301
|
Wattenberg MM, Beatty GL. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin Cancer Biol 2020; 65:38-50. [PMID: 31954172 DOI: 10.1016/j.semcancer.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a hallmark of cancer and supports tumor growth, proliferation, and metastasis, but also inhibits T cell immunosurveillance and the efficacy of immunotherapy. The biology of cancer inflammation is defined by a cycle of distinct immunological steps that begins during disease conception with the release of inflammatory soluble factors. These factors communicate with host organs to trigger bone marrow mobilization of myeloid cells, trafficking of myeloid cells to the tumor, and differentiation of myeloid cells within the tumor bed. Tumor-infiltrating myeloid cells then orchestrate an immunosuppressive microenvironment and assist in sustaining a vicious cycle of inflammation that co-evolves with tumor cells. This Cancer-Inflammation Cycle acts as a rheostat or "inflammostat" that impinges upon T cell immunosurveillance and prevents the development of productive anti-tumor immunity. Here, we define the major nodes of the Cancer-Inflammation Cycle and describe their impact on T cell immunosurveillance in cancer. Additionally, we discuss emerging pre-clinical and clinical data suggesting that intervening upon the Cancer-Inflammation Cycle will be a necessary step for broadening the potential of immunotherapy in cancer.
Collapse
Affiliation(s)
- Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
| |
Collapse
|
302
|
Perez-Santos M, Anaya-Ruiz M, Herrera-Camacho I, Rosas-Murrieta NH, Millán-Pérez Peña L. Cancer combinatorial immunotherapy using etigilimab and nivolumab: a patent evaluation of WO2018102536. Expert Opin Ther Pat 2020; 30:83-86. [DOI: 10.1080/13543776.2020.1709445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nora Hilda Rosas-Murrieta
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
303
|
Coxon AT, Johanns TM, Dunn GP. An Innovative Immunotherapy Vaccine with Combination Checkpoint Blockade as a First Line Treatment for Glioblastoma in the Context of Current Treatments. MISSOURI MEDICINE 2020; 117:45-49. [PMID: 32158049 PMCID: PMC7023938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glioblastoma is a devastating disease with a dismal prognosis. While recent advancements in cancer immunotherapy have led to improvements in treating other types of cancer, patients with glioblastoma have not benefited from these new therapies and techniques. Fortunately, neurosurgeons and oncologists at Washington University School of Medicine conducting a cutting edge clinical trial are looking to overcome these persistent challenges in treating glioblastoma through combining a personalized vaccine with new immunotherapy drugs.
Collapse
Affiliation(s)
- Andrew T Coxon
- Andrew T. Coxon, MS2, Department of Neurological Surgery; Tanner M. Johanns, MD, PhD, Assistant Professor of Medicine, Division of Medical Oncology; and Gavin P. Dunn, MD, PhD, (above), Associate Professor of Neurological Surgery, Director of Brain Tumor Immunology and Therapeutics, and the Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs; all are at Washington University School of Medicine, St. Louis, Missouri
| | - Tanner M Johanns
- Andrew T. Coxon, MS2, Department of Neurological Surgery; Tanner M. Johanns, MD, PhD, Assistant Professor of Medicine, Division of Medical Oncology; and Gavin P. Dunn, MD, PhD, (above), Associate Professor of Neurological Surgery, Director of Brain Tumor Immunology and Therapeutics, and the Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs; all are at Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- Andrew T. Coxon, MS2, Department of Neurological Surgery; Tanner M. Johanns, MD, PhD, Assistant Professor of Medicine, Division of Medical Oncology; and Gavin P. Dunn, MD, PhD, (above), Associate Professor of Neurological Surgery, Director of Brain Tumor Immunology and Therapeutics, and the Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs; all are at Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
304
|
Mohtashami E, Shafaei-Bajestani N, Mollazadeh H, Mousavi SH, Jalili-Nik M, Sahebkar A, Afshari AR. The Current State of Potential Therapeutic Modalities for Glioblastoma Multiforme: A Clinical Review. Curr Drug Metab 2020; 21:564-578. [PMID: 32664839 DOI: 10.2174/1389200221666200714101038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
Abstract
Glioblastoma multiforme (GBM), as the most lethal brain tumor, continues to be incurable. Considering the high mortality rate of GBM, it is crucial to develop new treatment approaches. Conventional therapies, including maximal surgical resection, radiation therapy, and chemotherapy (typically temozolomide), have not led to significant changes in the survival rates of GBM patients. However, emerging modalities, such as the use of tyrosine kinase inhibitors, mTOR inhibitors, NF-κB modulators, nitrosoureas, and immunotherapeutic agents have shown promising in improving GBM outcomes. In this context, we reviewed the current status of GBM treatment, the efficacy of existing standard therapies in improving disease outcomes, and future therapeutic directions.
Collapse
Affiliation(s)
- Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Shafaei-Bajestani
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Hadi Mousavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
305
|
Majd N, Dasgupta P, de Groot J. Immunotherapy for Neuro-Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:183-203. [PMID: 32301015 DOI: 10.1007/978-3-030-41008-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy has changed the landscape of treatment of many solid and hematological malignancies and is at the forefront of cancer breakthroughs. Several circumstances unique to the central nervous system (CNS) such as limited space for an inflammatory response, difficulties with repeated sampling, corticosteroid use for management of cerebral edema, and immunosuppressive mechanisms within the tumor and brain parenchyma have posed challenges in clinical development of immunotherapy for intracranial tumors. Nonetheless, the success of immunotherapy in brain metastases (BMs) from solid cancers such as melanoma and non-small cell lung cancer (NSCLC) proves that the CNS is not an immune-privileged organ and is capable of initiating and regulating immune responses that lead to tumor control. However, the development of immunotherapeutics for the most malignant primary brain tumor, glioblastoma (GBM), has been challenging due to systemic and profound tumor-mediated immunosuppression unique to GBM, intratumoral and intertumoral heterogeneity, low mutation burden, and lack of stably expressed clonal antigens. Here, we review recent advances in the field of immunotherapy for neuro-oncology with a focus on BM and GBM.
Collapse
Affiliation(s)
- Nazanin Majd
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Pushan Dasgupta
- Department of Neurology, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
306
|
Huang Z, Chen X, Liu C, Cui L. The Clinical Significance of Microsatellite Instability in Precision Treatment. Methods Mol Biol 2020; 2204:33-38. [PMID: 32710312 DOI: 10.1007/978-1-0716-0904-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent years have seen the high heterogeneity of colorectal cancer (CRC) receiving increasing attention and being revealed step by step. Microsatellite instability (MSI), characterized by the dysfunction of mismatch repair gene, plays an important role in the heterogeneity of colorectal cancer. MSI status can be identified by immunohistochemistry for MMR protein such as MLH1, MSH2, PMS2, and MSH6 or PCR-based array for MMR gene. Recent studies have revealed MSI status is the only biomarker that can be used to select patients with high-risk stage II colon cancer for adjuvant chemotherapy. Furthermore, it always indicated better stage-adjusted survival when compared with microsatellite stable (MSS) tumors. For immunotherapy, patients with MSI tumors exhibited significant response to anti-PD-1 inhibitors after the failure to conventional therapy. In this chapter, we discuss the detection methods of MSI, the prognostic value of MSI, and its clinical guiding value in the management of precision therapy.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojian Chen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
307
|
Liu S, Zhu Y, Zhang C, Liu J, Lv H, Zhang G, Kang X. Soluble programmed death-1 (sPD-1) and programmed death ligand 1 (sPD-L1) as potential biomarkers for the diagnosis and prognosis of glioma patients. J Med Biochem 2020; 39:444-451. [PMID: 33312060 DOI: 10.5937/jomb0-24692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/29/2019] [Indexed: 01/18/2023] Open
Abstract
Background This study aimed at investigating the feasibility of testing for soluble programmed death-1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in serum samples of glioma patients and to evaluate the diagnostic and prognostic value of these two soluble molecules. Methods Serum samples collected from 70 glioma patients before surgery were designated as the pre-operative (Pre) group, samples obtained from 90 post-surgery glioblastoma patients were designated as the Post group, and samples from 20 healthy volunteers were used as controls. Peripheral blood sPD-1 and sPD-L1 levels were detected by using ELISA kits and compared among the groups. The associations of these soluble molecule levels with clinicopathological variables and tumour progression were investigated. Results Among the three groups, the Pre group had the highest sPD-1 levels, whereas the median sPD-L1 level was significantly lower in the Post group than in the other two groups. The area under the curve (AUC) of sPD-1 (0.762) for diagnosis was similar to that of sPD-L1 (0.718). Higher serum levels of sPD-1 and sPD-L1 were present in samples of patients with more advanced brain tumours. Kaplan-Meier analysis showed that higher serum levels of sPD-1 (>11.14 pg/mL) and sPD-L1 (>63.03 pg/mL) might predict shorter progression-free survival times of glioma patients. Conclusions This study showed that sPD-1 and sPD-L1 might be promising predictive biomarkers for the diagnosis and prognosis of glioma patients.
