were found in the claustrum, piriform cortex (superficial layer), arcuate hypothalamic nucleus, interpeduncular nucleus, paratrigeminal nucleus, and lamina II of the spinal trigeminal nucleus and entire spinal cord. Moderate levels of Y1 immunoreactivity were found the in the main olfactory bulb, dorsomedial part of suprachiasmatic nucleus, paraventricular hypothalamic nucleus, ventral nucleus of lateral lemniscus, pontine nuclei, mesencephalic trigeminal nucleus, external cuneate nucleus, area postrema, and nucleus tractus solitarius. Low levels of Y1 immunostaining were distributed widely throughout layers II-III of the cerebral cortex (i.e., orbital, cingulate, frontal, parietal, insular, and temporal regions), nucleus accumbens core, amygdalohippocampal and amygdalopiriform areas, dentate gyrus, CA1 and CA2 fields of hippocampus, principal and oral divisions of the spinal trigeminal nucleus, islands of Calleja and presubiculum. These findings are discussed with reference to previously reported receptor autoradiography, immunohistochemistry and mRNA analyses to further support the role of Y1 in NPY-mediated biology.
Collapse
Affiliation(s)
- K Migita
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
310
|
Della Zuana O, Sadlo M, Germain M, Félétou M, Chamorro S, Tisserand F, de Montrion C, Boivin JF, Duhault J, Boutin JA, Levens N. Reduced food intake in response to CGP 71683A may be due to mechanisms other than NPY Y5 receptor blockade. Int J Obes (Lond) 2001; 25:84-94. [PMID: 11244462 DOI: 10.1038/sj.ijo.0801472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The purpose of this study was to test the continuing validity of the hypothesis that neuropeptide Y (NPY) produced in the brain controls food intake through an interaction with the NPY Y(5) receptor subtype. METHODS The hypothesis was tested using CGP 71683A a potent and highly selective non-peptide antagonist of the NPY Y(5) receptor which was administered into the right lateral ventricle of obese Zucker fa/fa rats. RESULTS Intraventricular injection of 3.4 nmol/kg NPY increased food intake during a 2 h test period. Doses of CGP 71683A in excess of 15 nmol/kg (i.cv.) resulted in blockade of the increase in food intake produced by NPY. Repeated daily injection of CGP 71683A (30--300 nmol/kg, i.cv.) immediately before the dark phase produced a dose-dependent and slowly developing decrease in food intake. CGP 71683A has a low affinity for NPY Y(1), Y(2) and Y(4) receptors but a very high affinity for the NPY Y(5) receptor (Ki, 1.4 nM). Surprisingly, CGP 71683A had similarly high affinity for muscarinic receptors (Ki, 2.7 nM) and for the serotonin uptake recognition site (Ki, 6.2 nM) in rat brain. Anatomic analysis of the brain after treatment with CGP 71683A demonstrated an inflammatory response associated with the fall in food intake. CONCLUSIONS While the fall in food intake in response to CGP 71683A may have a Y(5) component, interactions with other receptors or inflammatory mediators may also play a role. It is concluded that CGP 71683A is an imprecise tool for investigating the role of the NPY Y(5) receptor in the control of physiological processes including food intake. International Journal of Obesity (2001) 25, 84-94
Collapse
Affiliation(s)
- O Della Zuana
- Metabolic Diseases, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Salaneck E, Holmberg SK, Berglund MM, Boswell T, Larhammar D. Chicken neuropeptide Y receptor Y2: structural and pharmacological differences to mammalian Y2(1). FEBS Lett 2000; 484:229-34. [PMID: 11078884 DOI: 10.1016/s0014-5793(00)02164-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Here we report the molecular cloning of the chicken (Gallus gallus) neuropeptide Y (NPY) receptor Y2, the first non-mammalian Y2 receptor. It displays 75-80% identity to mammalian Y2 and has a surprisingly divergent cytoplasmic tail. Expression of the receptor protein in a cell line showed that the receptor did not bind the mammalian Y2 selective antagonist BIIE0246. Furthermore, porcine [Leu(31), Pro(34)]NPY, which binds poorly to mammalian Y2, exhibited an unexpectedly high affinity for chicken Y2. In situ hybridisation revealed expression in the hippocampus. Thus, the chicken Y2 receptor exhibits substantial differences with regard to sequence and pharmacological profile in comparison to mammalian Y2 receptors, while the expression pattern in the central nervous system resembles that observed in mammals.
