301
|
Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD, Bergles DE, Dailey ME. Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 2012; 60:175-88. [PMID: 22052455 PMCID: PMC3232333 DOI: 10.1002/glia.21249] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/02/2011] [Indexed: 12/20/2022]
Abstract
Glutamate transporters (GluTs) maintain a low ambient level of glutamate in the central nervous system (CNS) and shape the activation of glutamate receptors at synapses. Nevertheless, the mechanisms that regulate the trafficking and localization of transporters near sites of glutamate release are poorly understood. Here, we examined the subcellular distribution and dynamic remodeling of the predominant GluT GLT-1 (excitatory amino acid transporter 2, EAAT2) in developing hippocampal astrocytes. Immunolabeling revealed that endogenous GLT-1 is concentrated into discrete clusters along branches of developing astrocytes that were apposed preferentially to synapsin-1 positive synapses. Green fluorescent protein (GFP)-GLT-1 fusion proteins expressed in astrocytes also formed distinct clusters that lined the edges of astrocyte processes, as well as the tips of filopodia and spine-like structures. Time-lapse three-dimensional confocal imaging in tissue slices revealed that GFP-GLT-1 clusters were dynamically remodeled on a timescale of minutes. Some transporter clusters moved within developing astrocyte branches as filopodia extended and retracted, while others maintained stable positions at the tips of spine-like structures. Blockade of neuronal activity with tetrodotoxin reduced both the density and perisynaptic localization of GLT-1 clusters. Conversely, enhancement of neuronal activity increased the size of GLT-1 clusters and their proximity to synapses. Together, these findings indicate that neuronal activity influences both the organization of GluTs in developing astrocyte membranes and their position relative to synapses.
Collapse
|
302
|
Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro 2012; 4:AN20110059. [PMID: 22268447 PMCID: PMC3284767 DOI: 10.1042/an20110059] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).
Collapse
|
303
|
Nedergaard M, Verkhratsky A. Artifact versus reality--how astrocytes contribute to synaptic events. Glia 2012; 60:1013-23. [PMID: 22228580 DOI: 10.1002/glia.22288] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/05/2011] [Indexed: 11/11/2022]
Abstract
The neuronal doctrine, developed a century ago regards neuronal networks as the sole substrate of higher brain function. Recent advances in glial physiology have promoted an alternative hypothesis, which places information processing in the brain into integrated neuronal-glial networks utilizing both binary (neuronal action potentials) and analogue (diffusional propagation of second messengers/metabolites through gap junctions or transmitters through the interstitial space) signal encoding. It has been proposed that the feed-forward and feed-back communication between these two types of neural cells, which underlies information transfer and processing, is accomplished by the release of neurotransmitters from neuronal terminals as well as from astroglial processes. Understanding of this subject, however, remains incomplete and important questions and controversies require resolution. Here we propose that the primary function of perisynaptic glial processes is to create an "astroglial cradle" that shields the synapse from a multitude of extrasynaptic signaling events and provides for multifaceted support and long-term plasticity of synaptic contacts through variety of mechanisms, which may not necessarily involve the release of "glio" transmitters.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Division of Glia Disease and Therapeutics, Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY 14580, USA.
| | | |
Collapse
|
304
|
Kumar S, Parkash J, Kataria H, Kaur G. Enzymatic removal of polysialic acid from neural cell adhesion molecule interrupts gonadotropin releasing hormone (GnRH) neuron-glial remodeling. Mol Cell Endocrinol 2012; 348:95-103. [PMID: 21846489 DOI: 10.1016/j.mce.2011.07.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 11/22/2022]
Abstract
There is abundant evidence to prove that the astrocytes are highly dynamic cell type in CNS and under physiological conditions such as reproduction, these cells display a remarkable structural plasticity especially at the level of their distal processes ensheathing the gonadotropin releasing hormone (GnRH) axon terminals. The morphology of GnRH axon terminals and astrocytes in the median eminence region of hypothalamus show activity dependent structural plasticity during different phases of estrous cycle. In the current study, we have assessed the functional contribution of ∞-2,8-linked polysialic acid (PSA) on neural cell adhesion molecule (PSA-NCAM) in this neuronal-glial plasticity using both in vitro and in vivo model systems. In vivo experiments were carried out after stereotaxic injection of endoneuraminidase enzyme (endo-N) near median eminence region of hypothalamus to specifically remove PSA residues on NCAM followed by localization of GnRH, PSA-NCAM and glial fibrillary acidic protein (GFAP) by immunostaining. Using in vitro model, structural remodeling of GnV-3 cells, (a conditionally immortalized GnRH cell line) co-cultured with primary astrocytes was studied after treating the cells with endo-N. Marked morphological changes were observed in GnRH axon terminals in proestrous phase rats and control GnV-3 cells as compared to endo-N treatment i.e. after removal of PSA. The specificity of endo-N treatment was also confirmed by studying the expression of PSA-NCAM by Western blotting in cultures treated with and without endo-N. Removal of PSA from surfaces with endo-N prevented stimulation associated remodeling of GnRH axon terminals as well as their associated glial cells under both in vivo and in vitro conditions. The current data confirms the permissive role of PSA to promote dynamic remodeling of GnRH axon terminals and their associated glia during reproductive cycle in rats.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | | | | | | |
Collapse
|
305
|
Racchetti G, D'Alessandro R, Meldolesi J. Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 2011; 60:465-75. [PMID: 22144092 PMCID: PMC3306795 DOI: 10.1002/glia.22280] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022]
Abstract
Cultured astrocytes exhibit a flat/epitelioid phenotype much different from the star-like phenotype of tissue astrocytes. Upon exposure to treatments that affect the small GTPase Rho and/or its effector ROCK, however, flat astrocytes undergo stellation, with restructuring of cytoskeleton and outgrowth of processes with lamellipodia, assuming a phenotype closer to that exhibited in situ. The mechanisms of this change are known only in part. Using the ROCK blocker drug Y27632, which induces rapid (tens of min), dose-dependent and reversible stellations, we focused on two specific aspects of the process: its dependence on small GTPases and the large surface expansion of the cells. Contrary to previous reports, we found stellation to be governed by the small G protein Rac1, up to disappearance of the process when Rac1 was downregulated or blocked by a specific drug. In contrast cdc42, the other G-protein often involved in phenotype changes, appeared not involved. The surface expansion concomitant to cytoskeleton restructuring, also dependent on Rac1, was found to be at least partially sustained by the exocytosis of enlargeosomes, small vesicles distinct from classical cell organelles, which are abundant in astrocytes. Exhaustion of stellation induced by repeated administrations of Y27632 correlated with the decrease of the enlargeosome pool. A whole-cell process like stellation of cultured astrocytes might be irrelevant in the brain tissue. However, local restructuring of the cytoskeleton coordinate with surface expansion, occurring at critical cell sites and sustained by mechanisms analogous to those of stellation, might be of importance in both astrocyte physiology and pathology. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gabriella Racchetti
