301
|
Coursol S, Fromentin J, Noirot E, Brière C, Robert F, Morel J, Liang YK, Lherminier J, Simon-Plas F. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells. THE NEW PHYTOLOGIST 2015; 205:1239-1249. [PMID: 25303640 DOI: 10.1111/nph.13094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/06/2014] [Indexed: 06/04/2023]
Abstract
The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells.
Collapse
Affiliation(s)
- Sylvie Coursol
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, F-78026, Versailles, France
| | - Jérôme Fromentin
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Elodie Noirot
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Christian Brière
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, BP 42617, F-31326, Castanet-Tolosan, France
- Laboratoire de Recherche en Sciences Végétales, CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Franck Robert
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Johanne Morel
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jeannine Lherminier
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| | - Françoise Simon-Plas
- INRA, UMR 1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065, Dijon Cedex, France
| |
Collapse
|
302
|
Saucedo-García M, Gavilanes-Ruíz M, Arce-Cervantes O. Long-chain bases, phosphatidic acid, MAPKs, and reactive oxygen species as nodal signal transducers in stress responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:55. [PMID: 25763001 PMCID: PMC4327526 DOI: 10.3389/fpls.2015.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/21/2015] [Indexed: 05/03/2023]
Abstract
Due to their sessile condition, plants have developed sensitive, fast, and effective ways to contend with environmental changes. These mechanisms operate as informational wires conforming extensive and intricate networks that are connected in several points. The responses are designed as pathways orchestrated by molecules that are transducers of protein and non-protein nature. Their chemical nature imposes selective features such as specificity, formation rate, and generation site to the informational routes. Enzymes such as mitogen-activated protein kinases and non-protein, smaller molecules, such as long-chain bases, phosphatidic acid, and reactive oxygen species are recurrent transducers in the pleiotropic responses to biotic and abiotic stresses in plants. In this review, we considered these four components as nodal points of converging signaling pathways that start from very diverse stimuli and evoke very different responses. These pleiotropic effects may be explained by the potentiality that every one of these four mediators can be expressed from different sources, cellular location, temporality, or magnitude. Here, we review recent advances in our understanding of the interplay of these four specific signaling components in Arabidopsis cells, with an emphasis on drought, cold and pathogen stresses.
Collapse
Affiliation(s)
- Mariana Saucedo-García
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
- *Correspondence: Mariana Saucedo-García, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario S/N Km 1, Tulancingo, Hidalgo C.P. 43600, México e-mail:
| | - Marina Gavilanes-Ruíz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Arce-Cervantes
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo, Hidalgo, México
| |
Collapse
|
303
|
Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:369-92. [PMID: 25665132 DOI: 10.1146/annurev-arplant-043014-114707] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.
Collapse
Affiliation(s)
- Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; ,
| | | | | |
Collapse
|
304
|
YOSHIOKA H, ADACHI H, ISHIHAMA N, NAKANO T, SHIRAISHI Y, MIYAGAWA N, NOMURA H, YOSHIOKA M, ASAI S. Molecular mechanisms of ROS burst conferred by protein phosphorylation. ACTA ACUST UNITED AC 2015. [DOI: 10.3186/jjphytopath.81.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- H. YOSHIOKA
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - H. ADACHI
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - T. NAKANO
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Y. SHIRAISHI
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - H. NOMURA
- Gifu Women’s University, Department of Health and Nutrition
| | - M. YOSHIOKA
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | |
Collapse
|
305
|
Zhang Q, Xiao S. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate. FRONTIERS IN PLANT SCIENCE 2015; 6:387. [PMID: 26074946 PMCID: PMC4446532 DOI: 10.3389/fpls.2015.00387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/14/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA) is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA), and phosphatidylinositol 4-phosphate (PI4P), and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS) generation and SA accumulation during defense activation.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandRockville, MD, USA
- *Correspondence: Shunyuan Xiao, Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, USA
| |
Collapse
|
306
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
307
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:463. [PMID: 26157450 PMCID: PMC4477072 DOI: 10.3389/fpls.2015.00463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 05/19/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Li
- *Correspondence: Dayong Li, National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China,
| | | |
Collapse
|
308
|
Jalmi SK, Sinha AK. ROS mediated MAPK signaling in abiotic and biotic stress- striking similarities and differences. FRONTIERS IN PLANT SCIENCE 2015; 6:769. [PMID: 26442079 PMCID: PMC4585162 DOI: 10.3389/fpls.2015.00769] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/07/2015] [Indexed: 05/18/2023]
Abstract
Plants encounter a number of environmental stresses throughout their life cycles, most of which activate mitogen activated protein kinase (MAPK) pathway. The MAPKs show crosstalks at several points but the activation and the final response is known to be specific for particular stimuli that in-turn activates specific set of downstream targets. Interestingly, reactive oxygen species (ROS) is an important and common messenger produced in various environmental stresses and is known to activate many of the MAPKs. ROS activates a similar MAPK in different environmental stimuli, showing different downstream targets with different and specific responses. In animals and yeast, the mechanism behind the specific activation of MAPK by different concentration and species of ROS is elaborated, but in plants this aspect is still unclear. This review mainly focuses on the aspect of specificity of ROS mediated MAPK activation. Attempts have been made to review the involvement of ROS in abiotic stress mediated MAPK signaling and how it differentiates with that of biotic stress.
