301
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
302
|
Ma D, Jasinska A, Kristoff J, Grobler JP, Turner T, Jung Y, Schmitt C, Raehtz K, Feyertag F, Martinez Sosa N, Wijewardana V, Burke DS, Robertson DL, Tracy R, Pandrea I, Freimer N, Apetrei C. SIVagm infection in wild African green monkeys from South Africa: epidemiology, natural history, and evolutionary considerations. PLoS Pathog 2013; 9:e1003011. [PMID: 23349627 PMCID: PMC3547836 DOI: 10.1371/journal.ppat.1003011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 10(4)-10(6) RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (10(7)-10(8) RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.
Collapse
Affiliation(s)
- Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog 2012; 8:e1003093. [PMID: 23308067 PMCID: PMC3534379 DOI: 10.1371/journal.ppat.1003093] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022] Open
Abstract
HIV-1 groups M and N emerged within the last century following two independent cross-species transmissions of SIVcpz from chimpanzees to humans. In contrast to pandemic group M strains, HIV-1 group N viruses are exceedingly rare, with only about a dozen infections identified, all but one in individuals from Cameroon. Poor adaptation to the human host may be responsible for this limited spread of HIV-1 group N in the human population. Here, we analyzed the function of Vpu proteins from seven group N strains from Cameroon, the place where this zoonosis originally emerged. We found that these N-Vpus acquired four amino acid substitutions (E15A, V19A and IV25/26LL) in their transmembrane domain (TMD) that allow efficient interaction with human tetherin. However, despite these adaptive changes, most N-Vpus still antagonize human tetherin only poorly and fail to down-modulate CD4, the natural killer (NK) cell ligand NTB-A as well as the lipid-antigen presenting protein CD1d. These functional deficiencies were mapped to amino acid changes in the cytoplasmic domain that disrupt putative adaptor protein binding sites and an otherwise highly conserved ßTrCP-binding DSGxxS motif. As a consequence, N-Vpus exhibited aberrant intracellular localization and/or failed to recruit the ubiquitin-ligase complex to induce tetherin degradation. The only exception was the Vpu of a group N strain recently discovered in France, but originally acquired in Togo, which contained intact cytoplasmic motifs and counteracted tetherin as effectively as the Vpus of pandemic HIV-1 M strains. These results indicate that HIV-1 group N Vpu is under strong host-specific selection pressure and that the acquisition of effective tetherin antagonism may lead to the emergence of viral variants with increased transmission fitness. Differences in their degree of adaptation to humans may explain why only one of four ape-derived SIV zoonoses spawned the AIDS pandemic. Specifically, only HIV-1 strains of the pandemic M group evolved a fully functional Vpu that efficiently antagonizes human tetherin and degrades CD4. In comparison, the rare group N viruses gained some anti-tetherin activity but lost the CD4 degradation function. Here, we show that the N-Vpu transmembrane domain has adapted to interact with human tetherin and identified the mutations that enable this interaction. However, we also show that most N-Vpus remain poor tetherin antagonists and fail to reduce the surface expression of CD4, the natural killer cell ligand NTB-A and the lipid-antigen presenting protein CD1d. This is due to mutations in their cytoplasmic region that are associated with aberrant protein localization and impaired interaction with the ubiquitin/proteasome pathway. A remarkable exception is the Vpu of the first HIV-1 N strain known to be transmitted outside of Cameroon, which contains a functional cytoplasmic domain and is a highly effective tetherin antagonist. These data indicate that group N viruses are still adapting to humans and that the acquisition of potent anti-tetherin activity may eventually lead to the emergence of viral variants that exhibit increased transmission fitness.
Collapse
|
304
|
Zhao K, Ishida Y, Oleksyk TK, Winkler CA, Roca AL. Evidence for selection at HIV host susceptibility genes in a West Central African human population. BMC Evol Biol 2012; 12:237. [PMID: 23217182 PMCID: PMC3537702 DOI: 10.1186/1471-2148-12-237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/27/2012] [Indexed: 01/14/2023] Open
Abstract
Background HIV-1 derives from multiple independent transfers of simian immunodeficiency virus (SIV) strains from chimpanzees to human populations. We hypothesized that human populations in west central Africa may have been exposed to SIV prior to the pandemic, and that previous outbreaks may have selected for genetic resistance to immunodeficiency viruses. To test this hypothesis, we examined the genomes of Biaka Western Pygmies, who historically resided in communities within the geographic range of the central African chimpanzee subspecies (Pan troglodytes troglodytes) that carries strains of SIV ancestral to HIV-1. Results SNP genotypes of the Biaka were compared to those of African human populations who historically resided outside the range of P. t. troglodytes, including the Mbuti Eastern Pygmies. Genomic regions showing signatures of selection were compared to the genomic locations of genes reported to be associated with HIV infection or pathogenesis. In the Biaka, a strong signal of selection was detected at CUL5, which codes for a component of the vif-mediated APOBEC3 degradation pathway. A CUL5 allele protective against AIDS progression was fixed in the Biaka. A signal of selection was detected at TRIM5, which codes for an HIV post-entry restriction factor. A protective mis-sense mutation in TRIM5 had the highest frequency in Biaka compared to other African populations, as did a protective allele for APOBEC3G, which codes for an anti-HIV-1 restriction factor. Alleles protective against HIV-1 for APOBEC3H, CXCR6 and HLA-C were at higher frequencies in the Biaka than in the Mbuti. Biaka genomes showed a strong signal of selection at TSG101, an inhibitor of HIV-1 viral budding. Conclusions We found protective alleles or evidence for selection in the Biaka at a number of genes associated with HIV-1 infection or progression. Pygmies have also been reported to carry genotypes protective against HIV-1 for the genes CCR5 and CCL3L1. Our hypothesis that HIV-1 may have shaped the genomes of some human populations in West Central Africa appears to merit further investigation.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Il 61801, USA
| | | | | | | | | |
Collapse
|
305
|
Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin WI, Daszak P. Prediction and prevention of the next pandemic zoonosis. Lancet 2012; 380:1956-65. [PMID: 23200504 PMCID: PMC3712877 DOI: 10.1016/s0140-6736(12)61684-5] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most pandemics--eg, HIV/AIDS, severe acute respiratory syndrome, pandemic influenza--originate in animals, are caused by viruses, and are driven to emerge by ecological, behavioural, or socioeconomic changes. Despite their substantial effects on global public health and growing understanding of the process by which they emerge, no pandemic has been predicted before infecting human beings. We review what is known about the pathogens that emerge, the hosts that they originate in, and the factors that drive their emergence. We discuss challenges to their control and new efforts to predict pandemics, target surveillance to the most crucial interfaces, and identify prevention strategies. New mathematical modelling, diagnostic, communications, and informatics technologies can identify and report hitherto unknown microbes in other species, and thus new risk assessment approaches are needed to identify microbes most likely to cause human disease. We lay out a series of research and surveillance opportunities and goals that could help to overcome these challenges and move the global pandemic strategy from response to pre-emption.
Collapse
Affiliation(s)
- Stephen S Morse
- Mailman School of Public Health; Columbia University, New York, NY, USA
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jonna AK Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Mark Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Colin R Parrish
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Dennis Carroll
- US Agency for International Development, Washington, DC, USA
| | - William B Karesh
- EcoHealth Alliance, New York, NY, USA
- IUCN Species Survival Commission Wildlife Health Specialist Group, Gland, Switzerland
| | | | - W Ian Lipkin
- Center for Infection and Immunity; Columbia University, New York, NY, USA
| | | |
Collapse
|
306
|
Abstract
OBJECTIVE/DESIGN The global spread of HIV-1 main group (group M) has resulted in differential distributions of subtypes and recombinants, with the greatest diversity being found in sub-Saharan Africa. The explanations for the current subtype distribution patterns are likely multifactorial, but the promotion of human migrations and movements through transportation link availability and quality, summarized through 'accessibility', have been consistently cited as strong drivers. We sought to address the question of whether accessibility has been a significant factor in HIV-1 spread across mainland Africa through spatial analyses of molecular epidemiology, transport network and land cover data. METHODS The distribution of HIV-1 subtypes and recombinants in sub-Saharan Africa for the period 1998-2008 was mapped using molecular epidemiology data at a finer level of detail than ever before. Moreover, hypotheses on the role of distance, road network structure and accessibility in explaining the patterns seen were tested using spatial datasets representing African transport infrastructure, land cover and an accessibility model of landscape travel speed. RESULTS Coherent spatial patterns in HIV-1 subtype distributions across the continent exist, and a substantial proportion of the variance in the distribution and diversity pattern seen can be explained by variations in regional spatial accessibility. CONCLUSION The study confirms quantitatively the influence of transport infrastructure on HIV-1 spread within Africa, presents an approach for examining potential future impacts of road development projects and, more generally, highlights the importance of accessibility in the spread of communicable diseases.