- Scientific Institute San Raffaele, Division of Neuroscience and IIT Network, Research Unit of Molecular Neuroscience, via Olgettina 58, Milan, Italy
| | | | | |
Collapse
|
306
|
Ouali-Hassenaoui S, Bendjelloul M, Dekar A, Theodosis D. Distribution of osmoregulatory peptides and neuronal-glial configuration in the hypothalamic magnocellular nuclei of desert rodents. C R Biol 2011; 334:855-62. [DOI: 10.1016/j.crvi.2011.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/05/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022]
|
307
|
Guidolin D, Albertin G, Guescini M, Fuxe K, Agnati L. Central Nervous System and Computation. QUARTERLY REVIEW OF BIOLOGY 2011; 86:265-85. [DOI: 10.1086/662456] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
308
|
Altered glial gene expression, density, and architecture in the visual cortex upon retinal degeneration. Brain Res 2011; 1422:46-56. [PMID: 21983206 DOI: 10.1016/j.brainres.2011.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/10/2011] [Accepted: 09/07/2011] [Indexed: 11/23/2022]
Abstract
Genes encoding the proteins of cytoskeletal intermediate filaments (IF) are tightly regulated, and they are important for establishing neural connections. However, it remains uncertain to what extent neurological disease alters IF gene expression or impacts cells that express IFs. In this study, we determined the onset of visual deficits in a mouse model of progressive retinal degeneration (Pde6b(-) mice; Pde6b(+) mice have normal vision) by observing murine responses to a visual task throughout development, from postnatal day (PND) 21 to adult (N=174 reliable observations). Using Q-PCR, we evaluated whether expression of the genes encoding two Type III IF proteins, glial fibrillary acidic protein (GFAP) and vimentin was altered in the visual cortex before, during, and after the onset of visual deficits. Using immunohistochemical techniques, we investigated the impact of vision loss on the density and morphology of astrocytes that expressed GFAP and vimentin in the visual cortex. We found that Pde6b(-) mice displayed 1) evidence of blindness at PND 49, with visual deficits detected at PND 35, 2) reduced GFAP mRNA expression in the visual cortex between PND 28 and PND 49, and 3) an increased ratio of vimentin:GFAP-labeled astrocytes at PND 49 with reduced GFAP cell body area. Together, these findings demonstrate that retinal degeneration modifies cellular and molecular indices of glial plasticity in a visual system with drastically reduced visual input. The functional consequences of these structural changes remain uncertain.
Collapse
|
309
|
Structural plasticity of synapses in hippocampal slices after oxygen-glucose deprivation. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
310
|
Girardet C, Bosler O. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus]. Biol Aujourdhui 2011; 205:179-97. [PMID: 21982406 DOI: 10.1051/jbio/2011018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Indexed: 01/26/2023]
Abstract
Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation of the brain to the changing conditions of the internal and external environment.
Collapse
Affiliation(s)
- Clémence Girardet
- Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, France.
| | | |
Collapse
|
311
|
Pancani T, Anderson KL, Porter NM, Thibault O. Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone. Cell Calcium 2011; 50:548-58. [PMID: 21978418 DOI: 10.1016/j.ceca.2011.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/24/2011] [Accepted: 09/10/2011] [Indexed: 11/19/2022]
Abstract
Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization. Here we present a combination of imaging techniques testing the disappearance of the fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as an indication of glycolytic activity in neurons and astrocytes. Our work shows that glucose utilization at rest is greater in neurons compared to astrocytes, and ceases upon activation in neurons with little change in astrocytes. Pretreatment of hippocampal cultures with pioglitazone, a drug used in the treatment of type 2 diabetes, significantly reduced glycolytic activity in neurons and enhanced it in astrocytes. This series of experiments, including Fura-2 and NADH imaging, provides results that are consistent with the idea that Ca(2+) levels may rapidly alter glycolytic activity, and that downstream events beyond Ca(2+) dysregulation with aging, may alter cellular metabolism in the brain.
Collapse
Affiliation(s)
- Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, United States.
| | | | | | | |
Collapse
|
312
|
Ryu HJ, Kim JE, Yeo SI, Kang TC. p65/RelA-Ser529 NF-κB subunit phosphorylation induces autophagic astroglial death (Clasmatodendrosis) following status epilepticus. Cell Mol Neurobiol 2011; 31:1071-8. [PMID: 21598036 PMCID: PMC11498587 DOI: 10.1007/s10571-011-9706-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/04/2011] [Indexed: 01/25/2023]
Abstract
Clasmatodendrosis is an irreversible astroglial degenerative change, which includes extensive swelling and vacuolization of cell bodies and disintegrated and beaded processes. This study was designed to elucidate whether clasmatodendrosis may be one of the autophagy-related degeneration of astrocytes. In this study, clasmatodendritic astrocytes were observed only in the stratum radiatum in the CA1 region. Vacuoles in clasmatodendritic astrocytes showed LAMP-1 immunoreactivity. In addition, both LC3-II and Beclin-1 expression were detected in most of clasmatodendritic astrocytes as well as a few non-vacuolized astrocytes. Clasmatodendritic astrocytes also showed p65/RelA-Ser529 phosphorylation in the nuclei. The neutralization of TNF-α by sTNFp55R infusion reduced clasmatodendritic astrocytes with nuclear p65/RelA-Ser529 phosphorylation. Therefore, these findings suggest that clasmatodendrosis may be autophagic astroglial death in response to epileptic seizures through TNF-α-mediated p65/RelA-Ser529 phosphorylation.
Collapse
Affiliation(s)
- Hea Jin Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
- Present Address: Department of Neurology, UCSF and Veterans Affairs Medical Center, San Francisco, CA 94121 USA
| | - Seong-Il Yeo
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, 200-702 South Korea
| |
Collapse
|
313
|
López-Bayghen E, Ortega A. Glial glutamate transporters: New actors in brain signaling. IUBMB Life 2011; 63:816-23. [DOI: 10.1002/iub.536] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/10/2011] [Indexed: 01/10/2023]
|
314
|
Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc Natl Acad Sci U S A 2011; 108:16104-9. [PMID: 21896757 DOI: 10.1073/pnas.1107533108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Astrocytes in the hypothalamus release prostaglandin E(2) (PGE(2)) in response to cell-cell signaling initiated by neurons and glial cells. Upon release, PGE(2) stimulates the secretion of gonadotropin-releasing hormone (GnRH), the neuropeptide that controls reproduction, from hypothalamic neuroendocrine neurons. Whether this effect on GnRH secretion is accompanied by changes in the firing behavior of these neurons is unknown. Using patch-clamp recording we demonstrate that PGE(2) exerts a dose-dependent postsynaptic excitatory effect on GnRH neurons. These effects are mimicked by an EP2 receptor agonist and attenuated by protein kinase A (PKA) inhibitors. The acute blockade of prostaglandin synthesis by indomethacin (INDO) or the selective inhibition of astrocyte metabolism by fluoroacetate (FA) suppresses the spontaneous firing activity of GnRH neurons in brain slices. Similarly, GnRH neuronal activity is reduced in mice with impaired astrocytic PGE(2) release due to defective erbB signaling in astrocytes. These results indicate that astrocyte-to-neuron communication in the hypothalamus is essential for the activity of GnRH neurons and suggest that PGE(2) acts as a gliotransmitter within the GnRH neurosecretory system.
