301
|
Lahooti B, Poudel S, Mikelis CM, Mattheolabakis G. MiRNAs as Anti-Angiogenic Adjuvant Therapy in Cancer: Synopsis and Potential. Front Oncol 2021; 11:705634. [PMID: 34956857 PMCID: PMC8695604 DOI: 10.3389/fonc.2021.705634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a key mechanism for tumor growth and metastasis and has been a therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant with the rapidly proliferating tumor cell population and tumor outgrowth. Current angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range of downstream signaling molecules provide clinical benefit, but not without significant side effects. miRNAs are important post-transcriptional regulators of gene expression, and their dysregulation has been associated with tumor progression, metastasis, resistance, and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief overview of the current anti-angiogenic approaches, their molecular targets, and side effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we highlight specific miRNAs, based on their activity on endothelial or cancer cells, we discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the importance of angiogenesis being evaluated in such combinatorial approaches.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- Department of Pharmacy, University of Patras, Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
302
|
Abstract
Etiologically, 5% of all cancers worldwide are caused by the high-risk human papillomaviruses (hrHPVs). These viruses encode two oncoproteins (E6 and E7) whose expression is required for cancer initiation and maintenance. Among their cellular targets are the p53 and the retinoblastoma tumor suppressor proteins. Inhibition of the hrHPV E6-mediated ubiquitylation of p53 through the E6AP ubiquitin ligase results in the stabilization of p53, leading to cellular apoptosis. We utilized a live cell high throughput screen to determine whether exogenous microRNA (miRNA) transfection had the ability to stabilize p53 in hrHPV-positive cervical cancer cells expressing a p53-fluorescent protein as an in vivo reporter of p53 stability. Among the miRNAs whose transfection resulted in the greatest p53 stabilization was 375-3p that has previously been reported to stabilize p53 in HeLa cells, providing validation of the screen. The top 32 miRNAs in addition to 375-3p were further assessed using a second cell-based p53 stability reporter system as well as in non-reporter HeLa cells to examine their effects on endogenous p53 protein levels, resulting in the identification of 23 miRNAs whose transfection increased p53 levels in HeLa cells. While a few miRNAs that stabilized p53 led to decreases in E6AP protein levels, all targeted HPV oncoprotein expression. We further examined subsets of these miRNAs for their abilities to induce apoptosis and determined whether it was p53-mediated. The introduction of specific miRNAs revealed surprisingly heterogeneous responses in different cell lines. Nonetheless, some of the miRNAs described here have potential as therapeutics for treating HPV-positive cancers. Importance Human papillomaviruses cause approximately 5% of all cancers worldwide and encode genes that contribute to both the initiation and maintenance of these cancers. The viral oncoprotein E6 is expressed in all HPV-positive cancers and functions by targeting the degradation of p53 through the engagement of the cellular ubiquitin ligase E6AP. Inhibiting the degradation of p53 leads to apoptosis in HPV-positive cancer cells. Using a high throughput live cell assay we identified several miRNAs whose transfection stabilize p53 in HPV-positive cells. These miRNAs have the potential to be used in the treatment of HPV-positive cancers.
Collapse
|
303
|
RBM38 is negatively regulated by miR-320b and enhances Adriamycin resistance in breast cancer cells. Oncol Lett 2021; 23:27. [PMID: 34868364 PMCID: PMC8630814 DOI: 10.3892/ol.2021.13145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is a common type of malignant tumor that is frequently accompanied by drug resistance, which is a significant challenge in the treatment of BC. Adriamycin (ADM) is a commonly used drug for the treatment of BC. The aim of the present study was to demonstrate the association between RNA binding motif protein 38 (RBM38) and ADM resistance in BC. The results revealed that the expression levels of RBM38 were significantly upregulated in ADM-resistant BC tissues and the ADM-resistant cell line, MCF-7/A, as demonstrated using reverse transcription-quantitative PCR and western blotting. In addition, the results of the MTT assay revealed that the overexpression of RBM38 enhanced the resistance of MCF-7/A cells to ADM, promoted invasiveness, as determined using a Transwell assay, inhibited the apoptosis of resistant cells, as determined using flow cytometry, and accelerated cell cycle progression from the G0 to the S phase. The results of the dual luciferase reporter assay demonstrated the binding relationship between microRNA (miR)-320b and RBM38, and the expression levels of miR-320b were significantly downregulated in ADM-resistant BC tissues and MCF-7/A cells. Overexpression of miR-320b reversed ADM resistance, suppressed invasiveness, promoted apoptosis and arrested MCF-7/A cells in the G0 phase. In addition, RBM38 was discovered to be negatively regulated by miR-320b, which was able to restore the sensitivity of BC cells to ADM by downregulating RBM38. Further exploration of the underlying regulatory mechanism revealed that the miR-320b/RBM38 signaling axis mediated the development of ADM resistance in BC by altering the expression of cell cycle-, drug resistance- and PI3K/AKT signaling pathway-related proteins. In conclusion, the results of the present study suggested that RBM38 may be negatively regulated by miR-320b, which accelerates drug resistance in BC.
