301
|
Tsertou MI, Triga A, Droubogiannis S, Kokkari C, Anasi G, Katharios P. Isolation and characterization of a novel Tenacibaculum species and a corresponding bacteriophage from a Mediterranean fish hatchery: Description of Tenacibaculum larymnensis sp. nov. and Tenacibaculum phage Larrie. Front Microbiol 2023; 14:1078669. [PMID: 36925475 PMCID: PMC10013915 DOI: 10.3389/fmicb.2023.1078669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Tenacibaculum larymnensis sp. nov., a novel species of the Tenacibaculum genus was isolated from a commercial fish hatchery in Greece. The novel species is phylogenetically close to T. discolor and was biochemically and genetically characterized. The genome of T. larymnensis has 3.66 Mbps length, 31.83% GC content and the genomic analysis demonstrated that it harbors a wide enzymatic repertoire suggestive of increased degrading capacity but also several virulence factors including hemolysins, secretion systems, transporters, siderophores, pili and extracellular proteins. Using the novel strain, a virulent bacteriophage designated as Tenacibaculum phage Larrie was isolated and characterized. Larrie is a novel Siphovirus with relatively large genome, 77.5 kbps with 111 ORFs, a GC content of 33.7% and an exclusively lytic lifestyle. The new phage-host system can serve as an efficient model to study microbial interactions in the aquatic environment which contribute to the nutrient cycling.
Collapse
Affiliation(s)
- Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Stavros Droubogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| |
Collapse
|
302
|
Beamud B, García-González N, Gómez-Ortega M, González-Candelas F, Domingo-Calap P, Sanjuan R. Genetic determinants of host tropism in Klebsiella phages. Cell Rep 2023; 42:112048. [PMID: 36753420 PMCID: PMC9989827 DOI: 10.1016/j.celrep.2023.112048] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Bacteriophages play key roles in bacterial ecology and evolution and are potential antimicrobials. However, the determinants of phage-host specificity remain elusive. Here, we isolate 46 phages to challenge 138 representative clinical isolates of Klebsiella pneumoniae, a widespread opportunistic pathogen. Spot tests show a narrow host range for most phages, with <2% of 6,319 phage-host combinations tested yielding detectable interactions. Bacterial capsule diversity is the main factor restricting phage host range. Consequently, phage-encoded depolymerases are key determinants of host tropism, and depolymerase sequence types are associated with the ability to infect specific capsular types across phage families. However, all phages with a broader host range found do not encode canonical depolymerases, suggesting alternative modes of entry. These findings expand our knowledge of the complex interactions between bacteria and their viruses and point out the feasibility of predicting the first steps of phage infection using bacterial and phage genome sequences.
Collapse
Affiliation(s)
- Beatriz Beamud
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Neris García-González
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain
| | - Mar Gómez-Ortega
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health, FISABIO-Universitat de València, 46020 València, Spain; Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| | - Pilar Domingo-Calap
- Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| | - Rafael Sanjuan
- Institute for Integrative Systems Biology (I(2)SysBio), Universitat de València-CSIC, 46980 Paterna, Spain.
| |
Collapse
|
303
|
Prichard A, Lee J, Laughlin TG, Lee A, Thomas KP, Sy A, Spencer T, Asavavimol A, Cafferata A, Cameron M, Chiu N, Davydov D, Desai I, Diaz G, Guereca M, Hearst K, Huang L, Jacobs E, Johnson A, Kahn S, Koch R, Martinez A, Norquist M, Pau T, Prasad G, Saam K, Sandhu M, Sarabia AJ, Schumaker S, Sonin A, Uyeno A, Zhao A, Corbett K, Pogliano K, Meyer J, Grose JH, Villa E, Dutton R, Pogliano J. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529968. [PMID: 36865095 PMCID: PMC9980170 DOI: 10.1101/2023.02.24.529968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function. We propose that phages with this core genome comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryo-electron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication encoded in the core genome are conserved among diverse chimalliviruses, and reveal that non-core components can confer intriguing variations on this replication mechanism. For instance, unlike previously studied nucleus-forming phages, RAY doesn't degrade the host genome, and its PhuZ homolog appears to form a five-stranded filament with a lumen. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
Collapse
|
304
|
Obradović M, Malešević M, Di Luca M, Kekić D, Gajić I, McAuliffe O, Neve H, Stanisavljević N, Vukotić G, Kojić M. Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. Viruses 2023; 15:v15030628. [PMID: 36992337 PMCID: PMC10052179 DOI: 10.3390/v15030628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Klebsiella pneumoniae is a global health threat and bacteriophages are a potential solution in combating pandrug-resistant K. pneumoniae infections. Two lytic phages, LASTA and SJM3, active against several pandrug-resistant, nosocomial strains of K. pneumoniae were isolated and characterized. Their host range is narrow and latent period is particularly long; however, their lysogenic nature was refuted using both bioinformatic and experimental approaches. Genome sequence analysis clustered them with only two other phages into the new genus Lastavirus. Genomes of LASTA and SJM3 differ in only 13 base pairs, mainly located in tail fiber genes. Individual phages, as well as their cocktail, demonstrated significant bacterial reduction capacity in a time-dependent manner, yielding up to 4 log reduction against planktonic, and up to 2.59 log on biofilm-embedded, cells. Bacteria emerging from the contact with the phages developed resistance and achieved numbers comparable to the growth control after 24 h. The resistance to the phage seems to be of a transient nature and varies significantly between the two phages, as resistance to LASTA remained constant while resensitization to SJM3 was more prominent. Albeit with very few differences, SJM3 performed better than LASTA overall; however, more investigation is needed in order to consider them for therapeutic application.
Collapse
Affiliation(s)
- Mina Obradović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Milka Malešević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Dušan Kekić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajić
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany
| | - Nemanja Stanisavljević
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Vukotić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| | - Milan Kojić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (G.V.); (M.K.)
| |
Collapse
|
305
|
PCR Assay for Rapid Taxonomic Differentiation of Virulent Staphylococcus aureus and Klebsiella pneumoniae Bacteriophages. Int J Mol Sci 2023; 24:ijms24054483. [PMID: 36901913 PMCID: PMC10003202 DOI: 10.3390/ijms24054483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Phage therapy is now seen as a promising way to overcome the current global crisis in the spread of multidrug-resistant bacteria. However, phages are highly strain-specific, and in most cases one will have to isolate a new phage or search for a phage suitable for a therapeutic application in existing libraries. At an early stage of the isolation process, rapid screening techniques are needed to identify and type potential virulent phages. Here, we propose a simple PCR approach to differentiate between two families of virulent Staphylococcus phages (Herelleviridae and Rountreeviridae) and eleven genera of virulent Klebsiella phages (Przondovirus, Taipeivirus, Drulisvirus, Webervirus, Jiaodavirus, Sugarlandvirus, Slopekvirus, Jedunavirus, Marfavirus, Mydovirus and Yonseivirus). This assay includes a thorough search of a dataset comprising S. aureus (n = 269) and K. pneumoniae (n = 480) phage genomes available in the NCBI RefSeq/GenBank database for specific genes that are highly conserved at the taxonomic group level. The selected primers showed high sensitivity and specificity for both isolated DNA and crude phage lysates, which permits circumventing DNA purification protocols. Our approach can be extended and applied to any group of phages, given the large number of available genomes in the databases.
Collapse
|
306
|
Tominaga K, Ogawa-Haruki N, Nishimura Y, Watai H, Yamamoto K, Ogata H, Yoshida T. Prevalence of Viral Frequency-Dependent Infection in Coastal Marine Prokaryotes Revealed Using Monthly Time Series Virome Analysis. mSystems 2023; 8:e0093122. [PMID: 36722950 PMCID: PMC9948707 DOI: 10.1128/msystems.00931-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/02/2023] Open
Abstract
Viruses infecting marine prokaryotes have a large impact on the diversity and dynamics of their hosts. Model systems suggest that viral infection is frequency dependent and constrained by the virus-host encounter rate. However, it is unclear whether frequency-dependent infection is pervasive among the abundant prokaryotic populations with different temporal dynamics. To address this question, we performed a comparison of prokaryotic and viral communities using 16S rRNA amplicon and virome sequencing based on samples collected monthly for 2 years at a Japanese coastal site, Osaka Bay. Concurrent seasonal shifts observed in prokaryotic and viral community dynamics indicated that the abundance of viruses correlated with that of their predicted host phyla (or classes). Cooccurrence network analysis between abundant prokaryotes and viruses revealed 6,423 cooccurring pairs, suggesting a tight coupling of host and viral abundances and their "one-to-many" correspondence. Although stable dominant species, such as SAR11, showed few cooccurring viruses, a fast succession of their viruses suggests that viruses infecting these populations changed continuously. Our results suggest that frequency-dependent viral infection prevails in coastal marine prokaryotes regardless of host taxa and temporal dynamics. IMPORTANCE There is little room for doubt that viral infection is prevalent among abundant marine prokaryotes regardless of their taxa or growth strategy. However, comprehensive evaluations of viral infections in natural prokaryotic communities are still technically difficult. In this study, we examined viral infection in abundant prokaryotes by monitoring the monthly dynamics of prokaryotic and viral communities at a eutrophic coastal site, Osaka Bay. We compared the community dynamics of viruses with those of their putative hosts based on genome-based in silico host prediction. We observed frequent cooccurrence among the predicted virus-host pairs, suggesting that viral infection is prevalent in abundant prokaryotes regardless of their taxa or temporal dynamics. This likely indicates that frequent lysis of the abundant prokaryotes via viral infection has a considerable contribution to the biogeochemical cycling and maintenance of prokaryotic community diversity.