Collapse
|
315
|
Villalba RM, Smith Y. Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease. Front Syst Neurosci 2011; 5:68. [PMID: 21897810 PMCID: PMC3159891 DOI: 10.3389/fnsys.2011.00068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/02/2011] [Indexed: 01/08/2023] Open
Abstract
Striatal dopamine denervation is the pathological hallmark of Parkinson's disease (PD). Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba and Smith, 2011). The concept of tripartite synapses (TS) was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a). Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia–neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD therapeutics.
Collapse
Affiliation(s)
- Rosa M Villalba
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
316
|
Biancardi VC, Son SJ, Sonner PM, Zheng H, Patel KP, Stern JE. Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats. Hypertension 2011; 58:454-63. [PMID: 21825233 DOI: 10.1161/hypertensionaha.111.175810] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurohumoral activation, a hallmark in heart failure (HF), is linked to the progression and mortality of HF patients. Thus, elucidating its precise underlying mechanisms is of critical importance. Other than its classic peripheral vasodilatory actions, the gas NO is a pivotal neurotransmitter in the central nervous system control of the circulation. While accumulating evidence supports a contribution of blunted NO function to neurohumoral activation in HF, the precise cellular sources, and NO synthase (NOS) isoforms involved, remain unknown. Here, we used a multidisciplinary approach to study the expression, cellular distribution, and functional relevance of the endothelial NOS isoform within the hypothalamic paraventricular nucleus in sham and HF rats. Our results show high expression of endothelial NOS in the paraventricular nucleus (mostly confined to astroglial cells), which contributes to constitutive NO bioavailability, as well as tonic inhibition of presympathetic neuronal activity and sympathoexcitatory outflow from the paraventricular nucleus. A diminished endothelial NOS expression and endothelial NOS-derived NO availability were found in the paraventricular nucleus of HF rats, resulting, in turn, in blunted NO inhibitory actions on neuronal activity and sympathoexcitatory outflow. Taken together, our study supports blunted central nervous system endothelial NOS-derived NO as a pathophysiological mechanism underlying neurohumoral activation in HF.
Collapse
Affiliation(s)
- Vinicia C Biancardi
- Georgia Health Sciences University, Department of Physiology, 1120 15th St, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
317
|
Vacher CM, Grange-Messent V, St-Louis R, Raison D, Lacorte JM, Hardin-Pouzet H. Architecture of the hypothalamo-posthypophyseal complex is controlled by monoamines. J Neurosci Res 2011; 89:1711-22. [PMID: 21805494 DOI: 10.1002/jnr.22726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 02/03/2023]
Abstract
The hypothalamo-neurohypophyseal system displays significant plasticity when subjected to physiological stimuli, such as dehydration, parturition, or lactation. This plasticity arises at the neurochemical and electrophysiological levels but also at a structural level. Several studies have demonstrated the role of monoaminergic afferents in controlling neurochemical and electrophysiological plasticity of the supraoptic nucleus (SON) and of the neurohypophysis (NH), but little is known about how the changes in structural plasticity are triggered. We used Tg8 mice, disrupted for the monoamine oxidase A gene, to study monamine involvement in the architecture of the SON and of the NH. SON astrocytes in Tg8 mice displayed an active status, characterized by an increase in S100β expression and a significant decrease in vimentin expression, with no modification in glial fibrillary acidic protein (GFAP) levels. Astrocytes showed a decrease in glutamate dehydrogenase (GDH) levels, whereas glutamine synthetase (GS) levels remained constant, suggesting a reduction in astrocyte glutamate catabolism. Tenascin C and polysialic acid-neural cell adhesion molecule (PSA-NCAM) expressions were also elevated in the SON of Tg8 mice, suggesting an increased capacity for structural remodelling in the SON. In the NH, similar date were obtained with a stability in GFAP expression and an increase in PSA-NCAM immunostaining. These results establish monoamine (serotonin and noradrenaline) involvement in SON and NH structural arrangement. Monoamines therefore appear to be crucial for the coordination of the neurochemical and structural aspects of neuroendocrine plasticity, allowing the hypothalamo-neurohypopyseal system to respond appropriately when stimulated.
Collapse
Affiliation(s)
- Claire-Marie Vacher
- Laboratoire de Neuroendocrinologie Moléculaire de la Prise Alimentaire, Centre de Neurosciences Paris-Sud, UMR 8195, Université Paris-Sud, CNRS Orsay, France
| | | | | | | | | | | |
Collapse
|
318
|
Lavialle M, Aumann G, Anlauf E, Pröls F, Arpin M, Derouiche A. Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors. Proc Natl Acad Sci U S A 2011; 108:12915-9. [PMID: 21753079 PMCID: PMC3150955 DOI: 10.1073/pnas.1100957108] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peripheral astrocyte process (PAP) preferentially associates with the synapse. The PAP, which is not found around every synapse, extends to or withdraws from it in an activity-dependent manner. Although the pre- and postsynaptic elements have been described in great molecular detail, relatively little is known about the PAP because of its difficult access for electrophysiology or light microscopy, as they are smaller than microscopic resolution. We investigated possible stimuli and mechanisms of PAP plasticity. Immunocytochemistry on rat brain sections demonstrates that the actin-binding protein ezrin and the metabotropic glutamate receptors (mGluRs) 3 and 5 are compartmentalized to the PAP but not to the GFAP-containing stem process. Further experiments applying ezrin siRNA or dominant-negative ezrin in primary astrocytes indicate that filopodia formation and motility require ezrin in the membrane/cytoskeleton bound (i.e., T567-phosphorylated) form. Glial processes around synapses in situ consistently display this ezrin form. Possible motility stimuli of perisynaptic glial processes were studied in culture, based on their similarity with filopodia. Glutamate and glutamate analogues reveal that rapid (5 min), glutamate-induced filopodia motility is mediated by mGluRs 3 and 5. Ultrastructurally, these mGluR subtypes were also localized in astrocytes in the rat hippocampus, preferentially in their fine PAPs. In vivo, changes in glutamatergic circadian activity in the hamster suprachiasmatic nucleus are accompanied by changes of ezrin immunoreactivity in the suprachiasmatic nucleus, in line with transmitter-induced perisynaptic glial motility. The data suggest that (i) ezrin is required for the structural plasticity of PAPs and (ii) mGluRs can stimulate PAP plasticity.