Collapse
Affiliation(s)
| | - Alok K. Sinha
- *Correspondence: Alok K. Sinha, National Institute of Plant Genome Research, Staff Scientist VI, Aruna Asaf Ali Marg, New Delhi 110067, India,
| |
Collapse
|
309
|
Niu Y, Chai R, Liu L, Jin G, Liu M, Tang C, Zhang Y. Magnesium availability regulates the development of root hairs in Arabidopsis thaliana (L.) Heynh. PLANT, CELL & ENVIRONMENT 2014; 37:2795-813. [PMID: 24851702 DOI: 10.1111/pce.12362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 05/06/2023]
Abstract
Root hairs are reported to be plastic in response to nutrient supply, but relatively little is known about their development in response to magnesium (Mg) availability. Here, we showed that development of root hairs of Arabidopsis decreased progressively with increasing Mg supply, which was related to the initiation of new trichoblast files and likelihood of trichoblasts to form hairs. Tip-focused reactive oxygen species (ROS) and cytosolic Ca(2+) concentrations [(Ca(2+) )c] during elongation of root hairs were enhanced under low Mg but decreased under high Mg. Under low Mg, application of diphenylene iodonium (DPI) or BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] blocked the enhanced development of root hairs and the opposite was true when the plants under high Mg were treated with phenazine methosulphate (PMS), methyl viologen (MV) or CaCl2 . Furthermore, Mg availability did not alter root hair growth in rhd2-1 mutant that contains lower levels of ROS and cytosolic [Ca(2+) ]c. Transcriptome data and qPCR results revealed a greater fraction of morphogenetic H-genes, and cell wall organization genes were up-regulated by low Mg but down-regulated by high Mg. Our data suggest a profound effect of Mg supply on the development of root hairs in Arabidopsis, through the characterized Ca(2+) and ROS signals that modulate the elongation of root hairs and the expression of root-hair morphogenetic genes.
Collapse
Affiliation(s)
- Yaofang Niu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | |
Collapse
|
310
|
Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide 2014; 43:89-96. [DOI: 10.1016/j.niox.2014.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/20/2022]
|
311
|
Li H, Liu SS, Yi CY, Wang F, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. PLANT, CELL & ENVIRONMENT 2014; 37:2768-80. [PMID: 24773056 DOI: 10.1111/pce.12360] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 05/03/2023]
Abstract
Root-shoot communications play important roles in plant stress responses. Here, we examined the roles of root-sourced signals in the shoot response to heat in cucumber plants. Cucumber plants grafted onto their own roots and luffa roots were exposed to aerial and root-zone heat to examine their tolerance by assessing the levels of oxidative stress, PSII photoinhibition, accumulation of abscisic acid (ABA), H2 O2 and heat shock protein (HSP) 70 using immunoblotting, chlorophyll fluorescence, immunoassay, CeCl3 staining and Western blotting, respectively. Grafting onto the luffa rootstock enhanced the shoot tolerance to the heat. This enhanced tolerance was associated with increased accumulation of ABA and apoplastic H2 O2 , RBOH transcripts and HSP70 expression and a decrease in oxidative stress in the shoots. The increases in the ABA and H2 O2 concentrations in the shoots were attributed to an increase in ABA transport from roots and an increase in ABA biosynthesis in the shoots when the root-zone and shoots were heat stressed, respectively. Inhibition of H2 O2 accumulation compromised luffa rootstock-induced HSP70 expression and heat tolerance. These results suggest that, under heat stress, ABA triggers the expression of HSP70 in an apoplastic H2 O2 -dependent manner, implicating the role of an ABA-dependent H2 O2 -driven mechanism in a systemic response involving root-shoot communication.
Collapse
Affiliation(s)
- Hao Li
- Department of Horticulture, Zijinggang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Chen Y, Mo HZ, Hu LB, Li YQ, Chen J, Yang LF. The endogenous nitric oxide mediates selenium-induced phytotoxicity by promoting ROS generation in Brassica rapa. PLoS One 2014; 9:e110901. [PMID: 25333984 PMCID: PMC4204988 DOI: 10.1371/journal.pone.0110901] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/24/2014] [Indexed: 11/18/2022] Open
Abstract
Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.
Collapse
Affiliation(s)
- Yi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hai-Zhen Mo
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China
| | - Liang-Bin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan Province, China
| | - You-Qin Li
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (JC); (L-FY)
| | - Li-Fei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JC); (L-FY)
| |
Collapse
|
313
|
Guan Y, Lin H, Ma L, Yang Y, Hu X. Nitric oxide and hydrogen peroxide are important signals mediating the allelopathic response of Arabidopsis to p-hydroxybenzoic acid. PHYSIOLOGIA PLANTARUM 2014; 152:275-85. [PMID: 24502504 DOI: 10.1111/ppl.12164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/03/2013] [Accepted: 01/11/2014] [Indexed: 05/24/2023]
Abstract
Both nitric oxide (NO) and hydrogen peroxide (H2 O2 ) are important signals that mediate plant response to environmental stimulation. Their role in plants' allelopathic interactions has also been reported, but the underlying mechanism remains little understood. p-Hydroxybenzoic acid (pHBA) has been proposed to be an allelopathic chemical. Here, we found that pHBA at 0.4 mM efficiently suppressed Arabidopsis growth. Meanwhile, pHBA rapidly induced the accumulation of NO and H2 O2 , where such effect could be reversed by NO or H2 O2 metabolism inhibitors or scavengers. Also, pHBA-induced NO and H2 O2 could be compromised in NO synthesis mutants noa1, nia1 and nia2, or H2 O2 metabolism mutant rbohD/F, but suppressing NO accumulation with a NO synthesis inhibitor or using NO synthesis-related mutants did not reduce pHBA-induced H2 O2 accumulation. Furthermore, we found that the effect of pHBA on allelopathic inhibition of growth was aggravated in NO/H2 O2 metabolism-related mutants or reducing NO/H2 O2 by different inhibitors, whereas the addition of an NO/H2 O2 donor could partly relieve the inhibitory effect of pHBA on the growth of wild type. However, adding only an NO donor, but not low concentration of H2 O2 as the donor, could relieve the inhibitory effect of pHBA on root growth in NO metabolism mutants. On the basis of these results, we propose that both NO and H2 O2 are important signals that mediate Arabidopsis response to the allelopathic chemical pHBA, where during this process H2 O2 may work upstream of the NO signal.