Collapse
|
307
|
Bajic P, Selman SH, Rees MA. Voronoff to virion: 1920s testis transplantation and AIDS. Xenotransplantation 2012; 19:337-41. [PMID: 23094667 DOI: 10.1111/xen.12004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND We address accusations linking AIDS with testis transplantation performed by a French surgeon, Serge Voronoff (1866-1951), and their implications in the future of animal-to-human organ transplantation. METHODS Biographical literature on Voronoff and scientific literature on xenotransplantation and the origin of HIV were reviewed. RESULTS IN the 1920s, Serge Voronoff transplanted testes from primates into humans to revitalize them sexually and physically, making him one of the first surgeons to perform xenotransplantation-transplanting live tissues between species. In recent years, some have postulated that Voronoff's transplants may have caused or contributed to the AIDS epidemic. However, consensus among virologists holds that HIV most likely originated from a chimpanzee virus known as simian immunodeficiency viruses (SIV) which many agree was transmitted to humans during the hunting of primates in the early 1900s. As these accusations have never been addressed, evidence is reviewed which refutes the claims. HIV isolate studies are summarized, which show that SIV was most likely transferred to humans from a chimpanzee species different from those used by Voronoff. Furthermore, literature suggests that Voronoff's experiments were performed in Europe and the United States, not central Africa. CONCLUSIONS Over 100,000 people await organ transplants, making the prospect of using animal organs to meet demand increasingly favorable. The accusations against Voronoff and others have led to increased concern over cross-species disease transfer. The evidence presented refutes those claims and is used to explain the need for further research into xenotransplantation.
Collapse
Affiliation(s)
- Petar Bajic
- Department of Urology and Renal Transplantation, University of Toledo College of Medicine, Toledo, OH 43614, USA.
| | | | | |
Collapse
|
308
|
Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect 2012; 66:391-400. [PMID: 23103289 DOI: 10.1016/j.jinf.2012.10.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
HIV-1 genetic variability within individuals and populations plays a central role in the HIV pandemic. Multiple zoonotic transmissions of SIV to humans have resulted in distinct HIV lineages in humans which have further diversified within the population over time. High rates of mutation and recombination during HIV reverse transcription create a genetic diversity in the host which is subject to selection pressures by the immune response and antiretroviral treatment. The global distribution of HIV genetic variants and the impact of HIV diversity on pathogenesis, transmission and clinical management are reviewed. Finally, the key role of escape mutations in the immune response to HIV is discussed as well as the major challenge which HIV-1 diversity poses to HIV vaccine development.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
309
|
de Sousa JD, Alvarez C, Vandamme AM, Müller V. Enhanced heterosexual transmission hypothesis for the origin of pandemic HIV-1. Viruses 2012; 4:1950-83. [PMID: 23202448 PMCID: PMC3497036 DOI: 10.3390/v4101950] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 09/15/2012] [Accepted: 09/17/2012] [Indexed: 11/16/2022] Open
Abstract
HIV-1 M originated from SIVcpz endemic in chimpanzees from southeast Cameroon or neighboring areas, and it started to spread in the early 20th century. Here we examine the factors that may have contributed to simian-to-human transmission, local transmission between humans, and export to a city. The region had intense ape hunting, social disruption, commercial sex work, STDs, and traffic to/from Kinshasa in the period 1899-1923. Injection treatments increased sharply around 1930; however, their frequency among local patients was far lower than among modern groups experiencing parenteral HIV-1 outbreaks. Recent molecular datings of HIV-1 M fit better the period of maximal resource exploitation and trade links than the period of high injection intensity. We conclude that although local parenteral outbreaks might have occurred, these are unlikely to have caused massive transmission. World War I led to additional, and hitherto unrecognized, risks of HIV-1 emergence. We propose an Enhanced Heterosexual Transmission Hypothesis for the origin of HIV-1 M, featuring at the time and place of its origin a coincidence of favorable co-factors (ape hunting, social disruption, STDs, and mobility) for both cross-species transmission and heterosexual spread. Our hypothesis does not exclude a role for parenteral transmission in the initial viral adaptation.
Collapse
Affiliation(s)
- João Dinis de Sousa
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
| | - Carolina Alvarez
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 31, Peru; (C.A.)
| | - Anne-Mieke Vandamme
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven B-3000, Belgium; (J.D.S.); (A.-M.V.)
- Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa 1349-008, Portugal
| | - Viktor Müller
- Research Group of Theoretical Biology and Evolutionary Ecology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest 1117, Hungary;
| |
Collapse
|
310
|
CRF22_01A1 is involved in the emergence of new HIV-1 recombinants in Cameroon. J Acquir Immune Defic Syndr 2012; 60:344-50. [PMID: 22549382 DOI: 10.1097/qai.0b013e318258c7e3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cameroon is a West African country where high genetic diversity of HIV-1 has been reported. The predominant CRF02_AG is involved in the emergence of more complex intersubtype recombinants. In this study, we sequenced the full-length genome of a novel unique recombinant form of HIV-1, 02CAMLT04 isolated in blood donors in urban Cameroon. Phylogenetic tree and bootscan analysis showed that 02CAMLT04 was complex and seemed to be a secondary recombinant derived from CRF02_AG and CRF22_01A1. The genomic composition of 02CAMLT04 strain showed that it is composed of 3 segments; 24% of the genome is classified as CRF02_AG, spanning most of the envelope gene. The remaining 76% of the genome is classified as CRF22_01A1. In addition, the sequence analysis of 13 full-length sequences from HIV-1-positive specimens received from Cameroon between 2002 and 2010 indicated that 5 specimens are pure CRF22_01A1 viruses, and 6 others have homology with CRF22_01A1 sequences in either gag, pol, or env region, whereas 6% of strains contain portions of CRF22_01A1. Further study demonstrated that CRF22_01A1 is a primary prevalence strain co-circulating in Cameroon and is involved in complex intersubtype recombination events with subtypes (D or F), subsubtypes (A1 or F2), and CRFs (CRF01_AE or CRF02_AG). Our studies show that novel recombinants between CRF22_01A1 and other clades and recombinant forms may be emerging in Cameroon that could contribute to the future global diversity of HIV-1 in this region and worldwide.
Collapse
|
311
|
Souquière S, Makuwa M, Sallé B, Kazanji M. New strain of simian immunodeficiency virus identified in wild-born chimpanzees from central Africa. PLoS One 2012; 7:e44298. [PMID: 22984489 PMCID: PMC3440395 DOI: 10.1371/journal.pone.0044298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/01/2012] [Indexed: 12/27/2022] Open
Abstract
Studies of primate lentiviruses continue to provide information about the evolution of simian immunodeficiency viruses (SIVs) and the origin and emergence of HIV since chimpanzees in west–central Africa (Pan troglodytes troglodytes) were recognized as the reservoir of SIVcpzPtt viruses, which have been related phylogenetically to HIV-1. Using in-house peptide ELISAs to study SIV prevalence, we tested 104 wild-born captive chimpanzees from Gabon and Congo. We identified two new cases of SIVcpz infection in Gabon and characterized a new SIVcpz strain, SIVcpzPtt-Gab4. The complete sequence (9093 bp) was obtained by a PCR-based ‘genome walking’ approach to generate 17 overlapping fragments. Phylogenetic analyses of separated genes (gag, pol-vif and env-nef) showed that SIVcpzPtt-Gab4 is closely related to SIVcpzPtt-Gab1 and SIVcpzPtt-Gab2. No significant variation in viral load was observed during 3 years of follow-up, but a significantly lower CD4+ T cells count was found in infected than in uninfected chimpanzees (p<0.05). No clinical symptoms of SIV infection were observed in the SIV-positive chimpanzees. Further field studies with non-invasive methods are needed to determine the prevalence, geographic distribution, species association, and natural history of SIVcpz strains in the chimpanzee habitat in Gabon.
Collapse
Affiliation(s)
- Sandrine Souquière
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Maria Makuwa
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Bettina Sallé
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Mirdad Kazanji
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut Pasteur de Bangui, Réseau International des Instituts Pasteur, Bangui, Central African Republic
- * E-mail:
| |
Collapse
|
312
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
313
|
Swanepoel CR, Wearne N, Duffield MS, Okpechi IG. The evolution of our knowledge of HIV-associated kidney disease in Africa. Am J Kidney Dis 2012; 60:668-78. [PMID: 22901595 DOI: 10.1053/j.ajkd.2012.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 04/24/2012] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection started in Africa circa 1930. South Africa has the highest prevalence rate in the world. Although reports of HIV-associated nephropathy (HIVAN) appeared in the early 1980s, the earliest report from sub-Saharan Africa (SSA) came in 1994. Geographical, socioeconomic, political, and ethical factors have worked in concert to shape the character of HIV disease as it is seen in SSA. Political leaders within SSA have, through their actions, significantly contributed to the incidence of HIV infection. Black females, who often face cultural suppression and disadvantage, have a higher prevalence of HIV than males. Too few studies and outcomes data have bedeviled the statistics in SSA in relation to HIVAN prevalence and its management. Much of what is written is approximation and anecdotal. The largest reliable biopsy series comes from the University of Cape Town, where a workable classification of HIVAN has been developed to enable standardization of terminology. Histologic and clinical prognostic indicators with outcomes have been evaluated using this classification. Patients with HIV who present with acute kidney injury appear to have mainly acute tubular necrosis due to sepsis, dehydration, and nephrotoxic drugs. Since the rollout of combination antiretroviral therapy, the extent of HIV infection and kidney disease continues to be modified and possibly retarded.
