301
|
Prominin-2 is a novel marker of distal tubules and collecting ducts of the human and murine kidney. Histochem Cell Biol 2010; 133:527-39. [DOI: 10.1007/s00418-010-0690-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2010] [Indexed: 10/19/2022]
|
302
|
|
303
|
Da Silva N, Pisitkun T, Belleannée C, Miller LR, Nelson R, Knepper MA, Brown D, Breton S. Proteomic analysis of V-ATPase-rich cells harvested from the kidney and epididymis by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 2010; 298:C1326-42. [PMID: 20181927 DOI: 10.1152/ajpcell.00552.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proton-transporting cells are located in several tissues where they acidify the extracellular environment. These cells express the vacuolar H(+)-ATPase (V-ATPase) B1 subunit (ATP6V1B1) in their plasma membrane. We provide here a comprehensive catalog of the proteins that are expressed in these cells, after their isolation by enzymatic digestion and fluorescence-activated cell sorting (FACS) from transgenic B1-enhanced green fluorescent protein (EGFP) mice. In these mice, type A and B intercalated cells and connecting segment cells of the kidney, and narrow and clear cells of the epididymis, which all express ATP6V1B1, also express EGFP, while all other cell types are negative. The proteome of renal and epididymal EGFP-positive (EGFP(+)) cells was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared with their respective EGFP-negative (EGFP(-)) cell populations. A total of 2,297 and 1,564 proteins were detected in EGFP(+) cells from the kidney and epididymis, respectively. Out of these proteins, 202 and 178 were enriched by a factor greater than 1.5 in EGFP(+) cells compared with EGFP(-) cells, in the kidney and epididymis respectively, and included subunits of the V-ATPase (B1, a4, and A). In addition, several proteins involved in intracellular trafficking, signaling, and cytoskeletal dynamics were identified. A novel common protein that was enriched in renal and epididymal EGFP(+) cells is the progesterone receptor, which might be a potential candidate for the regulation of V-ATPase-dependent proton transport. These proteomic databases provide a framework for comprehensive future analysis of the common and distinct functions of V-ATPase-B1-expressing cells in the kidney and epididymis.
Collapse
|
304
|
Corbeil D, Marzesco AM, Wilsch-Bräuninger M, Huttner WB. The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett 2010; 584:1659-64. [PMID: 20122930 DOI: 10.1016/j.febslet.2010.01.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022]
Abstract
Prominin-1 (CD133) is a cholesterol-interacting pentaspan membrane protein concentrated in plasma membrane protrusions. In epithelial cells, notably neuroepithelial stem cells, prominin-1 is found in microvilli, the primary cilium and the midbody. These three types of apical membrane protrusions are subject to remodeling during (neuro)epithelial cell differentiation. The protrusion-specific localization of prominin involves its association with a distinct cholesterol-based membrane microdomain. Moreover, the three prominin-1-containing plasma membrane protrusions are the origin of at least two major subpopulations of prominin-1-containing extracellular membrane particles. Intriguingly, the release of these particles has been implicated in (neuro)epithelial cell differentiation.
Collapse
Affiliation(s)
- Denis Corbeil
- Tissue Engineering Laboratories, BIOTEC, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
305
|
Anglés-Cano E, Vivien D. [Cellular microparticles, potential useful biomarkers in the identification of cerebrovascular accidents]. Med Sci (Paris) 2010; 25:843-6. [PMID: 19849987 DOI: 10.1051/medsci/20092510843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The clinical utility of biomarkers depends on their ability to identify high-risk individuals in order to establish preventive, diagnostic or therapeutic measures. Currently, no practical, rapid and sensitive test is available for the diagnosis of acute ischemic stroke. A number of soluble molecules have been identified that are merely associated to these cerebrovascular accidents. Despite this association not a single molecule has the characteristics of a true biomarker directly involved in the pathophysiology of ischemic stroke-none of them is organ-specific and may therefore be elevated in the context of medical comorbidities. When explored as a combination of biomarkers, e.g. matrix metalloproteinase 9, brain natriuretic protein, D-dimer, protein S100B, the question still remains whether serial biomarker analysis provides additional prognostic information. Even S100B, a glial activation protein, has a low specificity for acute ischemic stroke because it may originate from extracranial sources. Current knowledge from the field of cell-derived microparticles suggests that these membrane fragments may represent reliable biomarkers as they are cell-specific and are released early in the pathophysiological cascade of a disease. These microparticles can be found not only in the cerebrospinal fluid but also in tears and circulating blood in case of blood-brain barrier dysfunction. They represent a new challenge in stroke diagnosis and management.
Collapse
Affiliation(s)
- Eduardo Anglés-Cano
- Inserm U919, Sérine protéases et physiopathologie de l'unité neurovasculaire, UMR-CNRS 6232 CINAPS, Cyceron, Caen, F-14074 France.
| | | | | |
Collapse
|
306
|
Corbeil D, Marzesco AM, Fargeas CA, Huttner WB. Prominin-1: a distinct cholesterol-binding membrane protein and the organisation of the apical plasma membrane of epithelial cells. Subcell Biochem 2010; 51:399-423. [PMID: 20213552 DOI: 10.1007/978-90-481-8622-8_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The apical plasma membrane of polarized epithelial cells is composed of distinct subdomains, that is, planar regions and protrusions (microvilli, primary cilium), each of which are constructed from specific membrane microdomains. Assemblies containing the pentaspan glycoprotein prominin-1 and certain membrane lipids, notably cholesterol, are characteristic features of these microdomains in apical membrane protrusions. Here we highlight the recent findings concerning the molecular architecture of the apical plasma membrane of epithelial cells and its dynamics. The latter is illustrated by the budding and fission of prominin-1-containing membrane vesicles from apical plasma membrane protrusions, which is controlled, at least in part, by the level of membrane cholesterol and the cholesterol-dependent organization of membrane microdomains.