Collapse
|
304
|
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0294. [PMID: 34846108 PMCID: PMC8958885 DOI: 10.20892/j.issn.2095-3941.2021.0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Nahid Arghiani
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
305
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
306
|
Kazemi S, Mirzaei R, Sholeh M, Karampoor S, Keramat F, Saidijam M, Alikhani MY. microRNAs in human brucellosis: A promising therapeutic approach and biomarker for diagnosis and treatment. Immun Inflamm Dis 2021; 9:1209-1218. [PMID: 34449979 PMCID: PMC8589381 DOI: 10.1002/iid3.519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Human brucellosis is a zoonotic bacterial disease with up to 500,000 new cases each year. The major evasion mechanisms from the host immune system by Brucella are restraint of complement pathway and Toll-like receptors signaling pathways, interference with efficient antigen presentation to CD4-positive T lymphocytes, selective subversion of autophagy pathways, inhibition of dendritic cell stimulation, inhibition of autophagolysosomal fusion, and macrophage apoptosis. Many molecular and cellular pathways contribute to brucellosis that microRNAs have a vital function in the immunopathogenesis of this disease. In this regard, these molecules apply for their roles by modulating various events like inflammatory reactions and immune defense. Recently, in the case of immunity to human brucellosis, it has been shown that microRNAs play an important role in immunity against these bacteria. METHODS AND RESULTS In this study, we tried to review the immune defense and immunopathogenesis of Brucella infection and highlight the current knowledge of the microRNAs in infected cells by Brucella pathogens. The recent findings suggest that the regulation of microRNAs expression is impaired during brucellosis infection, which may contribute to disease progression or inhibition by modulating immune responses against this pathogen. CONCLUSIONS The interplay between miRNAs and Brucella pathogens and the underlying process required comprehensive examination to unravel the novel therapeutic or diagnostic approaches.
Collapse
Affiliation(s)
- Sima Kazemi
- Department of Microbiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Rasoul Mirzaei
- Department of Microbiology, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Mohammad Sholeh
- Department of Microbiology, School of MedicineIran University of Medical SciencesTehranIran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research CenterIran University of Medical SciencesTehranIran
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Fariba Keramat
- Brucellosis Research CenterHamadan University of Medical SciencesHamadanIran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, School of MedicineHamadan University of Medical SciencesHamadanIran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Brucellosis Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
307
|
Khazaei-Poul Y, Shojaei S, Koochaki A, Ghanbarian H, Mohammadi-Yeganeh S. Evaluating the influence of Human Umbilical Cord Mesenchymal Stem Cells-derived exosomes loaded with miR-3182 on metastatic performance of Triple Negative Breast Cancer cells. Life Sci 2021; 286:120015. [PMID: 34614416 DOI: 10.1016/j.lfs.2021.120015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022]
Abstract
AIMS Deregulation of microRNA (miRNA) function has been linked to numerous human cancers, such as Triple Negative Breast Cancer (TNBC). Exosomes, a subgroup of extracellular vehicles (EVs), can efficiently deliver many different cargo types to the target cell and have an extensive role in delivering therapeutic cargo for treatment. The present study intended to interrogate the effects of exosomal delivery of miR-3182 on TNBC cellular processes. MAIN METHODS Human Umbilical Cord Mesenchymal Stem Cells (HUCMSCs) were cultured and exosomes were isolated and characterized using TEM, SEM, DLS, and Western blot. Exosomes were transfected with miR-3182 and added to the treatment groups. The expression level of miR-3182 and their target genes including mTOR and S6KB1 were evaluated using RT-qPCR. The effects of miR-3182 loaded HUCMSC-exosomes treatment on the cellular aspect of MDA-MB-231 cells including their viability, migration potency, cell cycle status and apoptosis were investigated. KEY FINDINGS According to the results, exosomal miR-3182 significantly abolished cell proliferation and migration (P < 0.05). miR-3182 loaded exosomes also induced apoptosis in TNBC cells by down-regulating mTOR and S6KB1 genes (P < 0.05). SIGNIFICANCE In nutshell, miR-3182-loaded HUCMSC-exosomes can suppress TNBC invasion, suggesting that exosomes containing miR-3182 could be a reliable therapeutic paradigm in TNBC therapy.
Collapse
Affiliation(s)
- Yalda Khazaei-Poul
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
308
|
Almutairi MM, Sivandzade F, Albekairi TH, Alqahtani F, Cucullo L. Neuroinflammation and Its Impact on the Pathogenesis of COVID-19. Front Med (Lausanne) 2021; 8:745789. [PMID: 34901061 PMCID: PMC8652056 DOI: 10.3389/fmed.2021.745789] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical manifestations of COVID-19 include dry cough, difficult breathing, fever, fatigue, and may lead to pneumonia and respiratory failure. There are significant gaps in the current understanding of whether SARS-CoV-2 attacks the CNS directly or through activation of the peripheral immune system and immune cell infiltration. Although the modality of neurological impairments associated with COVID-19 has not been thoroughly investigated, the latest studies have observed that SARS-CoV-2 induces neuroinflammation and may have severe long-term consequences. Here we review the literature on possible cellular and molecular mechanisms of SARS-CoV-2 induced-neuroinflammation. Activation of the innate immune system is associated with increased cytokine levels, chemokines, and free radicals in the SARS-CoV-2-induced pathogenic response at the blood-brain barrier (BBB). BBB disruption allows immune/inflammatory cell infiltration into the CNS activating immune resident cells (such as microglia and astrocytes). This review highlights the molecular and cellular mechanisms involved in COVID-19-induced neuroinflammation, which may lead to neuronal death. A better understanding of these mechanisms will help gain substantial knowledge about the potential role of SARS-CoV-2 in neurological changes and plan possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI, United States
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
309
|
Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities. Chemotherapy 2021; 66:179-191. [PMID: 34775382 DOI: 10.1159/000519784] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tumorigenesis is associated with deregulation of nutritional requirements, intermediary metabolites production, and microenvironment interactions. Unlike their normal cell counterparts, tumor cells rely on aerobic glycolysis, through the Warburg effect. SUMMARY The pentose phosphate pathway (PPP) is a major glucose metabolic shunt that is upregulated in cancer cells. The PPP comprises an oxidative and a nonoxidative phase and is essential for nucleotide synthesis of rapidly dividing cells. The PPP also generates nicotinamide adenine dinucleotide phosphate, which is required for reductive metabolism and to counteract oxidative stress in tumor cells. This article reviews the regulation of the PPP and discusses inhibitors that target its main pathways. Key Message: Exploiting the metabolic vulnerability of the PPP offers potential novel therapeutic opportunities and improves patients' response to cancer therapy.
