301
|
Detrait ER, Yoo S, Eddleman CS, Fukuda M, Bittner GD, Fishman HM. Plasmalemmal repair of severed neurites of PC12 cells requires Ca(2+) and synaptotagmin. J Neurosci Res 2000; 62:566-73. [PMID: 11070500 DOI: 10.1002/1097-4547(20001115)62:4<566::aid-jnr11>3.0.co;2-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ca(2+) and synaptotagmin (a Ca(2+)-binding protein that regulates axolemmal fusion of synaptic vesicles) play essential roles in the repair of axolemmal damage in invertebrate giant axons. We now report that neurites of a rat pheochromocytoma (PC12) cell line transected and maintained in a serum medium form a dye barrier (exclude an external hydrophilic fluorescent dye) and survive for 24-hr posttransection (based on morphology and retention of another hydrophilic dye internally loaded at 6-hr posttransection). Some (25%) transected neurites that form a dye barrier regrow. Most (83%) neurites transected in a saline solution containing divalent cations (PBS(++)) also exclude entry of an externally placed hydrophilic fluorescent dye at 15-min posttransection. In contrast, only 14 or 17% of neurites maintained in a divalent cation-free solution (PBS(=)) or in PBS(=) + Mg(2+), respectively, form a dye barrier. Neurites that do not form a dye barrier do not survive for 24 hr. When PC12 neurites are loaded with an antibody to squid synaptotagmin, most (81%) antibody-loaded neurites do not form a dye barrier, whereas most (>/=81%) neurites loaded with heat-inactivated antibody or preimmune IgG do form a barrier. These data show that: 1) transected neurites of PC12 cells have mechanism(s) for plasmalemmal repair (dye barrier formation and survival); 2) Ca(2+) is necessary for dye barrier formation, which occurs minutes after transection and is necessary for survival and regrowth; and 3) synaptotagmin is an essential mediator of barrier formation. The similarity in the requirements for plasmalemmal repair in this mammalian cell preparation with those reported previously for invertebrate axons suggests that mechanisms necessary for plasmalemmal repair have been conserved phylogenetically.
Collapse
Affiliation(s)
- E R Detrait
- Department of Physiology and Biophysics, University of Texas, Galveston, Texas 77555-0641, USA
| | | | | | | | | | | |
Collapse
|
302
|
Tramontina F, Karl J, Gottfried C, Mendez A, Gonçalves D, Portela LV, Gonçalves CA. Digitonin-permeabilization of astrocytes in culture monitored by trypan blue exclusion and loss of S100B by ELISA. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 6:86-90. [PMID: 11086267 DOI: 10.1016/s1385-299x(00)00041-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present protocol details a procedure to permeabilize astrocytes in cultures with digitonin as well as to discuss some data about factors that interfere in permeabilization, particularly divalent cations and nucleotides. Two methods to assess astrocyte permeabilization are described: trypan blue exclusion and ELISA for S100B, a specific protein expressed by these cells. Digitonin-permeabilization of astrocytes has been used to investigate intracellular pools of Ca(2+), internal stores of metabolites, phosphoinositide hydrolysis, and recently we standardized a procedure to study protein phosphorylation (Brain Res. 853 (2000) 32-40). A short incubation time (10 min) with 30 microM digitonin permeabilized at least 75% of cells. A range of media with different ionic nature can be used in cell permeabilization without affecting significantly the extent of permeabilization, but calcium and ATP of the order of 10(-5) M induced a partial resealing which deserves to be considered in assays of permeabilized preparations of astrocytes.
Collapse
Affiliation(s)
- F Tramontina
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90.035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
303
|
Hou XE, Dahlström A. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons. Neurochem Res 2000; 25:1275-300. [PMID: 11059802 DOI: 10.1023/a:1007600313865] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neurons in the superior cervical ganglion are active in plasticity and re-modelling in order to adapt to requirements. However, so far, only a few studies dealing with synaptic vesicle related proteins during adaptive processes have been published. In the present paper, changes in content and expression of the synaptic vesicle related proteins in the neurons after decentralization (cutting the cervical sympathetic trunk) or axotomy (cutting the internal and external carotid nerves) were studied. Immunofluorescence studies were carried out using antibodies and antisera against integral membrane proteins, vesicle associated proteins, NPY, and the enzymes TH and PNMT. For colocalization studies, the sections were simultaneously double labelled. Confocal laser scanning microscopy was used for colocalization studies as well as for semi-quantification analysis, using the computer software. Westen blot analysis, in situ 3'-end DNA labelling, and in situ hybridization were also employed. After decentralization of the ganglia several of the synaptic vesicle proteins (synaptotagmin I, synaptophysin, SNAP-25, CLC and GAP-43) were increased in the iris nerve terminal network, but with different time patterns, while TH-immunoreactivity had clearly decreased. In the ganglia, these proteins had decreased at 1 day after decentralization, probably due to degeneration of the pre-ganglionic nerve fibres and terminals. At later intervals, these proteins, except SNAP-25, had increased in the nerve fibre bundles and re-appeared in nerve fibres outlining the principal neurons.
Collapse
Affiliation(s)
- X E Hou
- Inst. of Anatomy and Cell Biology, Göteborg University, Sweden
| | | |
Collapse
|
304
|
Ueda N, Ohnishi H, Kanamaru C, Suzuki J, Tsuchida T, Mashima H, Yasuda H, Fujita T. Kinesin is involved in regulation of rat pancreatic amylase secretion. Gastroenterology 2000; 119:1123-31. [PMID: 11040199 DOI: 10.1053/gast.2000.18145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Kinesin has recently been localized to zymogen granules of pancreatic acini and is suggested to participate in exocytosis of exocrine pancreas. We examined the function of kinesin in regulated exocytosis of pancreatic acini in this study. METHODS Kinesin function in exocytosis was examined by introducing hexahistidine-tagged recombinant kinesin protein and antikinesin monoclonal antibody into streptolysin-O-permeabilized acini. Intracellular localization of introduced recombinant kinesin was investigated by immunohistochemistry. Interaction between recombinant kinesin and the microtubule network was confirmed by nocodazole pretreatment of acini. Kinesin regulation by secretagogues was investigated by examining their effect on adenosine triphosphatase (ATPase) activity of endogenous kinesin. RESULTS Recombinant kinesin enhanced calcium-stimulated amylase release from streptolysin-O-permeabilized acini. Introduced recombinant kinesin was localized to both the microtubule network and zymogen granule. Nocodazole pretreatment of acini abolished the enhancing effect of recombinant kinesin on calcium-stimulated amylase release. Antikinesin antibody inhibited amylase release stimulated by the combination of calcium and cyclic adenosine monophosphate (cAMP) but not that stimulated by calcium alone. Secretin and 8-bromo-cAMP increased ATPase activity of endogenous kinesin. CONCLUSIONS Kinesin plays a stimulatory role in regulated exocytosis of pancreatic acini and is involved in stimulus-secretion coupling through a cAMP-dependent pathway.
Collapse
Affiliation(s)
- N Ueda
- Fourth Department of Internal Medicine, School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
The capacities to repair minor membrane holes in damaged single cells, and the more major damage sustained when a multicellular tissue is wounded, both involve a series of ancient and highly conserved processes. In this review, we discuss what is known about how the plasma membrane of a single cell and its underlying cortical cytoplasm are repaired following cell damage, and how multicellular wounds to the embryonic and adult skin are also able to heal. Pivotal for all these processes is the actin cytoskeleton and we draw analogies between the actin machineries that drive repair and those that appear to underlie several genetically tractable morphogenetic processes that occur during Drosophila and Caenorhabditis elegans embryogenesis.