Collapse
Affiliation(s)
- Denis Corbeil
- Tissue Engineering Laboratories, BIOTEC, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | | | | | | |
Collapse
|
307
|
Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 2009; 38:215-24. [PMID: 19850715 PMCID: PMC2800221 DOI: 10.1093/nar/gkp857] [Citation(s) in RCA: 509] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intercellular exchange of protein and RNA-containing microparticles is an increasingly important mode of cell–cell communication. Here we investigate if mesenchymal stem cells (MSCs) known for secreting therapeutic paracrine factors also secrete RNA-containing microparticles. We observed that human embryonic stem cell (hESC)-derived MSC conditioned medium contained small RNAs (less than 300 nt) encapsulated in cholesterol-rich phospholipid vesicles as evidenced by their RNase sensitivity only in the presence of a sodium dodecyl sulfate-based cell lysis buffer, phospholipase A2 and a chelator of cholesterol, cyclodextrin and the restoration of their lower than expected density by detergent or phospholipase A2 treatment. MicroRNAs (miRNAs) such as hsa-let-7b and hsa-let-7g were present in a high precursor (pre)- to mature miRNA ratio by microarray analysis and quantitative reverse transcription–polymerase chain reaction. The pre-miRNAs were cleaved to mature miRNA by RNase III in vitro. High performance liquid chromatography-purified RNA-containing vesicles have a hydrodynamic radius of 55–65 nm and were readily taken up by H9C2 cardiomyocytes. This study suggests that MSCs could facilitate miRNA-mediated intercellular communication by secreting microparticles enriched for pre-miRNA.
Collapse
|
308
|
Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, McComb G, Chavez JN, Rush J, Biringer RG, Hühmer AF. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 2009; 6:10. [PMID: 19735572 PMCID: PMC2746175 DOI: 10.1186/1743-8454-6-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Accepted: 09/07/2009] [Indexed: 12/02/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) contacts many brain regions and may mediate humoral signaling distinct from synaptic neurotransmission. However, synthesis and transport mechanisms for such signaling are not defined. The purpose of this study was to investigate whether human CSF contains discrete structures that may enable the regulation of humoral transmission. Methods Lumbar CSF was collected prospectively from 17 participants: with no neurological or psychiatric disease, with Alzheimer's disease, multiple sclerosis, or migraine; and ventricular CSF from two cognitively healthy participants with long-standing shunts for congenital hydrocephalus. Cell-free CSF was subjected to ultracentrifugation to yield supernatants and pellets that were examined by transmission electron microscopy, shotgun protein sequencing, electrophoresis, western blotting, lipid analysis, enzymatic activity assay, and immuno-electron microscopy. Results Over 3,600 CSF proteins were identified from repeated shotgun sequencing of cell-free CSF from two individuals with Alzheimer's disease: 25% of these proteins are normally present in membranes. Abundant nanometer-scaled structures were observed in ultracentrifuged pellets of CSF from all 16 participants examined. The most common structures included synaptic vesicle and exosome components in 30-200 nm spheres and irregular blobs. Much less abundant nanostructures were present that derived from cellular debris. Nanostructure fractions had a unique composition compared to CSF supernatant, richer in omega-3 and phosphoinositide lipids, active prostanoid enzymes, and fibronectin. Conclusion Unique morphology and biochemistry features of abundant and discrete membrane-bound CSF nanostructures are described. Prostaglandin H synthase activity, essential for prostanoid production and previously unknown in CSF, is localized to nanospheres. Considering CSF bulk flow and its circulatory dynamics, we propose that these nanostructures provide signaling mechanisms via volume transmission within the nervous system that are for slower, more diffuse, and of longer duration than synaptic transmission.
Collapse
Affiliation(s)
- Michael G Harrington
- Molecular Neurology, Huntington Medical Research Institutes, Pasadena, CA, 91101 USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Kitamura H, Okudela K, Yazawa T, Sato H, Shimoyamada H. Cancer stem cell: implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer 2009; 66:275-81. [PMID: 19716622 DOI: 10.1016/j.lungcan.2009.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/23/2009] [Accepted: 07/28/2009] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) theory is currently central to the field of cancer research, because it is not only a matter of academic interest but also crucial in cancer therapy. CSCs share a variety of biological properties with normal somatic stem cells in terms of self-renewal, the propagation of differentiated progeny, the expression of specific cell markers and stem cell genes, and the utilization of common signaling pathways and the stem cell niche. However, CSCs differ from normal stem cells in their tumorigenic activity. Thus, CSCs are also termed cancer initiating cells. In this paper, we briefly review hitherto described study results and refer to some excellent review articles to understand the basic properties of CSCs. In addition, we focus upon CSCs of lung cancers, since lung cancer is still increasing in incidence worldwide and remains the leading cause of cancer deaths. Understanding the properties of, and exploring cell markers and signaling pathways specific to, CSCs of lung cancers, will lead to progress in therapy, intervention, and improvement of the prognosis of patients with lung cancer. In the near future, the evaluation of CSCs may be a routine part of practical diagnostic pathology.
Collapse
Affiliation(s)
- Hitoshi Kitamura
- Department of Pathology, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | |
Collapse
|
310
|
Martin C, Alonso MI, Santiago C, Moro JA, De la Mano A, Carretero R, Gato A. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int J Dev Neurosci 2009; 27:733-40. [PMID: 19540909 DOI: 10.1016/j.ijdevneu.2009.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/22/2009] [Accepted: 06/06/2009] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.
Collapse
Affiliation(s)
- C Martin
- Departamento de Anatomía y Radiología, Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
311
|
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9:581-93. [PMID: 19498381 DOI: 10.1038/nri2567] [Citation(s) in RCA: 3094] [Impact Index Per Article: 193.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, communication between cells mainly involves the secretion of proteins that then bind to receptors on neighbouring cells. But another mode of intercellular communication - the release of membrane vesicles - has recently become the subject of increasing interest. Membrane vesicles are complex structures composed of a lipid bilayer that contains transmembrane proteins and encloses soluble hydrophilic components derived from the cytosol of the donor cell. These vesicles have been shown to affect the physiology of neighbouring recipient cells in various ways, from inducing intracellular signalling following binding to receptors to conferring new properties after the acquisition of new receptors, enzymes or even genetic material from the vesicles. This Review focuses on the role of membrane vesicles, in particular exosomes, in the communication between immune cells, and between tumour and immune cells.