Collapse
Affiliation(s)
- Kento Tominaga
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yosuke Nishimura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Hiroyasu Watai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Osaka, Japan
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
307
|
In Silico Evidence of the Multifunctional Features of Lactiplantibacillus pentosus LPG1, a Natural Fermenting Agent Isolated from Table Olive Biofilms. Foods 2023; 12:foods12050938. [PMID: 36900455 PMCID: PMC10000683 DOI: 10.3390/foods12050938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, there has been a growing interest in obtaining probiotic bacteria from plant origins. This is the case of Lactiplantibacillus pentosus LPG1, a lactic acid bacterial strain isolated from table olive biofilms with proven multifunctional features. In this work, we have sequenced and closed the complete genome of L. pentosus LPG1 using both Illumina and PacBio technologies. Our intention is to carry out a comprehensive bioinformatics analysis and whole-genome annotation for a further complete evaluation of the safety and functionality of this microorganism. The chromosomic genome had a size of 3,619,252 bp, with a GC (Guanine-Citosine) content of 46.34%. L. pentosus LPG1 also had two plasmids, designated as pl1LPG1 and pl2LPG1, with lengths of 72,578 and 8713 bp (base pair), respectively. Genome annotation revealed that the sequenced genome consisted of 3345 coding genes and 89 non-coding sequences (73 tRNA and 16 rRNA genes). Taxonomy was confirmed by Average Nucleotide Identity analysis, which grouped L. pentosus LPG1 with other sequenced L. pentosus genomes. Moreover, the pan-genome analysis showed that L. pentosus LPG1 was closely related to the L. pentosus strains IG8, IG9, IG11, and IG12, all of which were isolated from table olive biofilms. Resistome analysis reported the absence of antibiotic resistance genes, whilst PathogenFinder tool classified the strain as a non-human pathogen. Finally, in silico analysis of L. pentosus LPG1 showed that many of its previously reported technological and probiotic phenotypes corresponded with the presence of functional genes. In light of these results, we can conclude that L. pentosus LPG1 is a safe microorganism and a potential human probiotic with a plant origin and application as a starter culture for vegetable fermentations.
Collapse
|
308
|
Ma R, Chen X, Li Y, Jiao N, Zhang R. Diversity, evolution and life strategies of CbK-like phages. Environ Microbiol 2023. [PMID: 36807729 DOI: 10.1111/1462-2920.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Caulobacter phage CbK has been extensively studied as a model system in virology and bacteriology. Lysogeny-related genes have been found in each CbK-like isolate, suggesting a life strategy of both lytic and lysogenic cycles. However, whether CbK-related phages can enter lysogeny is still undetermined. This study identified new CbK-like sequences and expanded the collection of CbK-related phages. A common ancestry with a temperate lifestyle was predicted for the group, however, which subsequently evolved into two clades of different genome sizes and host associations. Through the examination of phage recombinase genes, alignment of attachment sites on the phage and bacterial genomes (attP-attB pairing), and the experimental validation, different lifestyles were found among the different members. A majority of clade II members retain a lysogenic lifestyle, whereas all clade I members have evolved into an obligate lytic lifestyle via a loss of the gene encoding Cre-like recombinase and the coupled attP fragment. We postulated that the loss of lysogeny may be a by-product of the increase in phage genome size, and vice versa. Clade I is likely to overcome the costs through maintaining more auxiliary metabolic genes (AMGs), particularly for those involved in protein metabolism, to strengthen host takeover and further benefit virion production.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yingying Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
309
|
Gorodnichev RB, Kornienko MA, Malakhova MV, Bespiatykh DA, Manuvera VA, Selezneva OV, Veselovsky VA, Bagrov DV, Zaychikova MV, Osnach VA, Shabalina AV, Goloshchapov OV, Bespyatykh JA, Dolgova AS, Shitikov EA. Isolation and Characterization of the First Zobellviridae Family Bacteriophage Infecting Klebsiella pneumoniae. Int J Mol Sci 2023; 24:4038. [PMID: 36835449 PMCID: PMC9960094 DOI: 10.3390/ijms24044038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maria A. Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Maja V. Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry A. Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Valentin A. Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oksana V. Selezneva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Bagrov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Marina V. Zaychikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Veronika A. Osnach
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Anna V. Shabalina
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Oleg V. Goloshchapov
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Julia A. Bespyatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Anna S. Dolgova
- Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, 197101 St. Petersburg, Russia
| | - Egor A. Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
310
|
Transcriptomics-Driven Characterization of LUZ100, a T7-like Pseudomonas Phage with Temperate Features. mSystems 2023; 8:e0118922. [PMID: 36794936 PMCID: PMC10134795 DOI: 10.1128/msystems.01189-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.
Collapse
|
311
|
Timoshina OY, Kasimova AA, Shneider MM, Arbatsky NP, Shashkov AS, Shelenkov AA, Mikhailova YV, Popova AV, Hall RM, Knirel YA, Kenyon JJ. Loss of a Branch Sugar in the Acinetobacter baumannii K3-Type Capsular Polysaccharide Due To Frameshifts in the gtr6 Glycosyltransferase Gene Leads To Susceptibility To Phage APK37.1. Microbiol Spectr 2023; 11:e0363122. [PMID: 36651782 PMCID: PMC9927144 DOI: 10.1128/spectrum.03631-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The type of capsular polysaccharide (CPS) on the cell surface of Acinetobacter baumannii can determine the specificity of lytic bacteriophage under consideration for therapeutic use. Here, we report the isolation of a phage on an extensively antibiotic resistant ST2 A. baumannii isolate AB5001 that carries the KL3 CPS biosynthesis gene cluster predicting a K3-type CPS. As the phage did not infect isolates carrying KL3 or KL22 and known to produce K3 CPS, the structure of the CPS isolated from A. baumannii AB5001 was determined. AB5001 produced a variant CPS form, K3-v1, that lacks the β-d-GlсpNAc side chain attached to the d-Galp residue in the K3 structure. Inspection of the KL3 sequence in the genomes of AB5001 and other phage-susceptible isolates with a KL3 locus revealed single-base deletions in gtr6, causing loss of the Gtr6 glycosyltransferase that adds the missing d-GlсpNAc side chain to the K3 CPS. Hence, the presence of this sugar profoundly restricts the ability of the phage to digest the CPS. The 41-kb linear double-stranded DNA (dsDNA) phage genome was identical to the genome of a phage isolated on a K37-producing isolate and thus was named APK37.1. APK37.1 also infected isolates carrying KL116. Consistent with this, K3-v1 resembles the K37 and K116 structures. APK37.1 is a Friunavirus belonging to the Autographiviridae family. The phage-encoded tail spike depolymerase DpoAPK37.1 was not closely related to Dpo encoded by other sequenced Friunaviruses, including APK37 and APK116. IMPORTANCE Lytic bacteriophage have potential for the treatment of otherwise untreatable extensively antibiotic-resistant bacteria. For Acinetobacter baumannii, most phage exhibit specificity for the type of capsular polysaccharide (CPS) produced on the cell surface. However, resistance can arise via mutations in CPS genes that abolish this phage receptor. Here, we show that single-base deletions in a CPS gene result in alteration of the final structure rather than deletion of the capsule layer and hence affect the ability of a newly reported podophage to infect strains producing the K3 CPS.
Collapse
Affiliation(s)
- Olga Y. Timoshina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A. Kasimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail M. Shneider
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay P. Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S. Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Anastasiya V. Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Ruth M. Hall
- School of Life and Environmental Science, University of Sydney, Sydney, Australia
| | - Yuriy A. Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Johanna J. Kenyon
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
312
|
Four novel Curtobacterium phages isolated from environmental samples. Arch Virol 2023; 168:89. [PMID: 36786922 DOI: 10.1007/s00705-023-05706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
Despite Curtobacterium spp. often being associated with the plant phyllosphere, i.e., the areal region of different plant species, only one phage targeting a member of the genus Curtobacterium has been isolated so far. In this study, we isolated four novel plaque-forming Curtobacterium phages, Reje, Penoan, Parvaparticeps, and Pize, with two novel Curtobacterium strains as propagation hosts. Based on the low nucleotide intergenomic similarity (<32.4%) between these four phages and any phage with a genome sequence in the NCBI database, we propose the establishment of the four genera, "Rejevirus", "Pizevirus", "Penoanvirus", and "Parvaparticepsvirus", all in the class of Caudoviricetes.
Collapse
|
313
|
Meng LH, Ke F, Zhang QY, Zhao Z. Biological and Genomic Characteristics of MaMV-DH01, a Novel Freshwater Myoviridae Cyanophage Strain. Microbiol Spectr 2023; 11:e0288822. [PMID: 36602358 PMCID: PMC9927357 DOI: 10.1128/spectrum.02888-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
The genomic traits of cyanophages and their potential for metabolic reprogramming of the host cell remain unknown due to the limited number of studies on cyanophage isolates. In the present study, a lytic Microcystis cyanophage, MaMV-DH01, was isolated and identified. MaMV-DH01 has an icosahedral head approximately 100 nm in diameter and a tail 260 nm in length. Its burst size is large, with approximately 145 phage particles/infected cell; it has a latent period of 2 days, and it shows high stability under pH and temperature stresses. Multiple infection (multiplicity of infection [MOI] 0.0001 to 100) results showed that when the MOI was 0.0001, MaMV-DH01 needed a longer time to lyse host cells. Cyanophage MaMV-DH01 has a double-stranded DNA genome of 182,372 bp, with a GC content of 45.35% and 210 predicted open reading frames (ORFs). These ORFs are related to DNA metabolism, structural proteins, lysis, host-derived metabolic genes, and DNA packaging. Phylogenetic trees based on the whole genome and two conserved genes (TerL and capsid) indicate that MaMV-DH01 is clustered with Ma-LMM01 and MaMV-DC, which are independent of other cyanophages. Collinearity analysis showed that the complete genome of MaMV-DH01 was longer than those of Ma-LMM01 and MaMV-DC, with lengths of 20,263 bp and 13,139 bp, respectively. We verified the authenticity of these excess DNA fragments and found that they are involved to various degrees in the MaMV-DH01 transcription process. Map overlays of environmental virus macrogenomic reads onto the MaMV-DH01 genome revealed that viral sequences similar to that of MaMV-DH01 are widespread in the environment. IMPORTANCE A novel freshwater Myoviridae cyanophage strain, MaMV-DH01, was isolated; this strain infects Microcystis aeruginosa FACHB-524, and the biological and genomic characteristics of MaMV-DH01 provide new insights for understanding the mechanism by which cyanophages infect cyanobacterial blooms.