Collapse
Affiliation(s)
- Noorhan Ghanem
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Khaled Araji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
310
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
311
|
Micro-RNA Implications in Type-1 Diabetes Mellitus: A Review of Literature. Int J Mol Sci 2021; 22:ijms222212165. [PMID: 34830046 PMCID: PMC8621893 DOI: 10.3390/ijms222212165] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Type-1 diabetes mellitus (T1DM) is one of the most well-defined and complex metabolic disorders, characterized by hyperglycemia, with a constantly increasing incidence in children and adolescents. While current knowledge regarding the molecules related to the pathogenesis and diagnosis of T1DM is vast, the discovery of new molecules, such as micro ribonucleic acids (micro-RNAs, miRNAs), as well as their interactions with T1DM, has spurred novel prospects in the diagnosis of the disease. This review aims at summarizing current knowledge regarding miRNAs' biosynthesis and action pathways and their role as gene expression regulators in T1DM. MiRNAs follow a complex biosynthesis pathway, including cleaving and transport from nucleus to cytoplasm. After assembly of their final form, they inhibit translation or cause messenger RNA (mRNA) degradation, resulting in the obstruction of protein synthesis. Many studies have reported miRNA involvement in T1DM pathogenesis, mainly through interference with pancreatic b-cell function, insulin production and secretion. They are also found to contribute to β-cell destruction, as they aid in the production of autoreactive agents. Due to their elevated accumulation in various biological specimens, as well as their involvement in T1DM pathogenesis, their role as biomarkers in early preclinical T1DM diagnosis is widely hypothesized, with future studies concerning their diagnostic value deemed a necessity.
Collapse
|
312
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
313
|
miRNA Delivery by Nanosystems: State of the Art and Perspectives. Pharmaceutics 2021; 13:pharmaceutics13111901. [PMID: 34834316 PMCID: PMC8619868 DOI: 10.3390/pharmaceutics13111901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) are short (~21-23 nucleotides), non-coding endogenous RNA molecules that modulate gene expression at the post-transcriptional level via the endogenous RNA interference machinery of the cell. They have emerged as potential biopharmaceuticals candidates for the treatment of various diseases, including cancer, cardiovascular and metabolic diseases. However, in order to advance miRNAs therapeutics into clinical settings, their delivery remains a major challenge. Different types of vectors have been investigated to allow the delivery of miRNA in the diseased tissue. In particular, non-viral delivery systems have shown important advantages such as versatility, low cost, easy fabrication and low immunogenicity. Here, we present a general overview of the main types of non-viral vectors developed for miRNA delivery, with their advantages, limitations and future perspectives.
Collapse
|
314
|
Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, Elerdashvili V, Zafieriou M, Benito E, Sertel SM, Goldberg M, Senner F, Kalman JL, Burkhardt S, Oepen AS, Sakib MS, Kerimoglu C, Wirths O, Bickeböller H, Bartels C, Brosseron F, Buerger K, Cosma N, Fliessbach K, Heneka MT, Janowitz D, Kilimann I, Kleinedam L, Laske C, Metzger CD, Munk MH, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Schneider A, Spottke A, Spruth EJ, Teipel S, Tscheuschler M, Wagner M, Wiltfang J, Düzel E, Jessen F, Rizzoli SO, Zimmermann W, Schulze TG, Falkai P, Sananbenesi F, Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med 2021; 13:e13659. [PMID: 34633146 PMCID: PMC8573587 DOI: 10.15252/emmm.202013659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics.
Collapse
|
315
|
Li H, Liu F, Wang X, Li M, Li Z, Xie Y, Guo Y. Identification of Hub lncRNAs Along With lncRNA-miRNA-mRNA Network for Effective Diagnosis and Prognosis of Papillary Thyroid Cancer. Front Pharmacol 2021; 12:748867. [PMID: 34721037 PMCID: PMC8548639 DOI: 10.3389/fphar.2021.748867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in tumorigenesis and progression of different cancers and they have been potential biomarkers for cancer diagnosis and prognosis. As the most common endocrine malignancy, precise diagnosis and prognosis of papillary thyroid cancer (PTC) is of great clinical significance. Here, we aim to identify new hub lncRNAs for marking PTC and constructed prognostics signatures based on lncRNA- miRNA-mRNA competing endogenous RNAs (ceRNA) network to predict overall survival (OS) and disease-free survival (DFS) respectively. Five reliable hub lncRNAs were identified by integrating differential genes of four Gene Expression Omnibus (GEO) gene chips using the RobustRankAggreg (RRA) method. Based on differential analyses and interaction prediction, a lncRNA-mRNA co-expression network and a lncRNA-miRNA-mRNA ceRNA network were established. Then a comprehensive function characterization of the five hub lncRNAs was performed, including validation dataset testing, receiver operating characteristic (ROC) curve analysis, and functional analysis on two networks. All results suggest that these five hub lncRNAs could be potential biomarkers for marking PTC. The ceRNA network was used to identify RNAs which were associated with PTC prognosis. Two prognostic signatures were developed using univariate and step-wise multivariate Cox regression analyses and both of them were independent prognostic indicators for PTC OS and DFS. Tumor microenvironment difference analysis between high and low-risk patients showed that dendritic cells activated and macrophages M0 may be a possible target for immunotherapy of PTC. In addition, disclosing the potential drugs that may reverse the expression of hub genes may improve the prognosis of patients with PTC. Here, connectivity map (CMap) analysis indicates that three bioactive chemicals (pioglitazone, benserazide, and SB-203580) are promising therapeutic agents for PTC. So, the paper presents a comprehensive study on diagnosis, prognosis, and potential drug screening for PTC based on the five hub lncRNAs identified by us.