Collapse
Affiliation(s)
- E Salaneck
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
312
|
Vezzani A, Moneta D, Mulé F, Ravizza T, Gobbi M, French-Mullen J. Plastic changes in neuropeptide Y receptor subtypes in experimental models of limbic seizures. Epilepsia 2000; 41 Suppl 6:S115-21. [PMID: 10999532 DOI: 10.1111/j.1528-1157.2000.tb01569.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Neuropetide Y (NPY)-mediated neurotransmission in the hippocampus is altered by limbic seizures. The functional consequences of this change are still unresolved and clearly depend on the type of NPY receptors involved. NPY Y2 and Y1 receptors are increased on mossy fiber terminals and decreased on granule cell dendrites after seizures, respectively. We investigated (a) whether seizures modify the NPY Y5 receptors in the hippocampus, and (b) the effect of an agonist at Y2/Y5 receptors and antagonists at Y1 receptors on acute and chronic seizure susceptibility. METHODS Limbic seizures were induced in rats by electrical stimulation of the dorsal hippocampus, leading to stage 5 kindled seizures, or by intrahippocampal or systemic injections of kainic acid. Pentylentetrazol was administered to epileptic rats to assess their enhanced susceptibility to seizures. NPY Y5 receptor protein was measured in hippocampal homogenates using a specific polyclonal antibody and quantitative Western blotting. RESULTS Y5 receptors (57-kD band) were transiently decreased (23 to 35%) in all hippocampal subregions 2 and 7 days, but not 2.5 hours, after seizures induced by systemic kainic acid. A minor band of 51 kD was reduced significantly in CA3 and dentate gyrus, although it was increased in CA1, 30 days after seizures, suggesting long-term posttranslational changes in this protein. NPY Y5 receptors were increased by 200% in total homogenate from the stimulated hippocampus 2 days but not 30 days after fully kindled seizures. Intracerebral injections of NPY 13-36 (Y2/Y5 receptor agonist) or BIBP 3225 and BIBO 3304 (selective Y1 receptor antagonists) decreased seizure susceptibility in rats. CONCLUSIONS These results indicate that NPY Y5 receptors change after limbic seizures and suggest that NPY receptors may provide novel target(s) for the treatment of epilepsy.
Collapse
Affiliation(s)
- A Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
313
|
Bregola G, Dumont Y, Fournier A, Zucchini S, Quirion R, Simonato M. Decreased levels of neuropeptide Y(5) receptor binding sites in two experimental models of epilepsy. Neuroscience 2000; 98:697-703. [PMID: 10891613 DOI: 10.1016/s0306-4522(00)00162-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been suggested that the anticonvulsant effects of neuropeptide Y (NPY) could be mediated by the activation of Y(2) and/or Y(5) receptors. NPY Y(1) receptor levels are known to decrease and Y(2) to increase in rat models of epilepsy. By using an autoradiographic approach, we investigated whether epilepsy models (kainic acid and kindling) are also associated with changes in Y(5) receptors. Compared with naive controls, [125I][Leu(31), Pro(34)]PYY/BIBP3226-insensitive (Y(5)) binding sites in the hippocampus (strata oriens and radiatum of CA3 and CA1) and in the neocortex (superficial layers) were unchanged in sham-stimulated rats, but reduced by approximately 50% in kindled rats (seven days after the last stimulus evokes seizure), and further reduced (to approximately -90%) 1h after a kindled seizure. Additionally, Y(5) receptor binding sites in the hippocampus and in the neocortex were unchanged 6h after kainic acid injection, but were highly reduced at 12 and 24h. No changes in Y(5) binding levels were found in the dentate gyrus and the pyramidal cell layer of the hippocampus. The present data suggest that changes in Y(5) receptor levels occur in epilepsy models. These changes may play a role in seizure expression and/or in the maintenance of kindling hyperexcitability.