Collapse
Affiliation(s)
- Clotilde Théry
- Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 26 Rue d'Ulm, Paris, 75005, France.
| | | | | |
Collapse
|
312
|
Golebiewska A, Atkinson SP, Lako M, Armstrong L. Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells 2009; 27:1298-308. [PMID: 19489095 DOI: 10.1002/stem.59] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are still largely unclear. To address the role of chromatin structure in maintenance of pluripotency in human ESCs (hESCs) and establishment of lineage commitment, we analyzed a panel of histone modifications at promoter sequences of genes involved in maintenance of pluripotency, self-renewal, and in early stages of differentiation. To understand the changes occurring at lineage-specific gene regulatory sequences, we have established an efficient purification system that permits the examination of two distinct populations of lineage committed cells; fluorescence activated cell sorted CD133(+) CD45(-)CD34(-) neural stem cells and beta-III-tubulin(+) putative neurons. Here we report the importance of other permissive marks supporting trimethylation of Lysine 4 H3 at the active stem cell promoters as well as poised bivalent and nonbivalent lineage-specific gene promoters in hESCs. Methylation of lysine 9 H3 was found to play a role in repression of pluripotency-associated and lineage-specific genes on differentiation. Moreover, presence of newly formed bivalent domains was observed at the neural progenitor stage. However, they differ significantly from the bivalent domains observed in hESCs, with a possible role of dimethylation of lysine 9 H3 in repressing the poised genes.
Collapse
Affiliation(s)
- Anna Golebiewska
- Institute of Human Genetics, University of Newcastle Upon Tyne, International Centre for Life, United Kingdom
| | | | | | | |
Collapse
|
313
|
Doeuvre L, Plawinski L, Toti F, Anglés-Cano E. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 2009; 110:457-68. [PMID: 19457085 DOI: 10.1111/j.1471-4159.2009.06163.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microparticles (MPs) are membrane fragments shed by cells activated by a variety of stimuli including serine proteases, inflammatory cytokines, growth factors, and stress inducers. MPs originating from platelets, leukocytes, endothelial cells, and erythrocytes are found in circulating blood at relative concentrations determined by the pathophysiological context. The procoagulant activity of MPs is their most characterized property as a determinant of thrombosis in various vascular and systemic diseases including myocardial infarction and diabetes. An increase in circulating MPs has also been associated with ischemic cerebrovascular accidents, transient ischemic attacks, multiple sclerosis, and cerebral malaria. Recent data indicate that besides their procoagulant components and identity antigens, MPs bear a number of bioactive effectors that can be disseminated, exchanged, and transferred via MPs cell interactions. Furthermore, as activated parenchymal cells may also shed MPs carrying identity antigens and biomolecules, MPs are now emerging as new messengers/biomarkers from a specific tissue undergoing activation or damage. Thus, detection of MPs of neurovascular origin in biological fluids such as CSF or tears, and even in circulating blood in case of blood-brain barrier leakage, would not only improve our comprehension of neurovascular pathophysiology, but may also constitute a powerful tool as a biomarker in disease prediction, diagnosis, prognosis, and follow-up.
Collapse
|
314
|
Ablation of cholesterol biosynthesis in neural stem cells increases their VEGF expression and angiogenesis but causes neuron apoptosis. Proc Natl Acad Sci U S A 2009; 106:8350-5. [PMID: 19416849 DOI: 10.1073/pnas.0903541106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although sufficient cholesterol supply is known to be crucial for neurons in the developing mammalian brain, the cholesterol requirement of neural stem and progenitor cells in the embryonic central nervous system has not been addressed. Here we have conditionally ablated the activity of squalene synthase (SQS), a key enzyme for endogenous cholesterol production, in the neural stem and progenitor cells of the ventricular zone (VZ) of the embryonic mouse brain. Mutant embryos exhibited a reduced brain size due to the atrophy of the neuronal layers, and died at birth. Analyses of the E11.5-E15.5 dorsal telencephalon and diencephalon revealed that this atrophy was due to massive apoptosis of newborn neurons, implying that this progeny of the SQS-ablated neural stem and progenitor cells was dependent on endogenous cholesterol biosynthesis for survival. Interestingly, the neural stem and progenitor cells of the VZ, the primary target of SQS inactivation, did not undergo significant apoptosis. Instead, vascular endothelial growth factor (VEGF) expression in these cells was strongly upregulated via a hypoxia-inducible factor-1-independent pathway, and angiogenesis in the VZ was increased. Consistent with an increased supply of lipoproteins to these cells, the level of lipid droplets containing triacylglycerides with unsaturated fatty acyl chains was found to be elevated. Our study establishes a direct link between intracellular cholesterol levels, VEGF expression, and angiogenesis. Moreover, our data reveal a hitherto unknown compensatory process by which the neural stem and progenitor cells of the developing mammalian brain evade the detrimental consequences of impaired endogenous cholesterol biosynthesis.
Collapse
|
315
|
Abstract
Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry (sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Life Sciences Institute, Center for Stem Cell Biology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|
316
|
Kosodo Y, Huttner WB. Basal process and cell divisions of neural progenitors in the developing brain. Dev Growth Differ 2009; 51:251-61. [DOI: 10.1111/j.1440-169x.2009.01101.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
317
|
Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 2009; 28:1043-54. [PMID: 19300439 PMCID: PMC2664656 DOI: 10.1038/emboj.2009.45] [Citation(s) in RCA: 480] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/29/2009] [Indexed: 12/16/2022] Open
Abstract
We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1β, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1β release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1β release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1β release, thus, opening new strategies for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Fabio Bianco
- CNR Institute of Neuroscience and Department of Medical Pharmacology, University of Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Peh GSL, Lang RJ, Pera MF, Hawes SM. CD133 Expression by Neural Progenitors Derived from Human Embryonic Stem Cells and Its Use for Their Prospective Isolation. Stem Cells Dev 2009; 18:269-82. [DOI: 10.1089/scd.2008.0124] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Gary S.-L. Peh
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Richard J. Lang
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Martin F. Pera
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Susan M. Hawes
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Current affiliation: Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
319
|
Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009; 20:278-88. [PMID: 19158352 DOI: 10.1681/asn.2008060564] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1(del2/del2) mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like vesicles (ELVs) and isolated a subpopulation abundant in polycystin-1, fibrocystin (in their cleaved forms), and polycystin-2. This removed Tamm-Horsfall protein, the major contaminant, and subfractionated ELVs into at least three different populations, demarcated by the presence of aquaporin-2, polycystin-1, and podocin. Proteomic analysis of PKD ELVs identified 552 proteins (232 not yet in urinary proteomic databases), many of which have been implicated in signaling, including the molecule Smoothened. We also detected two other protein products of genes involved in cystic disease: Cystin, the product of the mouse cpk locus, and ADP-ribosylation factor-like 6, the product of the human Bardet-Biedl syndrome gene (BBS3). Our proteomic analysis confirmed that cleavage of polycystin-1 and fibrocystin occurs in vivo, in manners consistent with cleavage at the GPS site in polycystin-1 and the proprotein convertase site in fibrocystin. In vitro, these PKD ELVs preferentially interacted with primary cilia of kidney and biliary epithelial cells in a rapid and highly specific manner. These data suggest that PKD proteins are shed in membrane particles in the urine, and these particles interact with primary cilia.