Collapse
Affiliation(s)
- Haiyan Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Feng Liu
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyang Wang
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, Chengdu, China
| | - Yongmei Xie
- Department of Thyroid Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
316
|
Roberts LB, Kapoor P, Howard JK, Shah AM, Lord GM. An update on the roles of immune system-derived microRNAs in cardiovascular diseases. Cardiovasc Res 2021; 117:2434-2449. [PMID: 33483751 PMCID: PMC8562329 DOI: 10.1093/cvr/cvab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are a leading cause of human death worldwide. Over the past two decades, the emerging field of cardioimmunology has demonstrated how cells of the immune system play vital roles in the pathogenesis of CVD. MicroRNAs (miRNAs) are critical regulators of cellular identity and function. Cell-intrinsic, as well as cell-extrinsic, roles of immune and inflammatory cell-derived miRNAs have been, and continue to be, extensively studied. Several 'immuno-miRNAs' appear to be specifically expressed or demonstrate greatly enriched expression within leucocytes. Identification of miRNAs as critical regulators of immune system signalling pathways has posed the question of whether and how targeting these molecules therapeutically, may afford opportunities for disease treatment and/or management. As the field of cardioimmunology rapidly continues to advance, this review discusses findings from recent human and murine studies which contribute to our understanding of how leucocytes of innate and adaptive immunity are regulated-and may also regulate other cell types, via the actions of the miRNAs they express, in the context of CVD. Finally, we focus on available information regarding miRNA regulation of regulatory T cells and argue that targeted manipulation of miRNA regulated pathways in these cells may hold therapeutic promise for the treatment of CVD and associated risk factors.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Puja Kapoor
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jane K Howard
- School of Life Course Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s British Heart Foundation Centre, King’s College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Faculty of Biology, Medicine and Health, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
317
|
Yap C, Mieremet A, de Vries CJ, Micha D, de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol 2021; 41:2693-2707. [PMID: 34470477 PMCID: PMC8545254 DOI: 10.1161/atvbaha.121.316600] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Multiple layers of vascular smooth muscle cells (vSMCs) are present in blood vessels forming the media of the vessel wall. vSMCs provide a vessel wall structure, enabling it to contract and relax, thus modulating blood flow. They also play a crucial role in the development of vascular diseases, such as atherosclerosis and aortic aneurysm formation. vSMCs display a remarkable high degree of plasticity. At present, the number of different vSMC phenotypes has only partially been characterized. By mapping vSMC phenotypes in detail and identifying triggers for phenotype switching, the relevance of the different phenotypes in vascular disease may be identified. Up until recently, vSMCs were classified as either contractile or dedifferentiated (ie, synthetic). However, single-cell RNA sequencing studies revealed such dedifferentiated arterial vSMCs to be highly diverse. Currently, no consensus exist about the number of vSMC phenotypes. Therefore, we reviewed the data from relevant single-cell RNA sequencing studies, and classified a total of 6 vSMC phenotypes. The central dedifferentiated vSMC type that we classified is the mesenchymal-like phenotype. Mesenchymal-like vSMCs subsequently seem to differentiate into fibroblast-like, macrophage-like, osteogenic-like, and adipocyte-like vSMCs, which contribute differentially to vascular disease. This phenotype switching between vSMCs requires the transcription factor KLF4 (Kruppel-like factor 4). Here, we performed an integrated analysis of the data about the recently identified vSMC phenotypes, their associated gene expression profiles, and previous vSMC knowledge to better understand the role of vSMC phenotype transitions in vascular pathology.
Collapse
Affiliation(s)
- Carmen Yap
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Arnout Mieremet
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Carlie J.M. de Vries
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Cardiovascular Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands (D.M.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Location Academic Medical Center, The Netherlands (C.Y., A.M., C.J.M.d.V., V.d.W.)