Collapse
Affiliation(s)
- Shujun Liu
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Yadi Zhu
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Chenxi Zhang
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Jiajia Liu
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Hong Lv
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Guojun Zhang
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| | - Xixiong Kang
- Capital Medical University, Beijing Tiantan Hospital, Laboratory Diagnosis Center, Beijing, China
| |
Collapse
|
308
|
|
309
|
Ascierto PA, Bifulco C, Buonaguro L, Emens LA, Ferris RL, Fox BA, Delgoffe GM, Galon J, Gridelli C, Merlano M, Nathan P, Odunsi K, Okada H, Paulos CM, Pignata S, Schalper KA, Spranger S, Tortora G, Zarour H, Butterfield LH, Puzanov I. Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge 2018" (28-29 November, 2018, Naples, Italy). J Immunother Cancer 2019; 7:332. [PMID: 31783779 PMCID: PMC6884742 DOI: 10.1186/s40425-019-0798-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is now widely established as a potent and effective treatment option across several types of cancer. However, there is increasing recognition that not all patients respond to immunotherapy, focusing attention on the immune contexture of the tumor microenvironment (TME), drivers of the immune response and mechanisms of tumor resistance to immunity. The development of novel immunotherapeutics and their use in combination with checkpoint inhibitors and other standard of care and novel treatment modalities is an area of particular attention across several tumor types, including melanoma, lung, ovarian, breast, pancreatic, renal, head and neck, brain and non-melanoma skin cancers. The 4th Immunotherapy Bridge meeting (28-29 November, 2018, Naples, Italy) focused on a wide range of evolving topics and trends in the field of cancer immunotherapy and key presentations from this meeting are summarised in this report.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Unit of Medical Oncology and Innovative Therapy, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Via Mariano Semmola, 80131, Naples, Italy.
| | - Carlo Bifulco
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Portland Medical Center, Portland, OR, USA
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bernard A Fox
- Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Center in the Earle A. Chiles Research Institute at Providence Cancer Institute, Portland, Oregon, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jérôme Galon
- National Institute of Health and Medical Research, INSERM, Cordeliers Research Center, Paris, France
| | - Cesare Gridelli
- Unit of Medical Oncology, Hospital "San Giuseppe Moscati", Avellino, Italy
| | - Marco Merlano
- Oncology Department, ASO Santa Croce e Carle Cuneo, Cuneo, Italy
| | - Paul Nathan
- Mount Vernon Cancer Centre, Northwood, Middlesex, UK
| | - Kunle Odunsi
- Department of Gynaecologic Oncology, Executive Director, Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Sandro Pignata
- Uro-Gynaecological Department, Istituto Nazionale Tumori Fondazione G. Pascale, IRCCS, Naples, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Translational Immuno-oncology Laboratory, Yale Cancer Center, Medical Oncology, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at MIT and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Gemelli, IRCCS, Rome, Italy
| | - Hassane Zarour
- Melanoma Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Lisa H Butterfield
- Parker Institute for Cancer Immunotherapy Research Center, UCSF, San Francisco, California, USA.
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
310
|
Tamura R, Miyoshi H, Yoshida K, Okano H, Toda M. Recent progress in the research of suicide gene therapy for malignant glioma. Neurosurg Rev 2019; 44:29-49. [PMID: 31781985 DOI: 10.1007/s10143-019-01203-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Malignant glioma, which is characterized by diffuse infiltration into the normal brain parenchyma, is the most aggressive primary brain tumor with dismal prognosis. Over the past 40 years, the median survival has only slightly improved. Therefore, new therapeutic modalities must be developed. In the 1990s, suicide gene therapy began attracting attention for the treatment of malignant glioma. Some clinical trials used a viral vector for suicide gene transduction; however, it was found that viral vectors cannot cover the large invaded area of glioma cells. Interest in this therapy was recently revived because some types of stem cells possess a tumor-tropic migratory capacity, which can be used as cellular delivery vehicles. Immortalized, clonal neural stem cell (NSC) line has been used for patients with recurrent high-grade glioma, which showed safety and efficacy. Embryonic and induced pluripotent stem cells may be considered as sources of NSC because NSC is difficult to harvest, and ethical issues have been raised. Mesenchymal stem cells are alternative candidates for cellular vehicle and are easily harvested from the bone marrow. In addition, a new type of nonlytic, amphotropic retroviral replicating vector encoding suicide gene has shown efficacy in patients with recurrent high-grade glioma in a clinical trial. This replicating viral capacity is another possible candidate as delivery vehicle to tackle gliomas. Herein, we review the concept of suicide gene therapy, as well as recent progress in preclinical and clinical studies in this field.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Miyoshi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
311
|
The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol 2019; 37:2. [PMID: 31713115 DOI: 10.1007/s12032-019-1329-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
The microvasculature and immune cells are major components of the tumor microenvironment (TME). Hypoxia plays a pivotal role in the TME through hypoxia-inducible factor 1-alpha (HIF-1α) which upregulates vascular endothelial growth factor (VEGF). VEGF, an angiogenesis stimulator, suppresses tumor immunity by inhibiting the maturation of dendritic cells, and induces immunosuppressive cells such as regulatory T cells, tumor-associated macrophages, and myeloid-derived suppressor cells. HIF-1α directly induces immune checkpoint molecules. VEGF/VEGF receptor (VEGFR)-targeted therapy as a cancer treatment has not only anti-angiogenic effects, but also immune-supportive effects. Anti-angiogenic therapy has the potential to change the immunological "cold tumors" into the "hot tumors". Glioblastoma (GB) is a hypervascular tumor with high VEGF expression which leads to development of an immuno suppressive TME. Therefore, in the last decade, several combination immunotherapies with anti-angiogenic agents have been developed for numerous tumors including GBs. In particular, combination therapy with an immune checkpoint inhibitor and VEGF/VEGFR-targeted therapy has been suggested as a synergic treatment strategy that may show favorable changes in the TME. In this article, we discuss the cross talk among immunosuppressive cells exposed to VEGF in the hypoxic TME of GBs. Current efficient combination strategies using VEGF/VEGFR-targeted therapy are reviewed and proposed as novel cancer treatments.
Collapse
|
312
|
Xu H, Tan P, Ai J, Zhang S, Zheng X, Liao X, Yang L, Wei Q. Antitumor Activity and Treatment-Related Toxicity Associated With Nivolumab Plus Ipilimumab in Advanced Malignancies: A Systematic Review and Meta-Analysis. Front Pharmacol 2019; 10:1300. [PMID: 31749704 PMCID: PMC6844121 DOI: 10.3389/fphar.2019.01300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/11/2019] [Indexed: 02/05/2023] Open
Abstract
Combining immune checkpoint inhibitors has shown its efficacy compared to monotherapy in advanced malignancies. We conducted this meta-analysis to provide latest evidence on the objective response rate (ORR) and incidence of treatment-related high-grade adverse events (AEs) during nivolumab and ipilimumab combination treatment and further explore from different drug dose level. PubMed and the 2019 American Society of Clinical Oncology (ASCO) annual meeting abstracts were searched for qualified clinical trials up to June 2019. Of the 23 clinical trials (13 from publications and 11 from ASCO abstracts) included, 2,114 and 2,674 patients were eligible for efficacy and safety analysis, respectively. Pooled analysis suggested that the overall ORR was achieved in 34.5% [95% confidence interval (CI), 29.1-40.4%] of patients. There was no significant difference between nivolumab 3 mg/kg plus ipilimumab 1 mg/kg every 3 weeks (N3I1-Q3W) and nivolumab 1 mg/kg plus ipilimumab 3 mg/kg every 3 weeks (N1I3-Q3W) arms in ORR [30.8% vs 41%; odds ratio (OR), 0.72; 95% CI, 0.39-1.30; P = 0.275]. Grade 3-4 AEs related to combination therapy occurred in 39.9% (95% CI, 33.5-46.7%) of patients; the most commonly reported grade 3-4 treatment-related AEs were diarrhea (5.28%), colitis (3.96%) and increased alanine aminotransferase (3.51%). Incidence of grade 3-4 AEs were significant lower in N3I1-Q3W arm than in N1I3-Q3W arm (31.3% vs 55.9%; OR 0.52; 95% CI, 0.32-0.87; P = 0.012). Treatment-related death was rare and occurred in 2.0% (95% CI, 1.5-2.7%) of patients. Our comprehensive study provides more precise data on the incidence of treatment-related high-grade AEs and ORR among patients receiving nivolumab and ipilimumab combination regimens. Patients on the N3I1-Q3W arm had comparable ORR and significantly occurred less grade 3-4 AEs than patients on the N1I3-Q3W arm. Our finding is of great importance in assisting clinical trial design and clinical medication choice.
Collapse
Affiliation(s)
- Hang Xu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Tan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyu Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- West China Medical School, Sichuan University, Chengdu, China
| | - Xinyang Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
313
|
Ye L, Park JJ, Dong MB, Yang Q, Chow RD, Peng L, Du Y, Guo J, Dai X, Wang G, Errami Y, Chen S. In vivo CRISPR screening in CD8 T cells with AAV-Sleeping Beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat Biotechnol 2019; 37:1302-1313. [PMID: 31548728 PMCID: PMC6834896 DOI: 10.1038/s41587-019-0246-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Targeting membrane proteins could improve the efficacy of T cell-based immunotherapies. To facilitate the identification of T cell targets, we developed a hybrid genetic screening system where the Sleeping Beauty (SB) transposon and single guide RNA cassette are nested in an adeno-associated virus (AAV). SB-mediated genomic integration of the single guide RNA cassette enables efficient gene editing in primary murine T cells as well as a screen readout. We performed in vivo AAV-SB-CRISPR screens for membrane protein targets in CD8+ T cells in mouse models of glioblastoma (GBM). We validated screen hits by demonstrating that adoptive transfer of CD8+ T cells with Pdia3, Mgat5, Emp1 or Lag3 gene editing enhances the survival of GBM-bearing mice in both syngeneic and T-cell receptor transgenic models. Transcriptome profiling, single cell sequencing, cytokine assays and T cell signaling analysis showed that Pdia3 editing in T cells enhances effector functions. Engineered PDIA3 mutant EGFRvIII chimeric antigen T cells are more potent in antigen-specific killing of human GBM cells.
Collapse
Affiliation(s)
- Lupeng Ye
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Jonathan J Park
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
- Yale M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew B Dong
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
- Yale M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, CT, USA
- Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Quanjun Yang
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Ryan D Chow
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
- Yale M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Peng
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Yaying Du
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Jianjian Guo
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Xiaoyun Dai
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Guangchuan Wang
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Youssef Errami
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA
| | - Sidi Chen
- System Biology Institute, Integrated Science & Technology Center, West Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Center for Cancer Systems Biology, Integrated Science & Technology Center, West Haven, CT, USA.
- Yale M.D.-Ph.D. Program, Yale University School of Medicine, New Haven, CT, USA.