Collapse
Affiliation(s)
- Marie C Hogan
- Division of Nephrology & Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
321
|
Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol 2009; 327:263-72. [PMID: 19154733 DOI: 10.1016/j.ydbio.2008.12.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/10/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
The key focus of this review is that both the neuroepithelium and embryonic cerebrospinal fluid (CSF) work in an integrated way to promote embryonic brain growth, morphogenesis and histiogenesis. The CSF generates pressure and also contains many biologically powerful trophic factors; both play key roles in early brain development. Accumulation of fluid via an osmotic gradient creates pressure that promotes rapid expansion of the early brain in a developmental regulated way, since the rates of growth differ between the vesicles and for different species. The neuroepithelium and ventricles both contribute to this growth but by different and coordinated mechanisms. The neuroepithelium grows primarily by cell proliferation and at the same time the ventricle expands via hydrostatic pressure generated by active transport of Na(+) and transport or secretion of proteins and proteoglycans that create an osmotic gradient which contribute to the accumulation of fluid inside the sealed brain cavity. Recent evidence shows that the CSF regulates relevant aspects of neuroepithelial behavior such as cell survival, replication and neurogenesis by means of growth factors and morphogens. Here we try to highlight that early brain development requires the coordinated interplay of the CSF contained in the brain cavity with the surrounding neuroepithelium. The information presented is essential in order to understand the earliest phases of brain development and also how neuronal precursor behavior is regulated.
Collapse
|
322
|
Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 2008; 100:603-15. [PMID: 18422484 DOI: 10.1042/bc20080025] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION TSEs (transmissible spongiform encephalopathies) are neurodegenerative disorders affecting humans and animals. PrP(Sc), a conformationally altered isoform of the normal prion protein (PrP(C)), is thought to be the pathogenic agent. However, the biochemical composition of the prion agent is still matter of debate. The potential transmission risk of the prion agent through biological fluids has been shown, but the development of competitive diagnostic tests and treatment for TSEs requires a more comprehensive knowledge of the agent and the cellular mechanisms by which it is disseminated. With this aim, we initiated characterization of the prion agent and the pathways by which it can be propagated using the cellular model system neuroblastoma (N2a). RESULTS The present study shows that N2a cells infected with scrapie release the prion agent into the cell culture medium in association with exosome-like structures and viral particles of endogenous origin. We found that both prion proteins and scrapie infectivity are mainly associated with exosome-like structures that contain viral envelope glycoprotein and nucleic acids, such as RNAs. CONCLUSIONS The dissemination of prions in N2a cell culture is mediated through the exosomal pathway.
Collapse
|
323
|
Farkas LM, Huttner WB. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr Opin Cell Biol 2008; 20:707-15. [PMID: 18930817 DOI: 10.1016/j.ceb.2008.09.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/23/2008] [Indexed: 12/24/2022]
Abstract
The switch of neural stem and progenitor cells from proliferation to differentiation during development is a crucial determinant of brain size. This switch is intimately linked to the architecture of the two principal classes of neural stem and progenitor cells, the apical (neuroepithelial, radial glial) and basal (intermediate) progenitors, which in turn is crucial for their symmetric versus asymmetric divisions. Focusing on the developing rodent neocortex, we discuss here recent advances in understanding the cell biology of apical and basal progenitors, place key regulatory molecules into subcellular context, and highlight their roles in the control of proliferation versus differentiation.
Collapse
Affiliation(s)
- Lilla M Farkas
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | |
Collapse
|
324
|
Simpson RJ, Jensen SS, Lim JWE. Proteomic profiling of exosomes: Current perspectives. Proteomics 2008; 8:4083-99. [DOI: 10.1002/pmic.200800109] [Citation(s) in RCA: 673] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
325
|
Okano H, Sawamoto K. Neural stem cells: involvement in adult neurogenesis and CNS repair. Philos Trans R Soc Lond B Biol Sci 2008; 363:2111-22. [PMID: 18339601 DOI: 10.1098/rstb.2008.2264] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent advances in stem cell research, including the selective expansion of neural stem cells (NSCs) in vitro, the induction of particular neural cells from embryonic stem cells in vitro, the identification of NSCs or NSC-like cells in the adult brain and the detection of neurogenesis in the adult brain (adult neurogenesis), have laid the groundwork for the development of novel therapies aimed at inducing regeneration in the damaged central nervous system (CNS). There are two major strategies for inducing regeneration in the damaged CNS: (i) activation of the endogenous regenerative capacity and (ii) cell transplantation therapy. In this review, we summarize the recent findings from our group and others on NSCs, with respect to their role in insult-induced neurogenesis (activation of adult NSCs, proliferation of transit-amplifying cells, migration of neuroblasts and survival and maturation of the newborn neurons), and implications for therapeutic interventions, together with tactics for using cell transplantation therapy to treat the damaged CNS.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | |
Collapse
|
326
|
PAVON LF, GAMARRA LF, MARTI LC, AMARO JUNIOR E, MOREIRA-FILHO CA, CAMARGO-MATHIAS MI, OKAMOTO OK. Ultrastructural characterization of CD133+stem cells bound to superparamagnetic nanoparticles: possible biotechnological applications. J Microsc 2008; 231:374-83. [DOI: 10.1111/j.1365-2818.2008.02049.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
327
|
Nerve growth factor and doublecortin expression correlates with improved outcome in children with severe traumatic brain injury. ACTA ACUST UNITED AC 2008; 65:80-5. [PMID: 18580535 DOI: 10.1097/ta.0b013e31805f7036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the adult brain, migrating neuroblasts can replace damaged neurons after severe traumatic brain injury (TBI). Little is known about which factors determine the magnitude and amplification of neurogenesis after TBI, but there are some evidences that the nerve growth factor (NGF) and the doublecortin (DCX) can influence neurogenesis and neuronal repair. METHODS This study investigates the NGF and DCX levels in the cerebrospinal fluid of 12 children with severe TBI and 12 matched controls, to determine the correlation between the expression of both these factors and the patients outcome. We collected cerebrospinal fluid samples 2 hours (Time T1) and 48 hours (Time T2) after brain injury. NGF levels were measured using a two-site immunoenzymatic assay, whereas the DCX expression by a Western blot analysis. RESULTS At time T1 and T2, children with the best outcomes had higher levels of NGF than children with poor outcomes. Evaluating the change of NGF levels from time T1 to time T2, we found that the NGF up-regulation in the early time after injury was significantly associated with good outcomes of patients. Concomitantly, the expression of DCX increased only in patients with NGF up-regulation from time T1 to time T2. In others patients and in controls the expression of DCX remained unchanged. CONCLUSION Based on these results, we hypothesize that NGF and DCX contribute to the mechanisms of neuroprotection and neuronal connection reorganization after TBI, playing a key role in the outcome of these patients.