| |
Collapse
|
318
|
Paterson MR, Jackson KL, Dona MSI, Farrugia GE, Visniauskas B, Watson AMD, Johnson C, Prieto MC, Evans RG, Charchar F, Pinto AR, Marques FZ, Head GA. Deficiency of MicroRNA-181a Results in Transcriptome-Wide Cell-Specific Changes in the Kidney and Increases Blood Pressure. Hypertension 2021; 78:1322-1334. [PMID: 34538100 PMCID: PMC8573069 DOI: 10.1161/hypertensionaha.121.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Madeleine R. Paterson
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kristy L. Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
| | - Malathi S. I. Dona
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Bruna Visniauskas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Anna M. D. Watson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad Johnson
- Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Minolfa C. Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, the USA
| | - Roger G. Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Fadi Charchar
- Health Innovation and Transformation Centre, Federation University, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Alexander R. Pinto
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Australia; Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Pharmacology, Monash University, Melbourne, Australia
| |
Collapse
|
319
|
Shadbad MA, Asadzadeh Z, Derakhshani A, Hosseinkhani N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Brunetti O, Argentiero A, Racanelli V, Silvestris N, Baradaran B. A scoping review on the potentiality of PD-L1-inhibiting microRNAs in treating colorectal cancer: Toward single-cell sequencing-guided biocompatible-based delivery. Biomed Pharmacother 2021; 143:112213. [PMID: 34560556 DOI: 10.1016/j.biopha.2021.112213] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Tumoral programmed cell death ligand 1 (PD-L1) has been implicated in the immune evasion and development of colorectal cancer. Although monoclonal immune checkpoint inhibitors can exclusively improve the prognosis of patients with microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) colorectal cancer, specific tumor-suppressive microRNAs (miRs) can regulate multiple oncogenic pathways and inhibit the de novo expression of oncoproteins, like PD-L1, both in microsatellite stable (MSS) and MSI-H colorectal cancer cells. This scoping review aimed to discuss the currently available evidence regarding the therapeutic potentiality of PD-L1-inhibiting miRs for colorectal cancer. For this purpose, the Web of Science, Scopus, and PubMed databases were systematically searched to obtain peer-reviewed studies published before 17 March 2021. We have found that miR-191-5p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, miR-140-3p, and miR-15b-5p can inhibit tumoral PD-L1 in colorectal cancer cells. Besides inhibiting PD-L1, miR-140-3p, miR-382-3p, miR-148a-3p, miR-93-5p, miR-200a-3p, miR-200c-3p, miR-138-5p, and miR-15b-5p can substantially reduce tumor migration, inhibit tumor development, stimulate anti-tumoral immune responses, decrease tumor viability, and enhance the chemosensitivity of colorectal cancer cells regardless of the microsatellite state. Concerning the specific, effective, and safe delivery of these miRs, the single-cell sequencing-guided biocompatible-based delivery of these miRs can increase the specificity of miR delivery, decrease the toxicity of traditional nanoparticles, transform the immunosuppressive tumor microenvironment into the proinflammatory one, suppress tumor development, decrease tumor migration, and enhance the chemosensitivity of tumoral cells regardless of the microsatellite state.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Iran
| | | | - Oronzo Brunetti
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Antonella Argentiero
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Nicola Silvestris
- Istituto Tumori BariGiovanni Paolo II, Istituto Nazionale dei Tumori (IRCCS), Bari, Italy; Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
320
|
Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol 2021; 20:956-968. [PMID: 34687639 DOI: 10.1016/s1474-4422(21)00238-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Manganese is an essential trace metal. The dysregulation of manganese seen in a broad spectrum of neurological disorders reflects its importance in brain development and key neurophysiological processes. Historically, the observation of acquired manganism in miners and people who misuse drugs provided early evidence of brain toxicity related to manganese exposure. The identification of inherited manganese transportopathies, which cause neurodevelopmental and neurodegenerative syndromes, further corroborates the neurotoxic potential of this element. Moreover, manganese dyshomoeostasis is also implicated in Parkinson's disease and other neurodegenerative conditions, such as Alzheimer's disease and Huntington's disease. Ongoing and future research will facilitate the development of better targeted therapeutical strategies than are currently available for manganese-associated neurological disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Audrey K S Soo
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK; Department of Neurology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
321
|
Yusof KM, Groen K, Rosli R, Avery-Kiejda KA. Crosstalk Between microRNAs and the Pathological Features of Secondary Lymphedema. Front Cell Dev Biol 2021; 9:732415. [PMID: 34733847 PMCID: PMC8558478 DOI: 10.3389/fcell.2021.732415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023] Open
Abstract
Secondary lymphedema is characterized by lymphatic fluid retention and subsequent tissue swelling in one or both limbs that can lead to decreased quality of life. It often arises after loss, obstruction, or blockage of lymphatic vessels due to multifactorial modalities, such as lymphatic insults after surgery, immune system dysfunction, deposition of fat that compresses the lymphatic capillaries, fibrosis, and inflammation. Although secondary lymphedema is often associated with breast cancer, the condition can occur in patients with any type of cancer that requires lymphadenectomy such as gynecological, genitourinary, or head and neck cancers. MicroRNAs demonstrate pivotal roles in regulating gene expression in biological processes such as lymphangiogenesis, angiogenesis, modulation of the immune system, and oxidative stress. MicroRNA profiling has led to the discovery of the molecular mechanisms involved in the pathophysiology of auto-immune, inflammation-related, and metabolic diseases. Although the role of microRNAs in regulating secondary lymphedema is yet to be elucidated, the crosstalk between microRNAs and molecular factors involved in the pathological features of lymphedema, such as skin fibrosis, inflammation, immune dysregulation, and aberrant lipid metabolism have been demonstrated in several studies. MicroRNAs have the potential to serve as biomarkers for diseases and elucidation of their roles in lymphedema can provide a better understanding or new insights of the mechanisms underlying this debilitating condition.