Collapse
Affiliation(s)
- K Woolley
- Department of Anatomy and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
306
|
Eddleman CS, Bittner GD, Fishman HM. Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Biophys J 2000; 79:1883-90. [PMID: 11023894 PMCID: PMC1301080 DOI: 10.1016/s0006-3495(00)76438-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
After axonal severance, a barrier forms at the cut ends to rapidly restrict bulk inflow and outflow. In severed crayfish axons we used the exclusion of hydrophilic, fluorescent dye molecules of different sizes (0.6-70 kDa) and the temporal decline of ionic injury current to levels in intact axons to determine the time course (0-120 min posttransection) of barrier formation and the posttransection time at which an axolemmal ionic seal had formed, as confirmed by the recovery of resting and action potentials. Confocal images showed that the posttransection time of dye exclusion was inversely related to dye molecular size. A barrier to the smallest dye molecule formed more rapidly (<60 min) than did the barrier to ionic entry (>60 min). These data show that axolemmal sealing lacks abrupt, large changes in barrier permeability that would be expected if a seal were to form suddenly, as previously assumed. Rather, these data suggest that a barrier forms gradually and slowly by restricting the movement of molecules of progressively smaller size amid injury-induced vesicles that accumulate, interact, and form junctional complexes with each other and the axolemma at the cut end. This process eventually culminates in an axolemmal ionic seal, and is not complete until ionic injury current returns to baseline levels measured in an undamaged axon.
Collapse
Affiliation(s)
- C S Eddleman
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | | | |
Collapse
|
307
|
Detrait E, Eddleman CS, Yoo S, Fukuda M, Nguyen MP, Bittner GD, Fishman HM. Axolemmal repair requires proteins that mediate synaptic vesicle fusion. JOURNAL OF NEUROBIOLOGY 2000; 44:382-91. [PMID: 10945894 DOI: 10.1002/1097-4695(20000915)44:4<382::aid-neu2>3.0.co;2-q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A damaged cell membrane is repaired by a seal that restricts entry or exit of molecules and ions to that of the level passing through an undamaged membrane. Seal formation requires elevation of intracellular Ca(2+) and, very likely, protein-mediated fusion of membranes. Ca(2+) also regulates the interaction between synaptotagmin (Syt) and syntaxin (Syx), which is thought to mediate fusion of synaptic vesicles with the axolemma, allowing transmitter release at synapses. To determine whether synaptic proteins have a role in sealing axolemmal damage, we injected squid and crayfish giant axons with an antibody that inhibits squid Syt from binding Ca(2+), or with another antibody that inhibits the Ca(2+)-dependent interaction of squid Syx with the Ca(2+)-binding domain of Syt. Axons injected with antibody to Syt did not seal, as assessed at axonal cut ends by the exclusion of extracellular hydrophilic fluorescent dye using confocal microscopy, and by the decay of extracellular injury current compared to levels measured in uninjured axons using a vibrating probe technique. In contrast, axons injected with either denatured antibody to Syt or preimmune IgG did seal. Similarly, axons injected with antibody to Syx did not seal, but did seal when injected with either denatured antibody to Syx or preimmune IgG. These results indicate an essential involvement of Syt and Syx in the repair (sealing) of severed axons. We suggest that vesicles, which accumulate and interact at the injury site, re-establish axolemmal continuity by Ca(2+)-induced fusions mediated by proteins such as those involved in neurotransmitter release.
Collapse
Affiliation(s)
- E Detrait
- Department of Physiology & Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | | | | | | | | | | | |
Collapse
|
308
|
Aeschlimann D, Thomazy V. Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 2000; 41:1-27. [PMID: 10826705 DOI: 10.3109/03008200009005638] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transglutaminases form a family of proteins that have evolved for specialized functions such as protein crosslinking in haemostasis, semen coagulation, or keratinocyte cornified envelope formation. In contrast to the other members of this protein family, tissue transglutaminase is a multifunctional enzyme apparently involved in very disparate biological processes. By virtue of its reciprocal Ca2+-dependent crosslinking activity or GTP-dependent signal transducing activity, tissue transglutaminase exhibits true multifunctionality at the molecular level. The crosslinking activity can subserve disparate biological phenomena depending on the location of the target proteins. Intracellular activation of tissue transglutaminase can give rise to crosslinked protein envelopes in apoptotic cells, whereas extracellular activation contributes to stabilization of the extracellular matrix and promotes cell-substrate interaction. While tissue transglutaminase synthesis and activation is normally part of a protective cellular response contributing to tissue homeostasis, the enzyme has also been implicated in a number of pathological conditions including fibrosis, atherosclerosis, neurodegenerative diseases, celiac disease, and cancer metastasis. This review discusses the role of transglutaminases in extracellular matrix crosslinking with a focus on the multifunctional enzyme tissue transglutaminase.
Collapse
Affiliation(s)
- D Aeschlimann
- Division of Orthopedic Surgery, University of Wisconsin, Clinical Science Center, Madison 53792, USA
| | | |
Collapse
|
309
|
Ahmed SA, Smith LA. Light chain of botulinum A neurotoxin expressed as an inclusion body from a synthetic gene is catalytically and functionally active. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:475-87. [PMID: 11195972 DOI: 10.1023/a:1026549431380] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Botulinum neurotoxins, the most potent of all toxins, induce lethal neuromuscular paralysis by inhibiting exocytosis at the neuromuscular junction. The light chains (LC) of these dichain neurotoxins are a new class of zinc-endopeptidases that specifically cleave the synaptosomal proteins, SNAP-25, VAMP, or syntaxin at discrete sites. To facilitate the structural and functional characterization of these unique endopeptidases, we constructed a synthetic gene for the LC of the botulinum neurotoxin serotype A (BoNT/A), overexpressed it in Escherichia coli, and purified the gene product from inclusion bodies. Our procedure can provide 1.1 g of the LC from 1 L of culture. The LC product was stable in solution at 4 degrees C for at least 6 months. This rBoNT/A LC was proteolytically active, specifically cleaving the Glu-Arg bond in a 17-residue synthetic peptide of SNAP-25, the reported cleavage site of BoNT/A. Its calculated catalytic efficiency kcat/Km was higher than that reported for the native BoNT/A dichain. Treating the rBoNT/A LC with mercuric compounds completely abolished its activity, most probably by modifying the cysteine-164 residue located in the vicinity of the active site. About 70% activity of the LC was restored by adding Zn2+ to a Zn2+-free, apo-LC preparation. The LC was nontoxic to mice and failed to elicit neutralizing epitope(s) when the animals were vaccinated with this protein. In addition, injecting rBoNT/A LC into sea urchin eggs inhibited exocytosis-dependent plasma membrane resealing. For the first time, results of our study make available a large amount of the biologically active toxin fragment in a soluble and stable form.
Collapse
Affiliation(s)
- S A Ahmed
- Department of Immunology and Molecualr Biology, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | | |
Collapse
|
310
|
Alderton JM, Steinhardt RA. How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc Med 2000; 10:268-72. [PMID: 11282306 DOI: 10.1016/s1050-1738(00)00075-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duchenne muscular dystrophy patients lack the protein dystrophin which is an essential link in the complex of proteins that connect the cytoskeleton to the extracellular matrix. In mechanically stressed tissues such as muscle, transient sarcolemmal microdisruptions are normal, but in dystrophic muscle cells the frequency of these microdisruptions is greatly increased. Although both normal and dystrophic cells are able to actively repair these microdisruptions, calcium entry through the more frequent sarcolemmal microdisruptions of dystrophic cells results in an increased calcium-dependent proteolysis that alters the activity of the calcium leak channel. The accumulation of abnormally active calcium leak channels over time results in a gradual loss of calcium homeostasis and eventual cell death.
Collapse
Affiliation(s)
- J M Alderton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
311
|
Scholey JM. Functions of motor proteins in echinoderm embryos: an argument in support of antibody inhibition experiments. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:257-60. [PMID: 9556327 DOI: 10.1002/(sici)1097-0169(1998)39:4<257::aid-cm1>3.0.co;2-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antibody inhibition experiments are proving to be extremely valuable in probing the in vivo functions of actin- and microtubule-based motor proteins in the early development of echinoderm embryos, despite some skepticism among many cell biologists concerning the reliability of this approach. Antibody inhibition has revealed that motor proteins participate in diverse events during early echinoderm development, including mitosis, cytokinesis, the transport of exocytotic vesicles, and the assembly of motile cilia.
Collapse
Affiliation(s)
- J M Scholey
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA.
| |
Collapse
|
312
|
Gonçalves CA, Gottfried C, Dunkley PR. The use of permeabilized cells to assay protein phosphorylation and catecholamine release. Neurochem Res 2000; 25:885-94. [PMID: 10944008 DOI: 10.1023/a:1007533927813] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of approaches can be used to determine the protein kinases and protein phosphatases acting on particular phosphoproteins in vivo. Cell permeabilization represents one such approach. In this overview we discuss the different permeabilization procedures used in bovine adrenal chromaffin cells and in particular the use of digitonin. The effect of various factors on the extent of digitonin-permeabilization, protein phosphorylation and catecholamine release are also discussed. The factors include the permeabilization medium, the ions such as calcium, and the second messengers, such as cAMP, IP3, cADPR and calmodulin. The effect of specific peptide inhibitors of protein kinases on tyrosine hydroxylase phosphorylation is illustrated. Advantages and disadvantages of cell permeabilization procedures are discussed throughout the text.