Collapse
Affiliation(s)
- Charles R Swanepoel
- Division of Nephrology and Hypertension, Department of Medicine, Groote Schuur Hospital, Cape Town, South Africa.
| | | | | | | |
Collapse
|
314
|
Abstract
Emerging infectious diseases, such as HIV/AIDS, SARS, and pandemic influenza, and the anthrax attacks of 2001, have demonstrated that we remain vulnerable to health threats caused by infectious diseases. The importance of strengthening global public health surveillance to provide early warning has been the primary recommendation of expert groups for at least the past 2 decades. However, despite improvements in the past decade, public health surveillance capabilities remain limited and fragmented, with uneven global coverage. Recent initiatives provide hope of addressing this issue, and new technological and conceptual advances could, for the first time, place capability for global surveillance within reach. Such advances include the revised International Health Regulations (IHR 2005) and the use of new data sources and methods to improve global coverage, sensitivity, and timeliness, which show promise for providing capabilities to extend and complement the existing infrastructure. One example is syndromic surveillance, using nontraditional and often automated data sources. Over the past 20 years, other initiatives, including ProMED-mail, GPHIN, and HealthMap, have demonstrated new mechanisms for acquiring surveillance data. In 2009 the U.S. Agency for International Development (USAID) began the Emerging Pandemic Threats (EPT) program, which includes the PREDICT project, to build global capacity for surveillance of novel infections that have pandemic potential (originating in wildlife and at the animal-human interface) and to develop a framework for risk assessment. Improved understanding of factors driving infectious disease emergence and new technological capabilities in modeling, diagnostics and pathogen identification, and communications, such as using the increasing global coverage of cellphones for public health surveillance, can further enhance global surveillance.
Collapse
Affiliation(s)
- Stephen S Morse
- USAID Emerging Pandemic Threats-PREDICT Program, Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA.
| |
Collapse
|
315
|
Interaction between HIV and Mycobacterium tuberculosis: HIV-1-induced CD4 T-cell depletion and the development of active tuberculosis. Curr Opin HIV AIDS 2012; 7:268-75. [PMID: 22495739 DOI: 10.1097/coh.0b013e3283524e32] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW HIV infection is the main driver of the HIV/tuberculosis (TB) syndemic in southern Africa since the early 1990s, when HIV infection rates started to increase exponentially and TB incidence rates quadruplet simultaneously. Here, we discuss pathogenic mechanisms of HIV-induced CD4 T-cell depletion and their potential impact on immune control of Mycobacterium tuberculosis. RECENT FINDINGS Depletion of effector memory CD4 T cells from the air-tissue interphase, their dysfunctional regeneration and the preferential depletion of MTB-specific CD4 T cells from circulation and from the air-tissue interphase might be key factors for the increased susceptibility to develop active TB after HIV infection. SUMMARY Early initiation of antiretroviral therapy or the development of an efficacious HIV vaccine would be the best options to reduce morbidity and mortality associated with the HIV/TB syndemic.
Collapse
|
316
|
Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J Virol 2012; 86:10776-91. [PMID: 22837215 DOI: 10.1128/jvi.01498-12] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chimpanzees in west central Africa (Pan troglodytes troglodytes) are endemically infected with simian immunodeficiency viruses (SIVcpzPtt) that have crossed the species barrier to humans and gorillas on at least five occasions, generating pandemic and nonpandemic forms of human immunodeficiency virus type 1 (HIV-1) as well as gorilla SIV (SIVgor). Chimpanzees in east Africa (Pan troglodytes schweinfurthii) are also infected with SIVcpz; however, their viruses (SIVcpzPts) have never been found in humans. To examine whether this is due to a paucity of natural infections, we used noninvasive methods to screen wild-living eastern chimpanzees in the Democratic Republic of the Congo (DRC), Uganda, and Rwanda. We also screened bonobos (Pan paniscus) in the DRC, a species not previously tested for SIV in the wild. Fecal samples (n = 3,108) were collected at 50 field sites, tested for species and subspecies origin, and screened for SIVcpz antibodies and nucleic acids. Of 2,565 samples from eastern chimpanzees, 323 were antibody positive and 92 contained viral RNA. The antibody-positive samples represented 76 individuals from 19 field sites, all sampled north of the Congo River in an area spanning 250,000 km(2). In this region, SIVcpzPts was common and widespread, with seven field sites exhibiting infection rates of 30% or greater. The overall prevalence of SIVcpzPts infection was 13.4% (95% confidence interval, 10.7% to 16.5%). In contrast, none of the 543 bonobo samples from six sites was antibody positive. All newly identified SIVcpzPts strains clustered in strict accordance to their subspecies origin; however, they exhibited considerable genetic diversity, especially in protein domains known to be under strong host selection pressure. Thus, the absence of SIVcpzPts zoonoses cannot be explained by an insufficient primate reservoir. Instead, greater adaptive hurdles may have prevented the successful colonization of humans by P. t. schweinfurthii viruses.
Collapse
|
317
|
Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The dual role of pharmacogenetics in HIV treatment: mutations and polymorphisms regulating antiretroviral drug resistance and disposition. Pharmacol Rev 2012; 64:803-33. [PMID: 22759796 DOI: 10.1124/pr.111.005553] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Significant intra- and interindividual variability has been observed in response to use of pharmacological agents in treatment of HIV infection. Treatment of HIV infection is limited by high rates of adverse drug reactions and development of resistance in a significant proportion of patients as a result of suboptimal drug concentrations. The efficacy of antiretroviral therapy is challenged by the emergence of resistant HIV-1 mutants with reduced susceptibility to antiretroviral drugs. Moreover, pharmacotherapy of patients infected with HIV is challenging because a great number of comorbidities increase polypharmacy and the risk for drug-drug interactions. Drug-metabolizing enzymes and drug transporters regulate drug access to the systemic circulation, target cells, and sanctuary sites. These factors, which determine drug exposure, along with the emergence of mutations conferring resistance to HIV medications, could explain variability in efficacy and adverse drug reactions associated with antiretroviral drugs. In this review, the major factors affecting the disposition of antiretroviral drugs, including key drug-metabolizing enzymes and membrane drug transporters, are outlined. Genetic polymorphisms affecting the activity and/or the expression of cytochromes P450 or UGT isozymes and membrane drug transport proteins are highlighted and include such examples as the association of neurotoxicity with efavirenz, nephrotoxicity with tenofovir, hepatotoxicity with nevirapine, and hyperbilirubinemia with indinavir and atazanavir. Mechanisms of drug resistance conferred by specific viral mutations are also reviewed, with particular attention to replicative viral fitness and transmitted HIV drug resistance with the objectives of providing a better understanding of mechanisms involved in HIV drug resistance and helping health care providers to better manage interpatient variability in drug efficacy and toxicity.
Collapse
Affiliation(s)
- Veronique Michaud
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, 3755 Cote-Ste-Catherine Rd., Montréal, Québec, H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
318
|
Soleimani P, Barzegar A, Movafeghi A. Phylogenetic study of SIVcpz MT145 virus based on proteome and genome analysis. J Biomol Struct Dyn 2012; 30:328-37. [DOI: 10.1080/07391102.2012.680032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
319
|
Noninvasive follow-up of simian immunodeficiency virus infection in wild-living nonhabituated western lowland gorillas in Cameroon. J Virol 2012; 86:9760-72. [PMID: 22740419 DOI: 10.1128/jvi.01186-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian immunodeficiency viruses infecting western lowland gorillas (SIVgor) are closely related to HIV-1 and are most likely the ancestors of HIV-1 groups O and P. At present, limited data are available on genetic diversity, transmission, viral evolution, and pathogenicity of SIVgor in its natural host. Between 2004 and 2011, 961 putative gorilla fecal samples were collected at the Campo Ma'an National Park, Cameroon. Among them, 16% cross-reacted with HIV-1 antibodies, corresponding to at least 34 infected gorillas. Combining host genotyping and field data, we identified four social groups composed of 7 to 15 individuals each, with SIV rates ranging from 13% to 29%. Eleven SIVgor-infected gorillas were sampled multiple times; two most likely seroconverted during the study period, showing that SIVgor continues to spread. Phylogenetic analysis of partial env and pol sequences revealed cocirculation of closely related and divergent strains among gorillas from the same social group, indicating SIVgor transmissions within and between groups. Parental links could be inferred for some gorillas infected with closely related strains, suggesting vertical transmission, but horizontal transmission by sexual or aggressive behavior was also suspected. Intrahost molecular evolution in one gorilla over a 5-year period showed viral adaptations characteristic of escape mutants, i.e., V1V2 loop elongation and an increased number of glycosylation sites. Here we show for the first time the feasibility of noninvasive monitoring of nonhabituated gorillas to study SIVgor infection over time at both the individual and population levels. This approach can also be applied more generally to study other pathogens in wildlife.