Collapse
Affiliation(s)
- Monique Lavialle
- Institut National de la Recherche Agronomique, Unité de Nutrition et Régulation Lipidique des Fonctions Cérébrales 909, 78352 Jouy-en-Josas, France
| | - Georg Aumann
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
| | - Enrico Anlauf
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
| | - Felicitas Pröls
- Institute of Anatomy I: Cellular Neurobiology, Universitätsklinikum Eppendorf, 20246 Hamburg, Germany
| | - Monique Arpin
- Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 75248 Paris 5, France
| | - Amin Derouiche
- Institute of Anatomy, Technical University of Dresden, 01307 Dresden, Germany
- Institute for Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Institute of Cellular Neurosciences, University of Bonn, 53105 Bonn, Germany
- Institute of Anatomy II, University of Frankfurt, 60590 Frankfurt, Germany; and
- Dr. Senckenbergisches, Chronomedizinisches Institut, University of Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
319
|
Burnett S, Sebastian C, Cohen Kadosh K, Blakemore SJ. The social brain in adolescence: evidence from functional magnetic resonance imaging and behavioural studies. Neurosci Biobehav Rev 2011; 35:1654-64. [PMID: 21036192 PMCID: PMC4538788 DOI: 10.1016/j.neubiorev.2010.10.011] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 10/01/2010] [Accepted: 10/20/2010] [Indexed: 01/15/2023]
Abstract
Social cognition is the collection of cognitive processes required to understand and interact with others. The term 'social brain' refers to the network of brain regions that underlies these processes. Recent evidence suggests that a number of social cognitive functions continue to develop during adolescence, resulting in age differences in tasks that assess cognitive domains including face processing, mental state inference and responding to peer influence and social evaluation. Concurrently, functional and structural magnetic resonance imaging (MRI) studies show differences between adolescent and adult groups within parts of the social brain. Understanding the relationship between these neural and behavioural observations is a challenge. This review discusses current research findings on adolescent social cognitive development and its functional MRI correlates, then integrates and interprets these findings in the context of hypothesised developmental neurocognitive and neurophysiological mechanisms.
Collapse
Affiliation(s)
- Stephanie Burnett
- Department of Brain Rehabilitation and Repair, Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | | | | | | |
Collapse
|
320
|
Prada I, Marchaland J, Podini P, Magrassi L, D'Alessandro R, Bezzi P, Meldolesi J. REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. ACTA ACUST UNITED AC 2011; 193:537-49. [PMID: 21536750 PMCID: PMC3087003 DOI: 10.1083/jcb.201010126] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The REST/NRSF transcriptional repressor prevents cultured astrocytes from forming DCVs, and its variable expression in human brain cortex astrocytes may account for their functional heterogeneity. Astrocytes are the brain nonnerve cells that are competent for gliosecretion, i.e., for expression and regulated exocytosis of clear and dense-core vesicles (DCVs). We investigated whether expression of astrocyte DCVs is governed by RE-1–silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), the transcription repressor that orchestrates nerve cell differentiation. Rat astrocyte cultures exhibited high levels of REST and expressed neither DCVs nor their markers (granins, peptides, and membrane proteins). Transfection of a dominant-negative construct of REST induced the appearance of DCVs filled with secretogranin 2 and neuropeptide Y (NPY) and distinct from other organelles. Total internal reflection fluorescence analysis revealed NPY–monomeric red fluorescent protein–labeled DCVs to undergo Ca2+-dependent exocytosis, which was largely prevented by botulinum toxin B. In the I–II layers of the human temporal brain cortex, all neurons and microglia exhibited the expected inappreciable and high levels of REST, respectively. In contrast, astrocyte REST was variable, going from inappreciable to high, and accompanied by a variable expression of DCVs. In conclusion, astrocyte DCV expression and gliosecretion are governed by REST. The variable in situ REST levels may contribute to the well-known structural/functional heterogeneity of astrocytes.
Collapse
Affiliation(s)
- Ilaria Prada
- San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
321
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
322
|
Blumenfeld-Katzir T, Pasternak O, Dagan M, Assaf Y. Diffusion MRI of structural brain plasticity induced by a learning and memory task. PLoS One 2011; 6:e20678. [PMID: 21701690 PMCID: PMC3119075 DOI: 10.1371/journal.pone.0020678] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/10/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Activity-induced structural remodeling of dendritic spines and glial cells was recently proposed as an important factor in neuroplasticity and suggested to accompany the induction of long-term potentiation (LTP). Although T1 and diffusion MRI have been used to study structural changes resulting from long-term training, the cellular basis of the findings obtained and their relationship to neuroplasticity are poorly understood. METHODOLOGY/PRINCIPAL FINDING Here we used diffusion tensor imaging (DTI) to examine the microstructural manifestations of neuroplasticity in rats that performed a spatial navigation task. We found that DTI can be used to define the selective localization of neuroplasticity induced by different tasks and that this process is age-dependent in cingulate cortex and corpus callosum and age-independent in the dentate gyrus. CONCLUSION/SIGNIFICANCE We relate the observed DTI changes to the structural plasticity that occurs in astrocytes and discuss the potential of MRI for probing structural neuroplasticity and hence indirectly localizing LTP.
Collapse
Affiliation(s)
- Tamar Blumenfeld-Katzir
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Pasternak
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Dagan
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
323
|
Ohira K, Hayashi M. A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 2011; 7:276-85. [PMID: 20514207 PMCID: PMC2811861 DOI: 10.2174/157015909790031210] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/01/2009] [Accepted: 10/21/2009] [Indexed: 01/05/2023] Open
Abstract
In the central nervous system (CNS), the expression of molecules is strictly regulated during development. Control of the spatiotemporal expression of molecules is a mechanism not only to construct the functional neuronal network but also to adjust the network in response to new information from outside of the individual, i.e., through learning and memory. Among the functional molecules in the CNS, one of the best-studied groups is the neurotrophins, which are nerve growth factor (NGF)-related gene family molecules. Neurotrophins include NGF, brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and NT-4/5 in the mammal. Among neurotrophins and their receptors, BDNF and tropomyosin-related kinases B (TrkB) are enriched in the CNS. In the CNS, the BDNF-TrkB signaling pathway fulfills a wide variety of functions throughout life, such as cell survival, migration, outgrowth of axons and dendrites, synaptogenesis, synaptic transmission, and remodeling of synapses. Although the same ligand and receptor, BDNF and TrkB, act in these various developmental events, we do not yet understand what kind of mechanism provokes the functional multiplicity of the BDNF-TrkB signaling pathway. In this review, we discuss the mechanism that elicits the variety of functions performed by the BDNF-TrkB signaling pathway in the CNS as a tool of pharmacological therapy.