Collapse
Affiliation(s)
- Li-Hui Meng
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qi-Ya Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
314
|
Isolation, characterization, and complete genome sequence of vibrio phage KIT04, a novel lytic phage of the subfamily ermolyevavirinae. Virology 2023; 579:148-155. [PMID: 36669331 DOI: 10.1016/j.virol.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 01/16/2023]
Abstract
Vibrio phage KIT04 was isolated from muscle tissue samples collected from a local market in Vietnam. KIT04 is a lytic phage that is specific to Vibrio parahaemolyticus. The one-step growth curve determined the burst size and latent period of 0.01 multiplicity of infection KIT04 in V. parahaemolyticus as approximately 156 plaque-forming units/bacterium and 45 min, respectively. Vibrio phage KIT04 has an approximately 76.4 ± 4.5 nm diameter icosahedral head and a tail length of approximately 159.5 ± 16.6 nm long tail. KIT04 significantly reduced V. parahaemolyticus ATCC 17802 in vitro. Complete genome analysis showed that KIT04 had a 114,933 bp dsDNA genome with 40.24% G + C content and 160 open reading frames (ORFs). However, the phage genome contained 24 tRNAs and no lysogeny-related genes. Moreover, five of the 160 ORFs encoded unique hypothetical proteins, indicating that KIT04 is a novel phage. Genomic comparison indicated that KIT04 is closely related to the Vibrio phages pVp-1 and VPT02. Further, phylogenetic analysis of the major tail proteins and whole genome supported the KIT04 classification into the subfamily Ermolyevavirinae. Our study describes a new candidate phage that could be used as a bioagent for controlling Vibrio pathogens.
Collapse
|
315
|
Zhou Y, Zhou L, Yan S, Chen L, Krupovic M, Wang Y. Diverse viruses of marine archaea discovered using metagenomics. Environ Microbiol 2023; 25:367-382. [PMID: 36385454 DOI: 10.1111/1462-2920.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
During the past decade, metagenomics became a method of choice for the discovery of novel viruses. However, host assignment for uncultured viruses remains challenging, especially for archaeal viruses, which are grossly undersampled compared to viruses of bacteria and eukaryotes. Here, we assessed the utility of CRISPR spacer targeting, tRNA gene matching and homology searches for viral signature proteins, such as major capsid proteins, for the assignment of archaeal hosts and validated these approaches on metaviromes from Yangshan Harbor (YSH). We report 35 new genomes of viruses which could be confidently assigned to hosts representing diverse lineages of marine archaea. We show that the archaeal YSH virome is highly diverse, with some viruses enriching the previously described virus groups, such as magroviruses of Marine Group II Archaea (Poseidoniales), and others representing novel groups of marine archaeal viruses. Metagenomic recruitment of Tara Oceans datasets on the YSH viral genomes demonstrated the presence of YSH Poseidoniales and Nitrososphaeria viruses in the global oceans, but also revealed the endemic YSH-specific viral lineages. Furthermore, our results highlight the relationship between the soil and marine thaumarchaeal viruses. We propose three new families within the class Caudoviricetes for the classification of the five complete viral genomes predicted to replicate in marine Poseidoniales and Nitrososphaeria, two ecologically important and widespread archaeal groups. This study illustrates the utility of viral metagenomics in exploring the archaeal virome and provides new insights into the diversity, distribution and evolution of marine archaeal viruses.
Collapse
Affiliation(s)
- Yifan Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Liang Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Entwicklungsgenetik und Zellbiologie der Tiere, Philipps-Universität Marburg, Marburg, Germany
| | - Lanming Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
316
|
Qin P, Wang G, Luan Y, Xie J, He J, Shi H, Xu W. Complete genome sequence and characterization of four Decapod iridescent virus 1 isolates from crab and shrimp. J Invertebr Pathol 2023; 196:107852. [PMID: 36384189 DOI: 10.1016/j.jip.2022.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Decapod iridescent virus 1 (DIV1) is an emerging viral pathogen that infects diverse freshwater and marine crustacean species and causes considerable economic losses that seriously threaten crustacean farming and has caused enormous financial losses in recent years. In this study, we detected DIV1 from diseased crabs, with clinical symptoms such as loss of vitality and white gill filaments with edema, in a Marsupenaeus japonicus and Portunus trituberculatus polyculture pond. Four DIV1 isolates from crab samples (two isolates) and shrimp samples (two isolates) were sequenced and assembled successfully. Molecular characterization and phylogenetic analysis of the four DIV1 isolates were conducted. The DIV1 isolates from crab samples have a close genetic relationship with shrimp DIV1s, indicating the viruses share the same ancestor with those from shrimps. Our study provides valuable insights into disease prevention and control of the shrimp-crab polyculture system.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gengshen Wang
- Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Yingjia Luan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianjun Xie
- Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Jie He
- Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Hui Shi
- Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China.
| | - Wenjun Xu
- Key Laboratory of Mariculture & Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316100, China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China.
| |
Collapse
|
317
|
Vidigal PMP, Hungaro HM. Genome sequencing of Pseudomonas fluorescens phage UFJF_PfSW6: a novel lytic Pijolavirus specie with potential for biocontrol in the dairy industry. 3 Biotech 2023; 13:67. [PMID: 36726557 PMCID: PMC9884711 DOI: 10.1007/s13205-023-03485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
The genomic characterization of phages with biocontrol potential against food-related bacteria is essential to future commercial applications. Here, we report the genome sequence of P. fluorescens phage UFJF_PfSW6 and a taxonomy proposal framing it as a novel phage species with great potential for biocontrol in the dairy industry. It showed a short linear double-stranded DNA genome (~ 39 kb) with a GC content of 21.2% and short DTR sequences of 215 bp. The genome of the UFJF_PfSW6 phage contains 48 genes with a unidirectional organization into three functional modules: DNA replication and metabolism, structural proteins, and DNA packing and host lysis. Thirteen promoters from phage and nine from host regulate these genes, and six Rho-independent terminators control their transcription. Twenty-seven genes of the UFJF_PfSW6 encode proteins with predicted functions. Comparative genome analysis revealed that the UFJF_PfSW6 genome shares 84% of genomic similarity with the genome sequence of the Pijolavirus PspYZU08, the only representative of the genus recognized so far. Therefore, our findings indicate that both phages are of the same genus, but UFJF_PfSW6 a is a novel Pijolavirus specie belonging to the Studiervirinae subfamily. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03485-3.
Collapse
Affiliation(s)
- Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900 Brazil
| | - Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, MG 36036-900 Brazil
| |
Collapse
|
318
|
Laso-Pérez R, Wu F, Crémière A, Speth DR, Magyar JS, Zhao K, Krupovic M, Orphan VJ. Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome. Nat Microbiol 2023; 8:231-245. [PMID: 36658397 PMCID: PMC9894754 DOI: 10.1038/s41564-022-01297-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 01/21/2023]
Abstract
'Candidatus Methanophagales' (ANME-1) is an order-level clade of archaea responsible for anaerobic methane oxidation in deep-sea sediments. The diversity, ecology and evolution of ANME-1 remain poorly understood. In this study, we use metagenomics on deep-sea hydrothermal samples to expand ANME-1 diversity and uncover the effect of virus-host dynamics. Phylogenetic analyses reveal a deep-branching, thermophilic family, 'Candidatus Methanospirareceae', closely related to short-chain alkane oxidizers. Global phylogeny and near-complete genomes show that hydrogen metabolism within ANME-1 is an ancient trait that was vertically inherited but differentially lost during lineage diversification. Metagenomics also uncovered 16 undescribed virus families so far exclusively targeting ANME-1 archaea, showing unique structural and replicative signatures. The expansive ANME-1 virome contains a metabolic gene repertoire that can influence host ecology and evolution through virus-mediated gene displacement. Our results suggest an evolutionary continuum between anaerobic methane and short-chain alkane oxidizers and underscore the effects of viruses on the dynamics and evolution of methane-driven ecosystems.
Collapse
Affiliation(s)
- Rafael Laso-Pérez
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany.
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Fabai Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China.
- Ocean College, Zhejiang University, Zhoushan, China.
- Donghai Laboratory, Zhoushan, China.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Daan R Speth
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Kehan Zhao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
319
|
Lee S, Sieradzki ET, Nicol GW, Hazard C. Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. THE ISME JOURNAL 2023; 17:309-314. [PMID: 36414709 PMCID: PMC9859776 DOI: 10.1038/s41396-022-01341-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022]
Abstract
Ammonia-oxidising archaea (AOA) are a ubiquitous component of microbial communities and dominate the first stage of nitrification in some soils. While we are beginning to understand soil virus dynamics, we have no knowledge of the composition or activity of those infecting nitrifiers or their potential to influence processes. This study aimed to characterise viruses having infected autotrophic AOA in two nitrifying soils of contrasting pH by following transfer of assimilated CO2-derived 13C from host to virus via DNA stable-isotope probing and metagenomic analysis. Incorporation of 13C into low GC mol% AOA and virus genomes increased DNA buoyant density in CsCl gradients but resulted in co-migration with dominant non-enriched high GC mol% genomes, reducing sequencing depth and contig assembly. We therefore developed a hybrid approach where AOA and virus genomes were assembled from low buoyant density DNA with subsequent mapping of 13C isotopically enriched high buoyant density DNA reads to identify activity of AOA. Metagenome-assembled genomes were different between the two soils and represented a broad diversity of active populations. Sixty-four AOA-infecting viral operational taxonomic units (vOTUs) were identified with no clear relatedness to previously characterised prokaryote viruses. These vOTUs were also distinct between soils, with 42% enriched in 13C derived from hosts. The majority were predicted as capable of lysogeny and auxiliary metabolic genes included an AOA-specific multicopper oxidase suggesting infection may augment copper uptake essential for central metabolic functioning. These findings indicate virus infection of AOA may be a frequent process during nitrification with potential to influence host physiology and activity.