Collapse
|
320
|
Mayr LM, Powell RL, Ngai JN, Takang WA, Nádas A, Nyambi PN. Superinfection by discordant subtypes of HIV-1 does not enhance the neutralizing antibody response against autologous virus. PLoS One 2012; 7:e38989. [PMID: 22720009 PMCID: PMC3375243 DOI: 10.1371/journal.pone.0038989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/17/2012] [Indexed: 11/25/2022] Open
Abstract
Recent studies have demonstrated that both the potency and breadth of the humoral anti-HIV-1 immune response in generating neutralizing antibodies (nAbs) against heterologous viruses are significantly enhanced after superinfection by discordant HIV-1 subtypes, suggesting that repeated exposure of the immune system to highly diverse HIV-1 antigens can significantly improve anti-HIV-1 immunity. Thus, we investigated whether sequential plasma from these subjects superinfected with discordant HIV-1 subtypes, who exhibit broad nAbs against heterologous viruses, also neutralize their discordant early autologous viruses with increasing potency. Comparing the neutralization capacities of sequential plasma obtained before and after superinfection of 4 subjects to those of matched plasma obtained from 4 singly infected control subjects, no difference in the increase in neutralization capacity was observed between the two groups (p = 0.328). Overall, a higher increase in neutralization over time was detected in the singly infected patients (mean change in IC50 titer from first to last plasma sample: 183.4) compared to the superinfected study subjects (mean change in IC50 titer from first to last plasma sample: 66.5). Analysis of the Breadth-Potency Scores confirmed that there was no significant difference in the increase in superinfected and singly infected study subjects (p = 0.234). These studies suggest that while superinfection by discordant subtypes induces antibodies with enhanced neutralizing breadth and potency against heterologous viruses, the potency to neutralize their autologous viruses is not better than those seen in singly infected patients.
Collapse
Affiliation(s)
- Luzia M. Mayr
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Rebecca L. Powell
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - William A. Takang
- Serology Unit, Medical Diagnostic Center, Yaounde, Cameroon
- Department of Obstetrics and Gynaecology, University of Yaounde Teaching Hospital, Yaounde, Cameroon
| | - Arthur Nádas
- Institute of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Phillipe N. Nyambi
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- Veterans Affairs New York Harbor Healthcare Systems, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
321
|
Chibo D, Birch C. Increasing diversity of Human Immunodeficiency Virus type 1 subtypes circulating in Australia. AIDS Res Hum Retroviruses 2012; 28:578-83. [PMID: 22077905 DOI: 10.1089/aid.2011.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Characterization of HIV subtypes can provide a more comprehensive understanding of the epidemic within a distinct region, and when combined with notification data, may also be helpful in enhancing current HIV prevention strategies. In this study, we characterized 1056 HIV-positive individuals (948 males and 108 females) living in Victoria and whose infection was detected for the first time between 2005 and 2010 inclusive. HIV-1 strains were subtyped based on pol gene sequence. Phylogenetic analysis was performed on all non-B subtype sequences identified. Of the 1056 sequences analyzed, 825 were subtype B and 231 were non-B. Overall 6 HIV-1 subtypes, 6 circulating recombinant forms (CRFs), and 12 unique recombinant forms (URFs) were identified. Regardless of gender, the majority of individuals were infected with a subtype B virus (78%). Subtype B was dominant in males (n=806, 85%). In contrast, the majority of females were infected with non-B subtypes (n=89, 82%), in particular subtype C (n=48, 45%). Phylogenetic analysis of the non-B subtypes revealed that the majority of clustering, and thereby transmission, occurred with CRF01_AE strains. Despite the relatively high numbers identified in females there was very little clustering of subtype C viruses. Subtypes C and A1 both historically associated with heterosexual transmission, and CRF01_AE often associated with IVDU, were also associated with transmission within the MSM population, demonstrating the potential for non-B subtypes to expand into the MSM population. The observation of increasing numbers of females and heterosexual males infected with non-subtype B viruses, the majority imported through migration and travel to countries where there is a high prevalence of HIV, suggests a targeted public health message may be required to prevent further increases within these two groups.
Collapse
Affiliation(s)
- Doris Chibo
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Chris Birch
- HIV Characterisation Laboratory, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| |
Collapse
|
322
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
323
|
Goffe AS, Blasse A, Mundry R, Leendertz FH, Calvignac-Spencer S. Detection of retroviral super-infection from non-invasive samples. PLoS One 2012; 7:e36570. [PMID: 22590569 PMCID: PMC3348140 DOI: 10.1371/journal.pone.0036570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 04/10/2012] [Indexed: 01/08/2023] Open
Abstract
While much attention has been focused on the molecular epidemiology of retroviruses in wild primate populations, the correlated question of the frequency and nature of super-infection events, i.e., the simultaneous infection of the same individual host with several strains of the same virus, has remained largely neglected. In particular, methods possibly allowing the investigation of super-infection from samples collected non-invasively (such as faeces) have never been properly compared. Here, we fill in this gap by assessing the costs and benefits of end-point dilution PCR (EPD-PCR) and multiple bulk-PCR cloning, as applied to a case study focusing on simian foamy virus super-infection in wild chimpanzees (Pan troglodytes). We show that, although considered to be the gold standard, EPD-PCR can lead to massive consumption of biological material when only low copy numbers of the target are expected. This constitutes a serious drawback in a field in which rarity of biological material is a fundamental constraint. In addition, we demonstrate that EPD-PCR results (single/multiple infection; founder strains) can be well predicted from multiple bulk-PCR clone experiments, by applying simple statistical and network analyses to sequence alignments. We therefore recommend the implementation of the latter method when the focus is put on retroviral super-infection and only low retroviral loads are encountered.
Collapse
Affiliation(s)
- Adeelia S. Goffe
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
- Wildlife Conservation Research Unit, University of Oxford, Oxford, United Kingdom
| | - Anja Blasse
- Research Group Emerging Zoonoses, Robert Koch-Institut, Berlin, Germany
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | |
Collapse
|
324
|
Hill AL, Rosenbloom DIS, Nowak MA. Evolutionary dynamics of HIV at multiple spatial and temporal scales. J Mol Med (Berl) 2012; 90:543-61. [PMID: 22552382 PMCID: PMC7080006 DOI: 10.1007/s00109-012-0892-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/28/2022]
Abstract
Infectious diseases remain a formidable challenge to human health, and understanding pathogen evolution is crucial to designing effective therapeutics and control strategies. Here, we review important evolutionary aspects of HIV infection, highlighting the concept of selection at multiple spatial and temporal scales. At the smallest scale, a single cell may be infected by multiple virions competing for intracellular resources. Recombination and phenotypic mixing introduce novel evolutionary dynamics. As the virus spreads between cells in an infected individual, it continually evolves to circumvent the immune system. We discuss evolutionary mechanisms of HIV pathogenesis and progression to AIDS. Viral spread throughout the human population can lead to changes in virulence and the transmission of immune-evading variation. HIV emerged as a human pathogen due to selection occurring between different species, adapting from related viruses of primates. HIV also evolves resistance to antiretroviral drugs within a single infected host, and we explore the possibility for the spread of these strains between hosts, leading to a drug-resistant epidemic. We investigate the role of latency, drug-protected compartments, and direct cell-to-cell transmission on viral evolution. The introduction of an HIV vaccine may select for viral variants that escape vaccine control, both within an individual and throughout the population. Due to the strong selective pressure exerted by HIV-induced morbidity and mortality in many parts of the world, the human population itself may be co-evolving in response to the HIV pandemic. Throughout the paper, we focus on trade-offs between costs and benefits that constrain viral evolution and accentuate how selection pressures differ at different levels of selection.