Collapse
Affiliation(s)
- K Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| | | |
Collapse
|
324
|
Ryu HJ, Kim JE, Yeo SI, Kim DW, Kwon OS, Choi SY, Kang TC. F-actin depolymerization accelerates clasmatodendrosis via activation of lysosome-derived autophagic astroglial death. Brain Res Bull 2011; 85:368-73. [PMID: 21624438 DOI: 10.1016/j.brainresbull.2011.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Clasmatodendrosis is an irreversible astroglial degenerative change, which includes extensive swelling and vacuolization of cell bodies and disintegrated and beaded processes. Since alteration in F-actin level influences on the formation of vacuoles/vesicles during exocytosis/endocytosis in astrocytes, we investigated whether F-actin polymerization involves clasmatodendrosis in the rat hippocampus following status epilepticus (SE). In the present study, vacuoles in clasmatodendrotic astrocytes showed LAMP-1 and LC3-II (a marker for autophagy) immunoreactivity. These findings reveal that clasmatodendrosis may be lysosome-derived autophagic astroglial death. Jasplakinolide (an F-actin stabilizer) infusion significantly decreased the size and the number of medium/large-sized vacuoles in each clasmatodendritic astrocyte accompanied by enhancement of phalloidin signals, as compared to vehicle-infusion. In contrast, latrunculin A (an F-actin-depolymerizing agent) infusion increased the size and the number of medium/large-sized vacuoles, which were dissociated adjacent to cell membrane. Therefore, our findings suggest that F-actin stabilization may inhibit lysosome-derived autophagic astroglial death during clasmatodendrosis.
Collapse
Affiliation(s)
- H J Ryu
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | | | |
Collapse
|
325
|
Ngomba RT, Santolini I, Salt TE, Ferraguti F, Battaglia G, Nicoletti F, van Luijtelaar G. Metabotropic glutamate receptors in the thalamocortical network: strategic targets for the treatment of absence epilepsy. Epilepsia 2011; 52:1211-22. [PMID: 21569017 DOI: 10.1111/j.1528-1167.2011.03082.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are positioned at synapses of the thalamocortical network that underlie the development of spike-and-wave discharges (SWDs) associated with absence epilepsy. The modulatory role of individual mGlu receptor subtypes on excitatory and inhibitory synaptic transmission in the cortico-thalamo-cortical circuitry makes subtype-selective mGlu receptor ligands potential candidates as novel antiabsence drugs. Some of these compounds are under clinical development for the treatment of numerous neurologic and psychiatric disorders, and might be soon available for clinical studies in patients with absence seizures refractory to conventional medications. Herein we review the growing evidence that links mGlu receptors to the pathophysiology of pathologic SWDs moving from the anatomic localization and function of distinct mGlu receptor subtypes in the cortico-thalamo-cortical network to in vivo studies in mouse and rat models of absence epilepsy.
Collapse
|
326
|
Circadian rhythms in the morphology of neurons in Drosophila. Cell Tissue Res 2011; 344:381-9. [DOI: 10.1007/s00441-011-1174-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/13/2011] [Indexed: 12/13/2022]
|
327
|
Karatsoreos IN, Butler MP, Lesauter J, Silver R. Androgens modulate structure and function of the suprachiasmatic nucleus brain clock. Endocrinology 2011; 152:1970-8. [PMID: 21363939 PMCID: PMC3075936 DOI: 10.1210/en.2010-1398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadal hormones can modulate circadian rhythms in rodents and humans, and androgen receptors are highly localized within the core region of the mouse suprachiasmatic nucleus (SCN) brain clock. Although androgens are known to modulate neural plasticity in other CNS compartments, the role of androgens and their receptors on plasticity in the SCN is unexplored. In the present study, we ask whether androgens influence the structure and function of the mouse SCN by examining the effects of gonadectomy (GDX) on the structure of the SCN circuit and its responses to light, including induction of clock genes and behavioral phase shifting. We found that after GDX, glial fibrillary acidic protein increased with concomitant decreases in the expression of the synaptic proteins synaptophysin and postsynaptic density 95. We also found that GDX exerts effects on the molecular and behavioral responses to light that are phase dependent. In late night [circadian time (CT)21], GDX increased light-induced mPer1 but not mPer2 expression compared with intact (INT) controls. In contrast, in early night (CT13.5), GDX decreased light induced mPer2 but had no effect on mPer1. At CT13.5, GDX animals also showed larger phase delays than did INT. Treatment of GDX animals with the nonaromatizable androgen dihydrotestosterone restored glial fibrillary acidic protein, postsynaptic density 95, and synaptophysin in the SCN and reinstated the INT pattern of molecular and behavioral responses to light. Together, the results reveal a role for androgens in regulating circuitry in the mouse SCN, with functional consequences for clock gene expression and behavioral responses to photic phase resetting stimuli.
Collapse
Affiliation(s)
- Ilia N Karatsoreos
- Department of Psychology, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
328
|
Oliet SHR, Bonfardin VDJ. Morphological plasticity of the rat supraoptic nucleus--cellular consequences. Eur J Neurosci 2011; 32:1989-94. [PMID: 21143653 DOI: 10.1111/j.1460-9568.2010.07514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The supraoptic nuclei of the hypothalamus display a remarkable anatomical plasticity during lactation, parturition and chronic dehydration, conditions associated with massive neurohypophysial hormone secretion. This structural remodeling is characterized by a pronounced reduction of the astrocytic coverage of oxytocin neurons, resulting in an increase in the number and extent of directly juxtaposed neuronal surfaces. Although the exact role played by such an anatomical remodeling in the physiology of the hypothalamo-neurohypophysial system is still unknown, several findings obtained over the last decade indicate that synaptic and extrasynaptic transmissions are impacted by these structural changes. We review these data and try to extrapolate how such changes at the cellular level might affect the overall activity of the system. One repercussion of the retraction of glial processes is the accumulation of glutamate in the extracellular space. This build-up of glutamate causes an increased activation of pre-synaptic metabotropic glutamate receptors, which are negatively coupled to neurotransmitter release, and a switch in the mode of action of pre-synaptic kainate receptors that control GABA release. Finally, the range of action of substances released from astrocytes and acting on adjacent magnocellular neurons is also affected during the anatomical remodeling. It thus appears that the structural plasticity of the hypothalamic magnocellular nuclei strongly affects neuron-glial interactions and, as a consequence, induces significant changes in synaptic and extrasynaptic transmission.
Collapse
Affiliation(s)
- Stéphane H R Oliet
- Inserm U862, Neurocentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France.