- Immunobiology Program, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
314
|
Wu K, Yi M, Qin S, Chu Q, Zheng X, Wu K. The efficacy and safety of combination of PD-1 and CTLA-4 inhibitors: a meta-analysis. Exp Hematol Oncol 2019; 8:26. [PMID: 31673481 PMCID: PMC6815037 DOI: 10.1186/s40164-019-0150-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Recently, a series of clinical trials showed that combination of anti-programmed cell death-1 (α-PD-1) and anti-cytotoxic T-lymphocyte-associated protein 4 (α-CTLA-4) could effectively eliminate tumor. However, in comparison with widely adopted mono-immune checkpoint inhibitors, chemotherapy, and targeted therapy, the advantage of combination therapy of α-PD-1 and α-CTLA-4 in response rate and prognosis is controversial especially considering probably increased treatment related adverse event. Thus, we conducted this meta-analysis to explore the efficacy and safety of combination treatment of α-PD-1 and α-CTLA-4. Methods This meta-analysis involved 8 clinical trials. In most trials, the primary endpoint was objective response rate (ORR). Thus we calculated risk ratio (RR) and 95% confidence interval (CI) to compare ORR of patients undergoing different treatment strategies. Moreover, the co-primary endpoints in few trials included progression-free survival and overall survival. Hazard ratio (HR) with 95% CI were employed to weigh the influence of different treatments on prognosis of patients. Subgroup analysis was conducted in patients with high and low expression of PD-L1. Lastly, the safety of combination therapy was evaluated by comparing treatment related adverse events among various treatment groups. Results Our results showed that ORR was significantly higher in patients receiving α-PD-1 plus α-CTLA-4 compared with α-PD-1 (RR 1.31, 95% CI 1.16–1.48) or α-CTLA-4 monotherapy (RR 2.11, 95% CI 1.84–2.43), chemotherapy and targeted therapy (RR 1.41, 95% CI 1.26–1.58). α-PD-1 plus α-CTLA-4 treated patients had a great advantage on monotherapy, chemotherapy and targeted therapy treated patients in PFS. Notably, no significant alteration in total adverse event rate was observed in α-PD-1 plus α-CTLA-4 treated patients. Results of subgroup analysis showed that combination therapy could enhance anti-tumor response in comparison with other treatments, especially for low PD-L1 expression patients undergoing nivolumab treatment (ORR: RR 1.35, 95% CI 1.11–1.65). Conclusion Combination treatment of α-PD-1 and α-CTLA-4 is a feasible strategy with enhanced efficacy and acceptable adverse event. Moreover, for some low PD-L1 expression patients, α-CTLA-4 might decrease the risk of resistance to α-PD-1 and demonstrate the synergistic anti-tumor effect.
Collapse
Affiliation(s)
- Kongju Wu
- 1Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000 People's Republic of China
| | - Ming Yi
- 2Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuang Qin
- 2Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qian Chu
- 2Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xinhua Zheng
- 1Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000 People's Republic of China
| | - Kongming Wu
- 1Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000 People's Republic of China.,2Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
315
|
Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, Krex D, Meinhardt M, Weyerbrock A, Timmer M, Goldbrunner R, Deckert M, Scheel AH, Büttner R, Grauer OM, Schittenhelm J, Tabatabai G, Harter PN, Günther S, Devraj K, Plate KH, Reiss Y. Tumor Vessel Normalization, Immunostimulatory Reprogramming, and Improved Survival in Glioblastoma with Combined Inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunol Res 2019; 7:1910-1927. [PMID: 31597643 DOI: 10.1158/2326-6066.cir-18-0865] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/25/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is a non-T-cell-inflamed cancer characterized by an immunosuppressive microenvironment that impedes dendritic cell maturation and T-cell cytotoxicity. Proangiogenic cytokines such as VEGF and angiopoietin-2 (Ang-2) have high expression in glioblastoma in a cell-specific manner and not only drive tumor angiogenesis and vascular permeability but also negatively regulate T-lymphocyte and innate immune cell responses. Consequently, the alleviation of immunosuppression might be a prerequisite for successful immune checkpoint therapy in GBM. We here combined antiangiogenic and immune checkpoint therapy and demonstrated improved therapeutic efficacy in syngeneic, orthotopic GBM models. We observed that blockade of VEGF, Ang-2, and programmed cell death protein-1 (PD-1) significantly extended survival compared with vascular targeting alone. In the GBM microenvironment, triple therapy increased the numbers of CTLs, which inversely correlated with myeloid-derived suppressor cells and regulatory T cells. Transcriptome analysis of GBM microvessels indicated a global vascular normalization that was highest after triple therapy. Our results propose a rationale to overcome tumor immunosuppression and the current limitations of VEGF monotherapy by integrating the synergistic effects of VEGF/Ang-2 and PD-1 blockade to reinforce antitumor immunity through a normalized vasculature.
Collapse
Affiliation(s)
- Mariangela Di Tacchio
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Jakob Weissenberger
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Kathleen Sommer
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Oliver Bähr
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,Senckenberg Institute of Neurooncology, University Hospital, Goethe University, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,Senckenberg Institute of Neurooncology, University Hospital, Goethe University, Frankfurt, Germany
| | - Christian Senft
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Volker Seifert
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Herrlinger
- Department of Neurology, Division of Clinical Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | - Dietmar Krex
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Dresden University of Technology, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology, Dresden University of Technology, Dresden, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marco Timmer
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Oliver M Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Muenster, Muenster, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Neurology & Neurosurgery, Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for CNS Tumors, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
316
|
Foster JB, Madsen PJ, Hegde M, Ahmed N, Cole KA, Maris JM, Resnick AC, Storm PB, Waanders AJ. Immunotherapy for pediatric brain tumors: past and present. Neuro Oncol 2019; 21:1226-1238. [PMID: 31504801 PMCID: PMC6784275 DOI: 10.1093/neuonc/noz077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The field of cancer immunotherapy has progressed at an accelerated rate over the past decade. Pediatric brain tumors thus far have presented a formidable challenge for immunotherapy development, given their typically low mutational burden, location behind the blood-brain barrier in a unique tumor microenvironment, and intratumoral heterogeneity. Despite these challenges, recent developments in the field have resulted in exciting preclinical evidence for various immunotherapies and multiple clinical trials. This work reviews the history and advances in active immunotherapy, checkpoint blockade, and adoptive T-cell therapy for pediatric brain tumors, including ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Peter J Madsen
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Meenakshi Hegde
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nabil Ahmed
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristina A Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam C Resnick
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Phillip B Storm
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Center for Data Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Angela J Waanders
- Division of Oncology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
317
|
Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol 2019; 20:1100-1109. [PMID: 31358997 DOI: 10.1038/s41590-019-0433-y] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 01/25/2023]
Abstract
Glioblastoma (GBM) is the deadliest form of brain cancer, with a median survival of less than 2 years despite surgical resection, radiation, and chemotherapy. GBM's rapid progression, resistance to therapy, and inexorable recurrence have been attributed to several factors, including its rapid growth rate, its molecular heterogeneity, its propensity to infiltrate vital brain structures, the regenerative capacity of treatment-resistant cancer stem cells, and challenges in achieving high concentrations of chemotherapeutic agents in the central nervous system. Escape from immunosurveillance is increasingly recognized as a landmark event in cancer biology. Translation of this framework to clinical oncology has positioned immunotherapy as a pillar of cancer treatment. Amid the bourgeoning successes of cancer immunotherapy, GBM has emerged as a model of resistance to immunotherapy. Here we review the mechanisms of immunotherapy resistance in GBM and discuss how insights into GBM-immune system interactions might inform the next generation of immunotherapeutics for GBM and other resistant pathologies.
Collapse
Affiliation(s)
- Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Choi
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
318
|
Abdelaziz MO, Ossmann S, Kaufmann AM, Leitner J, Steinberger P, Willimsky G, Raftery MJ, Schönrich G. Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Front Immunol 2019; 10:1776. [PMID: 31417555 PMCID: PMC6682651 DOI: 10.3389/fimmu.2019.01776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces a uniquely high frequency of virus-specific effector/memory CD8+ T-cells, a phenomenon termed “memory inflation”. Thus, HCMV-based vaccines are particularly interesting in order to stimulate a sustained and strong cellular immune response against cancer. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with high lethality and inevitable relapse. The current standard treatment does not significantly improve the desperate situation underlining the urgent need to develop novel approaches. Although HCMV is highly fastidious with regard to species and cell type, GBM cell lines are susceptible to HCMV. In order to generate HCMV-based therapeutic vaccine candidates, we deleted all HCMV-encoded proteins (immunoevasins) that interfere with MHC class I presentation. The aim being to use the viral vector as an adjuvant for presentation of endogenous tumor antigens, the presentation of high levels of vector-encoded neoantigens and finally the repurposing of bystander HCMV-specific CD8+ T cells to fight the tumor. As neoantigen, we exemplarily used the E6 and E7 proteins of human papillomavirus type 16 (HPV-16) as a non-transforming fusion protein (E6/E7) that covers all relevant antigenic peptides. Surprisingly, GBM cells infected with E6/E7-expressing HCMV-vectors failed to stimulate E6-specific T cells despite high level expression of E6/E7 protein. Further experiments revealed that MHC class I presentation of E6/E7 is impaired by the HCMV-vector although it lacks all known immunoevasins. We also generated HCMV-based vectors that express E6-derived peptide fused to HCMV proteins. GBM cells infected with these vectors efficiently stimulated E6-specific T cells. Thus, fusion of antigenic sequences to HCMV proteins is required for efficient presentation via MHC class I molecules during infection. Taken together, these results provide the preclinical basis for development of HCMV-based vaccines and also reveal a novel HCMV-encoded block of MHC class I presentation.