Collapse
Affiliation(s)
- Yanlong Guan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Plant Germplasm and Genomics Center, the Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
314
|
Han C, He D, Li M, Yang P. In-Depth Proteomic Analysis of Rice Embryo Reveals its Important Roles in Seed Germination. ACTA ACUST UNITED AC 2014; 55:1826-47. [DOI: 10.1093/pcp/pcu114] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
315
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
316
|
Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD. N-Acylethanolamines: lipid metabolites with functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:568-583. [PMID: 24397856 DOI: 10.1111/tpj.12427] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Twenty years ago, N-acylethanolamines (NAEs) were considered by many lipid chemists to be biological 'artifacts' of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N-arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross-kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | | | | | | | | |
Collapse
|
317
|
Qu Y, An Z, Zhuang B, Jing W, Zhang Q, Zhang W. Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. JOURNAL OF PLANT RESEARCH 2014; 127:533-544. [PMID: 24817219 DOI: 10.1007/s10265-014-0633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Recent evidence has demonstrated that both copper amine oxidase (CuAO; EC 1.4.3.6) and phospholipase D (PLD; EC 3.1.4.4) are involved in abscisic acid (ABA)-induced stomatal closure. In this study, we investigated the interaction between CuAO and PLD in the ABA response. Pretreatment with either CuAO or PLD inhibitors alone or that with both additively led to impairment of ABA-induced H2O2 production and stomatal closure in Vicia faba. ABA-stimulated PLD activation could not be inhibited by the CuAO inhibitor, and CuAO activity was not affected by the PLD inhibitor. These data suggest that CuAO and PLD act independently in the ABA response. To further examine PLD and CuAO activities in ABA responses, we used the Arabidopsis mutants cuaoζ and pldα1. Ablation of guard cell-expressed CuAOζ or PLDα1 gene retarded ABA-induced H2O2 generation and stomatal closure. As a product of PLD, phosphatidic acid (PA) substantially enhanced H2O2 production and stomatal closure in wide type, pldα1, and cuaoζ. Moreover, putrescine (Put), a substrate of CuAO as well as an activator of PLD, induced H2O2 production and stomatal closure in WT but not in both mutants. These results suggest that CuAO and PLD act independently in ABA-induced stomatal closure.
Collapse
Affiliation(s)
- Yana Qu
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
318
|
Michal Johnson J, Reichelt M, Vadassery J, Gershenzon J, Oelmüller R. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC PLANT BIOLOGY 2014; 14:162. [PMID: 24920452 PMCID: PMC4074868 DOI: 10.1186/1471-2229-14-162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/29/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ca2+, a versatile intracellular second messenger in various signaling pathways, initiates many responses involved in growth, defense and tolerance to biotic and abiotic stress. Endogenous and exogenous signals induce cytoplasmic Ca2+ ([Ca2+]cyt) elevation, which are responsible for the appropriate downstream responses. RESULTS Here we report on an ethyl-methane sulfonate-mediated Arabidopsis mutant that fails to induce [Ca2+]cyt elevation in response to exudate preparations from the pathogenic mibrobes Alternaria brassicae, Rhizoctonia solani, Phytophthora parasitica var. nicotianae and Agrobacterium tumefaciens. The cytoplasmic Ca2+elevation mutant1 (cycam1) is susceptible to infections by A. brassicae, its toxin preparation and sensitive to abiotic stress such as drought and salt. It accumulates high levels of reactive oxygen species and contains elevated salicylic acid, abscisic acid and bioactive jasmonic acid iso-leucine levels. Reactive oxygen species- and phytohormone-related genes are higher in A. brassicae-treated wild-type and mutant seedlings. Depending on the analysed response, the elevated levels of defense-related compounds are either caused by the cycam mutation and are promoted by the pathogen, or they are mainly due to the pathogen infection or application of pathogen-associated molecular patterns. Furthermore, cycam1 shows altered responses to abscisic acid treatments: the hormone inhibits germination and growth of the mutant. CONCLUSIONS We isolated an Arabidopsis mutant which fails to induce [Ca2+]cyt elevation in response to exudate preparations from various microbes. The higher susceptibility of the mutant to pathogen infections correlates with the higher accumulation of defense-related compounds, such as phytohormones, reactive oxygen-species, defense-related mRNA levels and secondary metabolites. Therefore, CYCAM1 couples [Ca2+]cyt elevation to biotic, abiotic and oxidative stress responses.
Collapse
Affiliation(s)
- Joy Michal Johnson
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jyothilakshmi Vadassery
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
319
|
Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:759-773. [PMID: 24733882 PMCID: PMC4044830 DOI: 10.1104/pp.114.237925] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 05/20/2023]
Abstract
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
320
|
Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One 2014; 9:e98150. [PMID: 24845602 PMCID: PMC4028302 DOI: 10.1371/journal.pone.0098150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14) in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid (JA) and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
321
|
Xie HT, Wan ZY, Li S, Zhang Y. Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in Arabidopsis. THE PLANT CELL 2014; 26:2007-2023. [PMID: 24808050 PMCID: PMC4079365 DOI: 10.1105/tpc.114.125427] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 05/17/2023]
Abstract
Male sterility in angiosperms has wide applications in agriculture, particularly in hybrid crop breeding and gene flow control. Microspores develop adjacent to the tapetum, a layer of cells that provides nutrients for pollen development and materials for pollen wall formation. Proper pollen development requires programmed cell death (PCD) of the tapetum, which requires transcriptional cascades and proteolytic enzymes. Reactive oxygen species (ROS) also affect tapetal PCD, and failures in ROS scavenging cause male sterility. However, many aspects of tapetal PCD remain unclear, including what sources generate ROS, whether ROS production has a temporal pattern, and how the ROS-producing system interacts with the tapetal transcriptional network. We report here that stage-specific expression of NADPH oxidases in the Arabidopsis thaliana tapetum contributes to a temporal peak of ROS production. Genetic interference with the temporal ROS pattern, by manipulating RESPIRATORY-BURST OXIDASE HOMOLOG (RBOH) genes, affected the timing of tapetal PCD and resulted in aborted male gametophytes. We further show that the tapetal transcriptional network regulates RBOH expression, indicating that the temporal pattern of ROS production intimately connects to other signaling pathways regulated by the tapetal transcriptional network to ensure the proper timing of tapetal PCD.