Collapse
Affiliation(s)
- C A Gonçalves
- Dept de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
313
|
McNeil PL, Vogel SS, Miyake K, Terasaki M. Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 2000; 113 ( Pt 11):1891-902. [PMID: 10806100 DOI: 10.1242/jcs.113.11.1891] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicle-vesicle fusion initiated in cell cytoplasm by high Ca(2+) can rapidly erect large membrane boundaries. These might be used as a ‘patch’ for resealing plasma membrane disruptions. Three central predictions of this ‘patch’ hypothesis are here established in sea urchin eggs. First, we show that surface markers for plasma membrane protein and lipid are initially absent over disruption sites after resealing is complete. Second, we demonstrate that resealing capacity is strongly dependent upon local availability of fusion competent cytoplasmic organelles, specifically the reserve or yolk granule. Lastly, we demonstrate that the reserve granule is capable of rapid (t(1/2) <1 second), Ca(2+)-regulated (high threshold) fusion capable of erecting large (>1000 μm(2)), continuous membrane boundaries. Production of patch vesicles for resealing may proceed by an ‘emergency’ fusion mechanism distinct from that utilized for the much slower, highly regulated, cytosol-requiring organelle-organelle fusion events typical of constitutive membrane trafficking pathways.
Collapse
Affiliation(s)
- P L McNeil
- Department of Cellular Biology and Anatomy, and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | |
Collapse
|
314
|
Humeau Y, Doussau F, Grant NJ, Poulain B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000; 82:427-46. [PMID: 10865130 DOI: 10.1016/s0300-9084(00)00216-9] [Citation(s) in RCA: 339] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins (BoNT, serotypes A-G) and tetanus neurotoxin (TeNT) are bacterial proteins that comprise a light chain (M(r) approximately 50) disulfide linked to a heavy chain (M(r) approximately 100). By inhibiting neurotransmitter release at distinct synapses, these toxins cause two severe neuroparalytic diseases, tetanus and botulism. The cellular and molecular modes of action of these toxins have almost been deciphered. After binding to specific membrane acceptors, BoNTs and TeNT are internalized via endocytosis into nerve terminals. Subsequently, their light chain (a zinc-dependent endopeptidase) is translocated into the cytosolic compartment where it cleaves one of three essential proteins involved in the exocytotic machinery: vesicle associated membrane protein (also termed synaptobrevin), syntaxin, and synaptosomal associated protein of 25 kDa. The aim of this review is to explain how the proteolytic attack at specific sites of the targets for BoNTs and TeNT induces perturbations of the fusogenic SNARE complex dynamics and how these alterations can account for the inhibition of spontaneous and evoked quantal neurotransmitter release by the neurotoxins.
Collapse
Affiliation(s)
- Y Humeau
- Laboratoire de Neurobiologie Cellulaire, UPR 9009 du CNRS, Centre de Neurochimie, 5, rue Blaise-Pascal, 67084 cedex, Strasbourg, France
| | | | | | | |
Collapse
|
315
|
Abstract
Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
Collapse
Affiliation(s)
- G Schiavo
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
316
|
Valeva A, Walev I, Gerber A, Klein J, Palmer M, Bhakdi S. Staphylococcal alpha-toxin: repair of a calcium-impermeable pore in the target cell membrane. Mol Microbiol 2000; 36:467-76. [PMID: 10792732 DOI: 10.1046/j.1365-2958.2000.01865.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal alpha-toxin forms heptameric pores that render membranes permeable for monovalent cations. The pore is formed by an amphipathic beta-barrel encompassing amino acid residues 118-140 of each subunit of the oligomer. Human fibroblasts are susceptible to alpha-toxin but are able to repair the membrane lesions. Thereby, toxin oligomers remain embedded in the plasma membrane and exposed to the extracellular medium. In this study, we sought to detect structural changes occurring in the pore-forming sequence during lesion repair. Single cysteine substitution mutants were labelled with the environmentally sensitive fluorochrome acrylodan and, after mixing with wild-type toxin, incorporated into hybrid heptamers on fibroblast membranes. Formation of the lipid-inserted beta-barrel was accompanied by characteristic fluorescence emission shifts. After lesion repair, the environment of the residues at the outer surface of the beta-barrel remained unchanged, indicating continued contact with lipids. However, the labelled residues oriented towards the channel lumen underwent a green to blue shift in fluorescence, indicating reduced exposure to water. Pore closure proceeded in the presence of calmodulin inhibitors and of microtubule disruptors; however, it was prevented by cytochalasin D and by inhibitors of lipid metabolism. Our findings reveal the existence of a novel mechanism of membrane repair that may consist in constriction of the inserted proteinaceous pore within the lipid bilayer.
Collapse
Affiliation(s)
- A Valeva
- Institutes of Medical Microbiology and Hygiene, and Pharmacology, University of Mainz, Hochhaus am Augustusplatz, D-55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
317
|
Jedd G, Chua NH. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2000; 2:226-31. [PMID: 10783241 DOI: 10.1038/35008652] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Woronin body is a membrane-bound organelle that has been observed in over 50 species of filamentous fungi. However, neither the composition nor the precise function of the Woronin body has yet been determined. Here we purify the Woronin body from Neurospora crassa and isolate Hex1, a new protein containing a consensus sequence known as peroxisome-targeting signal-1 (PTS1). We show that Hex1 is localized to the matrix of the Woronin body by immunoelectron microscopy, and that a green fluorescent protein- (GFP-)Hex1 fusion protein is targeted to yeast peroxisomes in a PTS1- and peroxin-dependent manner. The expression of the HEX1 gene in yeast generates hexagonal vesicles that are morphologically similar to the native Woronin body, implying a Hex1-encoded mechanism of Woronin-body assembly. Deletion of HEX1 in N. crassa eliminates Woronin bodies from the cytoplasm and results in hyphae that exhibit a cytoplasmic-bleeding phenotype in response to cell lysis. Our results show that the Woronin body represents a new category of peroxisome with a function in the maintenance of cellular integrity.
Collapse
Affiliation(s)
- G Jedd
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | |
Collapse
|
318
|
Alderton JM, Steinhardt RA. Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. J Biol Chem 2000; 275:9452-60. [PMID: 10734092 DOI: 10.1074/jbc.275.13.9452] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To estimate calpain proteolysis, we measured the hydrolysis rate of a fluorogenic calpain substrate in individual resting normal and dystrophic mdx mouse myotubes in culture. Hydrolysis rates were high during myoblast and myotube alignment and fusion. After alignment and fusion ceased, hydrolysis rates declined. For normal myotubes, hydrolysis remained low after the development of contractile activity. In contrast, after the development of contractile activity, dystrophic mdx myotubes had abnormally high levels of hydrolysis that were dependent on external calcium and that could be abolished by calpeptin, an inhibitor of calpain. We eliminated the direct effects of contraction during measurements of hydrolysis by the addition of tetrodotoxin. Substrate hydrolysis by lysosomes or proteosomes was controlled for using NH(4)Cl and clasto-lactacystin beta-lactone, respectively. Increased activity of the calcium-activated protease in mature mdx myotubes was linked to the abnormal activity of calcium-specific leak channels because an antagonist of these channels reduced the higher levels of hydrolysis in dystrophic myotubes to nearly normal levels. The abnormal activity of these channels is linked to an increased frequency of transient sarcolemmal disruptions in the more fragile mdx myotubes (, ). Treatment of mdx myotubes with a pro-drug of methylprednisolone also reduced calpain substrate hydrolysis to nearly normal levels. However, this inhibition only required 2.5 h of pretreatment, which was not long enough to act by the known effects of prednisolone on calcium homeostasis.