Collapse
Affiliation(s)
- Mohammed O Abdelaziz
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophia Ossmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerald Willimsky
- Institute of Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, Partner Site Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
319
|
Wirsching HG, Zhang H, Szulzewsky F, Arora S, Grandi P, Cimino PJ, Amankulor N, Campbell JS, McFerrin L, Pattwell SS, Ene C, Hicks A, Ball M, Yan J, Zhang J, Kumasaka D, Pierce RH, Weller M, Finer M, Quéva C, Glorioso JC, Houghton AM, Holland EC. Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight 2019; 4:128217. [PMID: 31292299 DOI: 10.1172/jci.insight.128217] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses induce local tumor destruction and inflammation. Whether virotherapy can also overcome immunosuppression in noninfected tumor areas is under debate. To address this question, we have explored immunologic effects of oncolytic herpes simplex viruses (oHSVs) in a genetically engineered mouse model of isocitrate dehydrogenase (IDH) wild-type glioblastoma, the most common and most malignant primary brain tumor in adults. Our model recapitulates the genomics, the diffuse infiltrative growth pattern, and the extensive macrophage-dominant immunosuppression of human glioblastoma. Infection with an oHSV that was armed with a UL16-binding protein 3 (ULBP3) expression cassette inhibited distant tumor growth in the absence of viral spreading (abscopal effect) and yielded accumulation of activated macrophages and T cells. There was also abscopal synergism of oHSVULBP3 with anti-programmed cell death 1 (anti-PD-1) against distant, uninfected tumor areas; albeit consistent with clinical trials in patients with glioblastoma, monotherapy with anti-PD-1 was ineffective in our model. Arming oHSV with ULBP3 led to upregulation of antigen processing and presentation gene sets in myeloid cells. The cognate ULBP3 receptor NKG2D, however, is not present on myeloid cells, suggesting a noncanonical mechanism of action of ULBP3. Overall, the myeloid-dominant, anti-PD-1-sensitive abscopal effect of oHSVULBP3 warrants further investigation in patients with IDH wild-type glioblastoma.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Paola Grandi
- Department of Microbiology and Molecular Genetics and.,Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick J Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, Division of Neuropathology, and
| | - Nduka Amankulor
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Lisa McFerrin
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Siobhan S Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chibawanye Ene
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | | | | | - James Yan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jenny Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Debrah Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Translational Tumor Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Neurosurgery, University of Washington, Seattle, Washington, USA.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
320
|
Majd N, de Groot J. Challenges and strategies for successful clinical development of immune checkpoint inhibitors in glioblastoma. Expert Opin Pharmacother 2019; 20:1609-1624. [DOI: 10.1080/14656566.2019.1621840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nazanin Majd
- Department of Neuro-Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
321
|
Wang Y, Zhou S, Yang F, Qi X, Wang X, Guan X, Shen C, Duma N, Vera Aguilera J, Chintakuntlawar A, Price KA, Molina JR, Pagliaro LC, Halfdanarson TR, Grothey A, Markovic SN, Nowakowski GS, Ansell SM, Wang ML. Treatment-Related Adverse Events of PD-1 and PD-L1 Inhibitors in Clinical Trials: A Systematic Review and Meta-analysis. JAMA Oncol 2019; 5:1008-1019. [PMID: 31021376 PMCID: PMC6487913 DOI: 10.1001/jamaoncol.2019.0393] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE Programmed cell death (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors have been increasingly used in cancer therapy. Understanding the treatment-related adverse events of these drugs is critical for clinical practice. OBJECTIVE To evaluate the incidences of treatment-related adverse events of PD-1 and PD-L1 inhibitors and the differences between different drugs and cancer types. DATA SOURCES PubMed, Web of Science, Embase, and Scopus were searched from October 1, 2017, through December 15, 2018. STUDY SELECTION Published clinical trials on single-agent PD-1 and PD-L1 inhibitors with tabulated data on treatment-related adverse events were included. DATA EXTRACTION AND SYNTHESIS Trial name, phase, cancer type, PD-1 and PD-L1 inhibitor used, dose escalation, dosing schedule, number of patients, number of all adverse events, and criteria for adverse event reporting data were extracted from each included study, and bayesian multilevel regression models were applied for data analysis. MAIN OUTCOMES AND MEASURES Incidences of treatment-related adverse events and differences between different drugs and cancer types. RESULTS This systematic review and meta-analysis included 125 clinical trials involving 20 128 patients; 12 277 (66.0%) of 18 610 patients from 106 studies developed at least 1 adverse event of any grade (severity), and 2627 (14.0%) of 18 715 patients from 110 studies developed at least 1 adverse event of grade 3 or higher severity. The most common all-grade adverse events were fatigue (18.26%; 95% CI, 16.49%-20.11%), pruritus (10.61%; 95% CI, 9.46%-11.83%), and diarrhea (9.47%; 95% CI, 8.43%-10.58%). The most common grade 3 or higher adverse events were fatigue (0.89%; 95% CI, 0.69%-1.14%), anemia (0.78%; 95% CI, 0.59%-1.02%), and aspartate aminotransferase increase (0.75%; 95% CI, 0.56%-0.99%). Hypothyroidism (6.07%; 95% CI, 5.35%-6.85%) and hyperthyroidism (2.82%; 95% CI, 2.40%-3.29%) were the most frequent all-grade endocrine immune-related adverse events. Nivolumab was associated with higher mean incidences of all-grade adverse events compared with pembrolizumab (odds ratio [OR], 1.28; 95% CI, 0.97-1.79) and grade 3 or higher adverse events (OR, 1.30; 95% CI, 0.89-2.00). PD-1 inhibitors were associated with a higher mean incidence of grade 3 or higher adverse events compared with PD-L1 inhibitors (OR, 1.58; 95% CI, 1.00-2.54). CONCLUSIONS AND RELEVANCE Different PD-1 and PD-L1 inhibitors appear to have varying treatment-related adverse events; a comprehensive summary of the incidences of treatment-related adverse events in clinical trials provides an important guide for clinicians.
Collapse
Affiliation(s)
- Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Shouhao Zhou
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey
| | - Fang Yang
- Medical School of Nanjing University, Nanjing, China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xinyue Qi
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Xin Wang
- Medical School of Nanjing University, Nanjing, China
| | - Xiaoxiang Guan
- Medical School of Nanjing University, Nanjing, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chan Shen
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston
| | - Narjust Duma
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jesus Vera Aguilera
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | - Axel Grothey
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
- West Cancer Center, The University of Tennessee, Memphis
| | | | | | | | - Michael L. Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
322
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
323
|
Perez-Santos M, Anaya-Ruiz M, Herrera-Camacho I, Millán-Pérez Peña L. Cancer combinatorial immunotherapy using anti-OX40 agonist and anti-PD-L1 antagonist: a patent evaluation of US2018256711A1. Expert Opin Ther Pat 2019; 29:481-485. [DOI: 10.1080/13543776.2019.1634690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Martin Perez-Santos
- Oficina de Comercialización de Tecnología, Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, CP, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, CP, Mexico
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, CP, Mexico
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, CP, Mexico
| |
Collapse
|
324
|
Gu L, Khadaroo PA, Su H, Kong L, Chen L, Wang X, Li X, Zhu H, Zhong X, Pan J, Chen M. The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/PD-L1 plus anti-CTLA-4): a systematic review and meta-analysis. BMC Cancer 2019; 19:559. [PMID: 31182049 PMCID: PMC6558837 DOI: 10.1186/s12885-019-5785-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
Background The future of combined immunotherapy (a PD-1/PD-L1 plus a CTLA-4 antagonist) is very bright. However, besides improving efficacy, combined therapy increases treatment-related adverse events (TRAEs). Also, the clinical application is limited in some solid tumors. Methods This paper purports to investigate the TRAEs for the combined immunotherapy aiming for a more appropriate utilization of immune checkpoint inhibitors (ICIs) in clinical practice through a meta-analysis. Results A total of 17 eligible studies covering 2626 patients were selected for a meta-analysis based on specified inclusion and exclusion criteria. The incidence rates of any grade and grade 3 or higher TRAEs were 88% (95%CI, 84–92%) and 41% (95%CI, 35–47%), respectively. The overall incidence of any grade TRAEs leading to discontinuation of treatment was 20% (95%CI, 16–24%). The incidence rate of treatment related deaths was 4.3‰ (95%CI, 1.4‰-8.4‰). Analysis showed that NIVO1 + IPI3 cohort had higher incidences of grade 3 or higher TRAEs (RR = 1.77, 95%CI, 1.34–2.34, p < 0.0001) and any grade TRAEs leading to discontinuation of treatment (RR = 1.81, 95%CI, 1.08–3.04, P = 0.02), compared with NIVO3 + IPI1 regimen. Conclusions The combined therapy had high TRAEs. The TRAEs, especially grade 3 or higher, led to discontinuation of the treatment. Furthermore, the incidence of treatment-related deaths was rare. Moreover, the NIVO3 + IPI1 regimen, regardless of efficacy, is more recommended because of better tolerance and lower adverse events. Electronic supplementary material The online version of this article (10.1186/s12885-019-5785-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lihu Gu
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | | | - Hui Su
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Liya Kong
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liangliang Chen
- Department of Surgical Oncology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Xianfa Wang
- Department of General Surgery, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Xinlong Li
- Department of General Surgery, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Hepan Zhu
- Department of General Surgery, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Xin Zhong
- Department of General Surgery, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Junhai Pan
- Department of General Surgery, Zhejiang University School of Medicine Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| | - Manman Chen
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, No. 247, Renming Road, Ningbo, 315020, Zhejiang, China.
