301
|
Yin H, Liu L, Ma J, Zhang C, Qiu G. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. WATER RESEARCH 2023; 246:120734. [PMID: 37862875 DOI: 10.1016/j.watres.2023.120734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 μg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
302
|
Zhang H, Jin B, Liu L, Li H, Zheng X, Li M, He R, Wang K. Glutathione Might Attenuate Arsenic-Induced Liver Injury by Modulating the Foxa2-XIAP Axis to Reduce Oxidative Stress and Mitochondrial Apoptosis. Biol Trace Elem Res 2023; 201:5201-5212. [PMID: 36689145 DOI: 10.1007/s12011-023-03577-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Arsenic (AS) is a metalloid element that widely exists and can cause different degrees of liver damage. The molecular mechanism of arsenic-induced liver injury has yet to be fully elucidated. Clinically, glutathione (GSH) is often used as an antidote for heavy metal poisoning and hepatoprotective drugs. However, the hepatoprotective effect of glutathione remains unknown in arsenic-induced liver injury. The regulatory relationship between Foxa2 and XIAP may play an important role in mitochondrial survival and death. Therefore, we took Foxa2-XIAP as the axis to explore the protective mechanism of GSH. In this study, we first established a mouse model of chronic arsenic exposure and examined liver function as reflected by quantitative parameters such as aspartate aminotransferase and alanine aminotransferase. Also, redox parameters in the liver were measured, including malondialdehyde, superoxide dismutase, 8-hydroxy-2'-deoxyguanosin, and glutathione peroxidase. RT-qPCR and western-blotting were used to detect the levels of related genes and proteins, such as Foxa2, XIAP, Smac, Bax, Bcl2, Caspase9, and Caspase3. Subsequently, GSH was administered at the same time as high arsenic exposure, and changes in the above parameters were observed. After a comprehensive analysis of the above results, we demonstrate that GSH treatment alleviates arsenic-induced oxidative stress and inhibits the mitochondrial pathway of apoptosis, which can be regulated through the Foxa2 and XIAP axis. The present study would be helpful in elucidating the molecular mechanism of arsenic-induced liver injury and identifying a new potential therapeutic target. And we also provided new theoretical support for glutathione in the treatment of liver damage caused by arsenic.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Baiming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Lele Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Haonan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Xiujuan Zheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Rui He
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China.
- National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University, (23618504)150081, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
303
|
Liu J, Jia H, Xu Z, Wang T, Mei M, Chen S, Li J, Zhang W. An impressive pristine biochar from food waste digestate for arsenic(V) removal from water: Performance, optimization, and mechanism. BIORESOURCE TECHNOLOGY 2023; 387:129586. [PMID: 37516138 DOI: 10.1016/j.biortech.2023.129586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Anaerobic digestion has become a global practice for valorizing food waste, but the recycling of the digestate (FWD) remains challenging. This study aimed to address this issue by utilizing FWD as a low-cost feedstock for Ca-rich biochar production. The results demonstrated that biochar pyrolyzed at 900 °C exhibited impressive As(V) adsorption performance without any modifications. Kinetic analysis suggested As(V) was chemisorbed onto CDBC9, while isotherm data conformed well to Langmuir model, indicating monolayer adsorption with a maximum capacity of 76.764 mg/g. Further analysis using response surface methodology revealed that pH value and adsorbent dosage were significant influencing factors, and density functional theory (DFT) calculation visualized the formation of ionic bonds between HAsO42- and CaO(110) and Ca(OH)2(101) surfaces. This work demonstrated the potential of using FWD for producing Ca-rich biochar, providing an effective solution for As(V) removal and highlighting the importance of waste material utilization in sustainable environmental remediation.
Collapse
Affiliation(s)
- Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Hang Jia
- Beijing Graphene Institute, Beijing 100095, China
| | - Zelin Xu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Teng Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Meng Mei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Si Chen
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Wenjuan Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
304
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
305
|
Chen L, Fan T, Yang M, Si D, Wu H, Wu S, Xu J, Zhou D. Sulfurization alters phenol-formaldehyde resin microplastics redox property and their efficiency in mediating arsenite oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166048. [PMID: 37572922 DOI: 10.1016/j.scitotenv.2023.166048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Microplastics weathering by various types of oxidants in the oxic environment and their interaction with environmental contaminants have drawn numerous scientific attention. However, the environmental fate of microplastics under a reducing environment has been largely unresolved. Herein, the change of physicochemical and redox properties of microplastics during the weathering under a sulfate-reducing environment and the interaction with arsenite were addressed. The sulfurization of phenol-formaldehyde resin microplastics under a sulfate-reducing environment generated smooth and porous particles with the induction of organic S species. Multiple spectroscopic results demonstrated thioether and thiophene groups formed by the substitute removal of O-containing functional groups. Moreover, the sulfurization process induced the reduction of carbonyl groups and oxidation of phenolic hydroxyl groups and resulted in the formation of semiquinone radicals. The O-containing functional groups contributed to microplastics redox property and As(III) oxidation while S-containing functional groups showed no obvious effect. The sulfurized microplastics had lower efficiency in mediating arsenite oxidation than the unsulfurized counterparts due to the decreased electron donating capacity. Producing hydrogen peroxides by electron-donating phenol groups and semiquinone radicals and the direct semiquinone radicals oxidation could mediate arsenite oxidation. The findings of this study help us understand the fate of microplastics in redox fluctuation interfaces.
Collapse
Affiliation(s)
- Lin Chen
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Fan
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Min Yang
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China.
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Xu
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
306
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
307
|
Yang Q, Yan R, Zhang J, Zhang T, Kong Q, Zhang X, Xia H, Ye A, Qiao X, Kato K, Chen C, An Y. Reductive stress induced by NRF2/G6PD through glucose metabolic reprogramming promotes malignant transformation in Arsenite-exposed human keratinocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165207. [PMID: 37391132 DOI: 10.1016/j.scitotenv.2023.165207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Our previous research found that the nuclear factor-E2-related factor 2 (NRF2) protein was sustained activated in malignant transformation of human keratinocyte (HaCaT cells) caused by NaAsO2, but the role of NRF2 in it remains unknown. In this study, malignant transformation of HaCaT cells and labeled HaCaT cells used to detect mitochondrial glutathione levels (Mito-Grx1-roGFP2 HaCaT cells) were induced by 1.0 μM NaAsO2. Redox levels were measured at passages 0, early stage (passages 1, 7, 14), later stage (passages 21, 28 and 35) of arsenite-treated HaCaT cells. Oxidative stress levels increased at early stage. The NRF2 pathway was sustained activated. Cells and mitochondrial reductive stress levels (GSH/GSSG and NADPH/NADP+) increased. The mitochondrial GSH/GSSG levels of Mito-Grx1-roGFP2 HaCaT cells also increased. The indicators of glucose metabolism glucose-6-phosphate, lactate and the glucose-6-phosphate dehydrogenase (G6PD) levels increased, however Acetyl-CoA level decreased. Expression levels of glucose metabolic enzymes increased. After transfection with NRF2 siRNA, the indicators of glucose metabolism were reversed. After transfection with NRF2 or G6PD siRNA, cells and mitochondrial reductive stress levels decreased and the malignant phenotype was reversed. In conclusion, oxidative stress occurred in the early stage and the NRF2 was sustained high expression. In the later stage, increased NRF2/G6PD through glucose metabolic reprogramming induced reductive stress, thereby leading to malignant transformation.
Collapse
Affiliation(s)
- Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Rui Yan
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Ting Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Xiaoyun Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Haixuan Xia
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
308
|
Zhou L, Lin XY, Xue RY, Yang JL, Zhang YS, Zhou D, Li HB. Mechanistic Insights into Effects of Different Dietary Polyphenol Supplements on Arsenic Bioavailability, Biotransformation, and Toxicity Based on a Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15422-15431. [PMID: 37797956 DOI: 10.1021/acs.est.3c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Arsenic (As) exposure has been related to many diseases, including cancers. Given the antioxidant and anti-inflammatory properties, the dietary supplementation of polyphenols may alleviate As toxicity. Based on a mouse bioassay, this study investigated the effects of chlorogenic acid (CA), quercetin (QC), tannic acid (TA), resveratrol (Res), and epigallocatechin gallate (EGCG) on As bioavailability, biotransformation, and toxicity. Intake of CA, QC, and EGCG significantly (p < 0.05) increased total As concentrations in liver (0.48-0.58 vs 0.27 mg kg-1) and kidneys (0.72-0.93 vs 0.59 mg kg-1) compared to control mice. Upregulated intestinal expression of phosphate transporters with QC and EGCG and proliferation of Lactobacillus in the gut of mice treated with CA and QC were observed, facilitating iAsV absorption via phosphate transporters and intestinal As solubility via organic acid metabolites. Although As bioavailability was elevated, serum levels of alpha fetoprotein and carcinoembryonic antigen of mice treated with all five polyphenols were reduced by 13.1-16.1% and 9.83-17.5%, suggesting reduced cancer risk. This was mainly due to higher DMAV (52.1-67.6% vs 31.4%) and lower iAsV contribution (4.95-10.7% vs 27.9%) in liver of mice treated with polyphenols. This study helps us develop dietary strategies to lower As toxicity.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yao-Sheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
309
|
Wang K, Holm PE, Trettenes UB, Bandaru SRS, van Halem D, van Genuchten CM. Molecular-scale characterization of groundwater treatment sludge from around the world: Implications for potential arsenic recovery. WATER RESEARCH 2023; 245:120561. [PMID: 37688856 DOI: 10.1016/j.watres.2023.120561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Iron (Fe)-based treatment methods are widely applied to remove carcinogenic arsenic (As) from drinking water, but generate toxic As-laden Fe (oxyhydr)oxide waste that has traditionally been ignored for resource recovery by the water sector. However, the European Commission recently classified As as a Critical Raw Material (CRM), thus providing new incentives to re-think As-laden groundwater treatment sludge. Before As recovery techniques can be developed for groundwater treatment waste, detailed information on its structure and composition is essential. To this end, we comprehensively characterized sludge generated from a variety of As-rich groundwater treatment plants in different geographic regions by combining a suite of macroscopic measurements, such as total digestions, leaching tests and BET surface area with molecular-scale solid-phase analysis by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that the As mass fraction of all samples ranged from ∼200-1200 mg As/kg (dry weight) and the phosphorous (P) content reached ∼0.5-2 mass%. Notably, our results indicated that the influent As level was a poor predictor of the As sludge content, with the highest As mass fractions (940-1200 mg As/kg) measured in sludge generated from treating low groundwater As levels (1.1-22 µg/L). The Fe K-edge XAS data revealed that all samples consisted of nanoscale Fe(III) precipitates with less structural order than ferrihydrite, which is consistent with their high BET surface area (up to >250 m2/g) and large As and P mass fractions. The As K-edge XAS data indicated As was present in all samples predominantly as As(V) bound to Fe(III) precipitates in the binuclear-corner sharing (2C) geometry. Overall, the similar structure and composition of all samples implies that As recovery methods optimized for one type of Fe-based treatment sludge can be applied to many groundwater treatment sludges. Our work provides a critical foundation for further research to develop resource recovery methods for As-rich waste.