Collapse
Affiliation(s)
- J M Alderton
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
319
|
Lichstein JW, Ballinger ML, Blanchette AR, Fishman HM, Bittner GD. Structural changes at cut ends of earthworm giant axons in the interval between dye barrier formation and neuritic outgrowth. J Comp Neurol 2000; 416:143-57. [PMID: 10581462 DOI: 10.1002/(sici)1096-9861(20000110)416:2<143::aid-cne2>3.0.co;2-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe structural changes at the cut ends of invertebrate myelinated earthworm giant axons beginning with the formation of a dye barrier (15 minutes posttransection or postcalcium addition) and ending with the formation of a neuritic outgrowth (2-10 days posttransection). The morphology of the cut end, and the location and morphological configuration of the dye barrier, were assessed by time-lapse confocal, fluorescence microscopy and by electron microscopy. During the interval from 15 to 35 minutes postcalcium addition, the dye barrier continuously migrated away from a cut axonal end; the dye barrier then remained stable for up to 5 hours. The size, packing density, and arrangement of membranous structures were correlated with changes in the dye barrier from 15 to 35 minutes postcalcium addition. During this interval, uptake of an externally placed hydrophilic dye by these membranous structures was also variable. After 35 minutes postcalcium addition, the membranous structures remained stable until they completely disappeared between 1 and 2 days posttransection. The disappearance of membranous structures always preceded neuritic outgrowth, which only arose from cut axonal ends. These results demonstrate that the dye barrier and associated membranous structures, which form after transection of earthworm giant axons, are very dynamic in the short term (35 minutes) with respect to their location and morphological configuration and suggest that axolemmal repair must be completed before neuritic outgrowth can occur.
Collapse
Affiliation(s)
- J W Lichstein
- Section of Neurobiology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas 78712-1064, USA
| | | | | | | | | |
Collapse
|
320
|
Williams AR, Bao S, Miller DL. Filtroporation: A simple, reliable technique for transfection and macromolecular loading of cells in suspension. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19991105)65:3<341::aid-bit12>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
321
|
Clarke MS, Prendergast MA, Terry AV. Plasma membrane ordering agent pluronic F-68 (PF-68) reduces neurotransmitter uptake and release and produces learning and memory deficits in rats. Learn Mem 1999; 6:634-49. [PMID: 10641767 PMCID: PMC311314 DOI: 10.1101/lm.6.6.634] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A substantial body of evidence indicates that aged-related changes in the fluidity and lipid composition of the plasma membrane contribute to cellular dysfunction in humans and other mammalian species. In the CNS, reductions in neuronal plasma membrane order (PMO) (i.e., increased plasma membrane fluidity) have been attributed to age as well as the presence of the beta-amyloid peptide-25-35, known to play an important role in the neuropathology of Alzheimer's disease (AD). These PMO increases may influence neurotransmitter synthesis, receptor binding, and second messenger systems as well as signal transduction pathways. The effects of neuronal PMO on learning and memory processes have not been adequately investigated, however. Based on the hypothesis that an increase in PMO may alter a number of aspects of synaptic transmission, we investigated several neurochemical and behavioral effects of the membrane ordering agent, PF-68. In cell culture, PF-68 (nmoles/mg SDS extractable protein) reduced [3H]norepinephrine (NE) uptake into differentiated PC-12 cells as well as reduced nicotine stimulated [3H]NE release. The compound (800-2400 microg/kg, i.p., resulting in nmoles/mg SDS extractable protein in the brain) decreased step-through latencies and increased the frequencies of crossing into the unsafe side of the chamber in inhibitory avoidance training. In the Morris water maze, PF-68 increased the latencies and swim distances required to locate a hidden platform and reduced the time spent and distance swam in the previous target quadrant during transfer (probe) trials. PF-68 did not impair performance of a well-learned working memory task, the rat delayed stimulus discrimination task (DSDT), however. Studies with 14C-labeled PF-68 indicated that significant (pmoles/mg wet tissue) levels of the compound entered the brain from peripheral (i.p.) injection. No PF-68 related changes were observed in swim speeds or in visual acuity tests in water maze experiments, rotorod performance, or in tests of general locomotor activity. Furthermore, latencies to select a lever in the DSDT were not affected. These results suggest that PF-68 induced deficits in learning and memory without confounding peripheral motor, sensory, or motivational effects at the tested doses. Furthermore, none of the doses induced a conditioned taste aversion to a novel 0.1% saccharin solution indicating a lack of nausea or gastrointestinal malaise induced by the compound. The data indicate that increases in neuronal plasma membrane order may have significant effects on neurotransmitter function as well as learning and memory processes. Furthermore, compounds such as PF-68 may also offer novel tools for studying the role of neuronal PMO in mnemonic processes and changes in PMO resulting from age-related disorders such as AD.
Collapse
Affiliation(s)
- M S Clarke
- Division of Space Life Sciences, Universities Space Research Association, NASA/Johnson Space Center, Houston, Texas 77058, USA
| | | | | |
Collapse
|
322
|
Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M. Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 1999; 274:30707-14. [PMID: 10521459 DOI: 10.1074/jbc.274.43.30707] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence indicates that tissue transglutaminase (tTG) plays a role in the assembly and remodeling of extracellular matrices and promotes cell adhesion. Using an inducible system we have previously shown that tTG associates with the extracellular matrix deposited by stably transfected 3T3 fibroblasts overexpressing the enzyme. We now show by confocal microscopy that tTG colocalizes with pericellular fibronectin in these cells, and by immunogold electron microscopy that the two proteins are found in clusters at the cell surface. Expression vectors encoding the full-length tTG or a N-terminal truncated tTG lacking the proposed fibronectin-binding site (fused to the bacterial reporter enzyme beta-galactosidase) were generated to characterize the role of fibronectin in sequestration of tTG in the pericellular matrix. Enzyme-linked immunosorbent assay style procedures using extracts of transiently transfected COS-7 cells and immobilized fibronectin showed that the truncation abolished fibronectin binding. Similarly, the association of tTG with the pericellular matrix of cells in suspension or with the extracellular matrix deposited by cell monolayers was prevented by the truncation. These results demonstrate that tTG binds to the pericellular fibronectin coat of cells via its N-terminal beta-sandwich domain and that this interaction is crucial for cell surface association of tTG.
Collapse
Affiliation(s)
- C A Gaudry
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | |
Collapse
|
323
|
Blanchette AR, Ballinger ML, Fishman HM, Bittner GD. Calcium entry initiates processes that restore a barrier to dye entry in severed earthworm giant axons. Neurosci Lett 1999; 272:147-50. [PMID: 10505602 DOI: 10.1016/s0304-3940(99)00544-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
After severance, axons can restore structural barriers that are necessary for recovery of their electrical function. In earthworm myelinated axons, such a barrier to dye entry is mediated by many vesicles and myelin-derived membranous structures. From time-lapse confocal fluorescence and DIC images, we now report that Ca2+ entry and not axonal injury per se initiates the processes that form a dye barrier, as well as the subsequent structural changes in this barrier and associated membranous structures. The time required to restore a dye barrier after transection also depends only on the time of Ca2+ entry.
Collapse
Affiliation(s)
- A R Blanchette
- Department of Zoology, The University of Texas at Austin 78712-106, USA
| | | | | | | |
Collapse
|
324
|
Hirst BH. Parietal cell membrane trafficking. Focus on "Expression of rab11a N124I in gastric parietal cells inhibits stimulatory recruitment of the H+-K+-ATPase". THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C359-60. [PMID: 10484322 DOI: 10.1152/ajpcell.1999.277.3.c359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- B H Hirst
- Department of Physiological Sciences, University of Newcastle, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
325
|
Howard MJ, David G, Barrett JN. Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 1999; 93:807-15. [PMID: 10465464 DOI: 10.1016/s0306-4522(99)00195-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mechanisms underlying resealing of transected myelinated rat dorsal root axons were investigated in vivo using an assay based on exclusion of a hydrophilic dye (Lucifer Yellow-biocytin conjugate). Smaller caliber axons (<5 microm outer diameter) resealed faster than larger axons. Resealing was Ca2+ dependent, requiring micromolar levels of extracellular [Ca2+] to proceed, and further accelerated in 1 mM Ca2+. Two hours after transection, 84% of axons had resealed in saline containing 2 mM Ca2+, 28% had resealed in saline containing no added Ca2+ and only 3% had resealed in the Ca2+ buffer BAPTA (3 mM). The enhancing effect of Ca2+ could be overcome by both non-specific cysteine protease inhibitors (e.g., leupeptin) and inhibitors specific for the calpain family of Ca2+ -activated proteases. Resealing in 2 mM Ca2+ was not inhibited by an inhibitor of phospholipase A2. Resealing in low [Ca2+] was not enhanced by agents which disrupt microtubules, but was enhanced by dimethylsulfoxide (0.5-5%). These results suggest that activation of endogenous calpain-like proteases by elevated intra-axonal [Ca2+] contributes importantly to membrane resealing in transected myelinated mammalian axons in vivo.