Collapse
Affiliation(s)
- Alison L Hill
- Program for Evolutionary Dynamics, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
325
|
Drexler JF, Corman VM, Müller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Cottontail VM, Rasche A, Yordanov S, Seebens A, Knörnschild M, Oppong S, Sarkodie YA, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stöcker A, Carneiro AJB, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EKV, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Krüger DH, Matthee S, Ulrich RG, Leroy EM, Drosten C. Bats host major mammalian paramyxoviruses. Nat Commun 2012; 3:796. [PMID: 22531181 PMCID: PMC3343228 DOI: 10.1038/ncomms1796] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/19/2012] [Indexed: 12/12/2022] Open
Abstract
The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
Collapse
Affiliation(s)
- Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
| | - Victor Max Corman
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
| | | | - Gael Darren Maganga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Peter Vallo
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Tabea Binger
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
| | - Florian Gloza-Rausch
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
- Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
| | | | - Andrea Rasche
- Institute of Virology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Stoian Yordanov
- Forestry Board Directorate of Strandja Natural Park, Malko Tarnovo, Bulgaria
| | - Antje Seebens
- Noctalis, Centre for Bat Protection and Information, Bad Segeberg, Germany
| | | | - Samuel Oppong
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yaw Adu Sarkodie
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Jonas Schmidt-Chanasit
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Andreas Stöcker
- Infectious Diseases Research Laboratory, University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Brazil
| | | | - Stephanie Erbar
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, Marburg, Germany
| | - Florian Fronhoffs
- Institute of Pathology, University of Bonn Medical Centre, Bonn, Germany
| | - Reinhard Buettner
- Institute of Pathology, University of Bonn Medical Centre, Bonn, Germany
- Institute of Pathology, University of Cologne Medical Centre, Cologne, Germany
| | - Elisabeth K. V. Kalko
- Institute of Experimental Ecology, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Thomas Kruppa
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | | | - René Kallies
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
| | | | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Chantal Reusken
- Netherlands Center for Infectious Disease Control, Bilthoven, The Netherlands
| | - Alexandre Hassanin
- Muséum National d'Histoire Naturelle/Centre National de la Recherche Scientifique, UMR 7205, Paris, France
| | - Detlev H. Krüger
- Institute of Medical Virology (Helmut Ruska Haus), Charité Medical School, Berlin, Germany
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Rainer G. Ulrich
- Institute for Novel and Emerging Infections Diseases, Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald–Insel Riems, Germany
| | - Eric M. Leroy
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
- Institut de Recherche pour le Développement, UMR 224 (MIVEGEC), IRD/CNRS/UM1, Montpellier, France
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, 53127 Germany
| |
Collapse
|
326
|
Abstract
It is now well established that simian immunodeficiency viruses (SIVs) from chimpanzees (SIVcpz) and gorillas (SIVgor) from west Central Africa are at the origin of HIV-1/AIDS. Apes are also infected with other retroviruses, notably simian T-cell lymphotropic viruses (STLVs) and simian foamy viruses (SFVs), that can be transmitted to humans. We discuss the actual knowledge on SIV, STLV and SFV infections in chimpanzees, gorillas, and bonobos. We especially elaborate on how the recent development of non-invasive methods has allowed us to identify the reservoirs of the HIV-1 ancestors in chimpanzees and gorillas, and increased our knowledge of the natural history of SIV infections in chimpanzees. Multiple cross-species events with retroviruses from apes to humans have occurred, but only one transmission of SIVcpz from chimpanzees in south-eastern Cameroon spread worldwide, and is responsible for the actual HIV pandemic. Frequent SFV transmissions have been recently reported, but no human-to-human transmission has been documented yet. Because humans are still in contact with apes, identification of pathogens in wild ape populations can signal which pathogens may be cause risk for humans, and allow the development of serological and molecular assays with which to detect transmissions to humans. Finally, non-invasive sampling also allows the study of the impact of retroviruses and other pathogens on the health and survival of endangered species such as chimpanzees, gorillas, and bonobos.
Collapse
Affiliation(s)
- M Peeters
- UMI 233, TransVIHMI, Institut de Recherche pour le Développement, Montpellier, France.
| | | |
Collapse
|
327
|
Bibollet-Ruche F, Heigele A, Keele BF, Easlick JL, Decker JM, Takehisa J, Learn G, Sharp PM, Hahn BH, Kirchhoff F. Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adaptation. J Clin Invest 2012; 122:1644-52. [PMID: 22505456 DOI: 10.1172/jci61429] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4(+) T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS.
Collapse
Affiliation(s)
- Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6060, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Pandrea I, Parrish NF, Raehtz K, Gaufin T, Barbian HJ, Ma D, Kristoff J, Gautam R, Zhong F, Haret-Richter GS, Trichel A, Shaw GM, Hahn BH, Apetrei C. Mucosal simian immunodeficiency virus transmission in African green monkeys: susceptibility to infection is proportional to target cell availability at mucosal sites. J Virol 2012; 86:4158-68. [PMID: 22318138 PMCID: PMC3318646 DOI: 10.1128/jvi.07141-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022] Open
Abstract
African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 10(5) RNA copies. Both PTMs but none of the AGMs became infected following exposure to 10(6) RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 10(7) RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4(+) T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4(+) T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5(+) CD4(+) target cells in the mucosa, and (iii) the paucity of CCR5(+) CD4(+) target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.
Collapse
Affiliation(s)
- Ivona Pandrea
- Divisions of Microbiology and Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Departments of Pathology
| | - Nicholas F. Parrish
- Departments of Medicine
- Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Raehtz
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thaidra Gaufin
- Divisions of Microbiology and Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Hannah J. Barbian
- Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dongzhu Ma
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jan Kristoff
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rajeev Gautam
- Divisions of Microbiology and Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Fang Zhong
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Anita Trichel
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George M. Shaw
- Departments of Medicine
- Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatrice H. Hahn
- Departments of Medicine
- Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cristian Apetrei
- Divisions of Microbiology and Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
329
|
New STLV-3 strains and a divergent SIVmus strain identified in non-human primate bushmeat in Gabon. Retrovirology 2012; 9:28. [PMID: 22462797 PMCID: PMC3413610 DOI: 10.1186/1742-4690-9-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/30/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human retroviral infections such as Human Immunodeficiency Virus (HIV) or Human T-cell Lymphotropic Virus (HTLV) are the result of simian zoonotic transmissions through handling and butchering of Non-Human Primates (NHP) or by close contact with pet animals. Recent studies on retroviral infections in NHP bushmeat allowed for the identification of numerous Simian Immunodeficiency Viruses (SIV) and Simian T-cell Lymphotropic Viruses (STLV) to which humans are exposed. Nevertheless, today, data on simian retroviruses at the primate/hunter interface remain scarce. We conducted a pilot study on 63 blood and/or tissues samples derived from NHP bushmeat seized by the competent authorities in different locations across the country. RESULTS SIV and STLV were detected by antibodies to HIV and HTLV antigens, and PCRs were performed on samples with an HIV or/and HTLV-like or indeterminate profile. Fourteen percent of the samples cross-reacted with HIV antigens and 44% with HTLV antigens. We reported STLV-1 infections in five of the seven species tested. STLV-3 infections, including a new STLV-3 subtype, STLV-1 and -3 co-infections, and triple SIV, STLV-1, STLV-3 infections were observed in red-capped mangabeys (C.torquatus). We confirmed SIV infections by PCR and sequence analyses in mandrills, red-capped mangabeys and showed that mustached monkeys in Gabon are infected with a new SIV strain basal to the SIVgsn/mus/mon lineage that did not fall into the previously described SIVmus lineages reported from the corresponding species in Cameroon. The same monkey (sub)species can thus be carrier of, at least, three distinct SIVs. Overall, the minimal prevalence observed for both STLV and SIV natural infections were 26.9% and 11.1% respectively. CONCLUSIONS Overall, these data, obtained from a restricted sampling, highlight the need for further studies on simian retroviruses in sub-Saharan Africa to better understand their evolutionary history and to document SIV strains to which humans are exposed. We also show that within one species, a high genetic diversity may exist for SIVs and STLVs and observe a high genetic diversity in the SIVgsn/mon/mus lineage, ancestor of HIV-1/SIVcpz/SIVgor.
Collapse
|
330
|
Abstract
PURPOSE OF REVIEW A key factor driving AIDS-associated immunopathogenesis is chronic immune activation. Simian immunodeficiency virus (SIV) infection of African natural host species leads to high viremia, but low immune activation and absence of disease. Considerable progress in our understanding of pathological immune activation has come from comparative studies of SIV infection in pathogenic Asian macaque species and natural hosts. The focus of this review is to highlight recent work on the natural host model using high-throughput genomics. RECENT FINDINGS Several groups have independently conducted microarray gene expression profiling comparing in-vivo SIV infection in natural and non-natural hosts. A consistent finding between these studies is that both pathogenic SIV infection of macaques and nonpathogenic infections of natural hosts have strong induction of interferon-stimulated genes (ISGs) early on, but a key difference was that natural hosts down-modulated the interferon response rapidly after acute infection. The development of new genome-based resources for further study of the natural host model is discussed. SUMMARY Initial efforts using high-throughput biology to study SIV infection of natural hosts have effectively identified the ability of natural hosts to resolve interferon responses and immune activation. Further application of 'omic-based technologies coupled with integrative systems-based analysis should continue to yield progress.
Collapse
|
331
|
Cross-species transmission of simian retroviruses: how and why they could lead to the emergence of new diseases in the human population. AIDS 2012; 26:659-73. [PMID: 22441170 DOI: 10.1097/qad.0b013e328350fb68] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The HIV-1 group M epidemic illustrates the extraordinary impact and consequences resulting from a single zoonotic transmission. Exposure to blood or other secretions of infected animals, through hunting and butchering of bushmeat, or through bites and scratches inflicted by pet nonhuman primates (NHPs), represent the most plausible source for human infection with simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus (STLV) and simian foamy virus. The chance for cross-species transmissions could increase when frequency of exposure and retrovirus prevalence is high. According to the most recent data, human exposure to SIV or STLV appears heterogeneous across the African countries surveyed. Exposure is not sufficient to trigger disease: viral and host molecular characteristics and compatibility are fundamental factors to establish infection. A successful species jump is achieved when the pathogen becomes transmissible between individuals within the new host population. To spread efficiently, HIV likely required changes in human behavior. Given the increasing exposure to NHP pathogens through hunting and butchering, it is likely that SIV and other simian viruses are still transmitted to the human population. The behavioral and socio-economic context of the twenty-first century provides favorable conditions for the emergence and spread of new epidemics. Therefore, it is important to evaluate which retroviruses the human population is exposed to and to better understand how these viruses enter, infect, adapt and spread to its new host.