Collapse
Affiliation(s)
- Khairunnisa’ Md Yusof
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kira Groen
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Rozita Rosli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kelly A. Avery-Kiejda
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
322
|
MicroRNA31 and MMP-1 contribute to the differentiated pathway of invasion -with enhanced epithelial-to-mesenchymal transition- in squamous cell carcinoma of the skin. Arch Dermatol Res 2021; 314:767-775. [PMID: 34647185 DOI: 10.1007/s00403-021-02288-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is an important mechanism of invasion in cutaneous squamous cell carcinomas (cSCCs) and has been found to be enhanced in tumors originated from actinic keratosis with transformation limited to the basal epithelial layer -differentiated pathway-, compared to cases with invasion subsequent to complete epidermal transformation -classical pathway-. Several microRNAs and proteins can contribute to EMT modulation in cSCCs. MicroRNA21 and microRNA31 are involved in posttranscriptional regulation of protein expression and could play a relevant role in EMT and cSCC progression. Throughout the EMT process upregulation of matrix metalloproteinases (MMPs) enhances invasiveness and MMP-1 and MMP-3 contribute to local invasion, angiogenesis and metastasis in cSCCs. Additionally, cSCC development is associated with PTEN loss and NF-κB, NOTCH-1 and p63 activation. The aim of this work is to identify differences in the expression of those molecules between both pathways of cSCCs development. Eight tissue microarrays from 80 consecutive cSCCs were analyzed using LNA-based miRNA in situ hybridization for miRNA21 and miRNA31 evaluation, and immunohistochemistry for MMP-1, MMP-3, PTEN, NOTCH-1, NF-κB, p63 and CD31. Significantly higher expression of miRNA31 (p < 0.0001) and MMP-1 (p = 0.0072) and angiogenesis (p = 0.0199) were found in the differentiated pathway, whereas PTEN loss (p = 0.0430) was more marked in the classical pathway. No significant differences were found for the other markers. Our findings support a contribution of miRNA31 and MMP-1 in the differentiated pathway, associated to EMT and increased microvascularization. The greater PTEN loss in the classical pathway indicate that its relevance in cSCC is not EMT-related.
Collapse
|
323
|
RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101638. [PMID: 34683931 PMCID: PMC8541396 DOI: 10.3390/pharmaceutics13101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy. Despite its therapeutic potential, RNA-based drugs have remaining hurdles such as poor tumor delivery and susceptibility to serum degradation, which could be overcome with the incorporation of nanocarriers for clinical applications. Here we summarize the use of small interfering RNA (siRNA) and microRNA (miRNA) in pancreatic cancer therapy in preclinical reports with approaches for targeting either the tumor or tumor microenvironment (TME) using various types of nanocarriers. In these studies, inhibition of oncogene expression and induction of a tumor suppressive response in cancer cells and surrounding immune cells in TME exhibited a strong anticancer effect in pancreatic cancer models. The review discusses the remaining challenges and prospective strategies suggesting the potential of RNAi-based therapeutics for pancreatic cancer.
Collapse
|
324
|
Smith AJ, Sompel KM, Elango A, Tennis MA. Non-Coding RNA and Frizzled Receptors in Cancer. Front Mol Biosci 2021; 8:712546. [PMID: 34671643 PMCID: PMC8521042 DOI: 10.3389/fmolb.2021.712546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Frizzled receptors have been long recognized for their role in Wnt/β-catenin signaling, a pathway known for its tumorigenic effects. More recent studies of frizzled receptors include efforts to understand non-coding RNA (ncRNA) regulation of these receptors in cancer. It has become increasingly clear that ncRNA molecules are important for regulating the expression of both oncogenic and tumor-suppressive proteins. The three most commonly described ncRNA molecules are microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Here, we review ncRNA molecules that directly or indirectly affect frizzled protein expression and downstream signaling. Exploring these interactions highlights the potential of incorporating ncRNA molecules into cancer prevention and therapy strategies that target frizzled receptors. Previous investigations of frizzled receptors and ncRNA have established strong promise for a role in cancer progression, but additional studies are needed to provide the substantial pre-clinical evidence required to translate findings to clinical applications.