| |
Collapse
|
325
|
Kotecha R, Mehta MP, Chang EL, Brown PD, Suh JH, Lo SS, Das S, Samawi HH, Keith J, Perry J, Sahgal A. Updates in the management of intradural spinal cord tumors: a radiation oncology focus. Neuro Oncol 2019; 21:707-718. [PMID: 30977511 PMCID: PMC6556849 DOI: 10.1093/neuonc/noz014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Primary spinal cord tumors represent a hetereogeneous group of central nervous system malignancies whose management is complex given the relatively uncommon nature of the disease and variety of tumor subtypes, functional neurologic deficits from the tumor, and potential morbidities associated with definitive treatment. Advances in neuroimaging; integration of diagnostic, prognostic, and predictive molecular testing into tumor classification; and developments in neurosurgical techniques have refined the current role of radiotherapy in the multimodal management of patients with primary spinal cord tumors, and corroborated the need for prospective, multidisciplinary discussion and treatment decision making. Radiotherapeutic technological advances have dramatically improved the entire continuum from treatment planning to treatment delivery, and the development of stereotactic radiosurgery and proton radiotherapy provides new radiotherapy options for patients treated in the definitive, adjuvant, or salvage setting. The objective of this comprehensive review is to provide a contemporary overview of the management of primary intradural spinal cord tumors, with a focus on radiotherapy.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Eric L Chang
- Department of Radiation Oncology, University of Southern California, Los Angeles, California, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Taussig Cancer Institute, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Sunit Das
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Haider H Samawi
- Division of Hematology/Oncology, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Julia Keith
- Department of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Perry
- Department of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
326
|
Huff WX, Kwon JH, Henriquez M, Fetcko K, Dey M. The Evolving Role of CD8 +CD28 - Immunosenescent T Cells in Cancer Immunology. Int J Mol Sci 2019; 20:ijms20112810. [PMID: 31181772 PMCID: PMC6600236 DOI: 10.3390/ijms20112810] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized—tolerance, anergy, exhaustion, and senescence—CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28− senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28− senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wei X Huff
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jae Hyun Kwon
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mario Henriquez
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kaleigh Fetcko
- Department of Neurology, University of Illinois at Chicago School of Medicine, Chicago, IL 60612, USA.
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
327
|
Patel R, Traylor JI, Latha K, Heimberger AB, Li S, Rao G. Fibrinogen-like protein 2: a potential molecular target for glioblastoma treatment. Expert Opin Ther Targets 2019; 23:647-649. [PMID: 31167575 DOI: 10.1080/14728222.2019.1628220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rajan Patel
- a Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jeffrey I Traylor
- a Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Khatri Latha
- a Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amy B Heimberger
- a Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shulin Li
- b Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- a Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
328
|
Chandramohan V, Bao X, Yu X, Parker S, McDowall C, Yu YR, Healy P, Desjardins A, Gunn MD, Gromeier M, Nair SK, Pastan IH, Bigner DD. Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J Immunother Cancer 2019; 7:142. [PMID: 31142380 PMCID: PMC6542114 DOI: 10.1186/s40425-019-0614-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND D2C7-IT is a novel immunotoxin (IT) targeting wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFR variant III (EGFRvIII) proteins in glioblastoma. In addition to inherent tumoricidal activity, immunotoxins induce secondary immune responses through the activation of T cells. However, glioblastoma-induced immune suppression is a major obstacle to an effective and durable immunotoxin-mediated antitumor response. We hypothesized that D2C7-IT-induced immune response could be effectively augmented in combination with αCTLA-4/αPD-1/αPD-L1 therapies in murine models of glioma. METHODS To study this, we overexpressed the D2C7-IT antigen, murine EGFRvIII (dmEGFRvIII), in established glioma lines, CT-2A and SMA560. The reactivity and therapeutic efficacy of D2C7-IT against CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII cells was determined by flow cytometry and in vitro cytotoxicity assays, respectively. Antitumor efficacy of D2C7-IT was examined in immunocompetent, intracranial murine glioma models and the role of T cells was assessed by CD4+ and CD8+ T cell depletion. In vivo efficacy of D2C7-IT/αCTLA-4/αPD-1 monotherapy or D2C7-IT+αCTLA-4/αPD-1 combination therapy was evaluated in subcutaneous unilateral and bilateral CT-2A-dmEGFRvIII glioma-bearing immunocompetent mice. Further, antitumor efficacy of D2C7-IT+αCTLA-4/αPD-1/αPD-L1/αTim-3/αLag-3/αCD73 combination therapy was evaluated in intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII glioma-bearing mice. Pairwise differences in survival curves were assessed using the generalized Wilcoxon test. RESULTS D2C7-IT effectively killed CT-2A-dmEGFRvIII (IC50 = 0.47 ng/mL) and SMA560-dmEGFRvIII (IC50 = 1.05 ng/mL) cells in vitro. Treatment of intracranial CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII tumors with D2C7-IT prolonged survival (P = 0.0188 and P = 0.0057, respectively), which was significantly reduced by the depletion of CD4+ and CD8+ T cells. To augment antitumor immune responses, we combined D2C7-IT with αCTLA-4/αPD-1 in an in vivo subcutaneous CT-2A-dmEGFRvIII model. Tumor-bearing mice exhibited complete tumor regressions (4/10 in D2C7-IT+αCTLA-4 and 5/10 in D2C7-IT+αPD-1 treatment groups), and combination therapy-induced systemic antitumor response was effective against both dmEGFRvIII-positive and dmEGFRvIII-negative CT-2A tumors. In a subcutaneous bilateral CT-2A-dmEGFRvIII model, D2C7-IT+αCTLA-4/αPD-1 combination therapies showed dramatic regression of the treated tumors and measurable regression of untreated tumors. Notably, in CT-2A-dmEGFRvIII and SMA560-dmEGFRvIII intracranial glioma models, D2C7-IT+αPD-1/αPD-L1 combinations improved survival, and in selected cases generated cures and protection against tumor re-challenge. CONCLUSIONS These data support the development of D2C7-IT and immune checkpoint blockade combinations for patients with malignant glioma.
Collapse
Affiliation(s)
- Vidyalakshmi Chandramohan
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA.
| | - Xuhui Bao
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Xin Yu
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Scott Parker
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Charlotte McDowall
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Yen-Rei Yu
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Patrick Healy
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthias Gromeier
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Darell D Bigner
- Department of Neurosurgery and the Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Medical Sciences Research Building, Rm 181c, Box 3156, Durham, NC, 27710, USA
| |
Collapse
|
329
|
Brown MP, Ebert LM, Gargett T. Clinical chimeric antigen receptor-T cell therapy: a new and promising treatment modality for glioblastoma. Clin Transl Immunology 2019; 8:e1050. [PMID: 31139410 PMCID: PMC6526894 DOI: 10.1002/cti2.1050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is now approved in the United States and Europe as a standard treatment for relapsed/refractory B-cell malignancies. It has also been approved recently by the Therapeutic Goods Administration in Australia and may soon be publicly reimbursed. This advance has accentuated scientific, clinical and commercial interest in adapting this exciting technology for the treatment of solid cancers where it is widely recognised that the challenges of overcoming a hostile tumor microenvironment are most acute. Indeed, CAR-T cell technology may be of the greatest value for those cancers that lack pre-existing immunity because they are immunologically 'cold', or have a low somatic tumor mutation load, or both. These cancers are generally not amenable to therapeutic immune checkpoint blockade, but CAR-T cell therapy may be effective because it provides an abundant supply of autologous tumor-specific T cells. This is achieved by using genetic engineering to re-direct autologous T-cell cytotoxicity towards a tumor-associated antigen, bypassing endogenous T-cell requirements for antigen processing, MHC-dependent antigen presentation and co-stimulation. One of the most challenging solid cancers is glioblastoma, which has among the least permissive immunological milieu of any cancer, and which is almost always fatal. Here, we argue that CAR-T cell technology may counter some glioblastoma defences and provide a beachhead for furthering our eventual therapeutic aims of restoring effective antitumor immunity. Although clinical investigation of CAR-T cell therapy for glioblastoma is at an early stage, we discuss three recently published studies, which feature significant differences in target antigen, CAR-T cell phenotype, route of administration and tumor response. We discuss the lessons, which may be learned from these studies and which may guide further progress in the field.
Collapse
Affiliation(s)
- Michael P Brown
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia.,Cancer Clinical Trials Unit Royal Adelaide Hospital Adelaide SA Australia.,School of Medicine University of Adelaide Adelaide SA Australia
| | - Lisa M Ebert
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia
| | - Tessa Gargett
- Translational Oncology Laboratory Centre for Cancer Biology University of South Australia and SA Pathology Adelaide SA Australia
| |
Collapse
|
330
|
Hua L, Wakimoto H. Oncolytic herpes simplex virus therapy for malignant glioma: current approaches to successful clinical application. Expert Opin Biol Ther 2019; 19:845-854. [PMID: 31046478 DOI: 10.1080/14712598.2019.1614557] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION With the approval of talimogene laherparepvec (T-VEC) for advanced malignant melanoma, virotherapy using oncolytic herpes simplex virus (oHSV) is now emerging as a viable therapeutic option for cancer patients, including malignant gliomas. AREAS COVERED This review summarizes the most recent literature to provide cutting-edge knowledge about preclinical and clinical development of oHSV therapy for malignant gliomas, presenting current approaches to overcome obstacles to successful clinical application of oHSV in neuro-oncology. EXPERT OPINION Current strategies to improve the efficacy of oHSV therapy include engineering new viruses, modulation of innate and adaptive immune responses, combination with other treatments, and developing new oHSV delivery. All of these could rapidly be translated into clinical investigations, following several clinical trials that are currently ongoing.