Collapse
|
332
|
Trueba G, Dunthorn M. Many neglected tropical diseases may have originated in the Paleolithic or before: new insights from genetics. PLoS Negl Trop Dis 2012; 6:e1393. [PMID: 22479653 PMCID: PMC3313944 DOI: 10.1371/journal.pntd.0001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The standard view of modern human infectious diseases is that many of them arose during the Neolithic when animals were first domesticated, or afterwards. Here we review recent genetic and molecular clock estimates that point to a much older Paleolithic origin (2.5 million years ago to 10,000 years ago) of some of these diseases. During part of this ancient period our early human ancestors were still isolated in Africa. We also discuss the need for investigations of the origin of these diseases in African primates and other animals that have been the original source of many neglected tropical diseases.
Collapse
Affiliation(s)
- Gabriel Trueba
- Instituto de Microbiología Universidad, San Francisco de Quito, Quito, Ecuador.
| | | |
Collapse
|
333
|
Animal virus discovery: improving animal health, understanding zoonoses, and opportunities for vaccine development. Curr Opin Virol 2012; 2:344-52. [PMID: 22463981 PMCID: PMC3378828 DOI: 10.1016/j.coviro.2012.02.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/09/2012] [Accepted: 02/15/2012] [Indexed: 01/26/2023]
Abstract
The characterization of viral genomes has accelerated due to improvement in DNA sequencing technology. Sources of animal samples and molecular methods for the identification of novel viral pathogens and steps to determine their pathogenicity are listed. The difficulties for predicting future cross-species transmissions are highlighted by the wide diversity of known viral zoonoses. Recent surveys of viruses in wild and domesticated animals have characterized numerous viruses including some closely related to those infecting humans. The detection of multiple genetic lineages within viral families infecting a single host species, phylogenetically interspersed with viruses found in other host species, reflects past cross-species transmissions. Numerous opportunities for the generation of novel vaccines will arise from a better understanding of animal viromes.
Collapse
|
334
|
Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, Camacho RJ, Vandamme AM, Lemey P. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2012; 12:453-60. [PMID: 21565285 PMCID: PMC4677783 DOI: 10.1016/j.meegid.2011.04.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/19/2011] [Accepted: 04/22/2011] [Indexed: 12/18/2022]
Abstract
Evolutionary analyses have revealed an origin of pandemic HIV-1 group M in the Congo River basin in the first part of the XX century, but the patterns of historical viral spread in or around its epicentre remain largely unexplored. Here, we combine epidemiologic and molecular sequence data to investigate the spatiotemporal patterns of the CRF02_AG clade. By explicitly integrating prevalence counts and genetic population size estimates we date the epidemic emergence of CRF02_AG at 1973.1 (1972.1, 1975.3, 95% CI). To infer the phylogeographic signature of this clade at a regional scale, we analyze pol and env time-stamped sequence data from 10 countries using a Bayesian phylogeographic approach based on an asymmetric discretized diffusion model. Our data confirms a spatial origin of CRF02_AG in the Democratic Republic of Congo (DRC) and suggests that viral dissemination to Cameroon occurred at an early stage of the evolutionary history of CRF02_AG. We find considerable support for epidemiological linkage between neighbour countries. Compilation of ethnographic data suggested that well-supported viral migration did not reflect sustained human migratory flows. Finally, using sequence data from 15 locations in Cameroon, we use relaxed random walk models to explore the spatiotemporal dynamics of CRF02_AG at a finer geographical detail. Phylogeographic dispersal in continuous space reveals that at least two distinct CRF02_AG lineages are circulating in overlapping regions that are evolving at different evolutionary and diffusion rates. In conclusion, by combining molecular and epidemiological data, our results provide a time scale for CRF02_AG, early 70s, place its spatial root in the DRC within the putative root of group-M diversity and propose a scenario of chance-exportation events for the spatiotemporal patterns of a successful HIV-1 lineage both at a regional and country-scale.
Collapse
Affiliation(s)
- Nuno R Faria
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Abstract
Low- to middle-income countries bear the overwhelming burden of the human immunodeficiency virus type 1 (HIV-1) epidemic in terms of the numbers of their citizens living with HIV/AIDS (acquired immunodeficiency syndrome), the high degrees of viral diversity often involving multiple HIV-1 clades circulating within their populations, and the social and economic factors that compromise current control measures. Distinct epidemics have emerged in different geographical areas. These epidemics differ in their severity, the population groups they affect, their associated risk behaviors, and the viral strains that drive them. In addition to inflicting great human cost, the high burden of HIV infection has a major impact on the social and economic development of many low- to middle-income countries. Furthermore, the high degrees of viral diversity associated with multiclade HIV epidemics impacts viral diagnosis and pathogenicity and treatment and poses daunting challenges for effective vaccine development.
Collapse
Affiliation(s)
- Yiming Shao
- State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China
| | | |
Collapse
|
336
|
Motsch P, Gonzalez JP, Verrier D. Clinical biochemistry and hematology of the elusive sun-tailed monkey (Cercopithecus solatus) in Gabon: inaugural data from the only semifree ranging colony in the world. Am J Primatol 2012; 74:236-46. [PMID: 24006542 DOI: 10.1002/ajp.21993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clinical blood biochemistry and hematology are valuable tools to evaluate health and welfare in many animal species. In order to document the general biology of one of the most poorly known nonhuman primate species, and contribute to its conservation, the clinical blood biochemistry and hematology of the sun-tailed monkey (Cercopithecus solatus Harrisson) was investigated in its range of endemicity in Gabon. Data derived from 26 years of clinical monitoring of the only semicaptive colony of this species in the world, housed at CIRMF (Franceville, Gabon), were analyzed in order to establish reference values of age-sex classes. Consistent with previous reports in other primate species, age and sex significantly affected a number of biochemical and hematological parameters in C. solatus. Hematological analyses demonstrated significant differences in red blood cells, hemoglobin (HB), and hematocrit (HT), with males showing significantly greater values than females. In contrast, neutrophil counts were greater in females. An ontogenetic effect was detected for HB, HT, eosinophil, and monocyte counts, while lymphocytes significantly decreased with age. Biochemical analyses also showed significant differences, with females displaying greater cholesterol and alanine aminotransferase levels. Increase in levels of blood urea and aspartate aminotransferase coupled with decrease in albumin in old individuals suggested declining kidney, liver, and muscle functions with age. Interspecific comparisons were conducted and the effects of the unique semifree-ranging setting on the validity and value of the results presented are discussed. The reference values established will be useful in further ecological, parasitological, and virological studies of the sun-tailed monkey.
Collapse
Affiliation(s)
- Peggy Motsch
- Equipe 'Primatologie et Santé, Unité de Recherche en Ecologie et Santé, Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
| | | | | |
Collapse
|
337
|
Djoko CF, Wolfe ND, Aghokeng AF, Lebreton M, Liegeois F, Tamoufe U, Schneider BS, Ortiz N, Mbacham WF, Carr JK, Rimoin AW, Fair JN, Pike BL, Mpoudi-Ngole E, Delaporte E, Burke DS, Peeters M. Failure to detect simian immunodeficiency virus infection in a large Cameroonian cohort with high non-human primate exposure. ECOHEALTH 2012; 9:17-23. [PMID: 22395958 DOI: 10.1007/s10393-012-0751-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/31/2012] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
Hunting and butchering of wildlife in Central Africa are known risk factors for a variety of human diseases, including HIV/AIDS. Due to the high incidence of human exposure to body fluids of non-human primates, the significant prevalence of simian immunodeficiency virus (SIV) in non-human primates, and hunting/butchering associated cross-species transmission of other retroviruses in Central Africa, it is possible that SIV is actively transmitted to humans from primate species other than mangabeys, chimpanzees, and/or gorillas. We evaluated SIV transmission to humans by screening 2,436 individuals that hunt and butcher non-human primates, a population in which simian foamy virus and simian T-lymphotropic virus were previously detected. We identified 23 individuals with high seroreactivity to SIV. Nucleic acid sequences of SIV genes could not be detected, suggesting that SIV infection in humans could occur at a lower frequency than infections with other retroviruses, including simian foamy virus and simian T-lymphotropic virus. Additional studies on human populations at risk for non-human primate zoonosis are necessary to determine whether these results are due to viral/host characteristics or are indicative of low SIV prevalence in primate species consumed as bushmeat as compared to other retroviruses in Cameroon.