Collapse
Affiliation(s)
- Sungeun Lee
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Ella T Sieradzki
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France
| | - Graeme W Nicol
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France.
| | - Christina Hazard
- Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134 Ecully, France.
| |
Collapse
|
320
|
Simmonds P, Adriaenssens EM, Zerbini FM, Abrescia NGA, Aiewsakun P, Alfenas-Zerbini P, Bao Y, Barylski J, Drosten C, Duffy S, Duprex WP, Dutilh BE, Elena SF, García ML, Junglen S, Katzourakis A, Koonin EV, Krupovic M, Kuhn JH, Lambert AJ, Lefkowitz EJ, Łobocka M, Lood C, Mahony J, Meier-Kolthoff JP, Mushegian AR, Oksanen HM, Poranen MM, Reyes-Muñoz A, Robertson DL, Roux S, Rubino L, Sabanadzovic S, Siddell S, Skern T, Smith DB, Sullivan MB, Suzuki N, Turner D, Van Doorslaer K, Vandamme AM, Varsani A, Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol 2023; 21:e3001922. [PMID: 36780432 PMCID: PMC9925010 DOI: 10.1371/journal.pbio.3001922] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - F. Murilo Zerbini
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Nicola G. A. Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences—BRTA, Derio, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
| | - Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz University, Poznan, Poland
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - W. Paul Duprex
- The Center for Vaccine Research, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bas E. Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Jena, Germany
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Maria Laura García
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt University, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Aris Katzourakis
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of America
| | - Amy J. Lambert
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Elliot J. Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Cédric Lood
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, Virginia, United States of America
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alejandro Reyes-Muñoz
- Max Planck Tandem Group in Computational Biology, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - David L. Robertson
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, CNR, UOS Bari, Bari, Italy
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Stuart Siddell
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tim Skern
- Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Donald B. Smith
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew B. Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, Department of Immunobiology, BIO5 Institute, and University of Arizona Cancer Center, Tucson, Arizona, United States of America
| | - Anne-Mieke Vandamme
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Nikos Vasilakis
- Department of Pathology, Center of Vector-Borne and Zoonotic Diseases, Institute for Human Infection and Immunity and World Reference Center for Emerging Viruses and Arboviruses, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
321
|
Srisangthong I, Sangseedum C, Chaichanit N, Surachat K, Suanyuk N, Mittraparp-arthorn P. Characterization and Genome Analysis of Vibrio campbellii Lytic Bacteriophage OPA17. Microbiol Spectr 2023; 11:e0162322. [PMID: 36719217 PMCID: PMC10101143 DOI: 10.1128/spectrum.01623-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Vibrio campbellii is a marine bacterium that is associated with luminous vibriosis, especially in the hatchery and nursery stages of penaeid shrimp cultivation worldwide, which has led to low survival rates of shrimp during aquaculture. Phage therapy has been reported as an alternative biocontrol agent which can reduce or replace the use of antibiotics and other chemicals. This study characterized a lytic V. campbellii bacteriophage, OPA17, originally isolated from bloody clams and investigated its biocontrol efficacy against V. campbellii infection in a model system, Artemia franciscana. Phage OPA17 lysed 83.89% of V. campbellii strains tested (n = 118) with clear plaque morphology. Some strains of Vibrio parahaemolyticus and Vibrio vulnificus were also infected by phage OPA17. Transmission electron microscopy and genetic features indicated that OPA17 belongs to the Siphoviridae family. The latent period and burst size of OPA17 were approximately 50 min and 123 PFU/cell, respectively. Moreover, it survived in artificial seawater throughout the 2-month study period and effectively destroyed Vibrio campbellii biofilms after 4 h of incubation. The addition of OPA17 significantly increased the survival of A. franciscana nauplii infected with V. campbellii. The genome sequence of OPA17 showed that it does not carry genes unsuitable for phage therapy. The phylogenetic tree analysis showed that OPA17 was closely related to the V. vulnificus lytic phage SSP002 (98.90% similarity), which was previously reported as a potential biocontrol agent. Accordingly, the results of this study provide valuable information regarding the potential biocontrol application of phage OPA17 against V. campbellii. IMPORTANCE V. campbellii is an emerging luminous pathogen associated with vibriosis, especially in marine shrimp hatcheries. Several strategies, including pond management and use of natural antimicrobials and probiotics, have been studied for control of this organism. Phage therapy is considered one of the effective biocontrol strategies against bacterial infections in aquaculture. However, there has been limited study of V. campbellii bacteriophages. In this study, V. campbellii-specific bacteriophage OPA17 was isolated, characterized, and investigated for its biocontrol efficacy against V. campbellii infection in an Artemia nauplii model. Phage OPA17 belongs to the Siphoviridae family and shares significant genome similarity to phage SSP002, a potential biocontrol agent against V. vulnificus infection in a murine model. However, the host range of OPA17 was broader than that of SSP002. Overall, we discuss the potential of OPA17 for phage therapy application in shrimp hatcheries.
Collapse
Affiliation(s)
- Intraporn Srisangthong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chadtida Sangseedum
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Netnapa Chaichanit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Naraid Suanyuk
- Aquatic Science and Innovative Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pimonsri Mittraparp-arthorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
322
|
Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023; 15:pharmaceutics15020434. [PMID: 36839755 PMCID: PMC9960720 DOI: 10.3390/pharmaceutics15020434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In recent years, multidrug-resistant (MDR) strains of Klebsiella pneumoniae have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with Klebsiella oxytoca strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant Klebsiella strains. Here, we present the results of a long-term study on the isolation and biology of bacteriophages active against K. pneumoniae, as well as K. oxytoca strains. We evaluated biological properties, morphology, host specificity, lytic spectrum and sensitivity of these phages to chemical agents along with their life cycle parameters such as adsorption, latent period, and burst size. Phages designated by us, vB_KpnM-52N (Kpn52N) and VB_KpnM-53N (Kpn53N), demonstrated relatively broad lytic spectra among tested Klebsiella strains, high burst size, adsorption rates and stability, which makes them promising candidates for therapeutic purposes. We also examined selected Klebsiella phages from our historical collection. Notably, one phage isolated nearly 60 years ago was successfully used in purulent cerebrospinal meningitis in a new-born and has maintained lytic activity to this day. Genomic sequences of selected phages were determined and analyzed. The phages of the sequenced genomes belong to the Slopekvirus and Jiaodavirus genus, a group of phages related to T4 at the family level. They share several features of T4 making them suitable for antibacterial therapies: the obligatorily lytic lifestyle, a lack of homologs of known virulence or antibiotic resistance genes, and a battery of enzymes degrading host DNA at infection.
Collapse
|
323
|
Zaki BM, Fahmy NA, Aziz RK, Samir R, El-Shibiny A. Characterization and comprehensive genome analysis of novel bacteriophage, vB_Kpn_ZCKp20p, with lytic and anti-biofilm potential against clinical multidrug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1077995. [PMID: 36756618 PMCID: PMC9901506 DOI: 10.3389/fcimb.2023.1077995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction The rise of infections by antibiotic-resistant bacterial pathogens is alarming. Among these, Klebsiella pneumoniae is a leading cause of death by hospital-acquired infections, and its multidrug-resistant strains are flagged as a global threat to human health, which necessitates finding novel antibiotics or alternative therapies. One promising therapeutic alternative is the use of virulent bacteriophages, which specifically target bacteria and coevolve with them to overcome potential resistance. Here, we aimed to discover specific bacteriophages with therapeutic potential against multiresistant K. pneumoniae clinical isolates. Methods and Results Out of six bacteriophages that we isolated from urban and medical sewage, phage vB_Kpn_ZCKp20p had the broadest host range and was thus characterized in detail. Transmission electron microscopy suggests vB_Kpn_ZCKp20p to be a tailed phage of the siphoviral morphotype. In vitro evaluation indicated a high lytic efficiency (30 min latent period and burst size of ∼100 PFU/cell), and extended stability at temperatures up to 70°C and a wide range of (2-12) pH. Additionally, phage vB_Kpn_ZCKp20p possesses antibiofilm activity that was evaluated by the crystal violet assay and was not cytotoxic to human skin fibroblasts. The whole genome was sequenced and annotated, uncovering one tRNA gene and 33 genes encoding proteins with assigned functions out of 85 predicted genes. Furthermore, comparative genomics and phylogenetic analysis suggest that vB_Kpn_ZCKp20p most likely represents a new species, but belongs to the same genus as Klebsiella phages ZCKP8 and 6691. Comprehensive genomic and bioinformatics analyses substantiate the safety of the phage and its strictly lytic lifestyle. Conclusion Phage vB_Kpn_ZCKp20p is a novel phage with potential to be used against biofilm-forming K. pneumoniae and could be a promising source for antibacterial and antibiofilm products, which will be individually studied experimentally in future studies.
Collapse
Affiliation(s)
- Bishoy Maher Zaki
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza, Egypt
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ramy Karam Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt, Cairo, Egypt
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| |
Collapse
|
324
|
Alanin KWS, Olsen NS, Djurhuus AM, Carstens AB, Nielsen TK, Wagner N, Lametsch R, Bak F, Hennessy RC, Nicolaisen MH, Kot W, Hansen LH. Three novel Erwinia billingiae phages isolated from organic waste represent three new genera. Arch Virol 2023; 168:71. [PMID: 36658443 DOI: 10.1007/s00705-023-05700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023]
Abstract
Despite the ecological significance of viral communities, phages remain insufficiently studied. Current genomic databases lack high-quality phage genome sequences linked to specific bacteria. Bacteria of the genus Erwinia are known to colonize the phyllosphere of plants, both as commensals and as pathogens. We isolated three Erwinia billingiae phages-Zoomie, Pecta, and Snitter-from organic household waste. Based on sequence similarity to their closest relatives, we propose that they represent three new genera: "Pectavirus" within the family Zobellviridae, "Snittervirus" in the subfamily Tempevirinae, family Drexlerviridae, and "Zoomievirus" within the family Autographiviridae, which, together with the genus Limelightvirus, may constitute a new subfamily.
Collapse
Affiliation(s)
- Katrine Wacenius Skov Alanin
- Department for Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.,Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nikoline S Olsen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Amaru Miranda Djurhuus
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Byth Carstens
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Natalia Wagner
- Institute for Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str. 1, 24103, Kiel, Germany
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Frederik Bak
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Rosanna Catherine Hennessy
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Witold Kot
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
325
|
Zhu J, Yang F, Du K, Wei ZL, Wu QF, Chen Y, Li WF, Li Q, Zhou CZ. Phylogenomics of five Pseudanabaena cyanophages and evolutionary traces of horizontal gene transfer. ENVIRONMENTAL MICROBIOME 2023; 18:3. [PMID: 36639816 PMCID: PMC9837993 DOI: 10.1186/s40793-023-00461-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date. RESULTS Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria. CONCLUSION In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.