Collapse
Affiliation(s)
- K Wang
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark
| | - P E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - S R S Bandaru
- University of California, Berkeley, Berkeley, California, USA
| | - D van Halem
- Technical University of Delft, Delft, The Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
310
|
Zhang Y, Xie X, Sun S, Wang Y. Arsenic transformation and redistribution in groundwater induced by the complex geochemical cycling of iron and sulfur. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164941. [PMID: 37343891 DOI: 10.1016/j.scitotenv.2023.164941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Iron (hydr)oxides are effective sorbents of arsenic that undergo reductive dissolution when exposed to dissolved sulfide, which significantly impacts the movement and repartition of arsenic in groundwater. This study investigated the sulfidation of As-bearing ferrihydrite and its consequences on arsenic repartitioning as well as formation and transformation of secondary minerals induced by sulfide in batch experiments. The sulfidation of As(III) and As(V) adsorbed on ferrihydrite shows very different results. In the As(V) system, sulfidation resulted in the production of significant amounts of elemental sulfur (S0) and Fe2+, and Fe2+ and sulfide combine to form mackinawite. Subsequently, Fe2+ adsorbed and catalyzed the conversion of residual ferrihydrite to lepidocrocite. However, in the As(III) system, As(III) was protonated in the presence of sulfide to produce thioarsenate, which accounted for 87.9 % of the total aqueous arsenic concentration. The formation of thioarsenate also consumed the S0 produced by the sulfidation, resulting in no detectable S0 during solid phase characterization. The adsorption of thioarsenate on iron minerals notably affected the surface charge density of ferrihydrite, hindering the further formation of secondary minerals. Studies on the influence of thiolation on As-Fe-S system are of great significance for understanding the migration and redistribution of arsenic in groundwater systems under sulfur-rich conditions.
Collapse
Affiliation(s)
- Yuyao Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China.
| | - Shutang Sun
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074 Wuhan, China
| |
Collapse
|
311
|
Vancea C, Mladin G, Ciopec M, Negrea A, Duteanu N, Negrea P, Mosoarca G, Ianasi C. Arsenic Removal Using Unconventional Material with Iron Content: Batch Adsorption and Column Study. TOXICS 2023; 11:849. [PMID: 37888699 PMCID: PMC10611127 DOI: 10.3390/toxics11100849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
The remediation of arsenic contamination in potable water is an important and urgent concern, necessitating immediate attention. With this objective in mind, the present study investigated arsenic removal from water using batch adsorption and fixed-bed column techniques. The material employed in this study was a waste product derived from the treatment of groundwater water for potable purposes, having a substantial iron composition. The material's properties were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FT-IR). The point of zero charge (pHPZC) was measured, and the pore size and specific surface area were determined using the BET method. Under static conditions, kinetic, thermodynamic, and equilibrium studies were carried out to explore the influencing factors on the adsorption process, namely the pH, contact time, temperature, and initial arsenic concentration in the solution. It was found that the adsorption process is spontaneous, endothermic, and of a physical nature. In the batch adsorption studies, the maximum removal percentage was 80.4% after 90 min, and in a dynamic regime in the fixed-bed column, the efficiency was 99.99% at a sludge:sand = 1:1 ratio for 380 min for a volume of water with arsenic of ~3000 mL. The kinetics of the adsorption process conformed to a pseudo-second-order model. In terms of the equilibrium studies, the Sips model yielded the most accurate representation of the data, revealing a maximum equilibrium capacity of 70.1 mg As(V)/g sludge. For the dynamic regime, the experimental data were fitted using the Bohart-Adams, Thomas, and Clark models, in order to establish the mechanism of the process. Additionally, desorption studies were conducted, serving as an essential step in validating the practical applicability of the adsorption process, specifically in relation to the reutilization of the adsorbent material.
Collapse
Affiliation(s)
- Cosmin Vancea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Georgiana Mladin
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Giannin Mosoarca
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan, No. 6, 300223 Timisoara, Romania; (C.V.); (G.M.); (A.N.); (N.D.); (P.N.)
| | - Catalin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timisoara, Romania;
| |
Collapse
|
312
|
Liang B, Xiao XY, Song ZY, Li YY, Cai X, Xia RZ, Chen SH, Yang M, Li PH, Lin CH, Huang XJ. Revealing the solid-solution interface interference behaviors between Cu 2+ and As(III) via partial peak area analysis of simulations and experiments. Anal Chim Acta 2023; 1277:341676. [PMID: 37604614 DOI: 10.1016/j.aca.2023.341676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/23/2023]
Abstract
The mutual interference in the sensing detection of heavy metal ions (HMIs) is considerably serious and complex. Besides, the co-existed ions may change the stripping peak intensity, shape and position of the target ion, which partly makes peak current analysis inaccurate. Herein, a promising approach of partial peak area analysis was proposed firstly to research the mutual interference. The interference between two species on their electrodeposition processes was investigated by simulating different kinetics parameters, including surface coverage, electro-adsorption, -desorption rate constant, etc. It was proved that the partial peak area is sensitive and regular to these interference kinetics parameters, which is favorable for distinctly identifying different interferences. Moreover, the applicability of the partial peak area analysis was verified on the experiments of Cu2+, As(III) interference at four sensing interfaces: glassy carbon electrode, gold electrode, Co3O4, and Fe2O3 nanoparticles modified electrodes. The interference behaviors between Cu2+ and As(III) relying on solid-solution interfaces were revealed and confirmed by physicochemical characterizations and kinetics simulations. This work proposes a new descriptor (partial peak area) to recognize the interference mechanism and provides a meaningful guidance for accurate detection of HMIs in actual water environment.
Collapse
Affiliation(s)
- Bo Liang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xiang-Yu Xiao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yong-Yu Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Chu-Hong Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
313
|
Zhu T, Zhang Y, Li Y, Tao T, Tao C. Contribution of molecular structures and quantum chemistry technique to root concentration factor: An innovative application of interpretable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132320. [PMID: 37604035 DOI: 10.1016/j.jhazmat.2023.132320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Root concentration factor (RCF) is a significant parameter to characterize uptake and accumulation of hazardous organic contaminants (HOCs) by plant roots. However, complex interactions among chemicals, plant roots and soil make it challenging to identify underlying mechanisms of uptake and accumulation of HOCs. Here, nine machine learning techniques were applied to investigate major factors controlling RCF based on variable combinations of molecular descriptors (MD), MACCS fingerprints, quantum chemistry descriptors (QCD) and three physicochemical properties related to chemical-soil-plant system. Compared to models with variables including MACCS fingerprints or solitary physicochemical properties, the XGBoost-6 model developed by the variable combination of MD, QCD and three physicochemical properties achieved the most remarkable performance, with R2 of 0.977. Model interpretation achieved by permutation variable importance and partial dependence plots revealed the vital importance of HOCs lipophilicity, lipid content of plant roots, soil organic matter content, the overall deformability and the molecular dispersive ability of HOCs for regulating RCF. The integration of MD and QCD with physicochemical properties could improve our knowledge of underlying mechanisms regarding HOCs accumulation in plant roots from innovative structural perspectives. Multiple variables combination-oriented performance improvement of model can be extended to other parameters prediction in environmental risk assessment field.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Yu Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Tianyun Tao
- College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
314
|
Du S, Yang F, Wu L, Hu D, Zhang Y, Gong M, Yang Y, Yang X, Zeng Q. Assessing the potential molecular mechanism of arsenite-induced skin cell senescence. Toxicol Res (Camb) 2023; 12:843-852. [PMID: 37915474 PMCID: PMC10615813 DOI: 10.1093/toxres/tfad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023] Open
Abstract
Arsenic exposure is a public health concern worldwide. Skin damage, as a typical lesion of arsenic exposure, the mechanism is still unknown. Studies have found that cellular senescence plays a key role in arsenic-induced skin damage, and the previous research found that the ERK/CEBPB signaling pathway may be an important molecular event of arsenic-induced skin cell senescence, but its specific mechanism is unknown. In this study, genetic engineering technology was used to construct stable HaCaT cell lines, and the role and mechanism of ERK/CEBPB signaling pathway in arsenic-induced HaCaT cell senescence were verified by knockdown and overexpression of ERK and CEBPB in both forward and backward. It was found that knockdown of CEBPB or ERK can downregulate the ERK/CEBPB signaling pathway and reduce arsenic-induced skin cell senescence. In contrast to knockdown, overexpression of CEBPB or ERK can upregulate the ERK/CEBPB signaling pathway and aggravate the senescence of skin cells caused by arsenic. These findings suggest that sodium arsenite can further promote SASP secretion and the expression of p53, p21 and p16 INK4a by activating the ERK/CEBPB signaling pathway, induce cell cycle arrest and trigger cellular senescence.