Collapse
|
338
|
Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 2012; 62:777-92. [PMID: 22138161 PMCID: PMC3258026 DOI: 10.1016/j.ympev.2011.11.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/02/2022]
Abstract
Molecular phylogenetics has revolutionized the study of not only evolution but also disparate fields such as genomics, bioinformatics, epidemiology, ecology, microbiology, molecular biology and biochemistry. Particularly significant are its achievements in population genetics as a result of the development of coalescent theory, which have contributed to more accurate model-based parameter estimation and explicit hypothesis testing. The study of the evolution of many microorganisms, and HIV in particular, have benefited from these new methodologies. HIV is well suited for such sophisticated population analyses because of its large population sizes, short generation times, high substitution rates and relatively small genomes. All these factors make HIV an ideal and fascinating model to study molecular evolution in real time. Here we review the significant advances made in HIV evolution through the application of phylogenetic approaches. We first examine the relative roles of mutation and recombination on the molecular evolution of HIV and its adaptive response to drug therapy and tissue allocation. We then review some of the fundamental questions in HIV evolution in relation to its origin and diversification and describe some of the insights gained using phylogenies. Finally, we show how phylogenetic analysis has advanced our knowledge of HIV dynamics (i.e., phylodynamics).
Collapse
Affiliation(s)
- Eduardo Castro-Nallar
- Department of Biology, 401 Widtsoe Building, Brigham Young University, Provo, UT 84602-5181, USA.
| | | | | | | |
Collapse
|
339
|
Laguette N, Rahm N, Sobhian B, Chable-Bessia C, Münch J, Snoeck J, Sauter D, Switzer WM, Heneine W, Kirchhoff F, Delsuc F, Telenti A, Benkirane M. Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 2012; 11:205-17. [PMID: 22305291 DOI: 10.1016/j.chom.2012.01.007] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/08/2011] [Accepted: 01/12/2012] [Indexed: 12/21/2022]
Abstract
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Laboratoires de Virologie Moléculaire, 34000 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Evolution of the primate APOBEC3A cytidine deaminase gene and identification of related coding regions. PLoS One 2012; 7:e30036. [PMID: 22272271 PMCID: PMC3260193 DOI: 10.1371/journal.pone.0030036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022] Open
Abstract
The APOBEC3 gene cluster encodes six cytidine deaminases (A3A-C, A3DE, A3F-H) with single stranded DNA (ssDNA) substrate specificity. For the moment A3A is the only enzyme that can initiate catabolism of both mitochondrial and nuclear DNA. Human A3A expression is initiated from two different methionine codons M1 or M13, both of which are in adequate but sub-optimal Kozak environments. In the present study, we have analyzed the genetic diversity among A3A genes across a wide range of 12 primates including New World monkeys, Old World monkeys and Hominids. Sequence variation was observed in exons 1–4 in all primates with up to 31% overall amino acid variation. Importantly for 3 hominids codon M1 was mutated to a threonine codon or valine codon, while for 5/12 primates strong Kozak M1 or M13 codons were found. Positive selection was apparent along a few branches which differed compared to positive selection in the carboxy-terminal of A3G that clusters with A3A among human cytidine deaminases. In the course of analyses, two novel non-functional A3A-related fragments were identified on chromosome 4 and 8 kb upstream of the A3 locus. This qualitative and quantitative variation among primate A3A genes suggest that subtle differences in function might ensue as more light is shed on this increasingly important enzyme.
Collapse
|
341
|
Wimmer E, Paul AV. Synthetic poliovirus and other designer viruses: what have we learned from them? Annu Rev Microbiol 2012; 65:583-609. [PMID: 21756105 DOI: 10.1146/annurev-micro-090110-102957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to known genome sequences, modern strategies of DNA synthesis have made it possible to recreate in principle all known viruses independent of natural templates. We describe the first synthesis of a virus (poliovirus) in 2002 that was accomplished outside living cells. We comment on the reaction of laypeople and scientists to the work, which shaped the response to de novo syntheses of other viruses. We discuss those viruses that have been synthesized since 2002, among them viruses whose precise genome sequence had to be established by painstakingly stitching together pieces of sequence information, and viruses involved in zoonosis. Synthesizing viral genomes provides a powerful tool for studying gene function and the pathogenic potential of these organisms. It also allows modification of viral genomes to an extent hitherto unthinkable. Recoding of poliovirus and influenza virus to develop new vaccine candidates and refactoring the phage T7 DNA genome are discussed as examples.
Collapse
Affiliation(s)
- Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, USA.
| | | |
Collapse
|
342
|
Hemelaar J. The origin and diversity of the HIV-1 pandemic. Trends Mol Med 2012; 18:182-92. [PMID: 22240486 DOI: 10.1016/j.molmed.2011.12.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/24/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
This review examines the enormous progress that has been made in the past decade in understanding the origin of HIV, HIV genetic variability, and the impact of global HIV diversity on the pandemic. Multiple zoonotic transmissions of simian immunodeficiency virus (SIV) have resulted in different HIV lineages in humans. In addition, the high mutation and recombination rates during viral replication result in a great genetic variability of HIV within individuals, as well as within populations, upon which evolutionary selection pressures act. The global HIV pandemic is examined in the context of HIV evolution, and the global diversity of HIV subtypes and recombinants is discussed in detail. Finally, the impact of HIV diversity on pathogenesis, transmission, diagnosis, treatment, the immune response, and vaccine development is reviewed.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
| |
Collapse
|
343
|
Smith KM, Anthony SJ, Switzer WM, Epstein JH, Seimon T, Jia H, Sanchez MD, Huynh TT, Galland GG, Shapiro SE, Sleeman JM, McAloose D, Stuchin M, Amato G, Kolokotronis SO, Lipkin WI, Karesh WB, Daszak P, Marano N. Zoonotic viruses associated with illegally imported wildlife products. PLoS One 2012; 7:e29505. [PMID: 22253731 PMCID: PMC3254615 DOI: 10.1371/journal.pone.0029505] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/29/2011] [Indexed: 12/14/2022] Open
Abstract
The global trade in wildlife has historically contributed to the emergence and spread of infectious diseases. The United States is the world's largest importer of wildlife and wildlife products, yet minimal pathogen surveillance has precluded assessment of the health risks posed by this practice. This report details the findings of a pilot project to establish surveillance methodology for zoonotic agents in confiscated wildlife products. Initial findings from samples collected at several international airports identified parts originating from nonhuman primate (NHP) and rodent species, including baboon, chimpanzee, mangabey, guenon, green monkey, cane rat and rat. Pathogen screening identified retroviruses (simian foamy virus) and/or herpesviruses (cytomegalovirus and lymphocryptovirus) in the NHP samples. These results are the first demonstration that illegal bushmeat importation into the United States could act as a conduit for pathogen spread, and suggest that implementation of disease surveillance of the wildlife trade will help facilitate prevention of disease emergence.
Collapse
Affiliation(s)
- Kristine M Smith
- Wildlife Conservation Society, Bronx, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
|
345
|
Oster E. HIV and sexual behavior change: why not Africa? JOURNAL OF HEALTH ECONOMICS 2012; 31:35-49. [PMID: 22277285 DOI: 10.1016/j.jhealeco.2011.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Despite high rates of HIV in Sub-Saharan Africa, and the corresponding high mortality risk associated with risky sexual behavior, behavioral response has been limited. This paper explores three explanations for this: bias in OLS estimates, limited non-HIV life expectancy and limited knowledge. I find support for the first two. First, using a new instrumental variable strategy I find that OLS estimates of the relationship between risky sex and HIV are biased upwards, and IV estimates indicate reductions in risky behavior in response to the epidemic. Second, I find these reductions are larger for individuals who live in areas with higher life expectancy, suggesting high rates of non-HIV mortality suppress behavioral response; this is consistent with optimizing behavior. Using somewhat limited knowledge proxies, I find no evidence that areas with higher knowledge of the epidemic have greater behavior change.
Collapse
Affiliation(s)
- Emily Oster
- University of Chicago and NBER, United States.
| |
Collapse
|
346
|
Hufbauer RA, Facon B, Ravigné V, Turgeon J, Foucaud J, Lee CE, Rey O, Estoup A. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. Evol Appl 2012; 5:89-101. [PMID: 25568032 PMCID: PMC3353334 DOI: 10.1111/j.1752-4571.2011.00211.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 11/29/2022] Open
Abstract
Adaptive evolution is currently accepted as playing a significant role in biological invasions. Adaptations relevant to invasions are typically thought to occur either recently within the introduced range, as an evolutionary response to novel selection regimes, or within the native range, because of long-term adaptation to the local environment. We propose that recent adaptation within the native range, in particular adaptations to human-altered habitat, could also contribute to the evolution of invasive populations. Populations adapted to human-altered habitats in the native range are likely to increase in abundance within areas frequented by humans and associated with human transport mechanisms, thus enhancing the likelihood of transport to a novel range. Given that habitats are altered by humans in similar ways worldwide, as evidenced by global environmental homogenization, propagules from populations adapted to human-altered habitats in the native range should perform well within similarly human-altered habitats in the novel range. We label this scenario 'Anthropogenically Induced Adaptation to Invade'. We illustrate how it differs from other evolutionary processes that may occur during invasions, and how it can help explain accelerating rates of invasions.