Collapse
Affiliation(s)
- Jie Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Feng Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang Du
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zi-Lu Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Qing-Fa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yuxing Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Wei-Fang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Qiong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Cong-Zhao Zhou
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
326
|
Keeler EL, Merenstein C, Reddy S, Taylor LJ, Cobián-Güemes AG, Zankharia U, Collman RG, Bushman FD. Widespread, human-associated redondoviruses infect the commensal protozoan Entamoeba gingivalis. Cell Host Microbe 2023; 31:58-68.e5. [PMID: 36459997 PMCID: PMC9969835 DOI: 10.1016/j.chom.2022.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.
Collapse
Affiliation(s)
- Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carter Merenstein
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shantan Reddy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Taylor
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana G Cobián-Güemes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Urvi Zankharia
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
327
|
Natarajan A, Fremin BJ, Schmidtke DT, Wolfe MK, Zlitni S, Graham KE, Brooks EF, Severyn CJ, Sakamoto KM, Lacayo NJ, Kuersten S, Koble J, Caves G, Kaplan I, Singh U, Jagannathan P, Rezvani AR, Bhatt AS, Boehm AB. Tomato brown rugose fruit virus Mo gene is a novel microbial source tracking marker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523366. [PMID: 36712100 PMCID: PMC9882089 DOI: 10.1101/2023.01.09.523366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial source tracking (MST) identifies sources of fecal contamination in the environment using fecal host-associated markers. While there are numerous bacterial MST markers, there are few viral markers. Here we design and test novel viral MST markers based on tomato brown rugose fruit virus (ToBRFV) genomes. We assembled eight nearly complete genomes of ToBRFV from wastewater and stool samples from the San Francisco Bay Area in the United States of America. Next, we developed two novel probe-based RT-PCR assays based on conserved regions of the ToBRFV genome, and tested the markers’ sensitivities and specificities using human and non-human animal stool as well as wastewater. TheToBRFV markers are sensitive and specific; in human stool and wastewater, they are more prevalent and abundant than a currently used marker, the pepper mild mottle virus (PMMoV) coat protein (CP) gene. We applied the assays to detect fecal contamination in urban stormwater samples and found that the ToBRFV markers matched cross-assembly phage (crAssphage), an established viral MST marker, in prevalence across samples. Taken together, ToBRFV is a promising viral human-associated MST marker. Importance Human exposure to fecal contamination in the environment can cause transmission of infectious diseases. Microbial source tracking (MST) can identify sources of fecal contamination so that contamination can be remediated and human exposures can be reduced. MST requires the use of fecal host-associated MST markers. Here we design and test novel MST markers from genomes of tomato brown rugose fruit virus (ToBRFV). The markers are sensitive and specific to human stool, and highly abundant in human stool and wastewater samples.
Collapse
Affiliation(s)
- Aravind Natarajan
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | | | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Marlene K. Wolfe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Soumaya Zlitni
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Katherine E. Graham
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - Erin F. Brooks
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Christopher J. Severyn
- Department of Pediatrics, (Hematology/Oncology/Stem Cell Transplant & Regenerative Medicine), Stanford University, Stanford, CA, USA
| | - Kathleen M. Sakamoto
- Department of Pediatrics, (Hematology/Oncology/Stem Cell Transplant & Regenerative Medicine), Stanford University, Stanford, CA, USA
| | - Norman J. Lacayo
- Department of Pediatrics, (Hematology/Oncology/Stem Cell Transplant & Regenerative Medicine), Stanford University, Stanford, CA, USA
| | | | | | | | - Inna Kaplan
- Department of Medicine (Blood and Marrow Transplantation and Cellular Therapy), Stanford University, Stanford, CA, USA
| | - Upinder Singh
- Department of Medicine (Infectious Diseases and Geographic Medicine), Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine (Infectious Diseases and Geographic Medicine), Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Andrew R. Rezvani
- Department of Medicine (Blood and Marrow Transplantation and Cellular Therapy), Stanford University, Stanford, CA, USA
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
328
|
Genomic analysis and biological properties of the novel Serratia liquefaciens phage vB_SlqM_MQ-4. Arch Virol 2023; 168:38. [PMID: 36609610 DOI: 10.1007/s00705-022-05658-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 01/09/2023]
Abstract
A novel lytic Serratia liquefaciens phage, named vB_SlqM_MQ-4, was isolated from sewage. BLASTn analysis showed that the genome sequence of phage vB_SlqM_MQ-4 shared only 15% query coverage with that of Escherichia phage vB_EcoM-ep3, with 80.52% identity. Genomic analysis demonstrated that phage vB_SlqM_MQ-4 has a 43,534-bp dsDNA genome with 56% GC content and might be a member of a new genus in the order Caudoviricetes. Moreover, vB_SlqM_MQ-4 exhibited strong lytic performance with a short latent period (10 min) and a high burst size (267 PFU per cell) as well as a wide range of thermal (below 70 ℃) and pH tolerance (pH 4-12).
Collapse
|
329
|
Xuan G, Kong J, Wang Y, Lin H, Wang J. Characterization of the newly isolated Pseudomonas phage vB_Pae_LC3I3. Virus Res 2023; 323:198978. [PMID: 36288775 PMCID: PMC10194125 DOI: 10.1016/j.virusres.2022.198978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Here, we report the genome sequence of a double-stranded DNA siphovirus, vB_Pae_LC3I3 infective for P. aeruginosa PA14. Phage vB_Pae_LC3I3 was identified as a linear double-stranded DNA phage of 49,926 bp with 59% G+C content. The vB_Pae_LC3I3 genome contains 78 open reading frames, and the function of 22 ORFs can be predicted. Genome analysis confirmed the lysogenic nature of this phage, which encodes the typical lysogen-related integrase and CI/Cro regulator. One-step growth curve revealed that the latent period of phage vB_Pae_LC3I3 lasted for 30 min. And vB_Pae_LC3I3 showed good temperature stability and pH stability. Based on electron microscopy, phylogenetic, and comparative genomic analyses, this novel Pseudomonas temperate phage represents a novel unassigned siphoviruses cluster. The study of phage vB_Pae_LC3I3 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiuna Kong
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yinfeng Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
330
|
Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, Ren L, Wang H, Han Y, McMinn A, Sung YY, Mok WJ, Wong LL, He J, Wang M. Characterization and genomic analysis of phage vB_ValR_NF, representing a new viral family prevalent in the Ulva prolifera blooms. Front Microbiol 2023; 14:1161265. [PMID: 37213492 PMCID: PMC10196503 DOI: 10.3389/fmicb.2023.1161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| |
Collapse
|
331
|
Characterization and genome analysis of Escherichia phage fBC-Eco01, isolated from wastewater in Tunisia. Arch Virol 2023; 168:44. [PMID: 36609878 PMCID: PMC9825357 DOI: 10.1007/s00705-022-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 01/09/2023]
Abstract
The rise of antibiotic resistance in bacterial strains has led to vigorous exploration for alternative treatments. To this end, phage therapy has been revisited, and it is gaining increasing attention, as it may represent an efficient alternative for treating multiresistant pathogenic bacteria. Phage therapy is considered safe, and phages do not infect eukaryotic cells. There have been many studies investigating phage-host bacteria interactions and the ability of phages to target specific hosts. Escherichia coli is the causative agent of a multitude of infections, ranging from urinary tract infections to sepsis, with growing antibiotic resistance. In this study, we characterized the Escherichia phage fBC-Eco01, which was isolated from a water sample collected at Oued, Tunis. Electron microscopy showed that fBC-Eco01 phage particles have siphovirus morphology, with an icosahedral head of 61 ± 3 nm in diameter and a non-contractile tail of 94 ± 2 nm in length and 12 ± 0.9 nm in width. The genome of fBC-Eco01 is a linear double-stranded DNA of 43.466 bp with a GC content of 50.4%. Comparison to databases allowed annotation of the functions to 39 of the 78 predicted gene products. A single-step growth curve revealed that fBC-Eco01 has a latent period of 30 minutes and a burst size of 175 plaque-forming units (PFU) per infected cell. Genomic analysis indicated that fBC-Eco01 is a member of the subfamily Guernseyvirinae. It is most closely related to a group of phages of the genus Kagunavirus that infect Enterobacter, Raoultella, and Escherichia strains.
Collapse
|
332
|
Buttimer C, Khokhlova EV, Stein L, Hueston CM, Govi B, Draper LA, Ross RP, Shkoporov AN, Hill C. Temperate bacteriophages infecting the mucin-degrading bacterium Ruminococcus gnavus from the human gut. Gut Microbes 2023; 15:2194794. [PMID: 36994608 PMCID: PMC10072058 DOI: 10.1080/19490976.2023.2194794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Ruminococcus gnavus is a prevalent gut microbe reported to occur in higher abundance among individuals with inflammatory bowel disease (IBD). This study reports the isolation and characterization of six bacteriophages (phages) isolated from human fecal material and environmental samples that infect this species. Isolated phages have a siphovirus morphology, with genomes ranging between 36.5 and 37.8 kbp. Genome analysis indicates that the phages have a temperate lifestyle, which was confirmed by their ability to form lysogens on their host bacterial species. In contrast to the finding that phages lyse their host in liquid medium, results from a mouse trial indicate these phages can co-exist with the host bacterium in the gut without causing a significant reduction of R. gnavus. The bacterial counts in the feces of phage-treated mice did not significantly differ in the presence of phage. Furthermore, analysis of publicly available gut virome sequence data indicates a high abundance of these phages among individuals suffering from IBD. This work provides the first insight into how phages interact with R. gnavus in the human gut microbiome.