Collapse
Affiliation(s)
- Sufei Du
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Fan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Liping Wu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Dexiu Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Yuhong Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Maoyuan Gong
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Yang Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Xingcan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, School of Public Health, Guizhou Medical University, Dongqing Road 2, Guiyang 550025, China
| |
Collapse
|
315
|
Ajibade SSM, Zaidi A, Bekun FV, Adediran AO, Bassey MA. A research landscape bibliometric analysis on climate change for last decades: Evidence from applications of machine learning. Heliyon 2023; 9:e20297. [PMID: 37780782 PMCID: PMC10539970 DOI: 10.1016/j.heliyon.2023.e20297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Climate change (CC) is one of the greatest threats to human health, safety, and the environment. Given its current and future impacts, numerous studies have employed computational tools (e.g., machine learning, ML) to understand, mitigate, and adapt to CC. Therefore, this paper seeks to comprehensively analyze the research/publications landscape on the MLCC research based on published documents from Scopus. The high productivity and research impact of MLCC has produced highly cited works categorized as science, technology, and engineering to the arts, humanities, and social sciences. The most prolific author is Shamsuddin Shahid (based at Universiti Teknologi Malaysia), whereas the Chinese Academy of Sciences is the most productive affiliation on MLCC research. The most influential countries are the United States and China, which is attributed to the funding activities of the National Science Foundation and the National Natural Science Foundation of China (NSFC), respectively. Collaboration through co-authorship in high-impact journals such as Remote Sensing was also identified as an important factor in the high rate of productivity among the most active stakeholders researching MLCC topics worldwide. Keyword co-occurrence analysis identified four major research hotspots/themes on MLCC research that describe the ML techniques, potential risky sectors, remote sensing, and sustainable development dynamics of CC. In conclusion, the paper finds that MLCC research has a significant socio-economic, environmental, and research impact, which points to increased discoveries, publications, and citations in the near future.
Collapse
Affiliation(s)
| | - Abdelhamid Zaidi
- Department of Mathematics, College of Science, Qassim University, Buraydah, Qassim, Saudi Arabia
| | - Festus Victor Bekun
- Faculty of Economics Administrative and Social Sciences, Istanbul Gelisim University, Istanbul, Turkey
- Adnan Kassar School of Business, Department of Economics, Lebanese American University, Beirut, Lebanon
| | - Anthonia Oluwatosin Adediran
- Faculty of Architecture and Urban Design, Federal University of Uberlandia, Minas Gerais, Brazil
- Department of Estate Management, The Federal Polytechnic, Ado Ekiti, Nigeria
| | | |
Collapse
|
316
|
Fan L, He Z, Wang L, Gaoyang H, Wang D, Luo P. Alterations of Bax/Bcl-2 ratio contribute to NaAsO 2 induced thyrotoxicity in human thyroid follicular epithelial cells and SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115449. [PMID: 37683429 DOI: 10.1016/j.ecoenv.2023.115449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/12/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
The environmental toxicant arsenic causes various human diseases and threatens millions of people worldwide. Recently, a limited number of studies have revealed that exposure to arsenic is associated with thyroid dysfunction, indicating its toxicological impact on the thyroid gland, however, its precise forms of damage and underlying mechanisms remain largely unknown. Here, we sought to observe the thyrotoxicity of sodium arsenite (NaAsO2) on human thyroid follicular epithelial cells (Nthy-ori 3-1) and SD rats, and explore the role of Bax/Bcl-2 ratio in the above process. Our results displayed that NaAsO2 exerted a dose-dependent inhibitory effect on the viability of Nthy-ori 3-1 cells. Alongside the increase doses of NaAsO2 exposure, morphological changes and elevated LDH levels were observed. Furthermore, apoptosis rates increased in a dose- and time-dependent manner, accompanied by a decrease in Bcl-2 and an opposite change in Bax expression. SD rats were treated with 0, 2.5, 5, and 10 mg/kg NaAsO2 for 36 weeks. Our findings revealed that NaAsO2 exposure resulted in arsenic accumulation in thyroid tissue, elevated ratio of Bax/Bcl-2, and histopathological changes of thyroid in rats, which accompanied by the decreased serum T3 and T4 levels and the increased serum TSH level. Furthermore, T3 and T4 levels were negatively correlated with Bax expression, whereas positively correlated with Bcl-2 expression. Collectively, our results suggest that NaAsO2 exposure induces cytotoxicity in Nthy-ori 3-1 cells, causes structural damages and dysfunction of thyroid in SD rats, in which the imbalance of Bax/Bcl-2 ratio may play a significant role.
Collapse
Affiliation(s)
- Lili Fan
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Zhiqin He
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Lei Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Huijie Gaoyang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Dapeng Wang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, Guizhou, PR China.
| |
Collapse
|
317
|
Smith TJS, Navas-Acien A, Baker S, Kok C, Kruczynski K, Avolio LN, Pisanic N, Randad PR, Fry RC, Goessler W, van Geen A, Buckley JP, Rahman MH, Ali H, Haque R, Shaikh S, Siddiqua TJ, Schulze K, West KP, Labrique AB, Heaney CD. Anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. ENVIRONMENTAL RESEARCH 2023; 234:116453. [PMID: 37343752 PMCID: PMC10518461 DOI: 10.1016/j.envres.2023.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Arsenic methylation converts inorganic arsenic (iAs) to monomethyl (MMA) and dimethyl (DMA) arsenic compounds. Body mass index (BMI) has been positively associated with arsenic methylation efficiency (higher DMA%) in adults, but evidence in pregnancy is inconsistent. We estimated associations between anthropometric measures and arsenic methylation among pregnant women in rural northern Bangladesh. METHODS We enrolled pregnant women (n = 784) (median [IQR] gestational week: 14 [13, 15]) in Gaibandha District, Bangladesh from 2018 to 2019. Anthropometric measures were BMI, subscapular and triceps skinfold thicknesses, and mid-upper arm circumference (MUAC), fat area (MUAFA), and muscle area (MUAMA). Arsenic methylation measures were urinary iAs, MMA, and DMA divided by their sum and multiplied by 100 (iAs%, MMA%, and DMA%), primary methylation index (MMA/iAs; PMI), and secondary methylation index (DMA/MMA; SMI). In complete cases (n = 765 [97.6%]), we fitted linear, beta, and Dirichlet regression models to estimate cross-sectional differences in iAs%, MMA%, DMA%, PMI, and SMI per IQR-unit difference in each anthropometric measure, adjusting for drinking water arsenic, age, gestational age, education, living standards index, and plasma folate, vitamin B12, and homocysteine. RESULTS Median (IQR) BMI, subscapular skinfold thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 21.5 (19.4, 23.8) kg/m2, 17.9 (13.2, 24.2) mm, 14.2 (10.2, 18.7) mm, 25.9 (23.8, 28.0) cm, 15.3 (10.5, 20.3) cm2, and 29.9 (25.6, 34.2) cm2, respectively. Median (IQR) iAs%, MMA%, DMA%, PMI, and SMI were 12.0 (9.3, 15.2)%, 6.6 (5.3, 8.3)%, 81.0 (77.1, 84.6)%, 0.6 (0.4, 0.7), and 12.2 (9.3, 15.7), respectively. In both unadjusted and adjusted linear models, all anthropometric measures were negatively associated with iAs%, MMA%, and PMI and positively associated with DMA% and SMI. For example, fully adjusted mean differences (95% CI) in DMA% per IQR-unit difference in BMI, subscapular skinfolds thickness, triceps skinfold thickness, MUAC, MUAFA, and MUAMA were 1.72 (1.16, 2.28), 1.58 (0.95, 2.21), 1.74 (1.11, 2.37), 1.45 (0.85, 2.06), 1.70 (1.08, 2.31), and 0.70 (0.13, 1.27) pp, respectively. CONCLUSIONS Anthropometric measures were positively associated with arsenic methylation efficiency among pregnant women in the early second trimester.
Collapse
Affiliation(s)
- Tyler J S Smith
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Sarah Baker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Caryn Kok
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kate Kruczynski
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lindsay N Avolio
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nora Pisanic
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pranay R Randad
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry, University of Graz, Graz, Austria
| | - Alexander van Geen
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Md Hafizur Rahman
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Hasmot Ali
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Rezwanul Haque
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Saijuddin Shaikh
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Towfida J Siddiqua
- JiVitA Maternal and Child Health and Nutrition Research Project, Rangpur, Bangladesh
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christopher D Heaney
- Department of Environmental Health & Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
318
|
Clemens Z, Wang K, Ambrosio F, Barchowsky A. Arsenic disrupts extracellular vesicle-mediated signaling in regenerating myofibers. Toxicol Sci 2023; 195:231-245. [PMID: 37527016 PMCID: PMC10535782 DOI: 10.1093/toxsci/kfad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Chronic exposure to environmental arsenic is a public health crisis affecting hundreds of millions of individuals worldwide. Though arsenic is known to contribute to many pathologies and diseases, including cancers, cardiovascular and pulmonary diseases, and neurological impairment, the mechanisms for arsenic-promoted disease remain unresolved. This is especially true for arsenic impacts on skeletal muscle function and metabolism, despite the crucial role that skeletal muscle health plays in maintaining cardiovascular health, systemic homeostasis, and cognition. A barrier to researching this area is the challenge of interrogating muscle cell-specific effects in biologically relevant models. Ex vivo studies investigating mechanisms for muscle-specific responses to arsenic or other environmental contaminants primarily utilize traditional 2-dimensional culture models that cannot elucidate effects on muscle physiology or function. Therefore, we developed a contractile 3-dimensional muscle construct model-composed of primary mouse muscle progenitor cells differentiated in a hydrogel matrix-to study arsenic exposure impacts on skeletal muscle regeneration. Muscle constructs exposed to low-dose (50 nM) arsenic exhibited reduced strength and myofiber diameter following recovery from muscle injury. These effects were attributable to dysfunctional paracrine signaling mediated by extracellular vesicles (EVs) released from muscle cells. Specifically, we found that EVs collected from arsenic-exposed muscle constructs recapitulated the inhibitory effects of direct arsenic exposure on myofiber regeneration. In addition, muscle constructs treated with EVs isolated from muscles of arsenic-exposed mice displayed significantly decreased strength. Our findings highlight a novel model for muscle toxicity research and uncover a mechanism of arsenic-induced muscle dysfunction by the disruption of EV-mediated intercellular communication.