Collapse
|
328
|
Karbanová J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerová H, Jászai J, Ehrmann J, Kolár Z, Liebers C, Arl S, Subrtová D, Freund D, Mokry J, Huttner WB, Corbeil D. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 2008; 56:977-93. [PMID: 18645205 DOI: 10.1369/jhc.2008.951897] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation. Here we decided to re-examine its expression in adult human tissues, particularly in glandular epithelia, using a novel monoclonal antibody (80B258) generated against the human prominin-1 polypeptide. In examined tissues, we observed 80B258 immunoreactivity at the apical or apicolateral membranes of polarized cells. For instance, we found expression in secretory serous and mucous cells as well as intercalated ducts of the large salivary and lacrimal glands. In sweat glands including the gland of Moll, 80B258 immunoreactivity was found in the secretory (eccrine and apocrine glands) and duct (eccrine glands) portion. In the liver, 80B258 immunoreactivity was identified in the canals of Hering, bile ductules, and small interlobular bile ducts. In the uterus, we detected 80B258 immunoreactivity in endometrial and cervical glands. Together these data show that the overall expression of human prominin-1 is beyond the rare primitive cells, and it seems to be a general marker of apical or apicolateral membrane of glandular epithelia. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Jana Karbanová
- Department of Histology and Embryology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Kato K, Hasui K, Wang J, Kawano Y, Aikou T, Murata F. Homeostatic mass control in gastric non-neoplastic epithelia under infection of Helicobacter pylori: an immunohistochemical analysis of cell growth, stem cells and programmed cell death. Acta Histochem Cytochem 2008; 41:23-38. [PMID: 18636110 PMCID: PMC2447913 DOI: 10.1267/ahc.07021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 03/04/2008] [Indexed: 12/13/2022] Open
Abstract
We evaluated homeostatic mass control in non-neoplastic gastric epithelia under Helicobacter pylori (HP) infection in the macroscopically normal-appearing mucosa resected from the stomach with gastric cancer, immunohistochemically analyzing the proliferation, kinetics of stem cells and programmed cell death occurring in them. Ki67 antigen-positive proliferating cells were found dominantly in the elongated neck portion, sparsely in the fundic areas and sporadically in the stroma with chronic infiltrates. CD117 could monitor the kinetics of gastric stem cells and showed its expression in two stages of gastric epithelial differentiation, namely, in transient cells from the gastric epithelial stem cells to the foveolar and glandular cells in the neck portion and in what are apparently progenitor cells from the gastric stem cells in the stroma among the infiltrates. Most of the nuclei were positive for ssDNA in the almost normal mucosa, suggesting DNA damage. Cleaved caspase-3-positive foveolar cells were noted under the surface, suggesting the suppression of apoptosis in the surface foveolar cells. Besides such apoptosis of the foveolar cells, in the severely inflamed mucosa apoptotic cells were found in the neck portion where most of the cells were Ki67 antigen-positive proliferating cells. Beclin-1 was recognized in the cytoplasm and in a few nuclei of the fundic glandular cells, suggesting their autophagic cell death and mutated beclin-1 in the nuclei. Taken together, the direct and indirect effects of HP infection on the gastric epithelial proliferation, differentiation and programmed cell death suggested the in-situ occurrence of gastric cancer under HP infection.
Collapse
Affiliation(s)
- Kenji Kato
- Department of Surgical Oncology and Digestive Surgery, Field of Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Kazuhisa Hasui
- Department of Immunology (Previous Second Department of Anatomy), Field of Infection and Immunity, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences
- Division of Persistent & Oncogenic Viruses, Center for Chronic Viral Diseases, Field of Infection and Immunity, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Jia Wang
- Department of Immunology (Previous Second Department of Anatomy), Field of Infection and Immunity, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences
- Division of Persistent & Oncogenic Viruses, Center for Chronic Viral Diseases, Field of Infection and Immunity, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yoshifumi Kawano
- Department of Pediatrics, Field of Developmental Medicine, Course of Health Research, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Takashi Aikou
- Department of Surgical Oncology and Digestive Surgery, Field of Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Fusayoshi Murata
- Department of Structural Cell Biology (Previous Second Department of Anatomy), Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences
- honorary emeritus Professor of Kagoshima University, vice-President of Kagoshima Medical Technology College
| |
Collapse
|
330
|
Emerging roles of peroxisome proliferator-activated receptors (PPARs) in the regulation of neural stem cells proliferation and differentiation. ACTA ACUST UNITED AC 2008; 4:293-303. [PMID: 18561036 DOI: 10.1007/s12015-008-9024-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2008] [Indexed: 01/29/2023]
Abstract
The molecular mechanisms controlling the specification of neural cell fates have been the focus of intense research in recent years. Neural precursor cells (NPCs) sequentially undergo expansion, neurogenic and gliogenic fates during development, but the underlying mechanisms are poorly understood. Recent studies have identified a number of extrinsic factors that regulate the fate of NPCs. Wnt signaling induces neuronal differentiation of NPCs in an instructive manner. Wnt plays this role in the neurogenic phase of NPCs but not in the early expansion phase, when this pathway promotes proliferation. Likewise, STAT3-activating ligands induce astrocytic differentiation in late gliogenic phase of NPCs but not in the early expansion and neurogenic phases. The mechanisms underlying these remarkable changes in progenitor behaviour and fate during development are not understood, but are thought to include changes in the intrinsic properties of neural progenitors, as well as changes in their signalling environment. PPARs are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily, which activate the transcription of their target genes as heterodimers with retinoid X receptors (RXR). PPARs have been recently involved in NSC acquisition of a specific fate. They have been described to be involved in pathways present also in the control of the proliferation, migration and differentiation of NSC, i.e. Wnt signalling pathway, STAT3 and NFkB pathways. In this review the findings related to PPARs and NSC are reported as well as their possible linkage to other signal transduction pathways involved in NSC specification.