Collapse
Affiliation(s)
- Colin Buttimer
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | | | - Lisa Stein
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | - Cara M. Hueston
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | - Bianca Govi
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| | | | - Colin Hill
- APC Microbiome Ireland and School of Microbiology, University College, Cork, Ireland
| |
Collapse
|
333
|
Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, Chen F. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Front Microbiol 2023; 14:1164101. [PMID: 37138617 PMCID: PMC10149686 DOI: 10.3389/fmicb.2023.1164101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Marine phages play an important role in marine biogeochemical cycles by regulating the death, physiological metabolism, and evolutionary trajectory of bacteria. The Roseobacter group is an abundant and important heterotrophic bacterial group in the ocean, and plays an important role in carbon, nitrogen, sulfur and phosphorus cycling. The CHAB-I-5 lineage is one of the most dominant Roseobacter lineages, but remains largely uncultured. Phages infecting CHAB-I-5 bacteria have not yet been investigated due to the lack of culturable CHAB-I-5 strains. In this study, we isolated and sequenced two new phages (CRP-901 and CRP-902) infecting the CHAB-I-5 strain FZCC0083. We applied metagenomic data mining, comparative genomics, phylogenetic analysis, and metagenomic read-mapping to investigate the diversity, evolution, taxonomy, and biogeography of the phage group represented by the two phages. The two phages are highly similar, with an average nucleotide identity of 89.17%, and sharing 77% of their open reading frames. We identified several genes involved in DNA replication and metabolism, virion structure, DNA packing, and host lysis from their genomes. Metagenomic mining identified 24 metagenomic viral genomes closely related to CRP-901 and CRP-902. Genomic comparison and phylogenetic analysis demonstrated that these phages are distinct from other known viruses, representing a novel genus-level phage group (CRP-901-type). The CRP-901-type phages do not contain DNA primase and DNA polymerase genes, but possess a novel bifunctional DNA primase-polymerase gene with both primase and polymerase activities. Read-mapping analysis showed that the CRP-901-type phages are widespread across the world's oceans and are most abundant in estuarine and polar waters. Their abundance is generally higher than other known roseophages and even higher than most pelagiphages in the polar region. In summary, this study has greatly expanded our understanding of the genetic diversity, evolution, and distribution of roseophages. Our analysis suggests that the CRP-901-type phage is an important and novel marine phage group that plays important roles in the physiology and ecology of roseobacters.
Collapse
Affiliation(s)
- Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yanlin Zhao,
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Feng Chen,
| |
Collapse
|
334
|
Zhao J, Wang Z, Li C, Shi T, Liang Y, Jiao N, Zhang Y. Significant Differences in Planktonic Virus Communities Between "Cellular Fraction" (0.22 ~ 3.0 µm) and "Viral Fraction" (< 0.22 μm) in the Ocean. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02167-6. [PMID: 36585490 DOI: 10.1007/s00248-022-02167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Compared to free-living viruses (< 0.22 m) in the ocean, planktonic viruses in the "cellular fraction" (0.22 ~ 3.0 μm) are now far less well understood, and the differences between them remain largely unexplored. Here, we revealed that even in the same seawater samples, the "cellular fraction" comprised significantly distinct virus communities from the free virioplankton, with only 13.87% overlap in viral contigs at the species level. Compared to the viral genomes deposited in NCBI RefSeq database, 99% of the assembled viral genomes in the "cellular fraction" represented novel genera. Notably, the assembled (near-) complete viral genomes within the "cellular fraction" were significantly larger than that in the "viral fraction," and the "cellular fraction" contained three times more species of giant viruses or jumbo phages with genomes > 200 kb than the "viral fraction." The longest complete genomes of jumbo phage (~ 252 kb) and giant virus (~ 716 kb) were both detected only in the "cellular fraction." Moreover, a relatively higher proportion of proviruses were predicted within the "cellular fraction" than "viral fraction." Besides the substantial divergence in viral community structure, the different fractions also contained their unique viral auxiliary metabolic genes; e.g., those potentially participating in inorganic carbon fixation in deep sea were detected only in the "cellular-fraction" viromes. In addition, there was a considerable divergence in the community structure of both "cellular fraction" and "viral fraction" viromes between the surface and deep-sea habitats, suggesting that they might have similar environmental adaptation properties. The findings deepen our understanding of the complexity of viral community structure and function in the ocean.
Collapse
Affiliation(s)
- Jiulong Zhao
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengcheng Li
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Tongmei Shi
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yantao Liang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yongyu Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
335
|
Grami E, Laadouze I, Ben Tiba S, Hafiane A, Sealey KS, Saidi N. Isolation, Characterization, and Comparative Genomic Analysis of vB_Pd_C23, a Novel Bacteriophage of Pantoea dispersa. Curr Microbiol 2022; 80:52. [PMID: 36562822 DOI: 10.1007/s00284-022-03152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Pantoea bacteria species cause human animal infections, and contribute to soil and aquatic environmental pollution. A novel bacteriophage, vB_Pd_C23 was isolated from a Tunisian wastewater system and represents the first new phage infecting P. dispersa. Lysis kinetics, electron microscopy, and genomic analyses revealed that the vB_Pd_C23 phage has a head diameter of 50 nm and contractile tail dimensions of 100 nm by 23 nm; vB_Pd_C23 has a linear double-stranded DNA genome consisting of 44,714-bp and 49.66% GC-content. Predicted functions were assigned to 75 open reading frames (ORFs) encoding proteins and one tRNA, the annotation revealed that 21 ORFs encode for unique proteins of yet unknown function with no reliable homologies. This indicates that the new species vB_Pd_C23 exhibits novel viral genes. Phylogenetic analysis along with comparative analyses generating nucleotide identity and similarity of vB_Pd_C23 whole genome suggests that the phage is a candidate for a new genus within the Caudoviricetes Class. The characteristics of this phage could not be attributed to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV).
Collapse
Affiliation(s)
- Emna Grami
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Imen Laadouze
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.,Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Saoussen Ben Tiba
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Carthage, Tunisia
| | - Amor Hafiane
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia
| | | | - Neila Saidi
- Centre de Recherches et des Technologies des Eaux (CERTE), Laboratoire Eaux, Membranes et Biotechnologies de L'Environnement (LR18CERTE04), Technopark of Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| |
Collapse
|
336
|
Jia K, Peng Y, Chen X, Jian H, Jin M, Yi Z, Su M, Dong X, Yi M. A Novel Inovirus Reprograms Metabolism and Motility of Marine Alteromonas. Microbiol Spectr 2022; 10:e0338822. [PMID: 36301121 PMCID: PMC9769780 DOI: 10.1128/spectrum.03388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023] Open
Abstract
Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.
Collapse
Affiliation(s)
- Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
337
|
Zhu Y, Shang J, Peng C, Sun Y. Phage family classification under Caudoviricetes: A review of current tools using the latest ICTV classification framework. Front Microbiol 2022; 13:1032186. [PMID: 36590402 PMCID: PMC9800612 DOI: 10.3389/fmicb.2022.1032186] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Bacteriophages, which are viruses infecting bacteria, are the most ubiquitous and diverse entities in the biosphere. There is accumulating evidence revealing their important roles in shaping the structure of various microbiomes. Thanks to (viral) metagenomic sequencing, a large number of new bacteriophages have been discovered. However, lacking a standard and automatic virus classification pipeline, the taxonomic characterization of new viruses seriously lag behind the sequencing efforts. In particular, according to the latest version of ICTV, several large phage families in the previous classification system are removed. Therefore, a comprehensive review and comparison of taxonomic classification tools under the new standard are needed to establish the state-of-the-art. In this work, we retrained and tested four recently published tools on newly labeled databases. We demonstrated their utilities and tested them on multiple datasets, including the RefSeq, short contigs, simulated metagenomic datasets, and low-similarity datasets. This study provides a comprehensive review of phage family classification in different scenarios and a practical guidance for choosing appropriate taxonomic classification pipelines. To our best knowledge, this is the first review conducted under the new ICTV classification framework. The results show that the new family classification framework overall leads to better conserved groups and thus makes family-level classification more feasible.
Collapse
|
338
|
Abraha HB, Lee JW, Kim G, Ferdiansyah MK, Ramesha RM, Kim KP. Genomic diversity and comprehensive taxonomical classification of 61 Bacillus subtilis group member infecting bacteriophages, and the identification of ortholog taxonomic signature genes. BMC Genomics 2022; 23:835. [PMID: 36526963 PMCID: PMC9756591 DOI: 10.1186/s12864-022-09055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite the applications of Bacillus subtilis group species in various sectors, limited information is available regarding their phages. Here, 61 B. subtilis group species-infecting phages (BSPs) were studied for their taxonomic classification considering the genome-size, genomic diversity, and the host, followed by the identification of orthologs taxonomic signature genes. RESULTS BSPs have widely ranging genome sizes that can be bunched into groups to demonstrate correlations to family and subfamily classifications. Comparative analysis re-confirmed the existing, BSPs-containing 14 genera and 21 species and displayed inter-genera similarities within existing subfamilies. Importantly, it also revealed the need for the creation of new taxonomic classifications, including 28 species, nine genera, and two subfamilies (New subfamily1 and New subfamily2) to accommodate inter-genera relatedness. Following pangenome analysis, no ortholog shared by all BSPs was identified, while orthologs, namely, the tail fibers/spike proteins and poly-gamma-glutamate hydrolase, that are shared by more than two-thirds of the BSPs were identified. More importantly, major capsid protein (MCP) type I, MCP type II, MCP type III and peptidoglycan binding proteins that are distinctive orthologs for Herelleviridae, Salasmaviridae, New subfamily1, and New subfamily2, respectively, were identified and analyzed which could serve as signatures to distinguish BSP members of the respective taxon. CONCLUSIONS In this study, we show the genomic diversity and propose a comprehensive classification of 61 BSPs, including the proposition for the creation of two new subfamilies, followed by the identification of orthologs taxonomic signature genes, potentially contributing to phage taxonomy.
Collapse
Affiliation(s)
- Haftom Baraki Abraha
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Jae-Won Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Gayeong Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea
| | | | | | - Kwang-Pyo Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
339
|
Impact of Shiga-toxin encoding gene transduction from O80:H2 Shiga toxigenic Escherichia coli (STEC) on non-STEC strains. Sci Rep 2022; 12:21587. [PMID: 36517572 PMCID: PMC9751135 DOI: 10.1038/s41598-022-26198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are major foodborne pathogens that cause human diseases ranging from diarrhea to life-threatening complications including hemolytic-uremic syndrome. Virulence of STEC strains and their ability to cause severe diseases are associated with the activity of prophage-encoded Shiga toxins (Stxs). The first objective of this work was to isolate and characterize the Stx2d phage from STEC O80:H2 and to study the transfer of this phage in non-STEC strains. The second objective was to assess the survival of Galleria mellonella larvae inoculated with these transduced strains. Firstly, one bacteriophage isolated from a STEC O80:H2 strain was used to infect six non-STEC strains, resulting in the conversion of three strains. Then, stability assays were performed, showing that this phage was stable in the new STEC strains after three successive subculturing steps, as confirmed by a combination of short and long read genome sequencing approaches. This phage, vB_EcoS_ULI-O80_Stx2d, is resistant to moderate temperature and pH. It belongs to a currently unclassified genus and family within the Caudoviricetes class, shares 98% identity with Stx2_112808 phage and encodes several proteins involved in the lysogenic cycle. The yecE gene was identified at the insertion site. Finally, G. mellonella experiments showed that the transduced strains caused significantly higher mortality rates than the corresponding non-STEC strains. In conclusion, this study showed that stx2d gene from O80:H2 E. coli can be transferred to non-STEC strains and contributes to their virulence.