Collapse
Affiliation(s)
- G Bregola
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, QC, H4H 1R3, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
314
|
Durkin MM, Walker MW, Smith KE, Gustafson EL, Gerald C, Branchek TA. Expression of a novel neuropeptide Y receptor subtype involved in food intake: an in situ hybridization study of Y5 mRNA distribution in rat brain. Exp Neurol 2000; 165:90-100. [PMID: 10964488 DOI: 10.1006/exnr.2000.7446] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our group has reported on the cloning of a novel rat neuropeptide Y (NPY) receptor involved in NPY-induced food intake, the Y5 receptor. The distribution in rat brain of the mRNA encoding this receptor has been determined by in situ hybridization histochemistry, using radiolabeled oligonucleotide probes. Control experiments were carried out in cell lines transfected with either rat Y1 or rat Y5 cDNAs. With the exception of the cerebellum, only the antisense probes yielded hybridization signal in rat brain tissue sections. A number of brain regions contained hybridization signals indicative of Y5 mRNA localization. Chief among these were various hypothalamic nuclei, including the medial preoptic nucleus, the supraoptic nucleus, the paraventricular nucleus, and the lateral hypothalamus. Other regions with substantial hybridization signals included the midline thalamus, parts of the amygdala and hippocampus, and some midbrain and brain-stem nuclei. In general a low density of Y5 mRNA was observed in most cortical structures, with the exception of the cingulate and retrosplenial cortices, each of which contained a moderate abundance of Y5 hybridization signal. The distribution of this receptor mRNA is consistent with a role for the Y5 receptor in food intake and also suggests involvement in other processes mediated by NPY.
Collapse
Affiliation(s)
- M M Durkin
- Synaptic Pharmaceutical Corporation, 215 College Road, Paramus, New Jersey 07652, USA
| | | | | | | | | | | |
Collapse
|
315
|
Parker RM, Copeland NG, Eyre HJ, Liu M, Gilbert DJ, Crawford J, Couzens M, Sutherland GR, Jenkins NA, Herzog H. Molecular cloning and characterisation of GPR74 a novel G-protein coupled receptor closest related to the Y-receptor family. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 77:199-208. [PMID: 10837915 DOI: 10.1016/s0169-328x(00)00052-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel gene product, GPR74, with homology to the seven transmembrane-domain receptor superfamily, has been cloned. GPR74 has been identified from the expressed sequence tags (EST) database. Subsequent PCR amplification of that sequence and screening of a human heart cDNA library led to the isolation of a 1.7-kb cDNA clone encoding a protein of 408 amino acids. GPR74 shows highest amino acid identity (33%) to the human neuropeptide Y-receptor subtype Y2. The human and mouse genes for GPR74 have been isolated and their exon-intron structures determined. In both species the gene consists of four exons spanning around 20 kb with the exon-intron borders being 100% conserved. Northern analysis of various human tissues reveals highest levels of mRNA expression in brain and heart. In situ hybridisation analysis of rat brain tissue confirms this result and identifies the hippocampus and amygdala nuclei as the brain areas with particular high expression of GPR74 mRNA. Fluorescence in situ hybridisation, PCR analysis on a radiation hybrid panel and interspecific mouse backcross mapping have localised the genes to human chromosome 4q21 and mouse chromosome 5. Expression of the human GPR74 cDNA as a GFP-fusion protein in various cell lines reveals the inability of the recombinant receptor protein to reach the cell surface. This is consistent with the lack of NPY specific binding in these cells and suggests that unknown factors are required for a full functional receptor complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 4/genetics
- Cloning, Molecular
- Exons/genetics
- Expressed Sequence Tags
- Female
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Introns/genetics
- Ligands
- Male
- Mice
- Myocardium/metabolism
- Organ Specificity
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Neuropeptide
- Receptors, Neuropeptide Y/chemistry
- Sequence Alignment
- Substrate Specificity
Collapse
Affiliation(s)
- R M Parker