Collapse
Affiliation(s)
- Hong-Tao Xie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi-Yuan Wan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
322
|
Tonoplast Lipid Composition and Proton Pump of Pineapple Fruit During Low-Temperature Storage and Blackheart Development. J Membr Biol 2014; 247:429-39. [DOI: 10.1007/s00232-014-9650-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/06/2014] [Indexed: 12/19/2022]
|
323
|
Gorecka M, Alvarez-Fernandez R, Slattery K, McAusland L, Davey PA, Karpinski S, Lawson T, Mullineaux PM. Abscisic acid signalling determines susceptibility of bundle sheath cells to photoinhibition in high light-exposed Arabidopsis leaves. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130234. [PMID: 24591719 DOI: 10.1098/rstb.2013.0234] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rapid induction of the bundle sheath cell (BSC)-specific expression of ASCORBATE PEROXIDASE2 (APX2) in high light (HL)-exposed leaves of Arabidopsis thaliana is, in part, regulated by the hormone abscisic acid (ABA) produced by vascular parenchyma cells. In this study, we provide more details of the ABA signalling that regulates APX2 expression and consider its importance in the photosynthetic responses of BSCs and whole leaves. This was done using a combination of analyses of gene expression and chlorophyll a fluorescence of both leaves and individual BSCs and mesophyll cells. The regulation of APX2 expression occurs by the combination of the protein kinase SnRK2.6 (OST1):protein phosphatase 2C ABI2 and a Gα (GPA1)-regulated signalling pathway. The use of an ost1-1/gpa1-4 mutant established that these signalling pathways are distinct but interact to regulate APX2. In HL-exposed leaves, BSC chloroplasts were more susceptible to photoinhibition than those of mesophyll cells. The activity of the ABA-signalling network determined the degree of susceptibility of BSCs to photoinhibition by influencing non-photochemical quenching. By contrast, in HL-exposed whole leaves, ABA signalling did not have any major influence on their transcriptomes nor on their susceptibility to photoinhibition, except where guard cell responses were observed.
Collapse
Affiliation(s)
- Magdalena Gorecka
- Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences, , Nowoursynowska Street 159, Warszawa 02-776, Poland
| | | | | | | | | | | | | | | |
Collapse
|
324
|
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1229-40. [PMID: 24253197 DOI: 10.1093/jxb/ert375] [Citation(s) in RCA: 1009] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) play an integral role as signalling molecules in the regulation of numerous biological processes such as growth, development, and responses to biotic and/or abiotic stimuli in plants. To some extent, various functions of ROS signalling are attributed to differences in the regulatory mechanisms of respiratory burst oxidase homologues (RBOHs) that are involved in a multitude of different signal transduction pathways activated in assorted tissue and cell types under fluctuating environmental conditions. Recent findings revealed that stress responses in plants are mediated by a temporal-spatial coordination between ROS and other signals that rely on production of stress-specific chemicals, compounds, and hormones. In this review we will provide an update of recent findings related to the integration of ROS signals with an array of signalling pathways aimed at regulating different responses in plants. In particular, we will address signals that confer systemic acquired resistance (SAR) or systemic acquired acclimation (SAA) in plants.
Collapse
Affiliation(s)
- Aaron Baxter
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | | | | |
Collapse
|
325
|
Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q. Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. PLANTA 2014; 239:565-75. [PMID: 24271006 DOI: 10.1007/s00425-013-1999-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/11/2013] [Indexed: 05/20/2023]
Abstract
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca(2+) ([Ca(2+)]cyt) elevation was partially blocked, and exogenous Ca(2+)-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca(2+) increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca(2+), and microtubules are essential for ABA signaling.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
326
|
Kaur G, Sharma A, Guruprasad K, Pati PK. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 2014; 32:551-63. [PMID: 24561450 DOI: 10.1016/j.biotechadv.2014.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 02/01/2023]
Abstract
NADPH oxidase (NOX) is a key player in the network of reactive oxygen species (ROS) producing enzymes. It catalyzes the production of superoxide (O2(-)), that in turn regulates a wide range of biological functions in a broad range of organisms. Plant Noxes are known as respiratory burst oxidase homologs (Rbohs) and are homologs of catalytic subunit of mammalian phagocyte gp91(phox). They are unique among other ROS producing mechanisms in plants as they integrate different signal transduction pathways in plants. In recent years, there has been addition of knowledge on various aspects related to its structure, regulatory components and associated mechanisms, and its plethora of biological functions. This update highlights some of the recent developments in the field with particular reference to important members of the plant kingdom.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Ashutosh Sharma
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Kunchur Guruprasad
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, Andhra Pradesh, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| |
Collapse
|
327
|
Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. J Bioenerg Biomembr 2014; 46:59-69. [PMID: 24390546 DOI: 10.1007/s10863-013-9538-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022]
Abstract
Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.