Collapse
Affiliation(s)
- Lingyang Hua
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Hiroaki Wakimoto
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
331
|
Mitchell LA, Yagiz K, Hofacre A, Viaud S, Munday AW, Espinoza FL, Mendoza D, Rodriguez-Aguirre ME, Bergqvist S, Haghighi A, Miner MV, Accomando WP, Burrascano C, Gammon D, Gruber HE, Jolly DJ, Lin AH. PD-L1 checkpoint blockade delivered by retroviral replicating vector confers anti-tumor efficacy in murine tumor models. Oncotarget 2019; 10:2252-2269. [PMID: 31040917 PMCID: PMC6481342 DOI: 10.18632/oncotarget.26785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint inhibitors (CPIs) are associated with a number of immune-related adverse events and low response rates. We provide preclinical evidence for use of a retroviral replicating vector (RRV) selective to cancer cells, to deliver CPI agents that may circumvent such issues and increase efficacy. An RRV, RRV-scFv-PDL1, encoding a secreted single chain variable fragment targeting PD-L1 can effectively compete with PD-1 for PD-L1 occupancy. Cell binding assays showed trans-binding activity on 100% of cells in culture when infection was limited to 5% RRV-scFv-PDL1 infected tumor cells. Further, the ability of scFv PD-L1 to rescue PD-1/PD-L1 mediated immune suppression was demonstrated in a co-culture system consisting of human-derived immune cells and further demonstrated in several syngeneic mouse models including an intracranial tumor model. These tumor models showed that tumors infected with RRV-scFv-PD-L1 conferred robust and durable immune-mediated anti-tumor activity comparable or superior to systemically administered anti-PD-1 or anti PD-L1 monoclonal antibodies. Importantly, the nominal level of scFv-PD-L1 detected in serum is ∼50–150 fold less than reported for systemically administered therapeutic antibodies targeting immune checkpoints. These results support the concept that RRV-scFv-PDL1 CPI strategy may provide an improved safety and efficacy profile compared to systemic monoclonal antibodies of currently approved therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Amy H Lin
- Tocagen Inc., San Diego, 92121, CA, USA
| |
Collapse
|
332
|
Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O'Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019; 25:477-486. [PMID: 30742122 PMCID: PMC6408961 DOI: 10.1038/s41591-018-0337-7] [Citation(s) in RCA: 970] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults and is associated with poor survival. The Ivy Foundation Early Phase Clinical Trials Consortium conducted a randomized, multi-institution clinical trial to evaluate immune responses and survival following neoadjuvant and/or adjuvant therapy with pembrolizumab in 35 patients with recurrent, surgically resectable glioblastoma. Patients who were randomized to receive neoadjuvant pembrolizumab, with continued adjuvant therapy following surgery, had significantly extended overall survival compared to patients that were randomized to receive adjuvant, post-surgical programmed cell death protein 1 (PD-1) blockade alone. Neoadjuvant PD-1 blockade was associated with upregulation of T cell- and interferon-γ-related gene expression, but downregulation of cell-cycle-related gene expression within the tumor, which was not seen in patients that received adjuvant therapy alone. Focal induction of programmed death-ligand 1 in the tumor microenvironment, enhanced clonal expansion of T cells, decreased PD-1 expression on peripheral blood T cells and a decreasing monocytic population was observed more frequently in the neoadjuvant group than in patients treated only in the adjuvant setting. These findings suggest that the neoadjuvant administration of PD-1 blockade enhances both the local and systemic antitumor immune response and may represent a more efficacious approach to the treatment of this uniformly lethal brain tumor.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aaron Y Mochizuki
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joey R Orpilla
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander H Lee
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tom B Davidson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anthony C Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Eric S Kawaguchi
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lin Du
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gang Li
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - William H Yong
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah C Gaffey
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L Cohen
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Howard Colman
- Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John F de Groot
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Robert M Prins
- Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
333
|
Jahan N, Talat H, Alonso A, Saha D, Curry WT. Triple combination immunotherapy with GVAX, anti-PD-1 monoclonal antibody, and agonist anti-OX40 monoclonal antibody is highly effective against murine intracranial glioma. Oncoimmunology 2019; 8:e1577108. [PMID: 31069135 DOI: 10.1080/2162402x.2019.1577108] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
Single-agent immunotherapy, including with immune checkpoint inhibition with anti-PD-1 antibody, has not extended survival in patients with malignant glioma. However, PD-1 inhibition may still play a role in combination immunotherapy with multiple agents. In this study, we evaluated anti-PD-1 antibody treatment in combination with multiple approaches, including vaccination and agonist anti-OX40 immunotherapy, as well as triple combination immunotherapy with each of the above agents in a murine glioma model. Treatments were delivered on days 3,6, and 9 after intracranial implantation of glioma cells in the right frontal lobes of the mice. Vaccination consisted of subcutaneous implantation of irradiated GL261 cells engineered to express GM-CSF. We harvested splenocytes and brain tissue 18 days after glioma implantation and analyzed them by ELISPOT and flow cytometry, respectively. Treated mice surviving for 120 days were challenged with implantation of large numbers of GL261 cells and either followed for survival or sacrificed for study of the memory response. Survival was assessed by the Kaplan-Meier method and the log-rank test. Means were compared by the 2-tailed student's t-test. We report that combining anti-PD-1 immunotherapy with either vaccination or agonist anti-OX40 immunotherapy improves survival in GL261-bearing mice compared with any of the above as monotherapy. Triple combination immunotherapy with vaccination, anti-PD-1 antibody, and agonist anti-OX40 antibody results in long-term survival in all mice. Triple combination immunotherapy resulted in an elevated CD4+/CD8 + T lymphocyte ratio amongst tumor-infiltrating lymphocytes as well as a diminished fraction of regulatory T lymphocytes, likely reflective of a more vigorous Th1 antitumor response.
Collapse
Affiliation(s)
- Nusrat Jahan
- Translational Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Hammad Talat
- Translational Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Andrea Alonso
- Deparment of Immunotherapeutics and Biotechnology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dipongkor Saha
- Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX, USA
| | - William T Curry
- Pappas Center for Neuro-Oncology, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
334
|
McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr Treat Options Oncol 2019; 20:24. [PMID: 30790064 PMCID: PMC6394457 DOI: 10.1007/s11864-019-0619-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OPINION STATEMENT At this time, there are no FDA-approved immune therapies for glioblastoma (GBM) despite many unique therapies currently in clinical trials. GBM is a highly immunosuppressive tumor and there are limitations to a safe immune response in the central nervous system. To date, there have been several failures of phase 3 immune therapy clinical trials in GBM. These trials have targeted single components of an antitumor immune response. Learning from these failures, the future of immunotherapy for GBM appears most hopeful for combination of immune therapies to overcome the profound immunosuppression of this disease. Understanding biomarkers for appropriate patient selection as well as tumor progression are necessary for implementation of immunotherapy for GBM.
Collapse
Affiliation(s)
- Tresa McGranahan
- Department of Neurology, UW Medicine, University of Washington, Seattle, WA USA
| | | | - Sarah Ahmad
- Department of Neurology, Stanford University, Stanford, CA USA
| | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, CA USA
| |
Collapse
|
335
|
Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res 2019; 38:87. [PMID: 30777100 PMCID: PMC6380009 DOI: 10.1186/s13046-019-1085-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023] Open
Abstract
PD-1/PD-L1 checkpoint blockades have achieved significant progress in several kinds of tumours. Pembrolizumab, which targets PD-1, has been approved as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with positive PD-L1 expression. However, PD-1/PD-L1 checkpoint blockades have not achieved breakthroughs in treating glioblastoma because glioblastoma has a low immunogenic response and an immunosuppressive microenvironment caused by the precise crosstalk between cytokines and immune cells. A phase III clinical trial, Checkmate 143, reported that nivolumab, which targets PD-1, did not demonstrate survival benefits compared with bavacizumab in recurrent glioblastoma patients. Thus, the combination of a PD-1/PD-L1 checkpoint blockade with RT, TMZ, antibodies targeting other inhibitory or stimulatory molecules, targeted therapy, and vaccines may be an appealing solution aimed at achieving optimal clinical benefit. There are many ongoing clinical trials exploring the efficacy of various approaches based on PD-1/PD-L1 checkpoint blockades in primary or recurrent glioblastoma patients. Many challenges need to be overcome, including the identification of discrepancies between different genomic subtypes in their response to PD-1/PD-L1 checkpoint blockades, the selection of PD-1/PD-L1 checkpoint blockades for primary versus recurrent glioblastoma, and the identification of the optimal combination and sequence of combination therapy. In this review, we describe the immunosuppressive molecular characteristics of the tumour microenvironment (TME), candidate biomarkers of PD-1/PD-L1 checkpoint blockades, ongoing clinical trials and challenges of PD-1/PD-L1 checkpoint blockades in glioblastoma.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People’s Hospital of Jinan, Jinan, Shandong Province China
| | - Yang Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Shandong Province, Jinan, 250014 China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| |
Collapse
|
336
|
Johanns TM, Miller CA, Liu CJ, Perrin RJ, Bender D, Kobayashi DK, Campian JL, Chicoine MR, Dacey RG, Huang J, Fritsch EF, Gillanders WE, Artyomov MN, Mardis ER, Schreiber RD, Dunn GP. Detection of neoantigen-specific T cells following a personalized vaccine in a patient with glioblastoma. Oncoimmunology 2019; 8:e1561106. [PMID: 30906654 PMCID: PMC6422384 DOI: 10.1080/2162402x.2018.1561106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Neoantigens represent promising targets for personalized cancer vaccine strategies. However, the feasibility of this approach in lower mutational burden tumors like glioblastoma (GBM) remains unknown. We have previously reported the use of an immunogenomics pipeline to identify candidate neoantigens in preclinical models of GBM. Here, we report the application of the same immunogenomics pipeline to identify candidate neoantigens and guide screening for neoantigen-specific T cell responses in a patient with GBM treated with a personalized synthetic long peptide vaccine following autologous tumor lysate DC vaccination. Following vaccination, reactivity to three HLA class I- and five HLA class II-restricted candidate neoantigens were detected by IFN-γ ELISPOT in peripheral blood. A similar pattern of reactivity was observed among isolated post-treatment tumor-infiltrating lymphocytes. Genomic analysis of pre- and post-treatment GBM reflected clonal remodeling. These data demonstrate the feasibility and translational potential of a therapeutic neoantigen-based vaccine approach in patients with primary CNS tumors.