Collapse
|
331
|
Attardo A, Calegari F, Haubensak W, Wilsch-Bräuninger M, Huttner WB. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 2008; 3:e2388. [PMID: 18545663 PMCID: PMC2398773 DOI: 10.1371/journal.pone.0002388] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 04/29/2008] [Indexed: 12/14/2022] Open
Abstract
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors.
Collapse
Affiliation(s)
- Alessio Attardo
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Calegari
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wulf Haubensak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
332
|
CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer 2008; 99:100-9. [PMID: 18542072 PMCID: PMC2453027 DOI: 10.1038/sj.bjc.6604437] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD133/prominin-1 is a pentaspan transmembrane glycoprotein overexpressed in various solid tumours including colorectal and glioblastomas. CD133 was found here to be highly expressed in ⩾50% of pancreatic, gastric and intrahepatic cholangiocarcinomas. Quantitative flow cytometric analysis showed that a panel of established hepatocellular, pancreatic and gastric cancer cell lines expressed CD133 at levels higher than normal epithelial cells or bone marrow progenitor cells. A murine anti-human CD133 antibody (AC133) conjugated to a potent cytotoxic drug, monomethyl auristatin F (MMAF), effectively inhibited the growth of Hep3B hepatocellular and KATO III gastric cancer cells in vitro with IC50 values of 2–7 ng ml−1. MMAF induced apoptosis in the cancer cells as measured by caspase activation. The anti-CD133-drug conjugate (AC133-vcMMAF) was shown to internalise and colocalised with the lysosomal marker CD107a in the sensitive cell lines. In contrast, in the resistant cell line Su.86.86, the conjugate internalised and colocalised with the caveolae marker, Cav-1. Addition of ammonium chloride, an inhibitor of lysosomal trafficking and processing, suppressed the cytotoxic effect of AC133-vcMMAF in both Hep3B and KATO III. Anti-CD133-drug conjugate treatment resulted in significant delay of Hep3B tumour growth in SCID mice. Anti-CD133 antibody-drug conjugates warrant further evaluation as a therapeutic strategy to eradicate CD133+ tumours.
Collapse
|
333
|
Robust expression of Prominin-2 all along the adult male reproductive system and urinary bladder. Histochem Cell Biol 2008; 130:749-59. [DOI: 10.1007/s00418-008-0445-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2008] [Indexed: 01/21/2023]
|
334
|
Abstract
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
335
|
Newman MB, Bakay RAE. Therapeutic potentials of human embryonic stem cells in Parkinson's disease. Neurotherapeutics 2008; 5:237-51. [PMID: 18394566 PMCID: PMC5084166 DOI: 10.1016/j.nurt.2008.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The loss of dopaminergic neurons of the substantia nigra is the pathological hallmark characteristic of Parkinson's disease (PD). The strategy of replacing these degenerating neurons with other cells that produce dopamine has been the main approach in the cell transplantation field for PD research. The isolation, differentiation, and long-term cultivation of human embryonic stem cells and the therapeutic research discovery made in relation to the beneficial properties of neurotrophic and neural growth factors has advanced the transplantation field beyond dopamine-producing cells. The present review addresses recent advances in human embryonic stem cell experimentation in relation to treating PD, as well as cell transplantation techniques in conjunction with alternative therapeutics.
Collapse
Affiliation(s)
- Mary B Newman
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
336
|
The Stem Cell Marker Prominin-1/CD133 on Membrane Particles in Human Cerebrospinal Fluid Offers Novel Approaches for Studying Central Nervous System Disease. Stem Cells 2008; 26:698-705. [DOI: 10.1634/stemcells.2007-0639] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
337
|
Demontis F, Dahmann C. Apical and lateral cell protrusions interconnect epithelial cells in live Drosophila wing imaginal discs. Dev Dyn 2008; 236:3408-18. [PMID: 17854054 DOI: 10.1002/dvdy.21324] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Communication among cells by means of the exchange of signaling cues is important for tissue and organ development. Recent reports indicate that one way that signaling cues can be delivered is by movement along cellular protrusions interconnecting cells. Here, by using confocal laser scanning microscopy and three-dimensional rendering, we describe in Drosophila melanogaster wing imaginal discs lateral protrusions interconnecting cells of the columnar epithelium. Moreover, we identified protrusions of the apical surface of columnar cells that reached and apparently contacted cells of the overlying squamous epithelium. Both apical and lateral protrusions could be visualized by expression of Tkv-GFP, a green fluorescent protein (GFP) -tagged version of a receptor of the Dpp/BMP4 signaling molecule, and the endosome marker GFP-Rab5. Our results demonstrate a previously unexpected richness of cellular protrusions within wing imaginal discs and support the view that cellular protrusions may provide a means for exchanging signaling cues between cells.
Collapse
Affiliation(s)
- Fabio Demontis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
338
|
Abstract
CD133 (prominin-1) was the first in a class of novel pentaspan membrane proteins to be identified in both humans and mice, and was originally classified as a marker of primitive haematopoietic and neural stem cells. Due to the highly restricted expression of CD133 family molecules on plasma membrane protrusions of epithelial and other cell types, in association with membrane cholesterol, a role in the organization of plasma membrane topology has also recently been assigned to this family. Studies have now confirmed the utility of CD133 as a marker of haematopoietic stem cells for human allogeneic transplantation. In addition, CD133 represents a marker of tumour-initiating cells in a number of human cancers, and therefore it may be possible to develop future therapies towards targeting cancer stem cells via this marker. The development of such therapies will be aided by a clearer understanding of the molecular mechanisms and signalling pathways that regulate the behaviour of CD133-expressing cells, and new data outlining the role of Wnt, Notch, and bone morphogenetic protein (BMP) signalling in CD133(+) cancer stem cell regulation are discussed within.
Collapse
Affiliation(s)
- D Mizrak
- Centre for Diabetes and Metabolic Medicine, Queen Mary's School of Medicine and Dentistry, Institute of Cell and Molecular Science, Whitechapel, London, UK
| | | | | |
Collapse
|
339
|
Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 2008; 8:48. [PMID: 18261235 PMCID: PMC2268945 DOI: 10.1186/1471-2407-8-48] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 02/08/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer. METHODS Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues. RESULTS CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival. CONCLUSION Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.