Collapse
|
328
|
Phospholipase Ds in Plant Response to Hyperosmotic Stresses. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
329
|
Livanos P, Galatis B, Apostolakos P. The interplay between ROS and tubulin cytoskeleton in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28069. [PMID: 24521945 PMCID: PMC4091245 DOI: 10.4161/psb.28069] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants have to deal with reactive oxygen species (ROS) production, since it could potentially cause severe damages to different cellular components. On the other hand, ROS functioning as important second messengers are implicated in various developmental processes and are transiently produced during biotic or abiotic stresses. Furthermore, the microtubules (MTs) play a primary role in plant development and appear as potent players in sensing stressful situations and in the subsequent cellular responses. Emerging evidence suggests that ROS affect MTs in multiple ways. The cellular redox status seems to be tightly coupled with MTs. ROS signals regulate the organization of tubulin cytoskeleton and induce tubulin modifications. This review aims at summarizing the signaling mechanisms and the key operators orchestrating the crosstalk between ROS and tubulin cytoskeleton in plant cells. The contribution of several molecules, including microtubule associated proteins, oxidases, kinases, phospholipases, and transcription factors, is highlighted.
Collapse
|
330
|
Wang X, Su Y, Liu Y, Kim SC, Fanella B. Phosphatidic Acid as Lipid Messenger and Growth Regulators in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
331
|
|
332
|
Gonorazky G, Distéfano AM, García-Mata C, Lamattina L, Laxalt AM. Phospholipases in Nitric Oxide-Mediated Plant Signaling. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
333
|
Lin F, Qu Y, Zhang Q. Phospholipids: molecules regulating cytoskeletal organization in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2014; 9:e28337. [PMID: 24589893 PMCID: PMC4091320 DOI: 10.4161/psb.28337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/23/2014] [Accepted: 02/24/2014] [Indexed: 05/08/2023]
Abstract
Cytoskeleton serves as structural, membrane-bound and highly nonlinear dynamics element that basically functions in abiotic and biotic stresses. The study of phospholipid-regulated cytoskeletal organization to strengthen plants against stresses is emerging. Phospholipids in lipid bilayers, as the main compound of cellular membranes, have roles in modulation of membrane curvature and anchoring, cross-linking or regulating particular cytoskeletal proteins to modulate cytoskeletal dynamics. In this review, we highlight the role of phospholipids and their metabolic enzymes through regulating cytoskeletal organization and dynamics in response to abiotic stresses, such as salt, drought and low/high temperature stresses.
Collapse
Affiliation(s)
- Feng Lin
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| | - Yana Qu
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| | - Qun Zhang
- College of Life Sciences; State Key Laboratory of Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; Nanjing, PR China
| |
Collapse
|
334
|
McLoughlin F, Testerink C. Phosphatidic acid, a versatile water-stress signal in roots. FRONTIERS IN PLANT SCIENCE 2013; 4:525. [PMID: 24391659 PMCID: PMC3870300 DOI: 10.3389/fpls.2013.00525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases, and phosphatases, Ca(2) (+), reactive oxygen species, and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA) is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 and mitogen activated protein kinases were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting toward additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.
Collapse
Affiliation(s)
| | - Christa Testerink
- *Correspondence: Christa Testerink, Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090GE Amsterdam, Netherlands e-mail:
| |
Collapse
|
335
|
Abstract
Phosphatidic acid (PA) is recognized as an important class of lipid messengers. The cellular PA levels are dynamic; PA is produced and metabolized by several enzymatic reactions, including different phospholipases, lipid kinases, and phosphatases. PA interacts with various proteins and the interactions may modulate enzyme catalytic activities and/or tether proteins to membranes. The PA-protein interactions are impacted by changes in cellular pH and other effectors, such as cations. PA is involved in a wide range of cellular processes, including vesicular trafficking, cytoskeletal organization, secretion, cell proliferation, and survival. Manipulations of different PA production reactions alter cellular and organismal response to a wide range of abiotic and biotic stresses. Further investigations of PA's function and mechanisms of action will advance not only the understanding of cell signaling networks but also may lead to biotechnological and pharmacological applications.
Collapse
|
336
|
Gayatri G, Agurla S, Raghavendra AS. Nitric oxide in guard cells as an important secondary messenger during stomatal closure. FRONTIERS IN PLANT SCIENCE 2013; 4:425. [PMID: 24194741 PMCID: PMC3810675 DOI: 10.3389/fpls.2013.00425] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/08/2013] [Indexed: 05/19/2023]
Abstract
The modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO) in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA) triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g., chitosan) induces production of NO as well as reactive oxygen species (ROS). The role of NO in stomatal closure has been confirmed by using NO donors (e.g., SNP) and NO scavengers (like cPTIO) and inhibitors of NOS (L-NAME) or NR (tungstate). Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS)-like enzyme and a tungstate-sensitive nitrate reductase (NR), can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca(2+), and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca(2+) and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signaling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca(2+) are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.
Collapse
Affiliation(s)
| | | | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| |
Collapse
|
337
|
Nakano M, Nishihara M, Yoshioka H, Takahashi H, Sawasaki T, Ohnishi K, Hikichi Y, Kiba A. Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PLoS One 2013; 8:e75124. [PMID: 24073238 PMCID: PMC3779229 DOI: 10.1371/journal.pone.0075124] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/10/2013] [Indexed: 12/21/2022] Open
Abstract
Nicotianabenthamiana is susceptible to Ralstonia solanacearum. To analyze molecular mechanisms for disease susceptibility, we screened a gene-silenced plant showing resistance to R. solanacearum, designated as DS1 (Disease suppression 1). The deduced amino acid sequence of DS1 cDNA encoded a phosphatidic acid phosphatase (PAP) 2. DS1 expression was induced by infection with a virulent strain of R. solanacearum in an hrp-gene-dependent manner. DS1 rescued growth defects of the temperature-sensitive ∆lpp1∆dpp1∆pah1 mutant yeast. Recombinant DS1 protein showed Mg(2+)-independent PAP activity. DS1 plants showed reduced PAP activity and increased phosphatidic acid (PA) content. After inoculation with R. solanacearum, DS1 plants showed accelerated cell death, over-accumulation of reactive oxygen species (ROS), and hyper-induction of PR-4 expression. In contrast, DS1-overexpressing tobacco plants showed reduced PA content, greater susceptibility to R. solanacearum, and reduced ROS production and PR-4 expression. The DS1 phenotype was partially compromised in the plants in which both DS1 and NbCoi1 or DS1 and NbrbohB were silenced. These results show that DS1 PAP may affect plant immune responses related to ROS and JA cascades via regulation of PA levels. Suppression of DS1 function or DS1 expression could rapidly activate plant defenses to achieve effective resistance against Ralstonia solanacearum.