Collapse
Affiliation(s)
- Zachary Clemens
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Kai Wang
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabrisia Ambrosio
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
319
|
Flores-Iga G, Lopez-Ortiz C, Gracia-Rodriguez C, Almeida A, Nimmakayala P, Reddy UK, Balagurusamy N. A Genome-Wide Identification and Comparative Analysis of the Heavy-Metal-Associated Gene Family in Cucurbitaceae Species and Their Role in Cucurbita pepo under Arsenic Stress. Genes (Basel) 2023; 14:1877. [PMID: 37895226 PMCID: PMC10606463 DOI: 10.3390/genes14101877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heavy-metal-associated (HMA) proteins are a class of PB1-type ATPases related to the intracellular transport and detoxification of metals. However, due to a lack of information regarding the HMA gene family in the Cucurbitaceae family, a comprehensive genome-wide analysis of the HMA family was performed in ten Cucurbitaceae species: Citrullus amarus, Citrullus colocynthis, Citrullus lanatus, Citrullus mucosospermus, Cucumis melo, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, and Legenaria siceraria. We identified 103 Cucurbit HMA proteins with various members, ranging from 8 (Legenaria siceraria) to 14 (Cucurbita pepo) across species. The phylogenetic and structural analysis confirmed that the Cucurbitaceae HMA protein family could be further classified into two major clades: Zn/Co/Cd/Pb and Cu/Ag. The GO-annotation-based subcellular localization analysis predicted that all HMA gene family members were localized on membranes. Moreover, the analysis of conserved motifs and gene structure (intron/exon) revealed the functional divergence between clades. The interspecies microsynteny analysis demonstrated that maximum orthologous genes were found between species of the Citrullus genera. Finally, nine candidate HMA genes were selected, and their expression analysis was carried out via qRT-PCR in root, leaf, flower, and fruit tissues of C. pepo under arsenic stress. The expression pattern of the CpeHMA genes showed a distinct pattern of expression in root and shoot tissues, with a remarkable expression of CpeHMA6 and CpeHMA3 genes from the Cu/Ag clade. Overall, this study provides insights into the functional analysis of the HMA gene family in Cucurbitaceae species and lays down the basic knowledge to explore the role and mechanism of the HMA gene family to cope with arsenic stress conditions.
Collapse
Affiliation(s)
- Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Aldo Almeida
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
| |
Collapse
|
320
|
Léniz-Pizarro F, Rudel HE, Briot NJ, Zimmerman JB, Bhattacharyya D. Membrane Functionalization Approaches toward Per- and Polyfluoroalkyl Substances and Selected Metal Ion Separations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44224-44237. [PMID: 37688548 DOI: 10.1021/acsami.3c08478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
Adsorption and ion exchange technologies are two of the most widely used approaches to separate pollutants from water; however, their intrinsic diffusion limitations continue to be a challenge. Pore functionalized membranes are a promising technology that can help overcome these challenges, but the extents of their competitive benefits and broad applicability have not been systematically evaluated. Herein, three types of adsorptive/ion exchange (IX) polymers containing strong/weak acid, strong base, and iron-chitosan complex groups were synthesized in the pores and partially on the surface of microfiltration (MF) membranes and tested for the removal of organic and inorganic cations and anions from water, including arsenic, per- and polyfluoroalkyl substances (PFAS), and calcium (hardness). When directly compared with beads (0.5-6 mm) and crushed resins (0.05 mm), adsorptive/IX pore-functionalized membranes demonstrated an increased relative sorption capacity, up to 2 orders of magnitude faster kinetics and the ability to regenerate up to 70-100% of their capacity while concentrating the initial solution concentration up to 12 times. The simple and versatile synthesis approach used to functionalize membranes, notably independent of the polymer type of the MF membrane, utilized pores throughout the entire cross section of the membrane to immobilize the polymers that contain the functional groups. Utilizing the pore volume of commercial membranes (6-112 mL/m2), the scientific weight capacity of the polymer (3.1-11.5 mequiv/g), and the synthesis conditions (e.g., monomer concentration), the theoretical adsorption/IX capacities per area of the membranes were calculated to be as high as 550 mequiv/m2, substantially higher than the 175 mequiv/m2 value needed to compete with commercially available IX resins. This work therefore shows that pore functionalized membranes are a promising path to tackle water contamination challenges, lowering separation diffusion limitations.
Collapse
Affiliation(s)
- Francisco Léniz-Pizarro
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Nicolas J Briot
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Electron Microscopy Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
321
|
Kuroda M, Yamamura S, Nakajima N, Amachi S. Draft genome sequence of Pelosinus sp. IPA-1, a bacterium isolated from arsenic-contaminated soil in Japan. Microbiol Resour Announc 2023; 12:e0032323. [PMID: 37486134 PMCID: PMC10508114 DOI: 10.1128/mra.00323-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Pelosinus sp. strain IPA-1 is a bacterium isolated from arsenic-contaminated soil in Japan. We here report the draft genome sequence of strain IPA-1.
Collapse
Affiliation(s)
- Masashi Kuroda
- Faculty of Social and Environmental Studies, Tokoha University, Shizuoka, Japan
| | - Shigeki Yamamura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Seigo Amachi
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| |
Collapse
|
322
|
Yang JL, Juhasz AL, Li MY, Ding J, Xue XM, Zhou D, Ma LQ, Li HB. Chronic Exposure to Drinking Water As, Pb, and Cd at Provisional Guideline Values Reduces Weight Gain in Male Mice via Gut Microflora Alterations and Intestinal Inflammation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12981-12990. [PMID: 37615500 DOI: 10.1021/acs.est.3c02388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Few studies have investigated the long-term effect of exposure to arsenic (As), lead (Pb), and cadmium (Cd) via drinking water at the provisional guideline values on gut microflora. In this study, male and female mice were exposed to water As, Pb, or Cd at 10, 10, or 5 μg L-1 for 6 months. At the end of the exposure, the net weight gain of male mice exposed to As and Pb (9.91 ± 1.35 and 11.2 ± 1.50 g) was significantly (p < 0.05) lower compared to unexposed control mice (14.1 ± 3.24 g), while this was not observed for female mice. Relative abundance of Akkermansia, a protective gut bacterium against intestinal inflammation, was reduced from 29.7% to 3.20%, 4.83%, and 17.0% after As, Pb, and Cd exposure in male mice, which likely caused chronic intestinal inflammation, as suggested by 2.81- to 9.60-fold higher mRNA levels of pro-inflammatory factors in ileal enterocytes of male mice. These results indicate that long-term exposure to drinking water As, Pb, and Cd at concentrations equivalent to the China provisional guideline values can cause loss of protective bacteria and lead to chronic intestinal inflammation, thereby affecting body weight gain in male mice.
Collapse
Affiliation(s)
- Jin-Lei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
323
|
Liu H, Xie X, Cao H, Wang Y. Insights into the selectivity of metallic oxides for arsenic and phosphate from EXAFS and DFT calculations. CHEMOSPHERE 2023; 336:139276. [PMID: 37343632 DOI: 10.1016/j.chemosphere.2023.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.
Collapse
Affiliation(s)
- Hongxing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China.
| | - Hailong Cao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
324
|
Ying C, Liu C, Zhang F, Zheng L, Wang X, Yin H, Tan W, Feng X, Lanson B. Solutions for an efficient arsenite oxidation and removal from groundwater containing ferrous iron. WATER RESEARCH 2023; 243:120345. [PMID: 37516074 DOI: 10.1016/j.watres.2023.120345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023]
Abstract
Manganese (Mn) oxides are extensively used to oxidize As(III) present in ground, drinking, and waste waters to the less toxic and more easily removable As(V). The common presence of multiple other cations in natural waters, and more especially of redox-sensitive ones such as Fe2+, may however significantly hamper As(III) oxidation and its subsequent removal. The present work investigates experimentally the influence of Mn(III) chelating agents on As(III) oxidation process in such environmentally relevant complex systems. Specifically, the influence of sodium pyrophosphate (PP), an efficient Mn(III) chelating agent, on As(III) oxidation by birnessite in the presence of Fe(II) was investigated using batch experiments at circum-neutral pH. In the absence of PP, competitive oxidation of Fe(II) and As(III) leads to Mn oxide surface passivation by Fe(III) and Mn(II/III) (oxyhydr)oxides, thus inhibiting As(III) oxidation. Addition of PP to the system highly enhances As(III) oxidation by birnessite even in the presence of Fe(II). PP presence prevents passivation of Mn oxide surfaces keeping As and Fe species in solution while lower valence Mn species are released to solution. In addition, reactive oxygen species (ROS), tentatively identified as hydroxyl radicals (•OH), are generated under aerobic conditions through oxygen activation by Fe(II)-PP complexes, enhancing As(III) oxidation further. The positive influence of Mn(III) chelating agents on As(III) oxidation most likely not only depend on their affinity for Mn(III) but also on their ability to promote formation of these active radical species. Finally, removal of As(V) through sorption to Fe (oxyhydr)oxides is efficient even in the presence of significant concentrations of PP, and addition of such Mn(III) chelating agents thus appears as an efficient way to enhance the oxidizing activity of birnessite in large-scale treatment for arsenic detoxification of groundwaters.