Collapse
Affiliation(s)
- M J Howard
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL 33101, USA
| | | | | |
Collapse
|
326
|
Abstract
Recently, Xenopus oocytes have been shown to repair wounds using a contractile system composed of actin and myosin-II. The work underscores the importance of actin-based myosin-II contractility in cellular and supracellular 'purse strings' that function in diverse biological processes.
Collapse
Affiliation(s)
- D P Kiehart
- Department of Cell Biology, University Program in Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
327
|
Rodríguez A, Martinez I, Chung A, Berlot CH, Andrews NW. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J Biol Chem 1999; 274:16754-9. [PMID: 10358016 DOI: 10.1074/jbc.274.24.16754] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+-regulated exocytosis, previously believed to be restricted to specialized cells, was recently recognized as a ubiquitous process. In mammalian fibroblasts and epithelial cells, exocytic vesicles mobilized by Ca2+ were identified as lysosomes. Here we show that elevation in intracellular cAMP potentiates Ca2+-dependent exocytosis of lysosomes in normal rat kidney fibroblasts. The process can be modulated by the heterotrimeric G proteins Gs and Gi, consistent with activation or inhibition of adenylyl cyclase. Normal rat kidney cell stimulation with isoproterenol, a beta-adrenergic agonist that activates adenylyl cyclase, enhances Ca2+-dependent lysosome exocytosis and cell invasion by Trypanosoma cruzi, a process that involves parasite-induced [Ca2+]i transients and fusion of host cell lysosomes with the plasma membrane. Similarly to what is observed for T. cruzi invasion, the actin cytoskeleton acts as a barrier for Ca2+-induced lysosomal exocytosis. In addition, infective stages of T. cruzi trigger elevation in host cell cAMP levels, whereas no effect is observed with noninfective forms of the parasite. These findings demonstrate that cAMP regulates lysosomal exocytosis triggered by Ca2+ and a parasite/host cell interaction known to involve Ca2+-dependent lysosomal fusion.
Collapse
Affiliation(s)
- A Rodríguez
- Departments of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | | | | | | | | |
Collapse
|
328
|
Bement WM, Mandato CA, Kirsch MN. Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr Biol 1999; 9:579-87. [PMID: 10359696 DOI: 10.1016/s0960-9822(99)80261-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Both single cells and multicellular systems rapidly heal physical insults but are thought to do so by distinctly different mechanisms. Wounds in single cells heal by calcium-dependent membrane fusion, whereas multicellular wounds heal by a variety of different mechanisms, including circumferential contraction of an actomyosin 'purse string' that assembles around wound borders and is dependent upon the small GTPase Rho. RESULTS We investigated healing of puncture wounds made in Xenopus oocytes, a single-cell system. Oocyte wounds rapidly assumed a circular morphology and constricted circumferentially, coincident with the recruitment of filamentous actin (F-actin) and myosin-II to the wound borders. Surprisingly, recruitment of myosin-II to wound borders occurred before that of F-actin. Further, experimental disruption of F-actin prevented healing but did not prevent myosin-II recruitment. Actomyosin purse-string assembly and closure was dependent on Rho GTPases and extracellular calcium. Wounding resulted in reorganization of microtubules into an array similar to that which forms during cytokinesis in Xenopus embryos. Experimental perturbation of oocyte microtubules before wounding inhibited actomyosin recruitment and wound closure, whereas depolymerization of microtubules after wounding accelerated wound closure. CONCLUSIONS We conclude the following: actomyosin purse strings can close single-cell wounds; myosin-II is recruited to wound borders independently of F-actin; purse-string assembly is dependent on a Rho GTPase; and purse-string assembly and closure are controlled by microtubules. More generally, the results indicate that actomyosin purse strings have been co-opted through evolution to dispatch a broad variety of single-cell and multicellular processes, including wound healing, cytokinesis and morphogenesis.
Collapse
Affiliation(s)
- W M Bement
- Department of Zoology, Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
329
|
Abstract
FM1-43 and similar styryl dyes have proven useful as probes for membrane trafficking because they reversibly stain membranes, are impermeable to membranes, and are more fluorescent when bound to membranes than when in solution. Because these dyes stain membranes in an activity-dependent manner, they are ideal for studies of neurotransmitter release mechanisms such as synaptic vesicle recycling, exocytosis, and endocytosis. FM dyes have been used in conjunction with other techniques such as fluorescent calcium indicator dyes and electrophysiological techniques to elucidate mechanisms of presynaptic calcium homeostasis and modulation of neurotransmitter release. Presynaptic membranes have been marked by FM dyes in studies of synaptogenesis and reinnervation. As a probe for endocytosed membranes, these dyes have been used to examine vacuole formation in yeast. These versatile membrane dyes are useful in a variety of applications.
Collapse
Affiliation(s)
- A J Cochilla
- Department of Physiology and Biophysics, University of Colorado Medical School 80262, USA.
| | | | | |
Collapse
|
330
|
Rapid induction of functional and morphological continuity between severed ends of mammalian or earthworm myelinated axons. J Neurosci 1999. [PMID: 10087059 DOI: 10.1523/jneurosci.19-07-02442.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inability to rapidly restore the loss of function that results from severance (cutting or crushing) of PNS and CNS axons is a severe clinical problem. As a novel strategy to help alleviate this problem, we have developed in vitro procedures using Ca2+-free solutions of polyethylene glycol (PEG solutions), which within minutes induce functional and morphological continuity (PEG-induced fusion) between the cut or crushed ends of myelinated sciatic or spinal axons in rats. Using a PEG-based hydrogel that binds to connective tissue to provide mechanical strength at the lesion site and is nontoxic to nerve tissues in earthworms and mammals, we have also developed in vivo procedures that permanently maintain earthworm myelinated medial giant axons whose functional and morphological integrity has been restored by PEG-induced fusion after axonal severance. In all these in vitro or in vivo procedures, the success of PEG-induced fusion of sciatic or spinal axons and myelinated medial giant axons is measured by the restored conduction of action potentials through the lesion site, the presence of intact axonal profiles in electron micrographs taken at the lesion site, and/or the intra-axonal diffusion of fluorescent dyes across the lesion site. These and other data suggest that the application of polymeric fusiogens (such as our PEG solutions), possibly combined with a tissue adherent (such as our PEG hydrogels), could lead to in vivo treatments that rapidly and permanently repair cut or crushed axons in the PNS and CNS of adult mammals, including humans.
Collapse
|
331
|
Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O'Brodovich H, Lukacs GL. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 1999; 6:482-97. [PMID: 10476208 DOI: 10.1038/sj.gt.3300867] [Citation(s) in RCA: 419] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inefficient nuclear delivery of plasmid DNA is thought to be one of the daunting hurdles to gene transfer, utilizing a nonviral delivery system such as polycation-DNA complex. Following its internalization by endocytosis, plasmid DNA has to be released into the cytosol before its nuclear entry can occur. However, the stability of plasmid DNA in the cytoplasm, that may play a determinant role in the transfection efficiency, is not known. The turnover of plasmid DNA, delivered by microinjection into the cytosol, was determined by fluorescence in situ hybridization (FISH) and quantitative single-cell fluorescence video-image analysis. Both single- and double-stranded circular plasmid DNA disappeared with an apparent half-life of 50-90 min from the cytoplasm of HeLa and COS cells, while the amount of co-injected dextran (MW 70,000) remained unaltered. We propose that cytosolic nuclease(s) are responsible for the rapid-degradation of plasmid DNA, since (1) elimination of plasmid DNA cannot be attributed to cell division or to the activity of apoptotic and lysosomal nucleases; (2) disposal of microinjected plasmid DNA was inhibited in cytosol-depleted cells or following the encapsulation of DNA in phospholipid vesicles; (3) generation and subsequent elimination of free 3'-OH ends could be detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay (TUNEL), reflecting the fragmentation of the injected DNA; and finally (4) isolated cytosol, obtained by selective permeabilization of the plasma membrane, exhibits divalent cation-dependent, thermolabile nuclease activity, determined by Southern blotting and 32P-release from end-labeled DNA. Collectively, these findings suggest that the metabolic instability of plasmid DNA, caused by cytosolic nuclease, may constitute a previously unrecognized impediment for DNA translocation into the nucleus and a possible target to enhance the efficiency of gene delivery.