Collapse
Affiliation(s)
- Masahito Nakano
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | | | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Hirotaka Takahashi
- Division of Proteomedical Sciences, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - Tatsuya Sawasaki
- Division of Proteomedical Sciences, Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
338
|
Guillas I, Puyaubert J, Baudouin E. Nitric oxide-sphingolipid interplays in plant signalling: a new enigma from the Sphinx? FRONTIERS IN PLANT SCIENCE 2013; 4:341. [PMID: 24062754 PMCID: PMC3770979 DOI: 10.3389/fpls.2013.00341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/13/2013] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) emerged as one of the major signaling molecules operating during plant development and plant responses to its environment. Beyond the identification of the direct molecular targets of NO, a series of studies considered its interplay with other actors of signal transduction and the integration of NO into complex signaling networks. Beside the close relationships between NO and calcium or phosphatidic acid signaling pathways that are now well-established, recent reports paved the way for interplays between NO and sphingolipids (SLs). This mini-review summarizes our current knowledge of the influence NO and SLs might exert on each other in plant physiology. Based on comparisons with examples from the animal field, it further indicates that, although SL-NO interplays are common features in signaling networks of eukaryotic cells, the underlying mechanisms and molecular targets significantly differ.
Collapse
Affiliation(s)
- Isabelle Guillas
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
| | - Juliette Puyaubert
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
| | - Emmanuel Baudouin
- UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6Paris, France
- EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche ScientifiqueParis, France
- *Correspondence: Emmanuel Baudouin, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Université Pierre et Marie Curie - Paris 6, Bâtiment C/3 Boîte courrier 156, 4 place Jussieu, F-75252 Paris Cédex 05, France; EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Centre National de la Recherche Scientifique, Bâtiment C/3 Boîte courrier 156, 4 place Jussieu, F-75252 Paris Cédex 05, France e-mail:
| |
Collapse
|
339
|
Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP. An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. THE PLANT CELL 2013; 25:3535-52. [PMID: 24064768 PMCID: PMC3809548 DOI: 10.1105/tpc.113.115659] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ethylene overproducer1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ethylene resistant1-constitutive triple response1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of respiratory burst oxidase homolog F (RBOHF)-dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated high-affinity K(+) TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation.
Collapse
Affiliation(s)
- Caifu Jiang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Eric J. Belfield
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Yi Cao
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - J. Andrew C. Smith
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Nicholas P. Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
340
|
Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. THE NEW PHYTOLOGIST 2013; 199:228-240. [PMID: 23577648 PMCID: PMC4066384 DOI: 10.1111/nph.12256] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/22/2013] [Indexed: 05/18/2023]
Abstract
Pathogen infection of higher plants often induces rapid production of phosphatidic acid (PA) and changes in lipid profiles, but the enzymatic basis and the function of the lipid change in pathogen-plant interactions are not well understood. Infection of phospholipase D β1 (PLDβ1)-deficient plants by Pseudomonas syringae tomato pv DC3000 (Pst DC30000) resulted in less bacterial growth than in wild-type plants, and the effect was more profound in virulent Pst DC3000 than avirulent Pst DC3000 (carrying the avirulence gene avrRpt2) infection. The expression levels of salicylic acid (SA)-inducible genes were higher, but those inducible by jasmonic acid (JA) showed lower expression in PLDβ1 mutants than in wild-type plants. However, PLDβ1-deficient plants were more susceptible than wild-type plants to the fungus Botrytis cinerea. The PLDβ1-deficient plants had lower levels of PA, JA and JA-related defense gene expression after B. cinerea inoculation. PLDβ1 plays a positive role in pathogen-induced JA production and plant resistance to the necrotrophic fungal pathogen B. cinerea, but a negative role in the SA-dependent signaling pathway and plant tolerance to infection with biotrophic Pst DC3000. PLDβ1 is responsible for most of the increase in PA production in response to necrotrophic B. cinerea and virulent Pst DC3000 infection, but contributes less to avirulent Pst DC3000 (avrRpt2)-induced PA production.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Cunxi Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
| | - Maoyin Li
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS, 66506 USA
| | - Xuemin Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
341
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
342
|
Janda M, Planchais S, Djafi N, Martinec J, Burketova L, Valentova O, Zachowski A, Ruelland E. Phosphoglycerolipids are master players in plant hormone signal transduction. PLANT CELL REPORTS 2013; 32:839-51. [PMID: 23471417 DOI: 10.1007/s00299-013-1399-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 05/18/2023]
Abstract
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
Collapse
Affiliation(s)
- Martin Janda
- Institute of Experimental Botany, Academy of Sciences of Czech Republic, 160 000 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Zhao X, Li YY, Xiao HL, Xu CS, Zhang X. Nitric oxide blocks blue light-induced K+ influx by elevating the cytosolic Ca2+ concentration in Vicia faba L. guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:527-36. [PMID: 23384172 DOI: 10.1111/jipb.12038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/27/2013] [Indexed: 05/18/2023]
Abstract