Collapse
Affiliation(s)
- Chaoyun Ying
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France; Department of Geography and Spatial Information Techniques, Zhejiang Collaborative Innovation Center & Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Donghai Academy, Ningbo University, Ningbo 315211, China
| | - Chang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoming Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bruno Lanson
- University Grenoble Alpes, CNRS, University Savoie Mont Blanc, IRD, University Gustave Eiffel, ISTerre, F-38000 Grenoble, France
| |
Collapse
|
325
|
Xu Y, Huang M, Wang H, Sun G, Kumar A, Yu Z. Enhancing arsenic adsorptions by optimizing Fe-loaded biochar and preliminary application in paddy soil under different water management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101616-101626. [PMID: 37653193 DOI: 10.1007/s11356-023-29499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Arsenic (As) is widely distributed in nature and is a highly toxic element impacting human health through drinking water and rice. In this study, an optimized approach was attempted to improve As adsorption capabilities by combining pre- and post-pyrolysis modification of Fe(oxy)hydroxides to rice husk biochar (FRB), of which the method is rarely addressed in previous studies. Maghemite and goethite were successfully loaded onto biochar, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS) analyzer. The FRB had maximum As(III) and As(V) adsorption capabilities of 7908 and 11,268 mg/kg, respectively, which was significantly higher than that of Fe-modified biochar in the pre-pyrolysis and/or post-pyrolysis process. Adsorption mechanisms for As explored by Fourier-transform infrared spectroscopy (FTIR), XPS analysis mainly included electronic attraction and ligand exchange with hydroxyl groups on the FRB. It was noteworthy that more than half of the As(II) species loaded on FRB were converted into less toxic As(V) species, which could be mediated by the redox-active groups on the biochar. The preliminary application of FRB in soil indicated that it has an effective remediation potential for As-contaminated soil under flooded conditions, while promoted As release under dry conditions. Finding of this study highlighted that the loading of metal oxides onto biochar by combining pre- and post-pyrolysis modification could potentially increase As adsorption capabilities and further help in strategic water management.
Collapse
Affiliation(s)
- Yijie Xu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Manjie Huang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongyan Wang
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zhiguo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
326
|
Chen L, Wang D, Sun T, Fan T, Wu S, Fang G, Yang M, Zhou D. Quantification of the redox properties of microplastics and their effect on arsenite oxidation. FUNDAMENTAL RESEARCH 2023; 3:777-785. [PMID: 38933300 PMCID: PMC11197510 DOI: 10.1016/j.fmre.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microplastics have attracted global concern. The environmental-weathering processes control their fate, transport, transformation, and toxicity to wildlife and human health, but their impacts on biogeochemical redox processes remain largely unknown. Herein, multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics. The spectroscopic results indicated that weathering of phenol-formaldehyde resins (PFs) by hydrogen peroxide (H2O2) led to a slight decrease in the content of phenol functional groups, accompanied by an increase in semiquinone radicals, quinone, and carboxylic groups. Electrochemical and wet-chemistry quantifications, coupled with microbial-chemical characterizations, demonstrated that the PFs exhibited appreciable electron-donating capacity (0.264-1.15 mmol e- g-1) and electron-accepting capacity (0.120-0.300 mmol e- g-1). Specifically, the phenol groups and semiquinone radicals were responsible for the electron-donating capacity, whereas the quinone groups dominated the electron-accepting capacity. The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and -accepting reactions. More importantly, the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation. In addition to the H2O2-weathered PFs, the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity. This study reports important redox properties of microplastics and their effect in mediating contaminant transformation. These findings will help to better understand the fate, transformation, and biogeochemical roles of microplastics on element cycling and contaminant fate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
327
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
328
|
Wang CW, Chiou HYC, Chen SC, Wu DW, Lin HH, Chen HC, Liao WT, Lin MH, Hung CH, Kuo CH. Arsenic exposure and lung fibrotic changes-evidence from a longitudinal cohort study and experimental models. Front Immunol 2023; 14:1225348. [PMID: 37675120 PMCID: PMC10477983 DOI: 10.3389/fimmu.2023.1225348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Arsenic (As) exposure is associated with lung toxicity and we aim to investigate the effects of arsenic exposure on lung fibrotic changes. Methods Participants (n= 976) enrolled via a general health survey underwent chest low-dose computed tomography (LDCT), spirometry forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and urinary arsenic examination during 2016 and 2018. Lung fibrotic changes from LDCT were defined. AsLtoL, low arsenic levels in both 2016 and 2018; AsLtoH, low arsenic in 2016 but high levels in 2018; AsHtoL, high arsenic in 2016 but low levels in 2018; AsHtoH, high arsenic levels in both 2016 and 2018. Mice exposed to 0. 0.2mg/L, 2 mg/L, 50 mg/L of sodium arsenite (NaAsO2) through drinking water for 12 weeks and 24 weeks were applied for histological analysis. Cultured lung epithelial cells were exposed to NaAsO2 and the mesenchymal changes were examined. Results AsHtoH increased the risk (OR= 1.65, 95% CI 1.10, 2.49) of Lung fibrotic positive to positive (reference: Lung fibrotic negative to negative) compared with AsLtoL. Moreover, the predicted mean of FVC and FEV1 in AsHtoH (-0.09 units, 95% CI: -0.27, -0.09; -0.09 units, 95% CI: -0.17, -0.01) and AsLtoH (-0.13 units, 95% CI: -0.30, -0.10; -0.13 units, 95% CI: -0.22, -0.04) was significantly lower than ASLtoL. Significant lung fibrotic changes including the increase of the alveolar septum thickness and collagen fiber deposition were observed upon 2 mg/L NaAsO2 treatment for 12 weeks, and the damage was dose- and time-dependent. In vitro, sodium arsenite treatment promotes the epithelial-mesenchymal transition (EMT)-like changes of the normal human bronchial epithelial cells, including upregulation of several fibrotic and mesenchymal markers (fibronectin, MMP-2, and Snail) and cell migration. Inhibition of reactive oxygen species (ROS) and MMP-2 impaired the arsenic-induced EMT changes. Administration of a flavonoid, apigenin, inhibited EMT in vitro and pulmonary damages in vivo with the reduction of mesenchymal markers. Discussion we demonstrated that continued exposure to arsenic causes lung fibrosis in humans and mice. Targeting lung epithelial cells EMT is effective on the development of therapeutic strategy. Apigenin is effective in the inhibition of arsenic-induced pulmonary fibrosis and EMT.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ying Clair Chiou
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ting Liao
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
329
|
Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol 2023; 39:283. [PMID: 37594588 PMCID: PMC10439078 DOI: 10.1007/s11274-023-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
330
|
Han L, Sun Y, Li Z, Duan Y, Han S, Zhang H, Zhao M, Zheng Y. Beyond the geological origin of sediment arsenic in groundwater systems: arsenic redux by redox. Sci Bull (Beijing) 2023; 68:1616-1620. [PMID: 37453829 DOI: 10.1016/j.scib.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Long Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuqin Sun
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yanhua Duan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuangbao Han
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, China
| | - Hailong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Meixun Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yan Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
331
|
Wu Z, Wang W, Zhu K, Luo D, Zhang A. C/EBPβ-TFAM-Mediated NLRP3 Inflammasome Activation Contributes to Arsenic-Induced Rat Kidney Injury. TOXICS 2023; 11:668. [PMID: 37624173 PMCID: PMC10458180 DOI: 10.3390/toxics11080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Compelling evidence has demonstrated that arsenic (As) exposure is associated with kidney injuries. Given that inflammatory responses and immune imbalances are the root causes of several kidney diseases, this study investigated the potential mechanisms underlying NLRP3 inflammasome activation in As-induced kidney injury. A rat model of sub-chronic As exposure was established via oral administration of NaAsO2. The results revealed that urinary β-2-microglobulin (β2-MG), N-acetyl-β-D-glucosidase (NAG) and albumin (ALB) were increased in the As-exposed group, reflecting kidney impairment. Moreover, significant glomerular vacuole-like changes, tubular dilatation and inflammatory cell infiltration were observed. Meanwhile, the expression levels of neutrophil gelatinase-associated lipocalin (NGAL), IL-1β and IL-18 were enhanced in the kidney tissues of As-treated rats. Further, increased expression of NLRP3, ASC and caspase-1, which are NLRP3 inflammasome-associated proteins, were observed in the kidney tissues of rats in the As-treated groups. The expression levels of the NLRP3 upstream regulators C/EBPβ and TFAM were also elevated. These findings suggest that sub-chronic As exposure triggers inflammatory responses in rat kidney tissue and impairs kidney function. The underlying mechanisms may be related to the C/EBPβ-TFAM pathway and activation of the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Ziqin Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (W.W.); (K.Z.); (D.L.)
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (W.W.); (K.Z.); (D.L.)
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (W.W.); (K.Z.); (D.L.)
| | - Daopeng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (W.W.); (K.Z.); (D.L.)
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China; (Z.W.); (W.W.); (K.Z.); (D.L.)
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
332
|
Ateia M, Sigmund G, Bentel MJ, Washington JW, Lai A, Merrill NH, Wang Z. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:10.1016/j.oneear.2023.07.001. [PMID: 38264630 PMCID: PMC10802893 DOI: 10.1016/j.oneear.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Michael J. Bentel
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - John W. Washington
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nathaniel H. Merrill
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | - Zhanyun Wang
- Empa Swiss – Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
333
|
Chattopadhyay A, Singh AP, Kumar S, Pati J, Rakshit A. The machine learning and geostatistical approach for assessment of arsenic contamination levels using physicochemical properties of water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:595-614. [PMID: 37578877 PMCID: wst_2023_231 DOI: 10.2166/wst.2023.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Arsenic contamination in groundwater due to natural or anthropogenic sources is responsible for carcinogenic and non-carcinogenic risks to humans and the ecosystem. The physicochemical properties of groundwater in the study area were determined in the laboratory using the samples collected across the Varanasi region of Uttar Pradesh, India. This paper analyses the physicochemical properties of water using machine learning, descriptive statistics, geostatistical and spatial analysis. Pearson correlation was used for feature selection and highly correlated features were selected for model creation. Hydrochemical facies of the study area were analyzed and the hyperparameters of machine learning models, i.e., multilayer perceptron, random forest (RF), naïve Bayes, and decision tree were optimized before training and testing the groundwater samples as high (1) or low (0) arsenic contamination levels based on the WHO 10 μg/L guideline value. The overall performance of the models was compared based on accuracy, sensitivity, and specificity value. Among all models, the RF algorithm outclasses other classifiers, as it has a high accuracy of 92.30%, a sensitivity of 100%, and a specificity of 75%. The accuracy result was compared to prior research, and the machine learning model may be used to continually monitor the amount of arsenic pollution in groundwater.