Collapse
|
325
|
Magura J, Hassan D, Moodley R, Mackraj I. Hesperidin-loaded nanoemulsions improve cytotoxicity, induce apoptosis, and downregulate miR-21 and miR-155 expression in MCF-7. J Microencapsul 2021; 38:486-495. [PMID: 34510994 DOI: 10.1080/02652048.2021.1979673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hesperidin, a ubiquitous plant-based flavanone, was encapsulated into nanoemulsions (HP-NEM) using a spontaneous emulsification method to improve its solubility and enhance bioavailability and efficacy in breast cancer treatment using MCF-7 cell lines. The cytotoxic and apoptotic effects of HP-NEM against MCF-7 and its impact on oncomiRs, microRNA-21, and microRNA-155 expression were also assessed. The optimised HP-NEM displayed a spherical shape with 305 ± 40.8 nm, 0.308 ± 0.04, and -11.6 ± 3.30 mV and 93 ± 0.45% for particle size, polydispersity index (PDI), zeta-potential (ζ), and encapsulation efficiency, respectively. Cytotoxicity studies using MTT assay showed selective toxicity of the HP-NEM against MCF-7 without affecting normal cells (HEK 293). Treatment with the HP-NEM induced cell death through apoptosis, cell cycle arrest in the G2/M phase, and downregulated miR-21 and miR-155 expression in MCF-7. This study supports the use of HP-NEM as a potential therapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Judie Magura
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackraj
- Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
326
|
Chan GCK, Than WH, Kwan BCH, Lai KB, Chan RCK, Ng JKC, Chow KM, Cheng PMS, Law MC, Leung CB, Li PKT, Szeto CC. Adipose expression of miR-130b and miR-17-5p with wasting, cardiovascular event and mortality in advanced chronic kidney disease patients. Nephrol Dial Transplant 2021; 37:1935-1943. [PMID: 34601609 DOI: 10.1093/ndt/gfab287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There were limited data on the association of adipose microRNA expression with body composition and adverse clinical outcomes in patients with advanced chronic kidney disease (CKD). We aimed to evaluate the association of adipose miR-130b and miR-17-5p expressions with body composition, functional state, cardiovascular outcome and mortality in incident dialysis patients. METHODS We performed a single-centre prospective cohort study. Patients who were planned for peritoneal dialysis were recruited. MiR-130b and miR-17-5p expressions were measured from subcutaneous and pre-peritoneal fat tissue obtained during peritoneal dialysis catheter insertion. Body composition and physical function were assessed by bioimpedance spectroscopy and Clinical Frailty Scale. Primary outcome was 2-year survival. Secondary outcomes were 2-year technique survival and major adverse cardiovascular event (MACE) rate. RESULTS Adipose expression of miR-130b and miR-17-5p correlated with parameters of muscle mass including intracellular water (miR-130b: r = 0.191, P = 0.02; miR-17-5p: r = 0.211, P = 0.013) and lean tissue mass (miR-130b: r = 0.180, P = 0.03; miR-17-5p: r = 0.176, P = 0.004). miR-130b expression predicted frailty significantly (P = 0.016). Adipose miR-17-5p expression predicted 2-year all-cause survival (P = 0.020) and technique survival (P = 0.036), while miR-130b expression predicted incidence of major adverse cardiovascular events (P = 0.015). CONCLUSIONS Adipose miR-130b and miR-17-5p expressions correlated with body composition parameters, frailty, and predicted cardiovascular events and mortality in advanced CKD patients.
Collapse
Affiliation(s)
- Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Bonnie Ching-Ha Kwan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Ka-Bik Lai
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Ronald Cheong-Kin Chan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Phyllis Mei-Shan Cheng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Man-Ching Law
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Chi-Bon Leung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Philip Kam-Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| |
Collapse
|
327
|
Kim T, Croce CM. MicroRNA and ER stress in cancer. Semin Cancer Biol 2021; 75:3-14. [PMID: 33422566 DOI: 10.1016/j.semcancer.2020.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
The development of biological technologies in genomics, proteomics, and bioinformatics has led to the identification and characterization of the complete set of coding genes and their roles in various cellular pathways in cancer. Nevertheless, the cellular pathways have not been fully figured out like a jigsaw puzzle with missing pieces. The discovery of noncoding RNAs including microRNAs (miRNAs) has provided the missing pieces of the cellular pathways. Likewise, miRNAs have settled many questions of inexplicable patches in the endoplasmic reticulum (ER) stress pathways. The ER stress-caused pathways typified by the unfolded protein response (UPR) are pivotal processes for cellular homeostasis and survival, rectifying uncontrolled proteostasis and determining the cell fate. Although various factors and pathways have been studied and characterized, the understanding of the ER stress requires more wedges to fill the cracks of knowledge about the ER stress pathways. Moreover, the roles of the ER stress and UPR are still controversial in cancer despite their strong potential to promote cancer. The noncoding RNAs, in particular, miRNAs aid in a better understanding of the ER stress and its role in cancer. In this review, miRNAs that are the more-investigated subtype of noncoding RNAs are focused on the interpretation of the ER stress in cancer, following the introduction of miRNA and ER stress.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
328
|
Dash S, Dash C, Pandhare J. Therapeutic Significance of microRNA-Mediated Regulation of PARP-1 in SARS-CoV-2 Infection. Noncoding RNA 2021; 7:60. [PMID: 34698261 PMCID: PMC8544662 DOI: 10.3390/ncrna7040060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has devastated global healthcare and economies. Despite the stabilization of infectivity rates in some developed nations, several countries are still under the grip of the pathogenic viral mutants that are causing a significant increase in infections and hospitalization. Given this urgency, targeting of key host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1) is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1 axis and its therapeutic potential for COVID-19 pathologies.
Collapse
Affiliation(s)
- Sabyasachi Dash
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, Cornell University, New York, NY 10065, USA
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.P.)
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
329
|
Fonseca A, Ramalhete SV, Mestre A, Pires das Neves R, Marreiros A, Castelo-Branco P, Roberto VP. Identification of colorectal cancer associated biomarkers: an integrated analysis of miRNA expression. Aging (Albany NY) 2021; 13:21991-22029. [PMID: 34547721 PMCID: PMC8507258 DOI: 10.18632/aging.203556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. This complex disease still holds severe problems concerning diagnosis due to the high invasiveness nature of colonoscopy and the low accuracy of the alternative diagnostic methods. Additionally, patient heterogeneity even within the same stage is not properly reflected in the current stratification system. This scenario highlights the need for new biomarkers to improve non-invasive screenings and clinical management of patients. MicroRNAs (miRNAs) have emerged as good candidate biomarkers in cancer as they are stable molecules, easily measurable and detected in body fluids thus allowing for non-invasive diagnosis and/or prognosis. In this study, we performed an integrated analysis first using 4 different datasets (discovery cohorts) to identify miRNAs associated with colorectal cancer development, unveil their role in this disease by identifying putative targets and regulatory networks and investigate their ability to serve as biomarkers. We have identified 26 differentially expressed miRNAs which interact with frequently deregulated genes known to participate in commonly altered pathways in colorectal cancer. Most of these miRNAs have high diagnostic power, and their prognostic potential is evidenced by panels of 5 miRNAs able to predict the outcome of stage II and III colorectal cancer patients. Notably, 8 miRNAs were validated in three additional independent cohorts (validation cohorts) including a plasma cohort thus reinforcing the value of miRNAs as non-invasive biomarkers.