Collapse
|
340
|
CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci U S A 2008; 105:1026-31. [PMID: 18195354 DOI: 10.1073/pnas.0710000105] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The postnatal forebrain subventricular zone (SVZ) harbors stem cells that give rise to olfactory bulb interneurons throughout life. The identity of stem cells in the adult SVZ has been extensively debated. Although, ependymal cells were once suggested to have stem cell characteristics, subsequent studies have challenged the initial report and postulated that subependymal GFAP(+) cells were the stem cells. Here, we report that, in the adult mouse forebrain, immunoreactivity for a neural stem cell marker, prominin-1/CD133, is exclusively localized to the ependyma, although not all ependymal cells are CD133(+). Using transplantation and genetic lineage tracing approaches, we demonstrate that CD133(+) ependymal cells continuously produce new neurons destined to olfactory bulb. Collectively, our data indicate that, compared with GFAP expressing adult neural stem cells, CD133(+) ependymal cells represent an additional-perhaps more quiescent-stem cell population in the mammalian forebrain.
Collapse
|
341
|
Abstract
This chapter focuses on the contribution of proteomic analysis to the understanding of the process of exosome secretion and the mechanism and function of exosomes. It also describes the potential of exosome proteomic analysis to aid in the development of exosomes for therapeutic use.
Collapse
Affiliation(s)
- Christine Olver
- Clinical Pathology Section, Colorado State University, Ft. Collins, USA
| | | |
Collapse
|
342
|
Alison MR, Murphy G, Leedham S. Stem cells and cancer: a deadly mix. Cell Tissue Res 2008; 331:109-24. [PMID: 17938965 DOI: 10.1007/s00441-007-0510-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/03/2007] [Indexed: 12/17/2022]
Abstract
Stem cells and cancer are inextricably linked; the process of carcinogenesis initially affects normal stem cells or their closely related progenitors and then, at some point, neoplastic stem cells are generated that propagate and ultimately maintain the process. Many, if not all, cancers contain a minority population of self-renewing stem cells, "cancer stem cells", that are entirely responsible for sustaining the tumour and for giving rise to proliferating but progressively differentiating cells that contribute to the cellular heterogeneity typical of many solid tumours. Thus, the bulk of the tumour is often not the clinical problem, and so the identification of cancer stem cells and the factors that regulate their behaviour are likely to have an enormous bearing on the way that we treat neoplastic disease in the future. This review summarises (1) our knowledge of the origins of some cancers from normal stem cells and (2) the evidence for the existence of cancer stem cells; it also illustrates some of the stem cell renewal pathways that are frequently aberrant in cancer and that may represent druggable targets.
Collapse
Affiliation(s)
- Malcolm R Alison
- Centre for Diabetes and Metabolic Medicine, ICMS, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | | | | |
Collapse
|
343
|
Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M, Fargeas CA, Corbeil D. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 2007; 188:127-38. [PMID: 18160824 DOI: 10.1159/000112847] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prominin-1 (alias CD133) has received considerable interest because of its expression by several stem and progenitor cells originating from various sources, including the neural and hematopoietic systems. As a cell surface marker, prominin-1 is now used for somatic stem cell isolation. Its expression in cancer stem cells has broadened its clinical value, as it might be useful to outline new prospects for more effective cancer therapies by targeting tumor-initiating cells. Cell biological studies of this molecule have demonstrated that it is specifically concentrated in various membrane structures that protrude from the planar areas of the plasmalemma. Prominin-1 binds to the plasma membrane cholesterol and is associated with a particular membrane microdomain in a cholesterol-dependent manner. Although its physiological function is not yet determined, it is becoming clear that this cell surface protein, as a unique marker of both plasma membrane protrusions and membrane microdomains, might reveal new aspects of the cell biology of rare stem and cancer stem cells. The aim of this review is to outline the recent discoveries regarding the dynamic reorganization of the plasma membrane of rare CD133+ hematopoietic progenitor cells during cell migration and division.
Collapse
Affiliation(s)
- Nicola Bauer
- Tissue Engineering Laboratories, Biotec, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
344
|
The particles of the embryonic cerebrospinal fluid: how could they influence brain development? Brain Res Bull 2007; 75:289-94. [PMID: 18331886 DOI: 10.1016/j.brainresbull.2007.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 12/17/2022]
Abstract
During brain development, the embryonic cerebrospinal fluid (E-CSF) allows brain expansion and promotes neuroepithelial cell survival, proliferation or differentiation. Previous analyses of E-CSF content have revealed a high protein concentration and the presence of membranous particles. The role of these particles in the E-CSF remains poorly investigated. In this study we showed that the E-CSF contains at least two pools of particles: lipoproteins and exosome-like particles. We showed that these two populations of particles strongly interact with neuropithelial cells via an endocytic process, which display regional specificity along the developing neural tube. Finally, we explore and discuss the possibility that these interactions may influence brain development through the regulation of morphogen and growth factor signaling transduction.
Collapse
|
345
|
Abstract
STUDY DESIGN To identify and characterize endogenous progenitor cell population from intervertebral disc. OBJECTIVE To determine if progenitor cells exist in degenerate human discs. SUMMARY OF BACKGROUND DATA Back pain, a significant source of morbidity in our society, is directly linked to the pathology of the intervertebral disc. Because disc disease is accompanied by a loss of cellularity, there is considerable interest in regeneration of cells of both the anulus fibrosus (AF) and nucleus pulposus (NP). METHODS To determine if skeletal progenitor cells are present in the disc, samples were obtained from the degenerate AF and NP of 5 patients (Thompson grade 2 and 3, mean age 34 +/- 7.6 years) undergoing anterior cervical discectomy and fusion procedures as well as adult rat lumbar spine. RESULTS Cells isolated from degenerate human tissues expressed CD105, CD166, CD63, CD49a, CD90, CD73, p75 low affinity nerve growth factor receptor, and CD133/1, proteins that are characteristic of marrow mesenchymal stem cells. In osteogenic media, there was an induction of alkaline phosphatase activity and expression of alkaline phosphatase, osteocalcin, and Runx-2 mRNA. When maintained in adipogenic media, a small percentage of cells displayed evidence of adipogenic differentiation: accumulation of cytosolic lipid droplets and increased expression of peroxisome proliferator-activated receptor-gamma2 and lipoprotein lipase mRNA. AF- and NP-derived cells also evidenced chondrogenic differentiation. CD133 (+) cells in the AF were able to commit to either the chondrogenic or adipogenic lineages. The results of the human disc studies were confirmed using cell derived from the NP and AF tissue of the mature rat disc. CONCLUSION The analytical data indicated that the pathologically degenerate human disc contained populations of skeletal progenitor cells. These findings suggest that these endogenous progenitors may be used to orchestrate the repair of the intervertebral disc.