- Garvan Institute of Medical Research, Neurobiology Program, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, NSW 2010, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Almeida RS, Ferrari MF, Fior-Chadi DR. Quantitative autoradiography of adrenergic, neuropeptide Y and angiotensin II receptors in the nucleus tractus solitarii and hypothalamus of rats with experimental hypertension. ACTA ACUST UNITED AC 2000; 34:343-8. [PMID: 11368890 DOI: 10.1016/s0306-3623(00)00080-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Catecholamines, neuropeptide Y (NPY) and angiotensin II (Ang II) are known to participate in the central control of blood pressure. However, the modulation of these neurotransmitter receptors in response to a hypertensive stimulus is not appropriately established. The purpose of the present study was to examine binding parameters of alpha(2)-adrenergic, NPY and Ang II receptors in the nucleus tractus solitarii (NTS) and paraventricular hypothalamic nucleus (PVN) following a hypertensive stimulus in the aortic-coarcted rat by means of quantitative receptor autoradiography. No changes were seen in binding parameters of alpha(2)-adrenergic and NPY receptors in the NTS of the hypertensive rat compared to control. However, an increased affinity (54%) of noradrenaline competing for 3H-PAC was seen in the PVN. Moreover, an increased binding (49%) of 125I-PYY was also observed in the PVN. The affinity of Ang II for 125I-Sar(1)Ile(8)-Ang II binding sites was also increased (57%) in the NTS of the hypertensive rat. No changes in the binding parameters of radioactive Ang II were observed in the PVN. The results suggest that systems involved with hypertension like Ang II in the NTS and catecholamines in the PVN might collaborate in the development/maintenance of high blood pressure in the aortic-coarcted rat.
Collapse
Affiliation(s)
- R S Almeida
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão-Travessa 14, no. 321, SP 05508-900, São Paulo, Brazil
| | | | | |
Collapse
|
317
|
Wisialowski T, Parker R, Preston E, Sainsbury A, Kraegen E, Herzog H, Cooney G. Adrenalectomy reduces neuropeptide Y-induced insulin release and NPY receptor expression in the rat ventromedial hypothalamus. J Clin Invest 2000; 105:1253-9. [PMID: 10792000 PMCID: PMC315443 DOI: 10.1172/jci8695] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chronic central administration of neuropeptide Y (NPY) causes hyperphagia, hyperinsulinemia, and obesity, a response that is prevented by prior adrenalectomy (ADX) in rats. The basis of NPY's effect and how the acute responses to this peptide are affected by ADX remain unknown. This study investigates the role of glucocorticoids in acute NPY-stimulated food intake, acute NPY-induced insulin release, and hypothalamic NPY-receptor mRNA expression levels. NPY-induced food intake was similar in ADX and control rats after acute intracerebroventricular injection of NPY. Injection of NPY caused a significant increase in plasma insulin in control rats, but this effect was completely absent in ADX rats in which basal plasma insulin levels were also lower than controls. In addition, ADX significantly reduced the number of neurons expressing NPY receptor Y(1) and Y(5) mRNAs in the ventromedial hypothalamus (VMH), without affecting Y(1)- or Y(5)-mRNA expression in the paraventricular hypothalamus or the arcuate nucleus. These data indicate that glucocorticoids are necessary for acute NPY-mediated insulin release and suggest that the mechanisms involve glucocorticoid regulation of Y(1) and Y(5) receptors specifically within the VMH nucleus.
Collapse
Affiliation(s)
- T Wisialowski
- Garvan Institute of Medical Research, 384 Victoria Street, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
318
|
Parker R, Liu M, Eyre HJ, Copeland NG, Gilbert DJ, Crawford J, Sutherland GR, Jenkins NA, Herzog H. Y-receptor-like genes GPR72 and GPR73: molecular cloning, genomic organisation and assignment to human chromosome 11q21.1 and 2p14 and mouse chromosome 9 and 6. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1491:369-75. [PMID: 10760605 DOI: 10.1016/s0167-4781(00)00023-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Two novel G-protein-coupled receptors, one from human, GPR72, and one from mouse, GPR73 have been isolated, sequenced and their genomic organisation determined. Non-isotopic in situ hybridisation and radiation hybrid mapping have identified GPR72 to be localised on human chromosome 11q21.1, and GPR73 on human chromosome 2p14. Interspecific mouse backcross mapping has localised the genes to mouse chromosomes 9 and 6, respectively. Northern analysis reveals GPR72 mRNA expression only in brain tissue. However, GPR73 mRNA can be found in heart, skeletal muscle and pancreas. Both receptors are closely related with 36 and 33% overall amino acid identity, respectively, to the Y-receptor family. However, although successful cell surface expression in a heterologous expression system can be achieved no specific binding to this ligand family can be detected, indicating that perhaps additional factors are required for binding.