Collapse
Affiliation(s)
- Ruth A Hufbauer
- Department of Bioagricultural Science and Pest Management, Graduate Degree Program in Ecology, Colorado State University Ft Collins, CO, USA ; UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Benoît Facon
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Virginie Ravigné
- CIRAD, UMR BGPI, Campus International de Baillarguet Montpellier Cedex 5, France
| | - Julie Turgeon
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France ; Département de Biologie, Université Laval Quebec, QC, Canada
| | - Julien Foucaud
- Laboratoire Evolution, Génomes, Spéciation UMR-CNRS 9034, Gif-sur-Yvette, France
| | - Carol E Lee
- Center of Rapid Evolution (CORE), University of Wisconsin Madison, WI, USA
| | - Olivier Rey
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| | - Arnaud Estoup
- UMR CBGP (INRA-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet Montferrier/Lez Cedex, France
| |
Collapse
|
347
|
Faria NR, Hodges-Mameletzis I, Silva JC, Rodés B, Erasmus S, Paolucci S, Ruelle J, Pieniazek D, Taveira N, Treviño A, Gonçalves MF, Jallow S, Xu L, Camacho RJ, Soriano V, Goubau P, de Sousa JD, Vandamme AM, Suchard MA, Lemey P. Phylogeographical footprint of colonial history in the global dispersal of human immunodeficiency virus type 2 group A. J Gen Virol 2011; 93:889-899. [PMID: 22190015 DOI: 10.1099/vir.0.038638-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) emerged in West Africa and has spread further to countries that share socio-historical ties with this region. However, viral origins and dispersal patterns at a global scale remain poorly understood. Here, we adopt a Bayesian phylogeographic approach to investigate the spatial dynamics of HIV-2 group A (HIV-2A) using a collection of 320 partial pol and 248 partial env sequences sampled throughout 19 countries worldwide. We extend phylogenetic diffusion models that simultaneously draw information from multiple loci to estimate location states throughout distinct phylogenies and explicitly attempt to incorporate human migratory fluxes. Our study highlights that Guinea-Bissau, together with Côte d'Ivoire and Senegal, have acted as the main viral sources in the early stages of the epidemic. We show that convenience sampling can obfuscate the estimation of the spatial root of HIV-2A. We explicitly attempt to circumvent this by incorporating rate priors that reflect the ratio of human flow from and to West Africa. We recover four main routes of HIV-2A dispersal that are laid out along colonial ties: Guinea-Bissau and Cape Verde to Portugal, Côte d'Ivoire and Senegal to France. Within Europe, we find strong support for epidemiological linkage from Portugal to Luxembourg and to the UK. We demonstrate that probabilistic models can uncover global patterns of HIV-2A dispersal providing sampling bias is taken into account and we provide a scenario for the international spread of this virus.
Collapse
Affiliation(s)
- Nuno R Faria
- Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Joana C Silva
- Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Berta Rodés
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - Smit Erasmus
- HPA Birmingham, Heartlands Hospital, Birmingham, UK
| | | | - Jean Ruelle
- AIDS Reference Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Danuta Pieniazek
- Incidence and Case Surveillance Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nuno Taveira
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal.,Unidade dos Retrovírus e Infecções Associadas, Centro de Patogénese Molecular, Faculdade de Farmácia de Lisboa, Lisboa, Portugal
| | - Ana Treviño
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - Maria F Gonçalves
- Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Sabelle Jallow
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Li Xu
- HPA Birmingham, Heartlands Hospital, Birmingham, UK
| | - Ricardo J Camacho
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.,Laboratório de Biologia Molecular, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | - Vincent Soriano
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - Patrick Goubau
- AIDS Reference Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - João D de Sousa
- Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anne-Mieke Vandamme
- Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal.,Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine; Department of Biostatistics, School of Public Health; University of California, Los Angeles, USA
| | - Philippe Lemey
- Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
348
|
Kühnert D, Wu CH, Drummond AJ. Phylogenetic and epidemic modeling of rapidly evolving infectious diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2011; 11:1825-41. [PMID: 21906695 PMCID: PMC7106223 DOI: 10.1016/j.meegid.2011.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/09/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022]
Abstract
Epidemic modeling of infectious diseases has a long history in both theoretical and empirical research. However the recent explosion of genetic data has revealed the rapid rate of evolution that many populations of infectious agents undergo and has underscored the need to consider both evolutionary and ecological processes on the same time scale. Mathematical epidemiology has applied dynamical models to study infectious epidemics, but these models have tended not to exploit--or take into account--evolutionary changes and their effect on the ecological processes and population dynamics of the infectious agent. On the other hand, statistical phylogenetics has increasingly been applied to the study of infectious agents. This approach is based on phylogenetics, molecular clocks, genealogy-based population genetics and phylogeography. Bayesian Markov chain Monte Carlo and related computational tools have been the primary source of advances in these statistical phylogenetic approaches. Recently the first tentative steps have been taken to reconcile these two theoretical approaches. We survey the Bayesian phylogenetic approach to epidemic modeling of infection diseases and describe the contrasts it provides to mathematical epidemiology as well as emphasize the significance of the future unification of these two fields.
Collapse
|
349
|
Ahuka-Mundeke S, Ayouba A, Mbala-Kingebeni P, Liegeois F, Esteban A, Lunguya-Metila O, Demba D, Bilulu G, Mbenzo-Abokome V, Inogwabini BI, Muyembe-Tamfum JJ, Delaporte E, Peeters M. Novel multiplexed HIV/simian immunodeficiency virus antibody detection assay. Emerg Infect Dis 2011; 17:2277-86. [PMID: 22172157 PMCID: PMC3311211 DOI: 10.3201/eid1712.110783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Like most emerging infectious disease viruses, HIV is also of zoonotic origin. To assess the risk for cross-species transmission of simian immunodeficiency viruses (SIVs) from nonhuman primates to humans in the Democratic Republic of Congo, we collected 330 samples derived from nonhuman primate bushmeat at 3 remote forest sites. SIV prevalences were estimated by using a novel high-throughput assay that included 34 HIV and SIV antigens in a single well. Overall, 19% of nonhuman primate bushmeat was infected with SIVs, and new SIV lineages were identified. Highest SIV prevalences were seen in red-tailed guenons (25%) and Tshuapa red colobus monkeys (24%), representing the most common hunted primate species, thus increasing the likelihood for cross-species transmission. Additional studies are needed to determine whether other SIVs crossed the species barrier. With the newly developed assay, large-scale screening against many antigens is now easier and faster.
Collapse
|
350
|
Terio KA, Kinsel MJ, Raphael J, Mlengeya T, Lipende I, Kirchhoff CA, Gilagiza B, Wilson ML, Kamenya S, Estes JD, Keele BF, Rudicell RS, Liu W, Patton S, Collins A, Hahn BH, Travis DA, Lonsdorf EV. Pathologic lesions in chimpanzees (Pan trogylodytes schweinfurthii) from Gombe National Park, Tanzania, 2004-2010. J Zoo Wildl Med 2011; 42:597-607. [PMID: 22204054 PMCID: PMC3693847 DOI: 10.1638/2010-0237.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During a population decline or disease outbreak, the true risk of specific diseases to a wild population is often difficult to determine because of a lack of baseline disease information. To better understand the risk of disease in an endangered and scientifically important population of chimpanzees (Pan trogylodytes schweinfurthii), a health monitoring program was initiated in Gombe National Park, Tanzania. As part of this health monitoring program, comprehensive necropsies with histopathology were conducted on chimpanzees (n = 11; 5 male, 6 female), ranging in age from fetal to 44 yr, that were found dead between August 2004 and January 2010. In contrast to previous reports, respiratory disease was not noted as a cause of morbidity or mortality. Trauma was the most common cause of death in these 11 chimpanzees. All of the chimpanzees greater than 1 yr of age had intestinal and mesenteric parasitic granulomas associated with true strongyles consistent with Oesophagostomum spp. The relative numbers of granulomas increased with age and, in some cases, may have been a cause of weight loss and diarrhea. Simian immunodeficiency virus (SIV)cpz infection was documented in four deceased apes, all of whom exhibited varying amounts of lymphoid depletion including two females with marked CD4+ T cell loss consistent with endstage SIVmac or human immunodeficiency virus infections. Myocardial megalokaryosis was common in chimpanzees greater than 1 mo of age; yet myocardial interstitial fibrosis, a common lesion in captive chimpanzees, was uncommon and only noted in two aged chimpanzees. These findings provide important information on causes of morbidity and mortality in wild chimpanzees, information that can be used to interpret findings during population declines and lead to better management of this population in the context of disease risk.
Collapse
Affiliation(s)
- Karen A Terio
- Zoological Pathology Program, Zoological Pathology Program, LUMC Building 101, Room 0745, 2160 South First Street, University of Illinois, Maywood, Illinois 60153, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|