Collapse
Affiliation(s)
- Arghya Chattopadhyay
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India E-mail:
| | - Anand Prakash Singh
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Siddharth Kumar
- Department of Computer Science & Engineering, Indian Institute of Information Technology Ranchi, Ranchi, Jharkhand 834010, India
| | - Jayadeep Pati
- Department of Computer Science & Engineering, Indian Institute of Information Technology Ranchi, Ranchi, Jharkhand 834010, India
| | - Amitava Rakshit
- Department of Soil Science & Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
334
|
Shabbir Z, Shahid M, Natasha, Khalid S, Khalid S, Imran M, Qureshi MI, Niazi NK. Use of agricultural bio-wastes to remove arsenic from contaminated water. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5703-5712. [PMID: 33236273 DOI: 10.1007/s10653-020-00782-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) is a highly toxic metalloid. High As levels have been recorded in groundwater aquifers at a global scale. This study investigated As level in groundwater of District Vehari and assessed the potential of different agricultural by-products (sugarcane bagasse, cottonseed hulls, soybean hulls, corncobs and rice husk) to remove As from water. The study was carried out in two steps. In the first step, a total of 38 groundwater samples were obtained from Vehari. Groundwater samples were analyzed for total As contents and physicochemical parameters. Results indicated that As content ranged from below detection limit to 49 µg/L in the groundwater samples. The values of hazard quotient and cancer risk were up to 1.5 and 0.0004, respectively, which delineated severe risk of As poisoning. During the second step, six As-contaminated groundwater samples (total As contents: 49, 40, 29, 24, 18, 16 µg/L) were selected to remove As using agricultural by-products. Furthermore, four As solutions (200, 100, 50 and 25 µg/L) were prepared in the laboratory. Results revealed that corncobs and soybean hulls removed, respectively, 98% and 71% As from aqueous mediums after 120 min. Moreover, agricultural by-products were less effective in removing As from groundwater samples than synthetic solutions. The adsorption/removal capacity of by-products was lower at low initial As concentration compared to high initial levels, which needs further studies to explore the underlying mechanisms. Overall, the As removal efficiency of agriculture by-products differed significantly with respect to initial As level, contamination category, type of agricultural by-products and interaction duration. Therefore, these aspects need to be optimized before the possible use of an agricultural by-product as a potential biosorbent.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan.
| | - Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Samina Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Campus-61100, Pakistan
| | | | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
335
|
Pandey A, Wu LB, Murugaiyan V, Schaaf G, Ali J, Frei M. Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92268-92281. [PMID: 37486470 PMCID: PMC10447600 DOI: 10.1007/s11356-023-28833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Contamination of paddy soils with arsenic (As) can cause phytotoxicity in rice and increase the accumulation of arsenic in grains. The uptake and accumulation of As in rice depends on the different As species present in the soil. Plants detoxify As by conjugating and sequestering xenobiotic compounds into vacuoles using various enzymes. However, the severity of damage induced by arsenite (As(III)) and arsenate (As(V)), as well as the roles of glutathione S-transferase in detoxifying these As species in rice, are not fully understood. In this study, we developed plant materials overexpressing a glutathione S-transferase gene OsGSTU40 under the control of the maize UBIL promoter. Through systematic investigations of both wild-type Nipponbare (Oryza sativa L., ssp. japonica) and OsGSTU40 overexpression lines under chronic or acute stress of As, we aimed to understand the toxic effects of both As(III) and As(V) on rice plants at the vegetative growth stage. We hypothesized that (i) As(III) and As(V) have different toxic effects on rice plants and (ii) OsGSTU40 played positive roles in As toxicity tolerance. Our results showed that As(III) was more detrimental to plant growth than As(V) in terms of plant growth, biomass, and lipid peroxidation in both chronic and acute exposure. Furthermore, overexpression of OsGSTU40 led to better plant growth even though uptake of As(V), but not As(III), into shoots was enhanced in transgenic plants. In acute As(III) stress, transgenic plants exhibited a lower level of lipid peroxidation than wild-type plants. The element composition of plants was dominated by the different As stress treatments rather than by the genotype, while the As concentration was negatively correlated with phosphorus and silicon. Overall, our findings suggest that As(III) is more toxic to plants than As(V) and that glutathione S-transferase OsGSTU40 differentially affects plant reactions and tolerance to different species of arsenic.
Collapse
Affiliation(s)
- Ambika Pandey
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany
| | - Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Gabriel Schaaf
- Institute of Crop Sciences and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-University Bonn, 53115, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, 4031, Laguna, Philippines
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding I, Justus Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
336
|
Hu X, Yuan X, Yang M, Han M, Ommati MM, Ma Y. Arsenic exposure induced anxiety-like behaviors in male mice via influencing the GABAergic Signaling in the prefrontal cortex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86352-86364. [PMID: 37402917 DOI: 10.1007/s11356-023-28426-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Arsenic contamination in drinking water causes a global public health problem. Emerging evidence suggests that arsenic may act as an environmental risk factor for anxiety disorders. However, the exact mechanism underlying the adverse effects has not been fully elucidated. This study aimed to evaluate the anxiety-like behaviors of mice exposed to arsenic trioxide (As2O3), to observe the neuropathological changes, and to explore the link between the GABAergic system and behavioral manifestations. For this purpose, male C57BL/6 mice were exposed to various doses of As2O3 (0, 0.15, 1.5, and 15 mg/L) through drinking water for 12 weeks. Anxiety-like behaviors were assessed using the open field test (OFT), light/dark choice test, and elevated zero maze (EZM). Neuronal injuries in the cerebral cortex and hippocampus were assessed by light microscopy with H&E and Nissl staining. Ultrastructural alteration in the cerebral cortex was assessed by transmission electron microscope (TEM). The expression levels of GABAergic system-related molecules (i.e., glutamate decarboxylase, GABA transporter, and GABAB receptor subunits) in the prefrontal cortex (PFC) were determined by qRT-PCR and western blotting. Arsenic exposure showed a striking anxiogenic effect on mice, especially in the group exposed to 15 mg/L As2O3. Light microscopy showed neuron necrosis and reduced cell counts. TEM revealed marked ultrastructural changes, including the vacuolated mitochondria, disrupted Nissl bodies, an indentation in the nucleus membrane, and delamination of myelin sheath in the cortex. In addition, As2O3 influenced the GABAergic system in the PFC by decreasing the expression of the glutamate decarboxylase 1 (GAD1) and the GABAB2 receptor subunit, but not the GABAB1 receptor subunit. To sum up, sub-chronic exposure to As2O3 is associated with increased anxiety-like behaviors, which may be mediated by altered GABAergic signaling in the PFC. These findings shed light on the mechanisms responsible for the neurotoxic effects of arsenic and therefore more cautions should be taken.
Collapse
Affiliation(s)
- Xin Hu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohong Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyu Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingsheng Han
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
337
|
Shahid SU, Iqbal J, Abbasi NA, Tahir A. GIS based hotspot analysis and health risk assessment of groundwater arsenic from an unconfined deep aquifer of Lahore, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6053-6068. [PMID: 37233862 DOI: 10.1007/s10653-023-01612-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Use of groundwater for drinking purpose poses serious hazards of arsenic contamination particularly in plains of western Himalayan region. Therefore, current study was designed to investigate the level of Arsenic (As) in the water obtained from tubewells in a metropolitan city of Lahore, Pakistan and assess the human health risk. So, a total of 73 tubewells were sampled randomly in the manner that the whole study region was covered without any clustering. The water samples were analyzed for As using atomic absorption spectrophotometer. These samples were also tested for total dissolved solids, chlorides, pH, alkalinity, turbidity, hardness and calcium. GIS based hotspots analysis technique was used to investigate the spatial distribution patterns. Our results revealed that only one sample out of total 73 had arsenic level below the WHO guideline of 10 μg/L. The spatial distribution map of arsenic revealed that the higher concentrations of arsenic are present in the north-western region of Lahore. The cluster and outlier analysis map using Anselin Local Moran's I statistic indicated the presence of an arsenic cluster in the west of River Ravi. Furthermore, the optimized hotspot analysis based on Getis-Ord Gi* statistics confirmed the statistical significance (P < 0.05) and (P < 0.01) of these samples from the vicinity of River Ravi. Regression analysis showed that variables such as turbidity, alkalinity, hardness, chlorides, calcium and total dissolved solids were significantly (all P < 0.05) associated with level of Arsenic in tubewells. Whereas, PH and electrical conductivity and other variables like town, year of installation, depth and diameter of the wells were not significantly associated with Arsenic concentrations in tubewells. Principal component analysis (PCA) exhibited that the random distribution of tubewell samples showed no distinct clustering with towns studied. Health risk assessment based on hazard and Cancer risk index revealed serious risk of developing carcinogenic and non-carcinogenic diseases particularly in children. The health risk due to prevalence of high As concentration in tubewells' water need to be mitigated immediately to avoid worst consequences in future.
Collapse
Affiliation(s)
- Syed Umair Shahid
- Centre for Integrated Mountain Research (CIMR), University of the Punjab, Lahore, Pakistan.