Collapse
Affiliation(s)
- R Parker
- Garvan Institute of Medical Research, Neurobiology Program, St. Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
319
|
St-Pierre JA, Nouel D, Dumont Y, Beaudet A, Quirion R. Association of neuropeptide Y Y1 receptors with glutamate-positive and NPY-positive neurons in rat hippocampal cultures. Eur J Neurosci 2000; 12:1319-30. [PMID: 10762361 DOI: 10.1046/j.1460-9568.2000.00024.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hippocampus is particularly enriched with neuropeptide tyrosine (NPY) and NPY receptors including the Y1, Y2 and Y5 subtypes. We have previously reported on the enrichment of cultured rat hippocampal neurons in specific [125I][Leu31, Pro34]PYY/BIBP3226-sensitive (Y1) binding sites and Y1 receptor mRNAs [St-Pierre et al. (1998) Br. J. Pharmacol., 123, p183]. We have now identified which cell types express the Y1 receptor. The majority of Y1 receptors, visualized using either the radiolabeled probe [125I][Leu31,Pro34]PYY or two antibodies directed against distinct domains of the Y1 receptor, was expressed in neurons as revealed by neuron-specific enolase (NSE) immunostaining. One antibody was directed against the second extracelllular loop of the Y1 receptor (amino acids 185-203) whereas the second was directed against the intracellular C-terminal loop (amino acids 355-382). The labelling was evident over both perikarya and processes. Neurons labelled by the various Y1 receptor probes were mostly glutamate-positive as revealed by double immunostaining. Most interestingly, a number of NPY-positive cultured hippocampal neurons were also enriched with the Y1 receptor, suggesting that this subtype may act as an autoreceptor to regulate NPY release in the hippocampus. These results thus provide an anatomical basis for the modulation of glutamate and NPY release by the Y1 receptor in the hippocampus.
Collapse
Affiliation(s)
- J A St-Pierre
- Douglas Hospital Research Center, Verdun Québec, H4H 1R3, Canada
| | | | | | | | | |
Collapse
|
320
|
Couzens M, Liu M, Tüchler C, Kofler B, Nessler-Menardi C, Parker RM, Klocker H, Herzog H. Peptide YY-2 (PYY2) and pancreatic polypeptide-2 (PPY2): species-specific evolution of novel members of the neuropeptide Y gene family. Genomics 2000; 64:318-23. [PMID: 10756099 DOI: 10.1006/geno.2000.6132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several gene duplication events have led to the creation of at least five distinct members of the neuropeptide Y gene family. We now reveal that the most recent of these events, involving the PYY-PPY gene cluster on chromosome 17q21.1, has led to the creation of novel PYY- and PP-like genes on chromosome 17q11 in the human genome. Sequence analysis of the novel human PYY2 and PPY2 genes shows an extensive homology to the peptide YY-pancreatic polypeptide genes, at the level of gene structure, nucleotide sequence, and primary amino acid sequence. The extremely high degree of homology between the PYY-PPY and the PYY2-PPY2 gene clusters, in both coding regions and especially noncoding regions, suggests that the PYY2 and PPY2 genes have arisen by a very recent gene duplication. Similar gene duplication events of the PYY-PPY gene cluster have also occurred in other species, including cow and baboon, but have not been confirmed in the rat and mouse genomes. Interestingly, despite the greater than 92% nucleotide sequence identity between these new genes, a few specific mutations have resulted in significantly altered peptide sequences. These altered sequences are accompanied by acquisition of new functions apparently unrelated to the neurotransmitter/endocrine role of PYY and PPY, as demonstrated by the major involvement of bovine PYY2, also known as seminal plasmin, in the fertilization process.