Ca(2+) plays a pivotal role in nitric oxide (NO)-promoted stomatal closure. However, the function of Ca(2+) in NO inhibition of blue light (BL)-induced stomatal opening remains largely unknown. Here, we analyzed the role of Ca(2+) in the crosstalk between BL and NO signaling in Vicia faba L. guard cells. Extracellular Ca(2+) modulated the BL-induced stomatal opening in a dose-dependent manner, and an application of 5 μM Ca(2+) in the pipette solution significantly inhibited BL-activated K(+) influx. Sodium nitroprusside (SNP), a NO donor, showed little effect on BL-induced K(+) influx and stomatal opening response in the absence of extracellular Ca(2+), but K(+) influx and stomatal opening were inhibited by SNP when Ca(2+) was added to the bath solution. Interestingly, although both SNP and BL could activate the plasma membrane Ca(2+) channels and induce the rise of cytosolic Ca(2+), the change in levels of Ca(2+) channel activity and cytosolic Ca(2+) concentration were different between SNP and BL treatments. SNP at 100 μM obviously activated the plasma membrane Ca(2+) channels and induced cytosolic Ca(2+) rise by 102.4%. In contrast, a BL pulse (100 μmol/m(2) per s for 30 s) slightly activated the Ca(2+) channels and resulted in a Ca(2+) rise of only 20.8%. Consistently, cytosolic Ca(2+) promoted K(+) influx at 0.5 μM or below, and significantly inhibited K(+) influx at 5 μM or above. Taken together, our findings indicate that Ca(2+) plays dual and distinctive roles in the crosstalk between BL and NO signaling in guard cells, mediating both the BL-induced K(+) influx as an activator at a lower concentration and the NO-blocked K(+) influx as an inhibitor at a higher concentration.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | | | | | | | | |
Collapse
|
344
|
Torres MA, Morales J, Sánchez-Rodríguez C, Molina A, Dangl JL. Functional interplay between Arabidopsis NADPH oxidases and heterotrimeric G protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:686-94. [PMID: 23441575 DOI: 10.1094/mpmi-10-12-0236-r] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant NADPH oxidases produce reactive oxygen species (ROS) in response to pathogens that have diverse functions in different cellular contexts. Distinct phenotypic outcomes may derive from the interaction of NADPH oxidase-dependent ROS with other signaling components that mediate defense activation. We analyze the interaction between NADPH oxidases AtRbohD and AtRbohF and the Arabidopsis heterotrimeric G protein. The Gβ subunit (AGB1) of the heterotrimeric G protein is required for full disease resistance to different Pseudomonas syringae strains. Genetic studies reveal that, upon P. syringae infection, AGB1 and AtRbohD and AtRbohF can function in the same pathway, as the agb1 null allele is epistatic to the NADPH oxidase null alleles, combinatorial mutants display the agb1 phenotypes, and agb1 suppresses some of the atrbohD atrbohF double mutant phenotypes. In contrast, increased susceptibility to the necrotrophic fungus Plectosphaerella cucumerina displayed by agb1 and atrbohD atrbohF is enhanced in the agb1 atrbohD atrbohF triple mutant, suggesting that NADPH oxidase and heterotrimeric G proteins mediate different response pathways in response to this necrotrophic pathogen. The defense response mediated by AGB1 is independent of pathogen-dependent salicylic acid accumulation and signaling, as the agb1 sid2 (isochorismate synthase 2) double mutant showed enhanced disease susceptibility to P. syringae and Plectosphaerella cucumerina as compared with both single mutants. This study exemplifies the complex interplay between signaling events mediating defense activation, depending on the type of plant-pathogen interaction.
Collapse
|
345
|
Kalachova T, Iakovenko O, Kretinin S, Kravets V. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:127-33. [PMID: 23500715 DOI: 10.1016/j.plaphy.2013.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/07/2013] [Indexed: 05/08/2023]
Abstract
Salicylic acid is associated with the primary defense responses to biotic stress and formation of systemic acquired resistance. However, molecular mechanisms of early cell reactions to phytohormone application are currently undisclosed. The present study investigates the participation of phospholipase D and NADPH-oxidase in salicylic acid signal transduction cascade. The activation of lipid signaling enzymes within 15 min of salicylic acid application was shown in Arabidopsis thaliana plants by measuring the phosphatidic acid accumulation. Adding of primary alcohol (1-butanol) to the incubation medium led to phosphatidylbutanol accumulation as a result of phospholipase D (PLD) action in wild-type and NADPH-oxidase RbohD deficient plants. Salicylic acid induced rapid increase in NADPH-oxidase activity in histochemical assay with nitroblue tetrazolium but the reaction was not observed in presence of 1-butanol and NADPH-oxidase inhibitor diphenylene iodide (DPI). The further physiological effect of salicylic acid and inhibitory analysis of the signaling cascade were made in the guard cell model. Stomatal closure induced by salicylic acid was inhibited by 1-butanol and DPI treatment. rbohD transgenic plants showed impaired stomatal reaction upon phytohormone effect, while the reaction to H2O2 did not differ from that of wild-type plants. Thus a key role of NADPH-oxidase D-isoform in the process of stomatal closure in response to salicylic acid has been postulated. It has enabled to predict a cascade implication of PLD and NADPH oxidase to salicylic acid signaling pathway.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Kyiv 02094, Ukraine.
| | | | | | | |
Collapse
|
346
|
Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM. Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci 2013; 14:9440-58. [PMID: 23629674 PMCID: PMC3676792 DOI: 10.3390/ijms14059440] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/04/2013] [Accepted: 04/17/2013] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane NADPH oxidases (Noxs) are key producers of reactive oxygen species under both normal and stress conditions in plants. We demonstrate that at least eleven genes in the genome of rice (Oryza sativa L.) were predicted to encode Nox proteins, including nine genes (OsNox1–9) that encode typical Noxs and two that encode ancient Nox forms (ferric reduction oxidase 1 and 7, OsFRO1 and OsFRO7). Phylogenetic analysis divided the Noxs from nine plant species into six subfamilies, with rice Nox genes distributed among subfamilies I to V. Gene expression analysis using semi-quantitative RT-PCR and real-time qRT-PCR indicated that the expression of rice Nox genes depends on organs and environmental conditions. Exogenous calcium strongly stimulated the expression of OsNox3, OsNox5, OsNox7, and OsNox8, but depressed the expression of OsFRO1. Drought stress substantially upregulated the expression of OsNox1–3, OsNox5, OsNox9, and OsFRO1, but downregulated OsNox6. High temperature upregulated OsNox5–9, but significantly downregulated OsNox1–3 and OsFRO1. NaCl treatment increased the expression of OsNox2, OsNox8, OsFRO1, and OsFRO7, but decreased that of OsNox1, OsNox3, OsNox5, and OsNox6. These results suggest that the expression profiles of rice Nox genes have unique stress-response characteristics, reflecting their related but distinct functions in response to different environmental stresses.