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Javed Iqbal
- Institute of Geographical Information Systems (IGIS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naeem Akhtar Abbasi
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Areej Tahir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
338
|
Wang Y, Cheng H. Environmental fate and ecological impact of the potentially toxic elements from the geothermal springs. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6287-6303. [PMID: 37289258 DOI: 10.1007/s10653-023-01628-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Potentially toxic elements from geothermal springs can cause significant pollution of the surrounding environment and pose potential risk to the ecosystem. The fate of potentially toxic elements in the water-soil-plant system in the Yangbajain geothermal field on the Tibetan Plateau, China was investigated to assess their impact on the eco-environment. The concentrations of Be, F, As, and Tl were highly elevated in the headwaters of the Yangbajain geothermal springs, and their concentrations in the local surface water impacted by the geothermal springs reached 8.1 μg/L (Be), 23.9 mg/L (F), 3.83 mg/L (As), and 8.4 μg/L (Tl), respectively, far exceeding the corresponding thresholds for surface and drinking water. The absence of As-Fe co-precipitation, undersaturated F-, and weak adsorption on minerals at high geothermal spring pH may be responsible for the As- and F-rich drainage, which caused pollution of local river. As concentrations in the leaves of Orinus thoroldii (Stapf ex Hemsl.) Bor were up to 42.7 μg/g (dry weight basis), which is an order of magnitude higher than the allowable limit in animal feeds. The locally farmed yaks are exposed to the excessive amount of F and As with high exposure risk through water-drinking and grass-feeding.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, People's Republic of China.
| |
Collapse
|
339
|
Engrola F, Correia MAS, Watson C, Romão CC, Veiros LF, Romão MJ, Santos-Silva T, Santini JM. Arsenite oxidase in complex with antimonite and arsenite oxyanions: Insights into the catalytic mechanism. J Biol Chem 2023; 299:105036. [PMID: 37442232 PMCID: PMC10448176 DOI: 10.1016/j.jbc.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic contamination of groundwater is among one of the biggest health threats affecting millions of people in the world. There is an urgent need for efficient arsenic biosensors where the use of arsenic metabolizing enzymes can be explored. In this work, we have solved four crystal structures of arsenite oxidase (Aio) in complex with arsenic and antimony oxyanions and the structures determined correspond to intermediate states of the enzymatic mechanism. These structural data were complemented with density-functional theory calculations providing a unique view of the molybdenum active site at different time points that, together with mutagenesis data, enabled to clarify the enzymatic mechanism and the molecular determinants for the oxidation of As(III) to the less toxic As(V) species.
Collapse
Affiliation(s)
- Filipa Engrola
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Márcia A S Correia
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Cameron Watson
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Teresa Santos-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| | - Joanne M Santini
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, United Kingdom.
| |
Collapse
|
340
|
Illingworth EJ, Maertens A, Sillé FCM. Transcriptomic Effects of Low-Dose Inorganic Arsenic Exposure on Murine Bone Marrow-Derived Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550543. [PMID: 37546857 PMCID: PMC10402011 DOI: 10.1101/2023.07.26.550543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Both tissue-resident macrophages and monocytes recruited from the bone marrow that transform into tissue-resident cells play critical roles in mediating homeostasis as well as in the pathology of inflammatory diseases. Inorganic arsenic (iAs) is the most common drinking water contaminant worldwide and represents a major public health concern. Several diseases that macrophages have implicated involvement in are caused by iAs exposure, including cardiovascular disease, cancer, and increased risk of infectious disease. Therefore, understanding the effects of iAs exposure on macrophages can help us better grasp the full range of arsenic immunotoxicity and better design therapeutic targets for iAs-induced diseases particularly in exposed populations. In this study, we analyzed the transcriptome of low dose iAs-exposed male and female murine bone marrow-derived macrophages (BMDMs) with either M0, M1, or M2 stimulation. We identified differentially expressed genes by iAs in a sex- and stimulation-dependent manner and used bioinformatics tools to predict protein-protein interactions, transcriptional regulatory networks, and associated biological processes. Overall, our data suggest that M1-stimulated, especially female-derived, BMDMs are most susceptible to iAs exposure. Most notably, we observed significant downregulation of major proinflammatory transcription factors, like IRF8, and its downstream targets, as well as genes encoding proteins involved in pattern recognition and antigen presentation, such as TLR7, TLR8, and H2-D1, potentially providing causal insight regarding arsenic's role in perturbing immune responses to infectious diseases. We also observed significant downregulation of genes involved in processes crucial to coordinating a proinflammatory response including leukocyte migration, differentiation, and cytokine and chemokine production and response. Finally, we discovered that 24 X-linked genes were dysregulated in iAs-exposed female stimulation groups compared to only 3 across the iAs-exposed male stimulation groups. These findings elucidate the potential mechanisms underlying the sex-differential iAs-associated immune-related disease risk.
Collapse
|
341
|
Hoy KS, Davydiuk T, Chen X, Lau C, Schofield JRM, Lu X, Graydon JA, Mitchell R, Reichert M, Le XC. Arsenic speciation in freshwater fish: challenges and research needs. FOOD QUALITY AND SAFETY 2023; 7:fyad032. [PMID: 37744965 PMCID: PMC10515374 DOI: 10.1093/fqsafe/fyad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/12/2023] [Indexed: 09/26/2023]
Abstract
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
Collapse
Affiliation(s)
- Karen S Hoy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ruth Mitchell
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
342
|
Guo Y, Xing N, Gan F, Yan B, Bai J. Evaluating the Hydrological Components Contributions to Terrestrial Water Storage Changes in Inner Mongolia with Multiple Datasets. SENSORS (BASEL, SWITZERLAND) 2023; 23:6452. [PMID: 37514746 PMCID: PMC10384450 DOI: 10.3390/s23146452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
In this study, multiple remote sensing data were used to quantitatively evaluate the contributions of surface water, soil moisture and groundwater to terrestrial water storage (TWS) changes in five groundwater resources zones of Inner Mongolia (GW_I, GW_II, GW_III, GW_IV and GW_V), China. The results showed that TWS increased at the rate of 2.14 mm/a for GW_I, while it decreased at the rate of 4.62 mm/a, 5.89 mm/a, 2.79 mm/a and 2.62 mm/a for GW_II, GW_III, GW_IV and GW_V during 2003-2021. Inner Mongolia experienced a widespread soil moisture increase with the rate of 4.17 mm/a, 2.13 mm/a, 1.20 mm/a, 0.25 mm/a and 1.36 mm/a for the five regions, respectively. Significant decreases were detected for regional groundwater storage (GWS) with the rate of 2.21 mm/a, 6.76 mm/a, 6.87 mm/a, 3.01 mm/a, and 4.14 mm/a, respectively. Soil moisture was the major contributor to TWS changes in GW_I, which accounted 58% of the total TWS changes. Groundwater was the greatest contributor to TWS changes in other four regions, especially GWS changes, which accounted for 76% TWS changes in GW_IV. In addition, this study found that the role of surface water was notable for calculating regional GWS changes.
Collapse
Affiliation(s)
- Yi Guo
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China
- Key Laboratory of Aerial Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
| | - Naichen Xing
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China
- Key Laboratory of Aerial Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
| | - Fuping Gan
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China
- Key Laboratory of Aerial Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
| | - Baikun Yan
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China
- Key Laboratory of Aerial Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
| | - Juan Bai
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, China Geological Survey, Beijing 100083, China
- Key Laboratory of Aerial Geophysics and Remote Sensing Geology, Ministry of Natural Resources, Beijing 100083, China
| |
Collapse
|
343
|
Farsad A, Niimi K, Ersan MS, Gonzalez-Rodriguez JR, Hristovski KD, Westerhoff P. Mechanistic Study of Arsenate Adsorption onto Different Amorphous Grades of Titanium (Hydr)Oxides Impregnated into a Point-of-Use Activated Carbon Block. ACS ES&T ENGINEERING 2023; 3:989-1000. [PMID: 37546364 PMCID: PMC10399556 DOI: 10.1021/acsestengg.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Millions of households still rely on drinking water from private wells or municipal systems with arsenic levels approaching or exceeding regulatory limits. Arsenic is a potent carcinogen, and there is no safe level of it in drinking water. Point-of-use (POU) treatment systems are a promising option to mitigate arsenic exposure. However, the most commonly used POU technology, an activated carbon block filter, is ineffective at removing arsenic. Our study aimed to explore the potential of impregnating carbon blocks with amorphous titanium (hydr)oxide (THO) to improve arsenic removal without introducing titanium (Ti) into the treated water. Four synthesis methods achieved 8-16 wt.% Ti loading within the carbon block with 58-97% amorphous THO content. The THO-modified carbon block could adsorb both oxidation states of arsenic (arsenate and arsenite) in batch or column tests. Modified carbon block with higher Ti and amorphous content always led to better arsenate removal, achieving arsenic loadings up to 31 mg As/mg Ti after 70,000 bed volumes in continuous flow tests. Impregnating carbon block with amorphous THO consistently outperformed impregnation using crystalline TiO2. The best-performing system (TTIP-EtOH carbon block) was an amorphous THO derived using titanium isopropoxide, ethanol, and acetic acid via sol-gel technique, aged at 80° for 18 hours and dried overnight at 60°. Comparable pore size distribution and surface area of the impregnated carbon blocks suggested that chemical properties play a more crucial role than physical and textural properties in removing arsenate via amorphous Ti-impregnated carbon block. Freundlich isotherms indicated energetically favorable adsorption for amorphous chemically synthesized adsorbents. The mass transport coefficients for the amorphous TTIP-EtOH carbon block were fitted using a pore surface diffusion model, resulting in Dsurface = 3.1×10-12 cm2/s and Dpore = 3.2×10-6 cm2/s. Impregnating the carbon block with THO enabled effective arsenic removal from water without adversely affecting the pressure drop across the unit or the carbon block's ability to remove polar organic chemical pollutants efficiently.