Collapse
Affiliation(s)
- M Couzens
- Neurobiology Program, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
321
|
McCrea K, Wisialowski T, Cabrele C, Church B, Beck-Sickinger A, Kraegen E, Herzog H. 2-36[K4,RYYSA(19-23)]PP a novel Y5-receptor preferring ligand with strong stimulatory effect on food intake. REGULATORY PEPTIDES 2000; 87:47-58. [PMID: 10710288 DOI: 10.1016/s0167-0115(99)00108-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the neuropeptide Y (NPY) family regulate many physiological processes via interaction with at least four functional, pharmacologically distinct Y-receptors. However, selective antagonists developed for several subtypes have not been useful in defining particular Y-receptor functions in vivo. To identify critical residues within members of the NPY family required for Y-receptor subtype-selectivity we have determined the contribution of each residue within NPY to receptor binding by replacing them with L-alanine. In a second study, chimeric peptides where single or stretches of residues were interchanged between members of the NPY family were generated and tested in radioligand binding studies. Overall, substituted alanine analogues exhibited similar orders of affinities at each Y-receptor subtype with no obvious subtype-selectivity. Residues of particular interest are Leu30 which exhibited selectivity for the Y4-receptor, whereas Asp16 does not appear to play any role in ligand binding. Several chimeric peptides, e.g., [K4]pancreatic polypeptide ([K4]PP) and [RYYSA(19-23)]PP clearly showed higher affinity at the Y4 and Y5 subtypes compared to the Y1 and Y2 subtypes. In addition, the transfer of a proline residue from position 14 to 13 in peptide YY decreases its affinity at the Y1-, Y4- and Y5-receptors but is unchanged at the Y2 subtype. Combining these results, and with the help of molecular modelling, second generation chimeras were designed. The most significant improvement was achieved in chimera 2-36[K4,RYYSA(19-23)]PP where the affinity for the Y5 subtype increased by ninefold over that from NPY. Several of these compounds were also tested for their ability to stimulate food intake in a rat model. Interestingly, again 2-36[K4,RYYSA(19-23)]PP showed the most dramatic effect with a major increase on food intake over a range of doses compared to NPY suggesting a possible synergistic effect of several Y-receptors on feeding behaviour.
Collapse
Affiliation(s)
- K McCrea
- Neurobiology Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
322
|
Li C, Chen P, Smith MS. Corticotropin releasing hormone neurons in the paraventricular nucleus are direct targets for neuropeptide Y neurons in the arcuate nucleus: an anterograde tracing study. Brain Res 2000; 854:122-9. [PMID: 10784113 DOI: 10.1016/s0006-8993(99)02324-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, anterograde tracing combined with triple label immunofluorescent staining was conducted to examine the possible anatomical interactions between Neuropeptide Y (NPY) neurons in the arcuate nucleus of the hypothalamus (ARH) and the corticotropin releasing hormone (CRH) system in the paraventricular nucleus of the hypothalamus (PVH). The anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L), was iontophresed into the ARH of female rats and triple label immunofluorescence staining with three different fluorophores was performed to visualize PHA-L, NPY and CRH, with the aid of confocal microscopy. In PVH, NPY and PHA-L double-labeled fibers were found mainly in the parvocellular part of the PVH (PVHp). Confocal analysis demonstrated that NPY/PHA-L double-labeled fibers came in close apposition to CRH perikarya. In the median eminence, NPY/PHA-L double-labeled fibers were found both in the inner and the outer zones of the median eminence. However, very few double-labeled fibers were found in the proximity of CRH neuronal fibers in the median eminence. Double label staining was also performed to determine if NPY Y1 receptors were expressed in CRH neurons. Two different fluorophores were used to visualize CRH neurons and Y1 receptor. No convincing Y1-positive staining was found in CRH cell bodies in the PVH, even though Y1-positive staining in numerous fibers and cell bodies was observed throughout the region. However, Y1-positive fibers were shown to make close contact with CRH cell bodies in the PVH. In the ME, the majority of the Y1-positive fibers were located in the lateral portion of the ME, whereas the CRH fibers were found mainly in the medial portion of the external zone of the ME. The results of the present study suggest that ARH NPY neurons provide direct input into CRH cell bodies in the PVH region. However, the direct effects of NPY must be mediated by some receptor subtype other than Y1. Y1 receptor involvement in NPY modulation of CRH neuronal function in the PVH appears to be indirect through modulation of neuronal afferents making contact with CRH neurons.