Collapse
|
346
|
Jászai J, Janich P, Farkas LM, Fargeas CA, Huttner WB, Corbeil D. Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic exocrine glands of adult mice. Histochem Cell Biol 2007; 128:409-19. [PMID: 17874118 DOI: 10.1007/s00418-007-0334-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2007] [Indexed: 01/11/2023]
Abstract
The major cephalic exocrine glands share many morphological and functional features and so can be simultaneously affected in certain autoimmune- and inherited disorders leading to glandular hypofunction. Phenotypic characterization of these exocrine glands is not only an interesting biological issue, but might also be of considerable clinical relevance. The major salivary and lacrimal glands might therefore be potential subjects of future cell-based regenerative/tissue engineering therapeutic approaches. In the present study, we described the expression of the stem and progenitor cell marker Prominin-1 and those of its paralogue, Prominin-2, in the three pairs of major salivary glands, i.e., submandibular-, major sublingual-, and parotid glands in adult mice. We have also documented their expression in the extraorbital lacrimal and meibomian glands (Glandulae tarsales) of the eyelid (Palpebra). Our analysis revealed that murine Prominin-1 and Prominin-2 were differentially expressed in these major cephalic exocrine organs. Expression of Prominin-1 was found to be associated with the duct system, while Prominin-2 expression was mostly, but not exclusively, found in the acinar compartment of these organs with marked differences among the various glands. Finally, we report that Prominin-2, like Prominin-1, is released into the human saliva associated with small membrane particles holding the potential for future diagnostic applications.
Collapse
Affiliation(s)
- József Jászai
- Tissue Engineering Laboratories, Biotec, University of Technology Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
347
|
Murdoch B, Roskams AJ. Olfactory epithelium progenitors: insights from transgenic mice and in vitro biology. J Mol Histol 2007; 38:581-99. [PMID: 17851769 DOI: 10.1007/s10735-007-9141-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
The rodent olfactory epithelium (OE) is capable of prolonged neurogenesis, beginning at E10 in the embryo and continuing throughout adulthood. Significant progress has been made over the last 10 years in revealing the signals that drive induction, differentiation and survival of its Olfactory Receptor Neurons (ORNs). Our understanding of the identity of specific progenitors or precursors that respond to these signals is, however, less well developed, and the search is still on for the elusive, definitive multipotent neuro-glial OE "Stem cell". Here, we review several lines of evidence that support the existence of a heterogeneous population of neural and glial progenitors in the olfactory mucosa, and highlight the differences in the identity and activity of progenitors found in the embryonic and adult OE. In particular, we show how recent advances in mouse transgenesis, and in the development of in vitro assays of progenitor activity, have helped to demonstrate the existence of multiple classes of olfactory mucosa-based progenitors.
Collapse
Affiliation(s)
- Barbara Murdoch
- Departments of Zoology and Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
348
|
Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA. A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 2007; 6:3537-48. [PMID: 17696520 DOI: 10.1021/pr070247w] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During vertebrate central nervous system development, the apical neuroepithelium is bathed with embryonic Cerebrospinal Fluid (e-CSF) which plays regulatory roles in cortical cell proliferation and maintenance. Here, we report the first proteomic analysis of human e-CSF and compare it to an extensive proteomic analysis of rat e-CSF. As expected, we identified a large collection of protease inhibitors, extracellular matrix proteins, and transport proteins in CSF. However, we also found a surprising suite of signaling and intracellular proteins not predicted by previous proteomic analysis. Some of the intracellular proteins are likely to represent the contents of microvesicles recently described within the CSF (Marzesco, A. M., et al. J. Cell Sci. 2005, 118 (Pt. 13), 2849-2858). Defining the rich composition of e-CSF will enable a greater understanding of its concerted actions during critical stages of brain development.
Collapse
Affiliation(s)
- Mauro D Zappaterra
- Division of Genetics, Children's Hospital Boston, Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
349
|
Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 2007; 25:2257-68. [PMID: 17588935 PMCID: PMC2238728 DOI: 10.1634/stemcells.2006-0744] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neural cells differentiated in vitro from human embryonic stem cells (hESC) exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. Here, we describe standard conditions for the use and discovery of markers for analysis and cell selection of hESC undergoing neuronal differentiation. To generate better-defined cell populations, we established a working protocol for sorting heterogeneous hESC-derived neural cell populations by fluorescence-activated cell sorting (FACS). Using genetically labeled synapsin-green fluorescent protein-positive hESC-derived neurons as a proof of principle, we enriched viable differentiated neurons by FACS. Cell sorting methodology using surface markers was developed, and a comprehensive profiling of surface antigens was obtained for immature embryonic stem cell types (such as stage-specific embryonic antigen [SSEA]-3, -4, TRA-1-81, TRA-1-60), neural stem and precursor cells (such as CD133, SSEA-1 [CD15], A2B5, forebrain surface embryonic antigen-1, CD29, CD146, p75 [CD271]), and differentiated neurons (such as CD24 or neural cell adhesion molecule [NCAM; CD56]). At later stages of neural differentiation, NCAM (CD56) was used to isolate hESC-derived neurons by FACS. Such FACS-sorted hESC-derived neurons survived in vivo after transplantation into rodent brain. These results and concepts provide (a) a feasible approach for experimental cell sorting of differentiated neurons, (b) an initial survey of surface antigens present during neural differentiation of hESC, and (c) a framework for developing cell selection strategies for neural cell-based therapies.
Collapse
Affiliation(s)
- Jan Pruszak
- Center for Neuroregeneration Research, McLean Hospital/Harvard Medical School, Belmont, Massachusetts 02478, USA
| | | | | | | | | |
Collapse
|
350
|
Yang C, Yang Y, Gupta N, Liu X, He A, Liu L, Zuo J, Chang Y, Fang F. Pentaspan membrane glycoprotein, prominin-1, is involved in glucose metabolism and cytoskeleton alteration. BIOCHEMISTRY (MOSCOW) 2007; 72:854-62. [DOI: 10.1134/s000629790708007x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|