| | | |
Collapse
|
329
|
|
330
|
Affiliation(s)
- Dominique Debanne
- INSERM, U641, Marseille, 13344 France
- Université de la Méditerranée, Faculté de Médecine secteur nord, IFR 11, Marseille, 13344 France
| | - Sylvain Rama
- INSERM, U641, Marseille, 13344 France
- Université de la Méditerranée, Faculté de Médecine secteur nord, IFR 11, Marseille, 13344 France
| |
Collapse
|
331
|
Béchade C, Pascual O, Triller A, Bessis A. Nitric oxide regulates astrocyte maturation in the hippocampus: involvement of NOS2. Mol Cell Neurosci 2011; 46:762-9. [PMID: 21354308 DOI: 10.1016/j.mcn.2011.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 11/27/2022] Open
Abstract
Neurons and astrocytes are generated sequentially from radial glia. Once neurogenesis is completed, radial glia starts to differentiate into immature astrocytes. Astrocytes then maturate and change their morphology and electrophysiological properties. Neurotrophic cytokines or bone morphogenetic proteins have been identified as inducers of the developmental switch from neurogenesis to astrogenesis. However, the factors and mechanisms regulating the late differentiation of radial glia and the subsequent astrocyte maturation are poorly described. We used two independent approaches to examine the role of nitric oxide (NO) in the process of astrogenesis and maturation of astrocytes. First using a pharmacological approach, we depleted NO from developing hippocampus by intraventricular injection of a specific scavenger. Then by a genetic approach, we analyzed a nitric oxide synthase-2 (NOS2) knockout mouse. In both models, we found that differentiation of RC2-positive radial glia into late GFAP-positive radial glia was impaired. The cell-fate analysis after incorporation of BrdU demonstrated that astrogenesis was not altered upon NOS2 deficiency. Maturation of astrocytes was assessed by electrophysiological recordings at P7 and functional analysis. In wild type, 20% of astrocytes were immature as shown by their non-linear I/V relationship and high membrane resistance, whereas in NOS2-/- hippocampus, 51% of the astrocytes displayed an immature profile. The reduced branching of astrocytes upon NOS2 deficiency and their low content in connexin-43 further confirmed their immature profile. Our results highlight a novel developmental role of NO and NOS2 in the differentiation of radial glia and the maturation of astrocytes.
Collapse
Affiliation(s)
- Catherine Béchade
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Inserm U1024, Paris F-75005, France
| | | | | | | |
Collapse
|
332
|
Dityatev A, Rusakov DA. Molecular signals of plasticity at the tetrapartite synapse. Curr Opin Neurobiol 2011; 21:353-9. [PMID: 21277196 DOI: 10.1016/j.conb.2010.12.006] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/24/2010] [Accepted: 12/27/2010] [Indexed: 01/19/2023]
Abstract
The emergence of astroglia as an important participant of the synaptic machinery has led to the 'tripartite synapse' hypothesis. Recent findings suggest that synaptic signaling also involves the surrounding extracellular matrix (ECM). The ECM can incorporate and store molecular traces of both neuronal and glial activities. It can also modulate function of local receptors or ion channels and send diffuse molecular signals using products of its use-dependent proteolytic cleavage. Recent experimental findings implicate the ECM in mechanisms of synaptic plasticity and glial remodeling, thus lending support to the 'tetrapartite synapse' concept. This inclusive view might help to understand better the mechanisms underlying signal integration and novel forms of long-term homeostatic regulation in the brain.
Collapse
Affiliation(s)
- Alexander Dityatev
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genova 16163, Italy.
| | | |
Collapse
|
333
|
Abstract
Astrocytes form a vascular-neuronal interface and provide CNS neural networks with essential structural and metabolic support. They embrace all penetrating arterioles and capillaries, enwrap multiple neuronal somata, thousands of individual synapses, and upon activation release gliotransmitters (ATP, glutamate and D-serine) capable of modulating neuronal activity. The aim of this brief report is to review recent data implicating astrocytes in the brain mechanisms responsible for the detection of different sensory modalities and transmitting sensory information to the relevant neural networks controlling vital behaviours. The concept of astrocytes as brain interoceptors is strongly supported by our recent data obtained from studies of the central nervous mechanisms underlying the chemosensory control of breathing. At the level of the medulla oblongata, astrocytes indeed act as functional central respiratory chemoreceptors, sensing changes in the arterial blood and brain levels of /pH and then imparting these changes on the activity of the respiratory network to induce adaptive changes in lung ventilation.
Collapse
Affiliation(s)
- Alexander V Gourine
- Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
334
|
Abstract
The work of recent decades has shown that the nervous system changes continually throughout life. Activity-dependent central nervous system (CNS) plasticity has many different mechanisms and involves essentially every region, from the cortex to the spinal cord. This new knowledge radically changes the challenge of explaining learning and memory and greatly increases the relevance of the spinal cord. The challenge is now to explain how continual and ubiquitous plasticity accounts for the initial acquisition and subsequent stability of many different learned behaviors. The spinal cord has a key role because it is the final common pathway for all behavior and is a site of substantial plasticity. Furthermore, because it is simple, accessible, distant from the rest of the CNS, and directly connected to behavior, the spinal cord is uniquely suited for identifying sites and mechanisms of plasticity and for determining how they account for behavioral change. Experimental models based on spinal cord reflexes facilitate study of the gradual plasticity that makes possible most rapid learning phenomena. These models reveal principles and generate concepts that are likely to apply to learning and memory throughout the CNS. In addition, they offer new approaches to guiding activity-dependent plasticity so as to restore functions lost to injury or disease.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Neural Injury and Repair, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| |
Collapse
|
335
|
Toda S, Sakai A, Ikeda Y, Sakamoto A, Suzuki H. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Mol Pain 2011; 7:2. [PMID: 21211063 PMCID: PMC3022746 DOI: 10.1186/1744-8069-7-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022] Open
Abstract
Background Local anesthetics alleviate neuropathic pain in some cases in clinical practice, and exhibit longer durations of action than those predicted on the basis of the pharmacokinetics of their blocking effects on voltage-dependent sodium channels. Therefore, local anesthetics may contribute to additional mechanisms for reversal of the sensitization of nociceptive pathways that occurs in the neuropathic pain state. In recent years, spinal glial cells, microglia and astrocytes, have been shown to play critical roles in neuropathic pain, but their participation in the analgesic effects of local anesthetics remains largely unknown. Results Repetitive epidural administration of ropivacaine reduced the hyperalgesia induced by chronic constrictive injury of the sciatic nerve. Concomitantly with this analgesia, ropivacaine suppressed the increases in the immunoreactivities of CD11b and glial fibrillary acidic protein in the dorsal spinal cord, as markers of activated microglia and astrocytes, respectively. In addition, epidural administration of a TrkA-IgG fusion protein that blocks the action of nerve growth factor (NGF), which was upregulated by ropivacaine in the dorsal root ganglion, prevented the inhibitory effect of ropivacaine on microglia, but not astrocytes. The blockade of NGF action also abolished the analgesic effect of ropivacaine on neuropathic pain. Conclusions Ropivacaine provides prolonged analgesia possibly by suppressing microglial activation in an NGF-dependent manner and astrocyte activation in an NGF-independent manner in the dorsal spinal cord. Local anesthetics, including ropivacaine, may represent a new approach for glial cell inhibition and, therefore, therapeutic strategies for neuropathic pain.