Collapse
Affiliation(s)
- Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (G.-F.W.); (W.-Q.L.); (W.-Y.L.)
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (G.-F.W.); (W.-Q.L.); (W.-Y.L.)
| | - Wen-Yan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (G.-F.W.); (W.-Q.L.); (W.-Y.L.)
| | - Guo-Li Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; E-Mails: (G.-L.W.); (C.-Y.Z.)
| | - Cong-Yi Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; E-Mails: (G.-L.W.); (C.-Y.Z.)
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (G.-F.W.); (W.-Q.L.); (W.-Y.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-29-8708-1178; Fax: +86-29-8709-2262
| |
Collapse
|
347
|
Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem J 2013; 450:573-81. [PMID: 23323832 DOI: 10.1042/bj20121639] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PA (phosphatidic acid) is a lipid second messenger involved in an array of processes occurring during a plant's life cycle. These include development, metabolism, and both biotic and abiotic stress responses. PA levels increase in response to salt, but little is known about its function in the earliest responses to salt stress. In the present study we have combined an approach to isolate peripheral membrane proteins of Arabidopsis thaliana roots with lipid-affinity purification, to identify putative proteins that interact with PA and are recruited to the membrane in response to salt stress. Of the 42 putative PA-binding proteins identified by MS, a set of eight new candidate PA-binding proteins accumulated at the membrane fraction after 7 min of salt stress. Among these were CHC (clathrin heavy chain) isoforms, ANTH (AP180 N-terminal homology) domain clathrin-assembly proteins, a putative regulator of potassium transport, two ribosomal proteins, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and a PI (phosphatidylinositol) 4-kinase. PA binding and salt-induced membrane recruitment of GAPDH and CHC were confirmed by Western blot analysis of the cellular fractions. In conclusion, the approach of the present study is an effective way to isolate biologically relevant lipid-binding proteins and provides new leads in the study of PA-mediated salt-stress responses in roots.
Collapse
|
348
|
Lu S, Bahn SC, Qu G, Qin H, Hong Y, Xu Q, Zhou Y, Hong Y, Wang X. Increased expression of phospholipase Dα1 in guard cells decreases water loss with improved seed production under drought in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:380-9. [PMID: 23279050 DOI: 10.1111/pbi.12028] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/19/2012] [Accepted: 10/31/2012] [Indexed: 05/21/2023]
Abstract
The activation of phospholipase Dα1 (PLDα1) produces lipid messenger phosphatidic acid and promotes stomatal closure in Arabidopsis. To explore the use of the PLDα1-mediated signalling towards decreasing water loss in crop plants, we introduced Arabidopsis PLDα1 under the control of a guard cell-specific promoter AtKatIpro into two canola (Brassica napus) cultivars. Multiple AtKatIpro ::PLDα1 lines in each cultivar displayed decreased water loss and improved biomass accumulation under hyperosmotic stress conditions, including drought and high salinity. Moreover, AtKatIpro ::PLDα1 plants produced more seeds than did WT plants in fields under drought. The results indicate that the guard cell-specific expression of PLDα1 has the potential to improve crop yield by enhancing drought tolerance.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Du ZY, Chen MX, Chen QF, Xiao S, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:294-309. [PMID: 23448237 DOI: 10.1111/tpj.12121] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 05/08/2023]
Abstract
A family of six genes encoding acyl-CoA-binding proteins (ACBPs), ACBP1-ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1-over-expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over-production in 12-day-old seedlings up-regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress-responsive genes: ABA-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH-TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12-day-old seedlings of ACBP1-over-expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two-hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA-mediated seed germination and seedling development.
Collapse
Affiliation(s)
- Zhi-Yan Du
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
350
|
Kim SC, Guo L, Wang X. Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J Biol Chem 2013; 288:11834-44. [PMID: 23504314 DOI: 10.1074/jbc.m112.427229] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatidic acid (PA) is a class of lipid messengers involved in a variety of physiological processes. To understand how PA mediates cell functions in plants, we used a PA affinity membrane assay to isolate PA-binding proteins from Camelina sativa followed by mass spectrometric sequencing. A cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) was identified to bind to PA, and detailed analysis was carried out subsequently using GAPC1 and GAPC1 from Arabidopsis. The PA and GAPC binding was abolished by the cation zinc whereas oxidation of GAPCs promoted the PA binding. PA had little impact on the GAPC catalytic activity in vitro, but the PA treatment of Arabidopsis seedlings induced proteolytic cleavage of GAPC2 and inhibited Arabidopsis seedling growth. The extent of PA inhibition was greater in GAPC-overexpressing than wild-type seedlings, but the greater PA inhibition was abolished by application of zinc to the seedling. The PA treatment also reduced the expression of genes involved in PA synthesis and utilization, and the PA-reduced gene expression was partially recovered by zinc treatment. These data suggest that PA binds to oxidized GAPDH and promotes its cleavage and that the PA and GAPC interaction may provide a signaling link coordinating carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri, St Louis, Missouri 63121, USA
| | | | | |
Collapse
|