Collapse
Affiliation(s)
- D Lechardeur
- Program in Cell and Lung Biology and Lung Gene Therapy, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Grembowicz KP, Sprague D, McNeil PL. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. Mol Biol Cell 1999; 10:1247-57. [PMID: 10198070 PMCID: PMC25264 DOI: 10.1091/mbc.10.4.1247] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mechanically stressed cells display increased levels of fos message and protein. Although the intracellular signaling pathways responsible for FOS induction have been extensively characterized, we still do not understand the nature of the primary cell mechanotransduction event responsible for converting an externally acting mechanical stressor into an intracellular signal cascade. We now report that plasma membrane disruption (PMD) is quantitatively correlated on a cell-by-cell basis with fos protein levels expressed in mechanically injured monolayers. When the population of PMD-affected cells in injured monolayers was selectively prevented from responding to the injury, the fos response was completely ablated, demonstrating that PMD is a requisite event. This PMD-dependent expression of fos protein did not require cell exposure to cues inherent in release from cell-cell contact inhibition or presented by denuded substratum, because it also occurred in subconfluent monolayers. Fos expression also could not be explained by factors released through PMD, because cell injury conditioned medium failed to elicit fos expression. Translocation of the transcription factor NF-kappaB into the nucleus may also be regulated by PMD, based on a quantitative correlation similar to that found with fos. We propose that PMD, by allowing a flux of normally impermeant molecules across the plasma membrane, mediates a previously unrecognized form of cell mechanotransduction. PMD may thereby lead to cell growth or hypertrophy responses such as those that are present normally in mechanically stressed skeletal muscle and pathologically in the cardiovascular system.
Collapse
Affiliation(s)
- K P Grembowicz
- Institute of Molecular Medicine and Genetics, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA, 30912-2000, USA
| | | | | |
Collapse
|
333
|
Avery J, Jahn R, Edwardson JM. Reconstitution of regulated exocytosis in cell-free systems: a critical appraisal. Annu Rev Physiol 1999; 61:777-807. [PMID: 10099710 DOI: 10.1146/annurev.physiol.61.1.777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulated exocytosis involves the tightly controlled fusion of a transport vesicle with the plasma membrane. It includes processes as diverse as the release of neurotransmitters from presynaptic nerve endings and the sperm-triggered deposition of a barrier preventing polyspermy in oocytes. Cell-free model systems have been developed for studying the biochemical events underlying exocytosis. They range from semi-intact permeabilized cells to the reconstitution of membrane fusion from isolated secretory vesicles and their target plasma membranes. Interest in such cell-free systems has recently been reinvigorated by new evidence suggesting that membrane fusion is mediated by a basic mechanism common to all intracellular fusion events. In this chapter, we review some of the literature in the light of these new developments and attempt to provide a critical discussion of the strengths and limitations of the various cell-free systems.
Collapse
Affiliation(s)
- J Avery
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
334
|
Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 ( Pt 5):719-31. [PMID: 9973606 DOI: 10.1242/jcs.112.5.719] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Go-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Go-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing of the second membrane disruption. Since vesicle pools were implicated in both membrane resealing and facilitation of membrane resealing, we reasoned that artificial decreases in membrane surface tension would have the same result. Decreases in surface tension induced by the addition of a surfactant (Pluronic F68 NF) or cytochalasin D facilitated resealing at first wounding. Furthermore, Pluronic F68 NF restored resealing when exocytosis was blocked by tetanus toxin. These results suggest that membrane resealing requires a decrease in surface tension and under natural conditions this is provided by Ca2+-dependent exocytosis of new membrane near the site of disruption.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
335
|
Kasai H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 1999; 22:88-93. [PMID: 10092049 DOI: 10.1016/s0166-2236(98)01293-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The application of caged-Ca2+ compounds to the study of Ca2+-dependent exocytosis has begun to reveal kinetic intermediates in this important process. The time course of exocytosis varies greatly among different cell and vesicle types, even in response to Ca2+ 'jumps' of identical amplitude. The kinetics of the binding of Ca2+ to the putative Ca2+ sensor for exocytosis also vary. Theoretical analysis reveals that the kinetic diversity of exocytotic and Ca2+-binding reactions has distinct roles in determining the probability of exocytosis occurring. It is proposed that both of these reactions are optimized for the secretory function of specific cell types and that the exocytotic reaction includes vesicle translocation in addition to the fusion of vesicles with the plasma membrane.
Collapse
Affiliation(s)
- H Kasai
- Dept of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Japan
| |
Collapse
|
336
|
Coorssen JR, Blank PS, Tahara M, Zimmerberg J. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 1998; 143:1845-57. [PMID: 9864359 PMCID: PMC2175215 DOI: 10.1083/jcb.143.7.1845] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV-PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV-CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV-CV fusion. The maximal number of active fusion complexes per vesicle, <n\>Max, was quantified by NEM inhibition of fusion, showing that CV-CV fusion satisfies many criteria of a mathematical analysis developed for exocytosis. Both <n\>Max and the Ca2+ sensitivity of fusion complex activation were comparable to that determined for CV-PM fusion. Using Ca2+-induced SNARE complex disruption, we have analyzed the relationship between membrane fusion (CV-CV and CV-PM) and the SNARE complex. Fusion and complex disruption have different sensitivities to Ca2+, Sr2+, and Ba2+, the complex remains Ca2+- sensitive on fusion-incompetent CV, and disruption does not correlate with the quantified activation of fusion complexes. Under conditions which disrupt the SNARE complex, CV on the PM remain docked and fusion competent, and isolated CV still dock and fuse, but with a markedly reduced Ca2+ sensitivity. Thus, in this system, neither the formation, presence, nor disruption of the SNARE complex is essential to the Ca2+-triggered fusion of exocytotic membranes. Therefore the SNARE complex alone cannot be the universal minimal fusion machine for intracellular fusion. We suggest that this complex modulates the Ca2+ sensitivity of fusion.
Collapse
Affiliation(s)
- J R Coorssen
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
337
|
Abstract
Egg activation at fertilization in the sea urchin results in the exocytosis of approximately 15,000 cortical granules that are docked at the plasma membrane. Previously, we reported that several integral membrane proteins modeled in the SNARE hypothesis, synaptotagmin, VAMP, and syntaxin, in addition to a small GTPase of the ras superfamily, rab3, were present on cortical granules (Conner, S., Leaf, D., and Wessel, G., Mol. Reprod. Dev. 48, 1-13, 1997). Here we report that rab3 is associated with cortical granules throughout oogenesis, during cortical granule translocation, and while docked at the egg plasma membrane. Following cortical granule exocytosis, however, rab3 reassociates with a different population of vesicles, at least some of which are of endocytic origin. Because of its selective association with cortical granules in eggs and oocytes, we hypothesize that rab3 functions in cortical granule exocytosis. To test this hypothesis, we used a strategy of interfering with rab3 function by peptide competition with its effector domain, a conserved region within specific rab types. We first identified the effector domain sequence in Lytechinus variegatus eggs and find the sequence 94% identical to the effector domain of rab3 in Stronglocentrotus purpuratus. Then, with synthetic peptides to different regions of the rab3 protein, we find that cortical granule exocytosis is inhibited in eggs injected with effector domain peptides, but not with peptides from the hypervariable region or with a scrambled effector peptide. Additionally, effector-peptide-injected eggs injected with IP3 are blocked in their ability to exocytose cortical granules, suggesting that the inhibition is directly on the membrane fusion event and not the result of interference with the signal transduction mechanism leading to calcium release. We interpret these results to mean that rab3 functions in the regulation of cortical granule exocytosis following vesicle docking.