Collapse
Affiliation(s)
- Shigeru Toda
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
336
|
Clasadonte J, Sharif A, Baroncini M, Prevot V. Gliotransmission by prostaglandin e(2): a prerequisite for GnRH neuronal function? Front Endocrinol (Lausanne) 2011; 2:91. [PMID: 22649391 PMCID: PMC3355930 DOI: 10.3389/fendo.2011.00091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Over the past four decades it has become clear that prostaglandin E(2) (PGE(2)), a phospholipid-derived signaling molecule, plays a fundamental role in modulating the gonadotropin-releasing hormone (GnRH) neuroendocrine system and in shaping the hypothalamus. In this review, after a brief historical overview, we highlight studies revealing that PGE(2) released by glial cells such as astrocytes and tanycytes is intimately involved in the active control of GnRH neuronal activity and neurosecretion. Recent evidence suggests that hypothalamic astrocytes surrounding GnRH neuronal cell bodies may respond to neuronal activity with an activation of the erbB receptor tyrosine kinase signaling, triggering the release of PGE(2) as a chemical transmitter from the glia themselves, and, in turn, leading to the feedback regulation of GnRH neuronal activity. At the GnRH neurohemal junction, in the median eminence of the hypothalamus, PGE(2) is released by tanycytes in response to cell-cell signaling initiated by glial cells and vascular endothelial cells. Upon its release, PGE(2) causes the retraction of the tanycyte end-feet enwrapping the GnRH nerve terminals, enabling them to approach the adjacent pericapillary space and thus likely facilitating neurohormone diffusion from these nerve terminals into the pituitary portal blood. In view of these new insights, we suggest that synaptically associated astrocytes and perijunctional tanycytes are integral modulatory elements of GnRH neuronal function at the cell soma/dendrite and nerve terminal levels, respectively.
Collapse
Affiliation(s)
- Jerome Clasadonte
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Ariane Sharif
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
| | - Marc Baroncini
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- Department of Neurosurgery, CHULilleLille, France
| | - Vincent Prevot
- Jean-Pierre Aubert Research Center, Inserm, U837, F-59000Lille, France
- Laboratory of Anatomy, Université Lille Nord de FranceLille, France
- School of Medicine, UDSLLille, France
- *Correspondence: Vincent Prevot, INSERM U837, Bâtiment Biserte, Place de Verdun, 59045 Lille Cedex, France. e-mail:
| |
Collapse
|
337
|
Sarkisyan SH, Chavushyan VA, Meliksetyan IB, Kamenecki VS, Minasyan SM, Sarkissian JS, Galoyan AA. Effects of stimulation of the hypothalamic nuclei and treatment with a proline-rich peptide on neurons of the superior vestibular nuclei during exposure to vibration. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410040094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
338
|
Girardet C, Becquet D, Blanchard MP, François-Bellan AM, Bosler O. Neuroglial and synaptic rearrangements associated with photic entrainment of the circadian clock in the suprachiasmatic nucleus. Eur J Neurosci 2010; 32:2133-42. [DOI: 10.1111/j.1460-9568.2010.07520.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
339
|
Jackson FR. Glial cell modulation of circadian rhythms. Glia 2010; 59:1341-50. [PMID: 21732426 DOI: 10.1002/glia.21097] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Studies of Drosophila and mammals have documented circadian changes in the morphology and biochemistry of glial cells. In addition, it is known that astrocytes of flies and mammals contain evolutionarily conserved circadian molecular oscillators that are similar to neuronal oscillators. In several sections of this review, I summarize the morphological and biochemical rhythms of glia that may contribute to circadian control. I also discuss the evidence suggesting that glia-neuron interactions may be critical for circadian timing in both flies and mammals. Throughout the review, I attempt to compare and contrast findings from these invertebrate and vertebrate models so as to provide a synthesis of current knowledge and indicate potential research avenues that may be useful for better understanding the roles of glial cells in the circadian system.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| |
Collapse
|
340
|
Abstract
Astrocytes are the most abundant cell type in the mammalian brain. Interest in astrocyte function has increased dramatically in recent years because of their newly discovered roles in synapse formation, maturation, efficacy, and plasticity. However, our understanding of astrocyte development has lagged behind that of other brain cell types. We do not know the molecular mechanism by which astrocytes are specified, how they grow to assume their complex morphologies, and how they interact with and sculpt developing neuronal circuits. Recent work has provided a basic understanding of how intrinsic and extrinsic mechanisms govern the production of astrocytes from precursor cells and the generation of astrocyte diversity. Moreover, new studies of astrocyte morphology have revealed that mature astrocytes are extraordinarily complex, interact with many thousands of synapses, and tile with other astrocytes to occupy unique spatial domains in the brain. A major challenge for the field is to understand how astrocytes talk to each other, and to neurons, during development to establish appropriate astrocytic and neuronal network architectures.
Collapse
Affiliation(s)
- Marc R Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
341
|
Tremblay MÈ, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010; 8:e1000527. [PMID: 21072242 PMCID: PMC2970556 DOI: 10.1371/journal.pbio.1000527] [Citation(s) in RCA: 1133] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/09/2010] [Indexed: 11/29/2022] Open
Abstract
Microglia, the brain's immune cells, show unique interactions with nearby synaptic elements under non-pathological conditions that are sensitive to changes in sensory experience. Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain. Microglia are important players in immune responses to brain injury. In the event of pathological insults, microglia rapidly become activated and acquire the ability to release various inflammatory molecules that influence neuronal survival as well as synaptic function and plasticity. Similarly to macrophages in other areas of the body, activated microglia can engulf, or phagocytose, cellular debris and are believed to eliminate synapses. In the absence of pathological insult, microglia are more quiescent, but still, these immune surveillants continually sample their surrounding environment and contact neighboring cells and synapses. To further explore the roles of microglia at synapses under non-pathological conditions, we used quantitative electron microscopy and two-photon in vivo imaging to characterize the interactions between quiescent microglia and synaptic elements in the visual cortex of juvenile mice. We also examined the “activity-dependent” processes involved by preventing light exposure in a group of mice. We show surprising changes in microglial behavior during alterations in visual experience, such as increased phagocytosis of synaptic elements and interaction with subsets of structurally dynamic and transient synapses. These observations suggest that microglia may participate in the modification or elimination of synaptic structures, and therefore actively contribute to learning and memory in the healthy brain.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MÈT); (AKM)
| | - Rebecca L. Lowery
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
| | - Ania K. Majewska
- Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- * E-mail: (MÈT); (AKM)
| |
Collapse
|
342
|
Tóth ZE, Leker RR, Shahar T, Bratincsak A, Szalayova I, Key S, Palkovits M, Cassiani-Ingoni R, Mezey E. Bone marrow-derived nonreactive astrocytes in the mouse brain after permanent middle cerebral artery occlusion. Stem Cells Dev 2010; 20:539-46. [PMID: 20604679 DOI: 10.1089/scd.2010.0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We studied the effect of permanent unilateral middle cerebral artery occlusion (PMCAO) on the generation of bone marrow (BM)-derived astrocytes in female mice previously transplanted with enhanced green fluorescent protein-expressing BM from male donors. In addition to an untreated PMCAO group, one group of mice also received intracerebral infusion of transforming growth factor-alpha, resulting in a decrease in the size of the infarct. Two months after PMCAO, we found a specific type of astrocyte of BM origin in the side of the injury, near the lesion. These astrocytes did not express glial fibrillary acidic protein (GFAP) by conventional fluorescence immunostaining; however, GFAP was easily detectable by tyramide signal amplification. These cells also expressed S100β, confirming their astrocytic character. Unlike the endogenous reactive astrocytes, these BM-derived astrocytes did not proliferate during the first week of ischemia and did not contribute to the glial scar formation. Transforming growth factor-alpha infusion increased the number of BM-derived astrocytes, without affecting their distribution. Interestingly, exclusively by tyramide signal amplification staining, we found that endogenous astrocytes displaying an identical morphology were also present in control mouse and human brains. Our data demonstrate that a subpopulation of nonreactive astrocytes expressing low levels of GFAP can originate from transplanted BM in the ischemic brain. We believe that these cells represent a subpopulation of astrocytes earlier considered to be GFAP negative. The high number of astrocytes with identical morphology and chemical character in control brains suggest that these type of astrocytes may have important functional role in the central nervous system that calls for further studies.