Collapse
Affiliation(s)
- Alireza Farsad
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Ken Niimi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Mahmut S Ersan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| | - Jose Ricardo Gonzalez-Rodriguez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
- Environmental Protection Research Center, School of Chemistry, Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
| | | | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
- Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), USA
| |
Collapse
|
344
|
Tang L, Liu J, Zeng J, Luo X, Ke W, Li C, Gao W, Jiang J, Xue S. Anthropogenic processes drive heterogeneous distributions of toxic elements in shallow groundwater around a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131377. [PMID: 37054642 DOI: 10.1016/j.jhazmat.2023.131377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Smelting activities have a far-reaching influence on the quality of soil and groundwater, while most studies have neglected the information on the pollution characteristics of groundwater. The hydrochemical parameters of shallow groundwater and the spatial distributions of toxic elements were investigated in this study. Correlations analysis and groundwater evolution revealed that the major ions were primarily determined by silicate weathering and calcite dissolution process, and anthropogenic processes had a significant effect on groundwater hydrochemistry. Almost 79%, 71%, 57%, 89%, 100%, and 78.6% of samples exceeded the standards of Cd, Zn, Pb, As, SO42-, and NO3-, and their distribution is closely related to the production process. Analysis of soil geochemistry indicated that the relatively mobile forms of toxic elements strongly influence the origin and concentration in shallow groundwater. Besides, rainfall with high magnitude would lead to a decrease of toxic elements in shallow groundwater, whereas the area once stacked waste residue was the opposite. It is recommended to strengthen risk management of the limited mobility fraction while devising a plan for waste residue treatment in accordance with the local pollution conditions. The research on controlling the mechanism of toxic elements in shallow groundwater, along with sustainable development in the study area and other smelting zones may benefit from this study.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chuxuan Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| |
Collapse
|
345
|
Solaimani F, Habibi E, Ghasemi M, Mahboubi S, Zamani E, Shaki F. The Protective Effects of Trametes Versicolor on Arsenic-Induced Male Reproductive Toxicity through Regulation of Oxidative Stress: A Biochemical and Histopathological Survey. Andrologia 2023; 2023:1-13. [DOI: 10.1155/2023/7579366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Exposure to arsenic is linked to a wide range of diseases, in particular male reproductive toxicities. Trametes versicolor is a traditional medicinal fungus with a remarkable potential for antioxidant activity. The purpose of this study was to examine the ameliorating effects of water and methanol extracts of T. versicolor on arsenic-induced male reproductive toxicities via the abrogation of oxidative stress. The mice were divided as follows: control: normal saline, As: arsenic (15 mg/kg), WE: water extract (400 mg/kg), ME: methanol extract (400 mg/kg), As + WE: arsenic (15 mg/kg) + water extract (100, 200, 400 mg/kg), As + ME: arsenic (15 mg/kg) + methanol extract (100, 200, 400 mg/kg), and positive control: arsenic (15 mg/kg) + vitamin C (500 mg/kg). Animals were treated via the intraperitoneal route. About 24 hr later, the mice were euthanized, and oxidative stress parameters (reactive oxygen species [ROS], lipid peroxidation, glutathione concentration, protein carbonylation, glutathione peroxidase, and superoxide dismutase activity), histopathological changes and sperm parameters (count, motility, and morphology) were examined in the testicular tissue. Arsenic caused significant pathological changes in the testicular tissue and sperm morphology and significantly reduced sperm count and motility. Moreover, arsenic mediated oxidative stress via significant increases in ROS generation, lipid peroxidation, and protein carbonyl content, as well as significant depletion in glutathione concentration and superoxide dismutase and glutathione peroxidase activities. Although, coadministration of water and methanol extracts of T. versicolor at 200 and 400 mg/kg counteracted arsenic-induced oxidative and histopathological damages and improved sperm parameters. Our study indicated that T. versicolor ameliorated arsenic-induced testis toxicity and sperm dysfunction via attenuation of oxidative damage.
Collapse
Affiliation(s)
- Fatemeh Solaimani
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Department of Pathology, Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saba Mahboubi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
346
|
Nicole W. FACT Finding: Folic Acid Supplementation May Lower Risk from Arsenic in Drinking Water. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:74001. [PMID: 37399146 PMCID: PMC10317210 DOI: 10.1289/ehp13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/22/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
|
347
|
Li T. Speciation of inorganic arsenic with mixed mode HPLC-ESI-MS and Arsenite Oxidation. Talanta 2023; 259:124487. [PMID: 37027931 PMCID: PMC10152742 DOI: 10.1016/j.talanta.2023.124487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
It has been challenging to analyze inorganic arsenic (iAs) with anion exchange HPLC-Electrospray Ionization-Mass spectrometry (HPLC-ESI-MS), because arsenite (As(III)) is difficult to retain on column and the salts in mobile phase causes ionization suppression of iAs. To address these issues, a method has been developed involving the determination of arsenate (As(V)) with mixed mode HPLC-ESI-MS and the conversion of As(III) to As(V) for total iAs. As(V) was separated from other chemicals on Newcrom B, a bi-modal HPLC column involving anion exchange and reverse phase interaction. The elution employed a two-dimensional gradient, including a formic acid gradient to elute As(V) and a concurrent alcohol gradient to elute organic anions used in sample preparations. As(V) was detected by Selected Ion Recording (SIR) in negative mode at m/z = 141 with a QDa (single quad) detector. As(III) was quantitatively converted to As(V) by mCPBA oxidation and measured for total iAs. By replacing salt with formic acid in elution, the ionization efficiency for As(V) was greatly enhanced in ESI interface. The limit of detection (LOD) for As(V) and As(III) were 0.0263 μM (1.97 ppb) and 0.0398 μM (2.99 ppb), respectively. The linear range was 0.05-1 μM. The method has been used to characterize iAs speciation change in the solution and precipitation in a simulated iron-rich groundwater caused by air exposure.
Collapse
Affiliation(s)
- Tao Li
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, 45268, USA.
| |
Collapse
|
348
|
Wang S, Wen J, Mu L, Hu X, Feng R, Jia Y. Highly active complexes of pyrite and organic matter regulate arsenic fate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131967. [PMID: 37421861 DOI: 10.1016/j.jhazmat.2023.131967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Arsenic (As) presents high toxicity and strong carcinogenicity, and its health risks are regulated by its oxidation state and speciation. As can form complexes with the surface of minerals or organic matter through adsorption, affecting its toxicity and bioavailability. However, the regulation effect of the interaction of coexisting minerals and organic matter on As fate remains largely unknown. Here, we discovered that minerals (e.g., pyrite) and organic matter (e.g., alanyl glutamine, AG) can form pyrite-AG complexes, promoting As(III) oxidation under simulated solar irradiation. The formation of pyrite-AG was explored in terms of the interaction of surface oxygen atoms, electron transfer and crystal surface changes. From the perspective of atoms and molecules, pyrite-AG showed more oxygen vacancies, stronger reactive oxygen species (ROS) and a higher electron transport capacity than pyrite alone. Compared with pyrite, pyrite-AG effectively promoted the conversion of highly toxic As(III) to less toxic As(V) due to the enhanced photochemical properties. Moreover, quantification and capture of ROS confirmed that hydroxyl radicals (•OH) played an important role in As(III) oxidation in the pyrite-AG and As(III) system. Our results provide previously unidentified perspectives on the effects and chemical mechanisms of highly active complexes of mineral and organic matter on As fate and provide new insights into the risk assessment and control of As pollution.
Collapse
Affiliation(s)
- Shuting Wang
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China; Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| | - Yuying Jia
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
349
|
Sánchez-Rodríguez BL, Castillo-Maldonado I, Pedroza-Escobar D, Delgadillo-Guzmán D, Soto-Jiménez MF. Association of obesity, diabetes, and hypertension with arsenic in drinking water in the Comarca Lagunera province (north-central Mexico). Sci Rep 2023; 13:9244. [PMID: 37286701 DOI: 10.1038/s41598-023-36166-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Chronic endemic regional hydroarsenicism (CERHA) is a global issue that affects over 200 million people exposed to arsenic (As) in drinking water. This includes 1.75 million individuals residing in La Comarca Lagunera, a region in north-central Mexico. Arsenic levels in this region typically exceeds the WHO guideline of 10 µg L-1. Biochemical alterations related to the human As metabolism may increase the risk of overweight and obesity (O&O), type 2 diabetes (T2D), and hypertension (AHT). In our study, we investigated the role of As in drinking water as a risk factor for these metabolic diseases. We focused on populations with historically moderate (San Pedro) and low (Lerdo) drinking water As levels and people with no historical evidence of As water contamination. The exposure assessment to As was based on measurements of the drinking water (medians 67.2, 21.0, 4.3 µg L-1) and urinary As concentrations in women (9.4, 5.3, 0.8 µg L-1) and men (18.1, 4.8, 1.0 µg L-1). A significant correlation between As in drinking water and urine evidenced the As exposure in the population (R2 = 0.72). Adjusted odds ratios with 95% confidence intervals evidenced higher chances of being diagnosed with T2D (1.7, 1.2-2.0) and AHT (1.8, 1.7-1.9) in individuals living in San Pedro than those in Lerdo. Still, there was no significant association with obesity. Individuals living in CERHA towns were found to have a higher risk of obesity (1.3-1.9), T2D (1.5 to 3.3), and AHT (1.4 to 2.4) compared to those residing in non-CERHA towns. Finally, obesity is more probable in women [inverse of OR and 95%CI 0.4 (0.2-0.7)] compared to men, while men is more likely to be diagnosed with T2D [OR = 2.0 (1.4-2.3)] and AHT [OR = 2.0 (1.5-2.3)] than women, independently of the municipality.
Collapse
Affiliation(s)
- B L Sánchez-Rodríguez
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - I Castillo-Maldonado
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - D Pedroza-Escobar
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Mexico
| | - D Delgadillo-Guzmán
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreón, Mexico
| | - M F Soto-Jiménez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Av. Joel Montes Camarena, 82040, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
350
|
Rahman N, Ahmad I. Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131783. [PMID: 37327609 DOI: 10.1016/j.jhazmat.2023.131783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
A novel coordination polymer gel based on zirconium(IV) and 2-thiobarbituric (ZrTBA) was synthesized and explored its potential to remediate As(III) from water. Box-Behnken design with desirability function and genetic algorithm yielded the optimized conditions (initial concentration=194 mg L-1, dosage = 42.2 mg, time= 95 min and pH = 4.9) for maximum removal efficiency (99.19 %). The experimental saturation capacity for As(III) was 178.30 mg g-1. The steric parameter n > 1 of the best fitted statistical physics model: monolayer with two energies (R2 = 0.987-0.992) suggested multimolecular mechanism with vertical orientation of As(III) molecules onto the two active sites. XPS and FTIR confirmed the two active sites being zirconium and oxygen. The adsorption energies (E1 = 35.81-37.63 kJ/mol; E2 = 29.50-36.49 kJ/mol) and isosteric heat of adsorption indicated that physical forces governed the As(III) uptake. DFT calculations implied that the weak electrostatic interaction and hydrogen bonding were involved. The best fitted (R2>0.99) fractal like pseudo first order model established energetic heterogeneity. ZrTBA showed excellent removal efficiency in the presence of potential interfering ions and could be used up to 5 cycles of adsorption-desorption with < 8 % loss in the efficiency. ZrTBA removed ≥96.06 % As(III) from real water samples spiked at different levels of As(III).
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Izhar Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|