Collapse
Affiliation(s)
- S Conner
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, Rhode Island, 02912, USA
| | | |
Collapse
|
338
|
Laffafian I, Hallett MB. Lipid-assisted microinjection: introducing material into the cytosol and membranes of small cells. Biophys J 1998; 75:2558-63. [PMID: 9788951 PMCID: PMC1299930 DOI: 10.1016/s0006-3495(98)77700-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The microinjection of synthetic molecules, proteins, and nucleic acids into the cytosol of living cells is a powerful technique in cell biology. However, the insertion of a glass micropipette into the cell is a potentially damaging event, which presents significant problems, especially for small mammalian cells (spherical diameter = 2-15 micron), especially if they are only loosely adherent. The current technique is therefore limited to cells that are both sufficiently large or robust and firmly attached to a substrate. We describe here a modification of the standard technique that overcomes some of the problems associated with conventional microinjection but that does not involve the insertion of a micropipette deep into the cell cytoplasm. Instead, this method depends on lipid fusion at the micropipette tip to form a continuous but temporary conductance pathway between the interiors of the micropipette and cell. This technique thus also provides a novel method of transferring lipids and lipid-associated molecules to the plasma membrane of cells.
Collapse
Affiliation(s)
- I Laffafian
- Molecular Signaling Group, University Department of Surgery, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, Wales
| | | |
Collapse
|
339
|
Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J Neurosci 1998. [PMID: 9712652 DOI: 10.1523/jneurosci.18-17-06814.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium-evoked dendritic exocytosis (CEDE), demonstrated in cultured hippocampal neurons, is a novel mechanism that could play a role in synaptic plasticity. A number of forms of neuronal plasticity are thought to be mediated by calcium/calmodulin-dependent protein kinase II (CaMKII). Here, we investigate the role of CaMKII in CEDE. We find that the developmental time course of CEDE parallels the expression of alphaCaMKII, a dominant subunit of CaMKII. An inhibitor of this enzyme, KN-62, blocks CEDE. Furthermore, 7 d in vitro neurons (which normally do not express alphaCaMKII nor show CEDE) can undergo CEDE when infected with a recombinant virus producing alphaCaMKII. Expression of a constitutively active CaMKII produces dendritic exocytosis in the absence of calcium stimulus, and this exocytosis is blocked by nocodazole, an inhibitor of microtubule polymerization that also blocks CEDE. These results indicate that CEDE is mediated by the activation of CaMKII, consistent with the view that CEDE plays a role in synaptic plasticity.
Collapse
|
340
|
Chang S, Girod R, Morimoto T, O'Donoghue M, Popov S. Constitutive secretion of exogenous neurotransmitter by nonneuronal cells: implications for neuronal secretion. Biophys J 1998; 75:1354-64. [PMID: 9726936 PMCID: PMC1299809 DOI: 10.1016/s0006-3495(98)74053-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fibroblasts in cell culture were loaded with exogenous neurotransmitter acetylcholine (ACh). ACh secretion from loaded cells was detected by whole-cell patch clamp recordings from Xenopus myocytes manipulated into contact with ACh-loaded cells. Two different approaches were used for ACh loading. In the first approach, fibroblasts were incubated in the culture medium containing ACh. Recordings from myocytes revealed fast inward currents that resemble miniature endplate currents found at neuromuscular synapses. The currents observed in recordings from myocytes were due to exocytosis of ACh-containing vesicles. Although exogenous ACh penetrated through the plasma membrane of fibroblasts during incubation and was present in the cytoplasm at detectable levels, cytoplasmic ACh did not contribute to the quantal ACh secretion. In the second approach, exogenous ACh was loaded into the cytoplasm of fibroblasts by microinjection. Under these experimental conditions, fibroblasts also exhibited spontaneous quantal ACh secretion. Analysis of the exocytotic events in fibroblasts following two different protocols of ACh loading revealed that the vesicular compartments responsible for uptake of exogenous ACh are associated with the endocytic recycling pathway. Extrapolation of our results to neuronal cells suggest that in cholinergic neurons, in addition to genuine synaptic vesicles, ACh can be secreted by the vesicles participating in endosomal membrane recycling.
Collapse
Affiliation(s)
- S Chang
- Department of Physiology and Biophysics, University of Illinois at Chicago 60612, USA
| | | | | | | | | |
Collapse
|
341
|
Abstract
Cytokines manifest their function through regulation of gene expression. We searched for immediate-early cytokine responsive genes by the mRNA differential display technique using interleukin-3 (IL-3)–dependent OTT-1 cells, and have isolated a novel cDNA which encodes 210 amino acids and shows 87% amino acid identity to human SNAP-23 (synaptosomal-associated protein of 23 kD). The message for this protein (mouse SNAP-23) was induced in OTT-1 cells by IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-5. The experiment using C-terminal deletion mutants of the common β subunit (βc) of IL-3/GM-CSF/IL-5 receptors showed that expression of SNAP-23 was associated with the Ras-Raf-MAPK pathway, but not with the JAK-STAT pathway. Moreover, SNAP-23 was induced in response to a wide variety of cytokines, including IL-2, IL-3, IL-5, IL-10, stem cell factor, G-CSF, GM-CSF, leukemia inhibitory factor, and erythropoietin. Constitutive expression of SNAP-23 was seen in various tissues, including heart, lung, kidney, liver, spleen, and small intestine. Possible involvement of SNAP-23 in cytokine signal transduction is discussed.
Collapse
|
342
|
Affiliation(s)
- J Lane
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
343
|
Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J Neurosci 1998. [PMID: 9592084 DOI: 10.1523/jneurosci.18-11-04029.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vesicles and/or other membranous structures that form after axolemmal damage have recently been shown to repair (seal) the axolemma of various nerve axons. To determine the origin of such membranous structures, (1) we internally dialyzed isolated intact squid giant axons (GAs) and showed that elevation of intracellular Ca2+ >100 microM produced membranous structures similar to those in axons transected in Ca2+-containing physiological saline; (2) we exposed GA axoplasm to Ca2+-containing salines and observed that membranous structures did not form after removing the axolemma and glial sheath but did form in severed GAs after >99% of their axoplasm was removed by internal perfusion; (3) we examined transected GAs and crayfish medial giant axons (MGAs) with time-lapse confocal fluorescence microscopy and showed that many injury-induced vesicles formed by endocytosis of the axolemma; (4) we examined the cut ends of GAs and MGAs with electron microscopy and showed that most membranous structures were single-walled at short (5-15 min) post-transection times, whereas more were double- and multi-walled and of probable glial origin after longer (30-150 min) post-transection times; and (5) we examined differential interference contrast and confocal images and showed that large and small lesions evoked similar injury responses in which barriers to dye diffusion formed amid an accumulation of vesicles and other membranous structures. These and other data suggest that Ca2+ inflow at large or small axolemmal lesions induces various membranous structures (including endocytotic vesicles) of glial or axonal origin to form, accumulate, and interact with each other, preformed vesicles, and/or the axolemma to repair the axolemmal damage.
Collapse
|
344
|
Ikebuchi Y, Masumoto N, Matsuoka T, Yokoi T, Tahara M, Tasaka K, Miyake A, Murata Y. SNAP-25 is essential for cortical granule exocytosis in mouse eggs. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1496-500. [PMID: 9696691 DOI: 10.1152/ajpcell.1998.274.6.c1496] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synaptosome-associated protein of 25 kDa (SNAP-25) has been shown to play an important role in Ca2+-dependent exocytosis in neurons and endocrine cells. During fertilization, sperm-egg fusion induces cytosolic Ca2+ mobilization and subsequently Ca2+-dependent cortical granule (CG) exocytosis in eggs. However, it is not yet clear whether SNAP-25 is involved in this process. In this study, we determined the expression and function of SNAP-25 in mouse eggs. mRNA and SNAP-25 were detected in metaphase II (MII) mouse eggs by RT-PCR and immunoblot analysis, respectively. Next, to determine the function of SNAP-25, we evaluated the change in CG exocytosis with a membrane dye, tetramethylammonium-1,6-diphenyl-1,3,5-hexatriene, after microinjection of a botulinum neurotoxin A (BoNT/A), which selectively cleaves SNAP-25 in MII eggs. Sperm-induced CG exocytosis was significantly inhibited in the BoNT/A-treated eggs. The inhibition was attenuated by coinjection of SNAP-25. These results suggest that SNAP-25 may be involved in Ca2+-dependent CG exocytosis during fertilization in mouse eggs.