Collapse
Affiliation(s)
- C Li
- Oregon Regional Primate Research Center, Department of Physiology and Pharmacology, Oregon Health Sciences University, Beaverton 97006, USA
| | | | | |
Collapse
|
323
|
Dumont Y, Quirion R. [(125)I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y(1) and Y(4) receptors. Br J Pharmacol 2000; 129:37-46. [PMID: 10694200 PMCID: PMC1621114 DOI: 10.1038/sj.bjp.0702983] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
GR231118 (also known as 1229U91 and GW1229), a purported Y(1) antagonist and Y(4) agonist was radiolabelled using the chloramine T method. [(125)I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [(125)I]-GR231118 binds with very high affinity (K(d) of 0.09 - 0.24 nM) in transfected HEK293 cells with the rat Y(1) and Y(4) receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y(2) or Y(5) receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [(125)I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y(1), but not rat Y(4), receptor cDNA. Autoradiographic studies demonstrated that [(125)I]-GR231118 binding sites were fully inhibited by the Y(1) antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [(125)I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [(125)I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y(4) receptor subtype. In summary, [(125)I]-GR231118 is a new radiolabelled probe to investigate the Y(1) and Y(4) receptors; its major advantage being its high affinity. Using highly selective Y(1) antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [(125)I]-GR231118 to the Y(1) receptor allowing for the characterization and visualization of the purported Y(4) subtype. British Journal of Pharmacology (2000) 129, 37 - 46
Collapse
Affiliation(s)
- Yvan Dumont
- Douglas Hospital Research Centre, Department. Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, QC, H4H 1R3, Canada
| | - Rémi Quirion
- Douglas Hospital Research Centre, Department. Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, QC, H4H 1R3, Canada
- Author for correspondence:
| |
Collapse
|
324
|
Dumont Y, Jacques D, St-Pierre JA, Tong Y, Parker R, Herzog H, Quirion R. Chapter IX Neuropeptide Y, peptide YY and pancreatic polypeptide receptor proteins and mRNAs in mammalian brains. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80011-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
325
|
Hwa JJ, Witten MB, Williams P, Ghibaudi L, Gao J, Salisbury BG, Mullins D, Hamud F, Strader CD, Parker EM. Activation of the NPY Y5 receptor regulates both feeding and energy expenditure. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R1428-34. [PMID: 10564216 DOI: 10.1152/ajpregu.1999.277.5.r1428] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracerebroventricular (ICV) administration of neuropeptide Y (NPY) has been shown to decrease energy expenditure, induce hypothermia, and stimulate food intake. Recent evidence has suggested that the Y5 receptor may be a significant mediator of NPY-stimulated feeding. The present study attempts to further characterize the role of NPY Y5-receptor subtypes in feeding and energy expenditure regulation. Satiated Long-Evans rats with temperature transponders implanted in the interscapular brown adipose tissue (BAT) displayed a dose-dependent decrease in BAT temperature and an increase in food intake after ICV infusion of NPY. Similar effects were induced by ICV administration of peptide analogs of NPY that activate the Y5 receptor, but not by analogs that activate Y1, Y2, or Y4 receptors. Furthermore, ICV infusion of the Y5 selective agonist D-[Trp(32)]-NPY significantly reduced oxygen consumption and energy expenditure of rats as measured by indirect calorimetry. These data suggest that the NPY Y5-receptor subtype not only mediates the feeding response of NPY but also contributes to brown fat temperature and energy expenditure regulation.
Collapse
Affiliation(s)
- J J Hwa
- Department of CNS, Schering-Plough Research Institute, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
The 36-amino-acid peptide, neuropeptide Y (NPY), is the most abundant peptide in the rat brain. When administered into the brain, NPY produces a variety of physiological actions including a pronounced stimulation of feeding in satiated rats. Elevations in hypothalamic NPY have been reported after food deprivation and in genetically obese rodents. NPY is believed to produce its actions through a portfolio of G-protein coupled receptors, Y1, Y2, Y4 and Y5. Studies using peptide analogs, receptor knockout animals and specific receptor antagonists suggest the Y1 and Y5 receptors are important in mediating the effects of NPY on food intake in rats. Development of specific receptor antagonists with improved pharmacokinetic properties will be required to determine the importance of NPY in human obesity and appetite disorders.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Neuroscience, Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|