Collapse
Affiliation(s)
- Tanner M Johanns
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- The McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Connor J Liu
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Diane Bender
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Dale K Kobayashi
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian L Campian
- Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jiayi Huang
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - William E Gillanders
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Surgery, Section of Endocrine and Oncologic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Robert D Schreiber
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.,Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
337
|
Chuntova P, Downey KM, Hegde B, Almeida ND, Okada H. Genetically Engineered T-Cells for Malignant Glioma: Overcoming the Barriers to Effective Immunotherapy. Front Immunol 2019; 9:3062. [PMID: 30740109 PMCID: PMC6357938 DOI: 10.3389/fimmu.2018.03062] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Malignant gliomas carry a dismal prognosis. Conventional treatment using chemo- and radiotherapy has limited efficacy with adverse events. Therapy with genetically engineered T-cells, such as chimeric antigen receptor (CAR) T-cells, may represent a promising approach to improve patient outcomes owing to their potential ability to attack highly infiltrative tumors in a tumor-specific manner and possible persistence of the adaptive immune response. However, the unique anatomical features of the brain and susceptibility of this organ to irreversible tissue damage have made immunotherapy especially challenging in the setting of glioma. With safety concerns in mind, multiple teams have initiated clinical trials using CAR T-cells in glioma patients. The valuable lessons learnt from those trials highlight critical areas for further improvement: tackling the issues of the antigen presentation and T-cell homing in the brain, immunosuppression in the glioma microenvironment, antigen heterogeneity and off-tumor toxicity, and the adaptation of existing clinical therapies to reflect the intricacies of immune response in the brain. This review summarizes the up-to-date clinical outcomes of CAR T-cell clinical trials in glioma patients and examines the most pressing hurdles limiting the efficacy of these therapies. Furthermore, this review uses these hurdles as a framework upon which to evaluate cutting-edge pre-clinical strategies aiming to overcome those barriers.
Collapse
Affiliation(s)
- Pavlina Chuntova
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Kira M Downey
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Bindu Hegde
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Neil D Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States.,The Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States.,Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
338
|
Young JS, Dayani F, Morshed RA, Okada H, Aghi MK. Immunotherapy for High Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurg 2019; 124:397-409. [PMID: 30677574 PMCID: PMC6642850 DOI: 10.1016/j.wneu.2018.12.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
The current standard of care for patients with high grade gliomas includes surgical resection, chemotherapy, and radiation; but even still the majority of patients experience disease progression and succumb to their illness within a few years of diagnosis. Immunotherapy, which stimulates an anti-tumor immune response, has been revolutionary in the treatment of some hematological and solid malignancies, generating substantial excitement for its potential for patients with glioblastoma. The most commonly used immunotherapies include dendritic cell and peptide vaccines, checkpoint inhibitors, and adoptive T cell therapy. However, to date, the preclinical success of these approaches against high-grade glioma models has not been replicated in human clinical trials. Moreover, the complex response to these biologically active treatments can complicate management decisions, and the neurosurgical oncology community needs to be actively involved in and up to date on the use of these agents in high grade glioma patients. In this review, we discuss the challenges immunotherapy faces for high grade gliomas, the completed and ongoing clinical trials for the major immunotherapies, and the nuances in management for patients being actively treated with one of these agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Fara Dayani
- School of Medicine, University of California, San Francisco
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
339
|
Park J, Kwon M, Kim KH, Kim TS, Hong SH, Kim CG, Kang SG, Moon JH, Kim EH, Park SH, Chang JH, Shin EC. Immune Checkpoint Inhibitor-induced Reinvigoration of Tumor-infiltrating CD8 + T Cells is Determined by Their Differentiation Status in Glioblastoma. Clin Cancer Res 2019; 25:2549-2559. [PMID: 30659023 DOI: 10.1158/1078-0432.ccr-18-2564] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/07/2018] [Accepted: 01/16/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) are used for the treatment of various cancers, but clinical trials of anti-programmed cell death protein 1 (PD-1) with patients with recurrent glioblastoma (GBM) have failed to show clinical benefits. In this study, we examined the differentiation status of CD8+ tumor-infiltrating lymphocytes (TIL) from patients with primary GBM and their reinvigoration by ICIs to understand the nature of T-cell exhaustion in GBM. EXPERIMENTAL DESIGN We isolated TILs from 98 patients with newly diagnosed GBM and examined the expression of immune checkpoint receptors and T-cell transcription factors using flow cytometry. TILs were ex vivo stimulated with anti-CD3 in the presence of anti-PD-1 and/or anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) and their proliferation assessed. RESULTS CD8+ TILs had significantly increased expression of immune checkpoint receptors, including PD-1 and CTLA-4, compared with peripheral blood CD8+ T cells. Among CD8+ TILs, PD-1+ cells exhibited more terminally differentiated phenotypes (i.e., EomeshiT-betlo) than PD-1- cells. These data were confirmed by analyzing NY-ESO-1157-specific CD8+ TILs. Evaluating the proliferation of CD8+ TILs after ex vivo stimulation with anti-CD3 and anti-PD-1, we found that proliferation inversely correlated with the percentage of EomeshiT-betlo cells among PD-1+CD8+ TILs. When anti-CTLA-4 was used in combination with anti-PD-1, an additional increase in CD8+ TIL proliferation was observed in patients with low percentages of EomeshiT-betlo CD8+ TILs, who responded well to anti-PD-1 in ex vivo assays, but not in patients with high percentages of EomeshiT-betlo CD8+ TILs, who did not respond to anti-PD-1. CONCLUSIONS In primary GBM, the differentiation status of CD8+ TILs determines their reinvigoration ability upon ICI treatment.
Collapse
Affiliation(s)
- Junsik Park
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minsuk Kwon
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyung Hwan Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-Shin Kim
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seon-Hui Hong
- BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Gon Kim
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,BioMedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
340
|
Chen RQ, Liu F, Qiu XY, Chen XQ. The Prognostic and Therapeutic Value of PD-L1 in Glioma. Front Pharmacol 2019; 9:1503. [PMID: 30687086 PMCID: PMC6333638 DOI: 10.3389/fphar.2018.01503] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common type of primary brain tumors. After standard treatment regimen (surgical section, radiotherapy and chemotherapy), the average survival time remains merely around 14 months for glioblastoma (grade IV glioma). Recent immune therapy targeting to the immune inhibitory checkpoint axis, i.e., programmed cell death protein 1 (PD-1) and its ligand PD-L1 (i.e., CD274 or B7-H1), has achieved breakthrough in many cancers but still not in glioma. PD-L1 is considered a major prognostic biomarker for immune therapy in many cancers, with anti-PD-1 or anti-PD-L1 antibodies being used. However, the expression and subcellular distribution of PD-L1 in glioma cells exhibits great variance in different studies, severely impairing PD-L1's value as therapeutic and prognostic biomarker in glioma. The role of PD-L1 in modulating immune therapy is complicated. In addition, endogenous PD-L1 plays tumorigenic roles in glioma development. In this review, we summarize PD-L1 mRNA expression and protein levels detected by using different methods and antibodies in human glioma tissues in all literatures, and we evaluate the prognostic value of PD-L1 in glioma. We also summarize the relationships between PD-L1 and immune cell infiltration in glioma. The mechanisms regulating PD-L1 expression and the oncogenic roles of endogenous PD-L1 are discussed. Further, the therapeutic results of using anti-PD-1/PD-L1 antibodies or PD-L1 knockdown are summarized and evaluated. In summary, current results support that PD-L1 is not only a prognostic biomarker of immune therapy, but also a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Ruo Qiao Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yao Qiu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Qian Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
341
|
Baldini C, Romano PM, Varga A, Champiat S, Dumont S, Dhermain F, Louvel G, Marabelle A, Postel-Vinay S, Angevin E, Gazzah A, Ribrag V, Bahleda R, Michot JM, Hollebecque A, Soria JC, Massard C. Immunothérapie des glioblastomes. Bull Cancer 2019; 105 Suppl 1:S59-S67. [PMID: 30595200 DOI: 10.1016/s0007-4551(18)30391-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMMUNOTHERAPY IN GLIOBLASTOMAS Targeting the immune system as a therapeutic strategy in solid tumors has shown great efficacy in various tumor types. However the role and success of this approach in glioblastomas remain to be determined. Recent studies demonstrated that central nervous system is no longer considered as an immunoprivileged sanctuary with impressive immune response without blood brain barrier's disruption. Improving our understanding of immune privilege in the central nervous system could lead to better treatment strategies in gliobastomas. This review focuses on describing the immune system in the central nervous system and immuno-therapeutic strategies under development in glioblastomas.
Collapse
Affiliation(s)
- Capucine Baldini
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France.
| | - Patricia Martin Romano
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Andreea Varga
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Stéphane Champiat
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Sarah Dumont
- Gustave-Roussy, université Paris-Saclay, Department of Medical Oncology, Villejuif, F-94805, France
| | - Frédéric Dhermain
- Gustave-Roussy, université Paris-Saclay, Radiation Oncology Department, Villejuif, F-94805, France
| | - Guillaume Louvel
- Gustave-Roussy, université Paris-Saclay, Radiation Oncology Department, Villejuif, F-94805, France
| | - Aurélien Marabelle
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Sophie Postel-Vinay
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Eric Angevin
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Anas Gazzah
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Vincent Ribrag
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Rastio Bahleda
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Jean-Marie Michot
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Antoine Hollebecque
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Jean-Charles Soria
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| | - Christophe Massard
- Gustave-Roussy, université Paris-Saclay, Drug Development Department (DITEP), Villejuif, F-94805, France
| |
Collapse
|
342
|
Abstract
Glioblastoma (GBM) is a highly malignant CNS tumor with very poor survival despite intervention with conventional therapeutic strategies. Although the CNS is separated from the immune system by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier, emerging evidence of immune surveillance and the selective infiltration of GBMs by immune suppressive cells indicates that there is breakdown or compromise of these physical barriers. This in turn offers hope that immunotherapy can be applied to specifically target and reduce tumor burden. One of the major setbacks in translating immunotherapy strategies is the hostile microenvironment of the tumor that inhibits trafficking of effector immune cells such as cytotoxic T lymphocytes into the CNS. Incorporating important findings from autoimmune disorders such as multiple sclerosis to understand and thereby enhance cytotoxic lymphocyte infiltration into GBM could augment immunotherapy strategies to treat this disease. However, although these therapies are designed to evoke a potent immune response, limited space in the brain and cranial vault reduces tolerance for immune therapy-induced inflammation and resultant brain edema. Therefore, successful immunotherapy requires that a delicate balance be maintained between activating and retaining lasting antitumor immunity.