Collapse
|
340
|
Ulrich L, Giez C, Steiner LX, Hentschel U, Lachnit T. Adaptive lifestyle of bacteria determines phage-bacteria interaction. Front Microbiol 2022; 13:1056388. [PMID: 36560945 PMCID: PMC9763317 DOI: 10.3389/fmicb.2022.1056388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages and their interactions with microbes are not well understood. As a first step toward achieving a better understanding, we isolated and sequenced the Curvibacter phage PCA1 for the purpose of eliminating Curvibacter sp. AEP1.3, the main colonizer of Hydra vulgaris AEP. Our experiments showed that PCA1 phage caused a strong, virulent infection only in sessile Curvibacter sp. AEP1.3 but was unable to infect planktonic and host-associated bacterial cells of the same strain. In an effort to investigate this phenomenon, we compared sessile, planktonic, and host-associated bacteria via RNA sequencing and found that all three states differed significantly in their expression patterns. This finding led us to propose that the adaptive lifestyle of Curvibacter sp. AEP1.3 results in varying degrees of susceptibility to bacteriophage infection. This concept could be relevant for phage research and phage therapy in particular. Finally, we were able to induce phage infection in planktonic cells and pinpoint the infection process to a membrane protein. We further identified potential phage-binding protein candidates based on expression pattern analysis.
Collapse
Affiliation(s)
- Laura Ulrich
- Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| | - Christoph Giez
- Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany
| | - Leon X. Steiner
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ute Hentschel
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts-Universität, Kiel, Germany,*Correspondence: Tim Lachnit,
| |
Collapse
|
341
|
Genome Analysis and Antibiofilm Activity of Phage 590B against Multidrug-Resistant and Extensively Drug-Resistant Uropathogenic Escherichia coli Isolates, India. Pathogens 2022; 11:pathogens11121448. [PMID: 36558782 PMCID: PMC9787291 DOI: 10.3390/pathogens11121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Uropathogenic Escherichia coli (UPEC), which are the most frequent agents causing community as well as hospital-acquired UTIs, have become highly drug-resistant, thus making the treatment of these infections challenging. Recently, the use of bacteriophages (or 'phages') against multidrug-resistant (MDR) and extensively drug-resistant (XDR) microorganisms has garnered significant global attention. Bacterial biofilms play a vital role in the pathogenesis of UTIs caused by UPEC. Phages have the potential to disrupt bacterial biofilms using lytic enzymes such as EPS depolymerases and endolysins. We isolated a lytic phage (590B) from community sewage in Chandigarh, which was active against multiple MDR and XDR biofilm-forming UPEC strains. During whole-genome sequencing, the 44.3 kb long genome of phage 590B encoded 75 ORFs, of which 40 were functionally annotated based on homology with similar phage proteins in the database. Comparative analysis of associated phage genomes indicated that phage 590B evolved independently and had a distinct taxonomic position within the genus Kagunavirus in the subfamily Guernseyvirinae of Siphoviridae. The phage disrupted biofilm mass effectively when applied to 24 h old biofilms formed on the Foley silicon catheter and coverslip biofilm models. To study the effect of intact biofilm architecture on phage predation, the biofilms were disrupted. The phage reduced the viable cells by 0.6-1.0 order of magnitude after 24 h of incubation. Regrowth and intact bacterial cells were observed in the phage-treated planktonic culture and biofilms, respectively, which indicated the emergence of phage-resistant bacterial variants. The phage genome encoded an endolysin which might have a role in the disruption and inhibition of bacterial biofilms. Moreover, the genome lacked genes encoding toxins, virulence factors, antibiotic resistance, or lysogeny. Therefore, lytic phage 590B may be a good alternative to antibiotics and can be included in phage cocktails for the treatment of UTIs caused by biofilm-forming MDR and XDR UPEC strains.
Collapse
|
342
|
Schubert BD, Ku H, Kabwe M, Nguyen TH, Irving H, Tucci J. Effects of Klebsiella pneumoniae Bacteriophages on IRAK3 Knockdown/Knockout THP-1 Monocyte Cell Lines. Viruses 2022; 14:2582. [PMID: 36423191 PMCID: PMC9699088 DOI: 10.3390/v14112582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial sepsis characterised by an immunosuppressive and cytokine storm state is a challenge to treat clinically. While conventional antibiotics have been associated with exacerbating the cytokine storm, the role that bacteriophages may play in immune modulation of sepsis remains unclear. Bacteriophages are bacterial viruses that have the capacity to lyse specific bacteria and hence provide a natural alternative to antibiotics. K. pneumoniae is known to cause sepsis in humans, and in this study we isolated two lytic bacteriophages against this pathogen, one of which was a novel jumbo bacteriophage. We employed THP-1 monocyte cell lines, with different functional phenotypes for the interleukin-1 receptor associated kinase 3 (IRAK3- a cytoplasmic homeostatic mediator and prognostic marker of inflammation), to evaluate the role of the K. pneumoniae bacteriophages in modulating the immune response in-vitro. We showed for the first time that bacteriophages did not stimulate excessive production of tumour necrosis factor alpha, or interleukin-6, in THP-1 monocyte cell lines which displayed varying levels of IRAK3 expression.
Collapse
Affiliation(s)
- Bryce Dylan Schubert
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Heng Ku
- Commonwealth Scientific and Industrial Research Organisation, Oceans & Atmosphere, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Trang Hong Nguyen
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3550, Australia
| |
Collapse
|
343
|
Wintachai P, Surachat K, Chaimaha G, Septama AW, Smith DR. Isolation and Characterization of a Phapecoctavirus Infecting Multidrug-Resistant Acinetobacter baumannii in A549 Alveolar Epithelial Cells. Viruses 2022; 14:v14112561. [PMID: 36423170 PMCID: PMC9695679 DOI: 10.3390/v14112561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is an emerging pathogen in the ESKAPE group. The global burden of antimicrobial resistance has led to renewed interest in alternative antimicrobial treatment strategies, including phage therapy. This study isolated and characterized a phage vB_AbaM_ ABPW7 (vABPW7) specific to MDR A. baumannii. Morphological analysis showed that phage vABPW7 belongs to the Myoviridae family. Genome analysis showed that the phage DNA genome consists of 148,647 bp and that the phage is a member of the Phapecoctavirus genus of the order Caudovirales. A short latent period and a large burst size indicated that phage vABPW7 was a lytic phage that could potentially be used in phage therapy. Phage vABPW7 is a high-stability phage that has high lytic activity. Phage vABPW7 could effectively reduce biofilm formation and remove preformed biofilm. The utility of phage vABPW7 was investigated in a human A549 alveolar epithelial cell culture model. Phage vABPW7 was not cytotoxic to A549 cells, and the phage could significantly reduce planktonic MDR A. baumannii and MDR A. baumannii adhesion on A549 cells without cytotoxicity. This study suggests that phage vABPW7 has the potential to be developed further as a new antimicrobial agent against MDR A. baumannii.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Correspondence:
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ganyalak Chaimaha
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Banten, Indonesia
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
344
|
Li X, Liang Y, Wang Z, Yao Y, Chen X, Shao A, Lu L, Dang H. Isolation and Characterization of a Novel Vibrio natriegens—Infecting Phage and Its Potential Therapeutic Application in Abalone Aquaculture. BIOLOGY 2022; 11:biology11111670. [PMID: 36421384 PMCID: PMC9687132 DOI: 10.3390/biology11111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Phage-based pathogen control (i.e., phage therapy) has received increasing scientific attention to reduce and prevent the emergence, transmission, and detrimental effects of antibiotic resistance. In the current study, multidrug-resistant Vibrio natriegens strain AbY-1805 was isolated and tentatively identified as a pathogen causing the death of juvenile Pacific abalones (Haliotis discus hannai Ino). In order to apply phage therapy, instead of antibiotics, to treat and control V. natriegens infections in marine aquaculture environments, a lytic phage, vB_VnaS-L3, was isolated. It could effectively infect V. natriegens AbY-1805 with a short latent period (40 min) and high burst size (~890 PFU/cell). Treatment with vB_VnaS-L3 significantly reduced the mortality of juvenile abalones and maintained abalone feeding capacity over a 40-day V. natriegens challenge experiment. Comparative genomic and phylogenetic analyses suggested that vB_VnaS-L3 was a novel marine Siphoviridae-family phage. Furthermore, vB_VnaS-L3 had a narrow host range, possibly specific to the pathogenic V. natriegens strains. It also exhibited viability at a wide range of pH, temperature, and salinity. The short latent period, large burst size, high host specificity, and broad environmental adaptation suggest that phage vB_VnaS-L3 could potentially be developed as an alternative antimicrobial for the control and prevention of marine animal infections caused by pathogenic V. natriegens.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Zhenhua Wang
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Xiaoli Chen
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Anran Shao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
- Correspondence: (L.L.); (H.D.)