Collapse
Affiliation(s)
- Zsuzsanna E Tóth
- National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Parker D. Neuronal network analyses: premises, promises and uncertainties. Philos Trans R Soc Lond B Biol Sci 2010; 365:2315-28. [PMID: 20603354 DOI: 10.1098/rstb.2010.0043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuronal networks assemble the cellular components needed for sensory, motor and cognitive functions. Any rational intervention in the nervous system will thus require an understanding of network function. Obtaining this understanding is widely considered to be one of the major tasks facing neuroscience today. Network analyses have been performed for some years in relatively simple systems. In addition to the direct insights these systems have provided, they also illustrate some of the difficulties of understanding network function. Nevertheless, in more complex systems (including human), claims are made that the cellular bases of behaviour are, or will shortly be, understood. While the discussion is necessarily limited, this issue will examine these claims and highlight some traditional and novel aspects of network analyses and their difficulties. This introduction discusses the criteria that need to be satisfied for network understanding, and how they relate to traditional and novel approaches being applied to addressing network function.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
344
|
Araque A, Navarrete M. Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 2010; 365:2375-81. [PMID: 20603358 DOI: 10.1098/rstb.2009.0313] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron-glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron-glia networks.
Collapse
Affiliation(s)
- Alfonso Araque
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| | | |
Collapse
|
345
|
Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 2010; 7:338-53. [PMID: 20880499 PMCID: PMC2982258 DOI: 10.1016/j.nurt.2010.07.006] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 12/28/2022] Open
Abstract
Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise-that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review focuses on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases, and critically re-evaluates our concepts of the functional properties of astrocytes and relates these functions and properties to the intricate morphology of these cells.
Collapse
Affiliation(s)
| | - Maiken Nedergaard
- grid.16416.340000000419369174Center for Translational Neuromedicine, Department of Neurosurgery, University of Prochester Medical School, 601 Elmwood Avenue, 114642 Rochester, New York
| |
Collapse
|
346
|
Honsek SD, Walz C, Kafitz KW, Rose CR. Astrocyte calcium signals at Schaffer collateral to CA1 pyramidal cell synapses correlate with the number of activated synapses but not with synaptic strength. Hippocampus 2010; 22:29-42. [DOI: 10.1002/hipo.20843] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2010] [Indexed: 11/08/2022]
|
347
|
Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:107-23. [PMID: 20549944 DOI: 10.1007/978-1-4419-6066-5_10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells migration is necessary for proper embryonic development and adult tissue remodeling. Its mechanisms determine the physiopathology of processes such as neuronal targeting, inflammation, wound healing and metastatic spread. Crawling of cells onto solid surfaces requires a controlled sequence of cell protrusions and retractions that mainly depends on sophisticated regulation of the actin cytoskeleton, although the contribution of microtubules should not be neglected. This process is triggered and modulated by a combination of diffusible and fixed environmental signals. External cues are sensed and integrated by membrane receptors, including integrins, which transduce these signals into cellular signaling pathways, often centered on the small GTPase proteins belonging to the Rho family. These pathways regulate the coordinated cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachement at the front and rear side of cells finding their way through the extracellular spaces. The overall process involves continuous modulation of cell motility, shape and volume, in which ion channels play major roles. In particular, Ca2+ signals have both global and local regulatory effects on cell motility, because they target the contractile proteins as well as many regulatory proteins. After reviewing the fundamental mechanisms of eukaryotic cell migration onto solid substrates, we briefly describe how integrin receptors and ion channels are involved in cell movement. We next examine a few processes in which these mechanisms have been studied in depth. We thus illustrate how integrins and K+ channels control cell volume and migration, how intracellular Ca2+ homeostasis affects the motility of neuronal growth cones and what is known about the ion channel roles in epithelial cell migration. These mechanisms are implicated in a variety of pathological processes, such as the disruption of neural circuits and wound healing. Finally, we describe the interaction between neoplastic cells and their local environment and how derangement of adhesion can lead to metastatic spread. It is likely that the cellular mechanisms controlled by integrin receptors, ion channels or both participate in the entire metastatic process. Until now, however, evidence is limited to a few steps of the metastatic cascade, such as brain tumor invasiveness.
Collapse
|
348
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, de Seranno S. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 2010; 22:639-49. [PMID: 20492366 PMCID: PMC3168864 DOI: 10.1111/j.1365-2826.2010.02033.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although coordinated actions of several areas within the hypothalamus are involved in the secretion of gonadotrophin-releasing hormone (GnRH), the median eminence of the hypothalamus, where the nerve terminals are located, plays a particularly critical role in the release of GnRH. In adult females, prior to the preovulatory surge of GnRH, the retraction of specialised ependymoglial cells lining the floor of the third ventricle named tanycytes allows for the juxtaposition of GnRH nerve terminals with the adjacent pericapillary space of the pituitary portal vasculature, thus forming direct neurohaemal junctions. These morphological changes occur within a few hours and are reversible. Such remodelling may promote physiological conditions to enhance the central release of GnRH and potentiate oestrogen-activated GnRH release. This plasticity involves dynamic cell interactions that bring into play tanycytes, astrocytes, vascular endothelial cells and GnRH neurones themselves. The underlying signalling pathways responsible for these structural changes are comprised of highly diffusible gaseous molecules, such as endothelial nitric oxide, and paracrine communication processes involving receptors of the erbB tyrosine kinase family, transforming growth factor beta 1 and eicosanoids, such as prostaglandin E(2). Some of these molecules, as a result of their ability to diffuse within the median eminence, may also serve as synchronizing cues allowing for the occurrence of functionally meaningful episodes of GnRH secretion by coordinating GnRH release from the GnRH neuroendocrine terminals.
Collapse
Affiliation(s)
- V Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
350
|
Prevot V, Hanchate NK, Bellefontaine N, Sharif A, Parkash J, Estrella C, Allet C, de Seranno S, Campagne C, de Tassigny XD, Baroncini M. Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front Neuroendocrinol 2010; 31:241-58. [PMID: 20546773 DOI: 10.1016/j.yfrne.2010.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/18/2022]
Abstract
As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|