Collapse
Affiliation(s)
- Y Ikebuchi
- Department of Obstetrics and Gynecology, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Morris TA, DeLorenzo RJ, Tombes RM. CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp Cell Res 1998; 240:218-27. [PMID: 9596994 DOI: 10.1006/excr.1997.3925] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The calmodulin-dependent protein kinase-II (CaMK-II) inhibitor KN-93 has been shown to reversibly arrest mouse and human cells in the G1 phase of the cell cycle [Tombes, R. M., Westin, E., Grant. S., and Krystal, G. (1995) Cell Growth Differ. 6, 1073-1070; Rasmussen, G., and Rasmussen, C. (1995) Biochem. Cell Biol. 71, 201-207]. The stimulation of Ca(2+)-independent (autonomous) CaMK-II enzymatic activity, a barometer of in situ activated CaMK-II, was prevented by the same KN-93 concentrations that cause G1 phase arrest. KN-93 caused the retinoblastoma protein pRB to become dephosphorylated and the activity of both cdk2 and cdk4, two potential pRb kinases, to decrease. Neither the activity of p42MAP kinase, an early response G1 signaling molecule, nor the phosphorylation status or DNA-binding capability of the transcription factors serum response factor and cAMP responsive element-binding protein was altered during this G1 arrest. The protein levels of cyclin-dependent kinase 2 (cdk2) and cdk4 were unaffected during this G1 arrest and the total cellular levels of the cdk inhibitors p21cip1 and p27kip1 were not increased. Instead, the cdk4 activity decreases resulting from KN-93 were the result of a 75% decrease in cyclin D1 levels. In contrast, cyclin A and E levels were relatively constant. Cdk2 activity decreases were primarily the result of enhanced p27kip1 association with cdk2/cyclin E. All of these phenomena were unaffected by KN-93's inactive analog, KN-92, and were reversible upon KN-93 washout. The kinetics of recovery from cell cycle arrest were similar to those reported for other G1 phase blockers. These results suggest a mechanism by which G1 Ca2+ signals could be linked via calmodulin-dependent phosphorylations to the cell cycle-controlling machinery through cyclins and cdk inhibitors.
Collapse
Affiliation(s)
- T A Morris
- Massey Cancer Center, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0230, USA
| | | | | |
Collapse
|
346
|
Matese JC, McClay DR. Cortical granule exocytosis is triggered by different thresholds of calcium during fertilisation in sea urchin eggs. ZYGOTE 1998; 6:55-64, 65a. [PMID: 9652072 DOI: 10.1017/s0967199400005086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In sea urchin eggs, fertilisation is followed by a calcium wave, cortical granule exocytosis and fertilisation envelope elevation. Both the calcium wave and cortical granule exocytosis sweep across the egg in a wave initiated at the point of sperm entry. Using differential interference contrast (DIC) microscopy combined with laser scanning confocal microscopy, populations of cortical granules undergoing calcium-induced exocytosis were observed in living urchin eggs. Calcium imaging using the indicator Calcium Green-dextran was combined with an image subtraction technique for visual isolation of individual exocytotic events. Relative fluorescence levels of the calcium indicator during the fertilisation wave were compared with cortical fusion events. In localised regions of the egg, there is a 6s delay between the detection of calcium release and fusion of cortical granules. The rate of calcium accumulation was altered experimentally to ask whether this delay was necessary to achieve a threshold concentration of calcium to trigger fusion, or was a time-dependent activation of the cortical granule fusion apparatus after the 'triggering' event. Calcium release rate was attenuated by blocking inositol 1,4,5-triphospate (InsP3)-gated channels with heparin. Heparin extended the time necessary to achieve a minimum concentration of calcium at the sites of cortical granule exocytosis. The data are consistent with the conclusion that much of the delay observed normally is necessary to reach threshold concentration of calcium. Cortical granules then fuse with the plasma membrane. Further, once the minimum threshold calcium concentration is reached, cortical granule fusion with the plasma membrane occurs in a pattern suggesting that cortical granules are non-uniform in their calcium sensitivity threshold.
Collapse
Affiliation(s)
- J C Matese
- Zoology Department, Duke University, Durham, North Carolina 27708-1000, USA
| | | |
Collapse
|
347
|
Chestkov VV, Radko SP, Cho MS, Chrambach A, Vogel SS. Reconstitution of calcium-triggered membrane fusion using "reserve" granules. J Biol Chem 1998; 273:2445-51. [PMID: 9442095 DOI: 10.1074/jbc.273.4.2445] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcium-gated secretion of proteins involves the transfer of "reserve" granules, exocytotic vesicles that are cytoplasmic and, hence, plasma membrane-naive, from the cell interior to the surface membrane where they dock prior to fusion. Docking and subsequent priming steps are thought to require cytoplasmic factors. These steps are believed to induce fusion competence. We have tested this hypothesis by isolating reserve granules from sea urchin eggs and determining under which conditions these granules will fuse. We find that isolated reserve granules, lacking soluble cofactors, support calcium-dependent membrane fusion in vitro. Preincubation with adenosine 5'-3-O-(thio)triphosphate and guanosine 5'-3-O-(thio)triphosphate did not prevent fusion. Thus, isolated reserve granules have all the necessary components required for calcium-gated fusion prior to docking.
Collapse
Affiliation(s)
- V V Chestkov
- Medical Genetics Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
348
|
Abstract
Synaptobrevins are vesicle-associated proteins implicated in neurotransmitter release by both biochemical studies and perturbation experiments that use botulinum toxins. To test these models in vivo, we have isolated and characterized the first synaptobrevin mutants in metazoans and show that neurotransmission is severely disrupted in mutant animals. Mutants lacking snb-1 die just after completing embryogenesis. The dying animals retain some capability for movement, although they are extremely uncoordinated and incapable of feeding. We also have isolated and characterized several hypomorphic snb-1 mutants. Although fully viable, these mutants exhibit a variety of behavioral abnormalities that are consistent with a general defect in the efficacy of synaptic transmission. The viable mutants are resistant to the acetylcholinesterase inhibitor aldicarb, indicating that cholinergic transmission is impaired. Extracellular recordings from pharyngeal muscle also demonstrate severe defects in synaptic transmission in the mutants. The molecular lesions in the hypomorphic alleles reside on the hydrophobic face of a proposed amphipathic-helical region implicated biochemically in interacting with the t-SNAREs syntaxin and SNAP-25. Finally, we demonstrate that double mutants lacking both the v-SNAREs synaptotagmin and snb-1 are phenotypically similar to snb-1 mutants and less severe than syntaxin mutants. Our work demonstrates that synaptobrevin is essential for viability and is required for functional synaptic transmission. However, our analysis also suggests that transmitter release is not completely eliminated by removal of either one or both v-SNAREs.
Collapse
|
349
|
Abstract
Retrograde signaling from the postsynaptic cell to the presynaptic neuron is essential for the development, maintenance, and activity-dependent modification of synaptic connections. This review covers various forms of retrograde interactions at developing and mature synapses. First, we discuss evidence for early retrograde inductive events during synaptogenesis and how maturation of presynaptic structure and function is affected by signals from the postsynaptic cell. Second, we review the evidence that retrograde interactions are involved in activity-dependent synapse competition and elimination in developing nervous systems and in long-term potentiation and depression at mature synapses. Third, we review evidence for various forms of retrograde signaling via membrane-permeant factors, secreted factors, and membrane-bound factors. Finally, we discuss the evidence and physiological implications of the long-range propagation of retrograde signals to the cell body and other parts of the presynaptic neuron.
Collapse
Affiliation(s)
- R M Fitzsimonds
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
350
|
Abstract
Several types of nonauditory cells recover from transitory mechanically induced microlesions in their cell membranes. We report evidence that hair cells in the auditory papilla of the alligator lizard suffered similar membrane wounding when exposed to noise loud enough to induce a temporary threshold shift. Lucifer yellow, a molecular marker that does not normally penetrate through the cell membrane into the cytoplasm, was introduced into the extracellular fluid bathing the basolateral membrane of the hair cells. We assessed the effect of loud noise on the function of the ear by measuring compound action potentials of the auditory nerve before exposure to the noise, immediately after cessation of the noise, and after recovering overnight. Hair cells that were exposed to the noise took up much more Lucifer yellow than hair cells that were not exposed. We propose that the Lucifer yellow entered the hair cells via noise-induced lesions in their cell membranes, and that the cells were able to survive and recover functionally.
Collapse
Affiliation(s)
- M J Mulroy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.
| | | | | |
Collapse
|