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (L.L.); (H.D.)
| |
Collapse
|
345
|
Novel Aeromonas Phage Ahy-Yong1 and Its Protective Effects against Aeromonas hydrophila in Brocade Carp ( Cyprinus aka Koi). Viruses 2022; 14:v14112498. [PMID: 36423108 PMCID: PMC9697113 DOI: 10.3390/v14112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aeromonas hydrophila is a zoonotic pathogen and an important fish pathogen. A new lytic phage, Ahy-yong1, against multi-antibiotic-resistant pathogen A. hydrophila was isolated, identified, and tentatively used in therapy. Ahy-yong1 possesses a head of approximately 66 nm in diameter and a short tail of approximately 26 nm in length and 32 nm in width. Its complete dsDNA genome is 43,374 bp with a G + C content of 59.4%, containing 52 predicted opening reading frames (ORFs). Taxonomic analysis indicated Ahy-yong1 as a new species of the Ahphunavirus genus of the Autographiviridae family of the Caudoviricetes class. Ahy-yong1 was active only against its indicator host strain among the 35 strains tested. It is stable at 30-40 °C and at pH 2-12. Aeromonas phage Ahy-yong1 revealed an effective biofilm removal capacity and an obvious protective effect in brocade carp (Cyprinus aka Koi). The average cumulative mortality for the brocade carp in the blank groups intraperitoneally injected with PBS was 1.7% ± 2.4%;for the control groups treated with A. hydrophila (108 CFU/fish) via intraperitoneal injection, it was 100.00%;and for the test group I, successively treated with A. hydrophila (108 CFU/fish) and Aeromonas phage Ahy-yong1 (107 PFU/fish) via intraperitoneal injection witha time interval of 2 hours, it was only 43.4% ± 4.7%. Furthermore, the cumulative mortality of the test group II, successively treated with Aeromonas phage Ahy-yong1 (107 PFU/fish) and A. hydrophila (108 CFU/fish), was only 20.0% ± 8.2%, and that of the test group III, simultaneously treated with Aeromonas phage Ahy-yong1 (107 PFU/fish) and A. hydrophila (108 CFU/fish), was only 30.0% ± 8.2%. The results demonstrated that phage Ahy-yong1 was very effective in the therapies against A. hydrophila A18, prophylaxis was more effective than rescue, and earlier treatment was better for the reduction of mortality. This study enriches knowledge about Aeromonas phages.
Collapse
|
346
|
Characteristics and Comparative Genomic Analysis of a Novel Virus, VarioGold, the First Bacteriophage of Variovorax. Int J Mol Sci 2022; 23:ijms232113539. [DOI: 10.3390/ijms232113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Variovorax represents a widespread and ecologically significant genus of soil bacteria. Despite the ecological importance of these bacteria, our knowledge about the viruses infecting Variovorax spp. is quite poor. This study describes the isolation and characterization of the mitomycin-induced phage, named VarioGold. To the best of our knowledge, VarioGold represents the first characterized virus for this genus. Comparative genomic analyses suggested that VarioGold is distinct from currently known bacteriophages at both the nucleotide and protein levels; thus, it could be considered a new virus genus. In addition, another 37 prophages were distinguished in silico within the complete genomic sequences of Variovorax spp. that are available in public databases. The similarity networking analysis highlighted their general high diversity, which, despite clustering with previously described phages, shows their unique genetic load. Therefore, the novelty of Variovorax phages warrants the great enrichment of databases, which could, in turn, improve bioinformatic strategies for finding (pro)phages.
Collapse
|
347
|
Wang Y, Liu Z, Chen Q, Yi L, Xu Z, Cai M, Qin J, Zhang Y, Du G, Hong J, Guo X, Liu C. Isolation and characterization of novel Fusobacterium nucleatum bacteriophages. Front Microbiol 2022; 13:945315. [PMID: 36406437 PMCID: PMC9670143 DOI: 10.3389/fmicb.2022.945315] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Fusobacterium nucleatum is a strictly anaerobic, Gram-negative bacterial species that is a member of the commensal flora in the oral cavity and gut. Recent studies suggested that the increase of abundance is associated with the development of various diseases, among which colorectal cancer is of the biggest concerns. Phage therapy is regarded as a potential approach to control the number of F. nucleatum, which may contribute to the prevention and treatment of related diseases. In this study, we isolated five isolates of bacteriophage targeting F. nucleatum. The morphological, biological, genomic and functional characteristics of five bacteriophages were investigated. Transmission electron microscopy revealed that JD-Fnp1 ~ JD-Fnp5 are all myoviruses. The size of the JD-Fnp1 ~ JD-Fnp5 genomes was 180,066 bp (JD-Fnp1), 41,329 bp (JD-Fnp2), 38,962 bp (JD-Fnp3), 180,231 bp (JD-Fnp4), and 41,353 bp (JD-Fnp5) respectively. The biological features including pH and heat stability, host range, growth characteristics of JD-Fnp1 ~ JD-Fnp5 displayed different patterns. Among them, JD-Fnp4 is considered to have the greatest clinical application value. The identification and characterization of JD-Fnp1 ~ JD-Fnp5 provides a basis for subsequent therapeutic strategy exploration of F. nucleatum-related diseases.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitong Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqi Yi
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihao Xu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufeng Cai
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanhuan Du
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
348
|
Liu B, Zheng T, Quan R, Jiang X, Tong G, Wei X, Lin M. Biological characteristics and genomic analysis of a novel Vibrio parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen China. Front Cell Infect Microbiol 2022; 12:1035364. [PMID: 36339346 PMCID: PMC9633966 DOI: 10.3389/fcimb.2022.1035364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen usually controlled by antibiotics in mariculture. Notably, traditional antibiotic therapy is becoming less effective because of the emergence of bacterial resistance, hence new strategies need to be found to overcome this challenge. Bacteriophages, a class of viruses that lyse bacteria, can help us control drug-resistant bacteria. In this study, a novel Vibrio parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen was explored. Transmission electron microscopy showed that phiTY18 had an icosahedral head of 130.0 ± 1.2 nm diameter and a contractile tail of length of 66.7 ± 0.6 nm. The phage titer could reach 7.2×1010 PFU/mL at the optimal MOI (0.01). The phage phiTY18 had a degree of tolerance to heat and acid and base. At the temperature of 50°C (pH7.0, 1h) the survival phages reached 1.28×106 PFU/mL, and at pH 5-9 (30°C, 1h), the survival phages was greater than 6.37×107 PFU/mL Analysis of the phage one-step growth curve revealed that it had a latent period of 10min, a rise period of 10min, and an average burst size of the phage was 48 PFU/cell. Genome sequencing and analysis drew that phage phiTY18 had double-stranded DNA (191,500 bp) with 34.90% G+C content and contained 117 open reading frames (ORFs) and 24 tRNAs. Phylogenetic tree based on major capsid protein (MCP) revealed that phage phiTY18 (MW451250) was highly related to two Vibrio phages phiKT1024 (OM249648) and Va1 (MK387337). The NCBI alignment results showed that the nucleotide sequence identity was 97% and 93%, respectively. In addition, proteomic tree analysis indicated that phage phiTY18, phiKT1024, and Va1 were belong to the same virus sub-cluster within Myoviridae. This study provides a theoretical basis for understanding the genomic characteristics and the interaction between Vibrio parahaemolyticus phages and their host.
Collapse
Affiliation(s)
- Bo Liu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Tingyi Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Rui Quan
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Xinglong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, Fujian, China
- *Correspondence: Mao Lin,
| |
Collapse
|
349
|
Fanaei Pirlar R, Wagemans J, Kunisch F, Lavigne R, Trampuz A, Gonzalez Moreno M. Novel Stenotrophomonas maltophilia Bacteriophage as Potential Therapeutic Agent. Pharmaceutics 2022; 14:pharmaceutics14102216. [PMID: 36297651 PMCID: PMC9612306 DOI: 10.3390/pharmaceutics14102216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
A novel bacteriophage CUB19 specific to the bacterial species Stenotrophomonas maltophilia was isolated from hospital sewage and characterized as a new species belonging to a proposed new phage genus ‘Cubvirus’ (Caudoviricetes). Its genome contains a total of 48,301 bp and 79 predicted genes, among which some have been associated with packaging and lysis-associated proteins, structural proteins, or DNA- and metabolism-associated proteins. No lysogeny-associated proteins or known virulence proteins were identified on the phage genome. CUB19 showed stability over a wide range of temperatures (−20 °C–60 °C) and pH values (pH 3–pH 13). Despite its narrow host range, this phage has potent observed antimicrobial and antibiofilm activity. A time-killing curve assay showed significant biofilm reduction after 24 h exposure to CUP19. Isothermal microcalorimetry assays investigating phage-antibiotic combinations revealed the effectiveness of CUB19 during co-administration with increasing antibiotic doses, regardless of the administration approach (simultaneous or staggered). These are encouraging indications for its application as a targeted therapeutic agent against resilient biofilm-associated Stenotrophomonas infections.
Collapse
Affiliation(s)
- Rima Fanaei Pirlar
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Fabian Kunisch
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Faculty of Medicine, Westälische Wilhelms-Universität Münster, Domagkstraße 3, 48149 Münster, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Andrej Trampuz
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Mercedes Gonzalez Moreno
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| |
Collapse
|
350
|
Lin LC, Tsai YC. Isolation and characterization of a Vibrio owensii phage phi50-12. Sci Rep 2022; 12:16390. [PMID: 36180722 PMCID: PMC9525291 DOI: 10.1038/s41598-022-20831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Vibrio owensii is a widely distributed marine vibrio species that causes acute hepatopancreatic necrosis in the larvae of Panulirus ornatus and Penaeus vannamei, and is also associated with Montipora white syndrome in corals. We characterized V. owensii GRA50-12 as a potent pathogen using phenotypic, biochemical, and zebrafish models. A virulent phage, vB_VowP_phi50-12 (phi50-12), belonging to the N4-like Podoviridae, was isolated from the same habitat as that of V. owensii GRA50-12 and characterized. This phage possesses a unique sequence with no similar hits in the public databases and has a short latent time (30 min), a large burst size (106 PFU/infected cell), and a wide range of pH and temperature stabilities. Moreover, phi50-12 also demonstrated a strong lysis ability against V. owensii GRA50-12. SDS-PAGE revealed at least nine structural proteins, four of which were confirmed using LC–MS/MS analysis. The size of the phi50-12 genome was 68,059 bp, with 38.5% G + C content. A total of 101 ORFs were annotated, with 17 ORFs having closely related counterparts in the N4-like vibrio phage. Genomic sequencing confirmed the absence of antibiotic resistance genes or virulence factors. Comparative studies have shown that phi50-12 has a unique genomic arrangement, except for the well-conserved core regions of the N4-like phages. Phylogenetic analysis demonstrated that it belonged to a group of smaller genomes of N4-like vibrio phages. The therapeutic effect in the zebrafish model suggests that phi50-12 could be a potential candidate for application in the treatment of V. owensii infection or as a biocontrol agent. However, further research must be carried out to confirm the efficacy of phage50-12.
Collapse
Affiliation(s)
- Ling-Chun Lin
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan.
| | - Yu-Chuan Tsai
- Masters Program in Biomedical Sciences, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien, 97004, Taiwan
| |
Collapse
|