Collapse
Affiliation(s)
- Nivedita M Ratnam
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
343
|
Fountzilas E, Palmer G, Vining D, Tsimberidou AM. Prolonged Partial Response to Bevacizumab and Valproic Acid in a Patient With Glioblastoma. JCO Precis Oncol 2018; 2. [PMID: 31544169 DOI: 10.1200/po.18.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - David Vining
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
344
|
Congdon KL, Sanchez-Perez LA, Sampson JH. Effective effectors: How T cells access and infiltrate the central nervous system. Pharmacol Ther 2018; 197:52-60. [PMID: 30557632 DOI: 10.1016/j.pharmthera.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several Phase II and III clinical trials have demonstrated that immunotherapy can induce objective responses in otherwise refractory malignancies in tumors outside the central nervous system. In large part, effector T cells mediate much of the antitumor efficacy in these trials, and potent antitumor T cells can be generated through vaccination, immune checkpoint blockade, adoptive transfer, and genetic manipulation. However, activated T cells must still traffic to, infiltrate, and persist within tumor in order to mediate tumor lysis. These requirements for efficacy pose unique challenges for brain tumor immunotherapy, due to specific anatomical barriers and populations of specialized immune cells within the central nervous system that function to constrain immunity. Both autoimmune and infectious diseases of the central nervous system provide a wealth of information on how T cells can successfully migrate to the central nervous system and then engender sustained immune responses. In this review, we will examine the commonalities in the efferent arm of immunity to the brain for autoimmunity, infection, and tumor immunotherapy to identify key factors underlying potent immune responses.
Collapse
Affiliation(s)
- Kendra L Congdon
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Luis A Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, United States; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
345
|
Abedalthagafi M, Barakeh D, Foshay KM. Immunogenetics of glioblastoma: the future of personalized patient management. NPJ Precis Oncol 2018; 2:27. [PMID: 30534602 PMCID: PMC6279755 DOI: 10.1038/s41698-018-0070-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
The prognosis of glioblastoma has changed little over the past two decades, with only minor improvements in length of overall survival through the addition of temozolomide (temodal) to standard of care and the recommended use of alternating electric field therapy (optune) to newly diagnosed patients. In an effort to define novel therapeutic targets across molecularly heterogeneous disease subgroups, researchers have begun to uncover the complex interplay between epigenetics, cell signaling, metabolism, and the immunosuppressive tumor microenvironment. Indeed, IDH mutations are now recognized as a defining differential factor not only influencing global hypermethylation and patient prognosis but also degree of immune infiltration within individual tumors. Likewise, next-generation sequencing has defined subgroup-specific transcriptional profiles that correlate with different mechanisms of immune evasion, including increased PD-L1 and CTLA-4 among mesenchymal tumors. Interestingly, sequencing of the T cell repertoire from numerous patient samples suggests that the correlation between mutational burden and enrichment of tumor-specific peptides may be less convincing than originally suspected. While this raises questions over the efficacy of dendritic cell or tumor-lysate vaccines and CAR-T therapies, these avenues continue to be explored. In addition to these active immunotherapies, inhibitors of molecular hubs with wide reaching effects, including STAT3, IDO, and TGF-β, are now in early-phase clinical trials. With the potential to block intrinsic biological properties of tumor growth and invasion while bolstering the immunogenic profile of the tumor microenvironment, these new targets represent a new direction for GBM therapies. In this review, we show the advances in molecular profiling and immunophenotyping of GBM, which may lead to the development of new personalized therapeutic strategies.
Collapse
Affiliation(s)
- Malak Abedalthagafi
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,2Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Duna Barakeh
- 1Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Kara M Foshay
- Inova Neuroscience and Spine Institute, Inova Health Systems, Falls Church, VA USA
| |
Collapse
|
346
|
Harnessing the immune system in glioblastoma. Br J Cancer 2018; 119:1171-1181. [PMID: 30393372 PMCID: PMC6251037 DOI: 10.1038/s41416-018-0258-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Survival is poor and improved treatment options are urgently needed. Although immunotherapies have emerged as effective treatments for a number of cancers, translation of these through to brain tumours is a distinct challenge, particularly due to the blood-brain barrier and the unique immune tumour microenvironment afforded by CNS-specific cells. This review discusses the immune system within the CNS, mechanisms of immune escape employed by glioblastoma, and the immunological effects of conventional glioblastoma treatments. Novel therapies for glioblastoma that harness the immune system and their current clinical progress are outlined, including cancer vaccines, T-cell therapies and immune checkpoint modulators.
Collapse
|
347
|
Buerki RA, Chheda ZS, Okada H. Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clin Cancer Res 2018; 24:5198-5205. [PMID: 29871908 PMCID: PMC6214775 DOI: 10.1158/1078-0432.ccr-17-2769] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/28/2022]
Abstract
The field of cancer immunotherapy has made exciting progress for some cancer types in recent years. However, recent failures of late-phase clinical trials evaluating checkpoint blockade in patients with glioblastoma (GBM) represent continued challenges for brain cancer immunotherapy. This is likely due to multiple factors including but not limited to marked genetic and antigenic heterogeneity, relatively low mutational loads, and paucity of GBM-infiltrating T cells. We review recent and ongoing studies targeting the checkpoint molecules as monotherapy or in combination with other modalities, and discuss the mechanisms underlying the unresponsiveness of GBM to single-modality immunotherapy approaches. We also discuss other novel immunotherapy approaches that may promote T-cell responses and overcome the "cold tumor" status of GBM, including oncolytic viruses and adoptive T-cell therapy. Clin Cancer Res; 24(21); 5198-205. ©2018 AACR.
Collapse
Affiliation(s)
- Robin A Buerki
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Zinal S Chheda
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California.
- The Parker Institute for Cancer Immunotherapy, San Francisco, California
- Cancer Immunotherapy Program, University of California, San Francisco, San Francisco, California
| |
Collapse
|
348
|
RNA-seq for identification of therapeutically targetable determinants of immune activation in human glioblastoma. J Neurooncol 2018; 141:95-102. [PMID: 30353265 DOI: 10.1007/s11060-018-03010-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We sought to determine which therapeutically targetable immune checkpoints, costimulatory signals, and other tumor microenvironment (TME) factors are independently associated with immune cytolytic activity (CYT), a gene expression signature of activated effector T cells, in human glioblastoma (GBM). METHODS GlioVis was accessed for RNA-seq data from The Cancer Genome Atlas (TCGA). For subjects with treatment-naïve, primary GBM, we quantified mRNA expression of 28 therapeutically targetable TME factors. CYT (geometric mean of GZMA and PRF1 expression) was calculated for each tumor. Multiple linear regression was performed to determine the relationship between the dependent variable (CYT) and mRNA expression of each of the 28 factors. Variables associated with CYT in multivariate analysis were subsequently evaluated for this association in an independent cohort of newly diagnosed GBMs from the Chinese Glioma Cooperative Group (CGCG). RESULTS 109 TCGA tumors were analyzed. The final multiple linear regression model included the following variables, each positively associated with CYT except VEGF-A (negative association): CSF-1 (p = 0.003), CD137 (p = 0.042), VEGF-A (p < 0.001), CTLA4 (p = 0.028), CD40 (p = 0.023), GITR (p = 0.020), IL6 (p = 0.02), and OX40 (p < 0.001). In CGCG (n = 52), each of these variables remained significantly associated with CYT in univariate analysis except for VEGF-A. In multivariate analysis, only CTLA4 and CD40 remained statistically significant. CONCLUSIONS Using multivariate modeling of RNA-seq gene expression data, we identified therapeutically targetable TME factors that are independently associated with intratumoral cytolytic T-cell activity in human GBM. As a myriad of systemic immunotherapies are now available for investigation, our results could inform rational combinations for evaluation in GBM.
Collapse
|
349
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
350
|
Optimising Outcomes for Glioblastoma through Subspecialisation in a Regional Cancer Centre. Brain Sci 2018; 8:brainsci8100186. [PMID: 30326653 PMCID: PMC6210056 DOI: 10.3390/brainsci8100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Delivery of highly sophisticated, and subspecialised, management protocols for glioblastoma in low volume rural and regional areas creates potential issues for equivalent quality of care. This study aims to demonstrate the impact on clinical quality indicators through the development of a novel model of care delivering an outsourced subspecialised neuro-oncology service in a regional centre compared with the large volume metropolitan centre. Three hundred and fifty-two patients with glioblastoma were managed under the European Organisation for Research and Treatment of Cancer and National Cancer Institute of Canada Clinical Trials Group (EORTC-NCIC) Protocol, and survival outcome was assessed in relation to potential prognostic factors and the geographical site of treatment, before and after opening of a regional cancer centre. The median overall survival was 17 months (95% CI: 15.5–18.5), with more favourable outcome with age less than 50 years (p < 0.001), near-total resection (p < 0.001), Eastern Cooperative Oncology Group (ECOG) Performance status 0, 1 (p < 0.001), and presence of O-6 methylguanine DNA methyltransferase (MGMT) methylation (p = 0.001). There was no difference in survival outcome for patients managed at the regional centre, compared with metropolitan centre (p = 0.35). Similarly, no difference was seen with clinical quality process indicators of clinical trial involvement, rates of repeat craniotomy, use of bevacizumab and re-irradiation. This model of neuro-oncology subspecialisation allowed equivalent outcomes to be achieved within a regional cancer centre compared to large volume metropolitan centre.
Collapse
|