Collapse
Affiliation(s)
- André Fonseca
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Sara Ventura Ramalhete
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - André Mestre
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Ricardo Pires das Neves
- CNC, Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-517, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Coimbra 3030-789, Portugal
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro 8005-139, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro 8005-139, Portugal
| |
Collapse
|
330
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
331
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
332
|
Sriram V, Lee JY. Calcium phosphate-polymeric nanoparticle system for co-delivery of microRNA-21 inhibitor and doxorubicin. Colloids Surf B Biointerfaces 2021; 208:112061. [PMID: 34492599 DOI: 10.1016/j.colsurfb.2021.112061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022]
Abstract
Targeted combination therapy has shown promise to achieve maximum therapeutic efficacy by overcoming drug resistance. MicroRNA-21 (miR-21) is frequently overexpressed in various cancer types including breast and non-small cell lung cancer and its functions can be inhibited by miR inhibitor (miR-21i). A combination of miR-21i and a chemo drug, doxorubicin (Dox), can provide synergistic effects. Here, we developed a calcium phosphate (CaP)-coated nanoparticle (NP) formulation to co-deliver miR-21i along with Dox. This NP design can be used to deliver the two agents with different physiochemical properties. The NP formulation was optimized for particle size, polydispersity, Dox loading, and miR-21i loading. The NP formulation was confirmed to downregulate miR-21 levels and upregulate tumor suppressor gene levels. The cytotoxic efficacy of the combined miR-21i and Dox-containing NPs was found to be higher than that of Dox. Therefore, the CaP-coated hybrid lipid-polymeric NPs hold potential for the delivery of miR-21i and Dox.
Collapse
Affiliation(s)
- Vishnu Sriram
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States
| | - Joo-Youp Lee
- Chemical Engineering Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221-0012, United States.
| |
Collapse
|
333
|
Vaquero-Yuste C, Juarez I, Molina-Alejandre M, Molanes-López EM, López-Nares A, Suárez-Trujillo F, Gutiérrez-Calvo A, López-García A, Lasa I, Gómez R, Fernández-Cruz E, Rodrígez-Sainz C, Arnaiz-Villena A, Martín-Villa JM. HLA-G 3'UTR Polymorphisms Are Linked to Susceptibility and Survival in Spanish Gastric Adenocarcinoma Patients. Front Immunol 2021; 12:698438. [PMID: 34557189 PMCID: PMC8453083 DOI: 10.3389/fimmu.2021.698438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
HLA-G is a non-classical class I HLA molecule that induces tolerance by acting on receptors of both innate and adaptive immune cells. When overexpressed in tumors, limits surveillance by the immune system. The HLA-G gene shows several polymorphisms involved in mRNA and protein levels. We decided to study the implication of two polymorphisms (rs371194629; 14bp INS/DEL and rs1063320; +3142 C/G) in paired tissue samples (tumoral and non-tumoral) from 107 Spanish patients with gastric adenocarcinoma and 58 healthy control individuals, to assess the possible association of the HLA-G gene with gastric adenocarcinoma susceptibility, disease progression and survival. The presence of somatic mutations involving these polymorphisms was also analyzed. The frequency of the 14bp DEL allele was increased in patients (70.0%) compared to controls (57.0%, p=0.025). In addition, the haplotype formed by the combination of the 14bp DEL/+3142 C variants is also increased in patients (54.1% vs 44.4%, p=0.034, OR=1.74 CI95% 1.05-2.89). Kaplan-Meier analysis revealed that 14bp DEL/DEL patients showed lower 5-year life-expectancy than INS/DEL or INS/INS (p=0.041). Adjusting for TNM staging (Cox regression analysis) disclosed a significant difference in death risk (p=0.03) with an expected hazard 2.6 times higher. Finally, no somatic mutations were found when comparing these polymorphisms in tumoral vs non-tumoral tissues, which indicates that this is a preexisting condition in patients and not a de novo, tumor-restricted, event. In conclusion, the variants predominant in patients were those increasing HLA-G mRNA stability and HLA-G expression, clearly involving this molecule in gastric adenocarcinoma susceptibility, disease progression and survival and making it a potential target for immunotherapeutic approaches.
Collapse
Affiliation(s)
- Christian Vaquero-Yuste
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Elisa María Molanes-López
- Departamento de Estadística e Investigación Operativa, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Fabio Suárez-Trujillo
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Gutiérrez-Calvo
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - Adela López-García
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - Inmaculada Lasa
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | - Remedios Gómez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Madrid, Spain
| | | | | | - Antonio Arnaiz-Villena
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - José Manuel Martín-Villa
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
334
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
335
|
Wang Q, Li W, Cai C, Hu P, Lai R. miR-153/KCNQ4 axis contributes to noise-induced hearing loss in a mouse model. J Physiol Sci 2021; 71:28. [PMID: 34479475 PMCID: PMC10718010 DOI: 10.1186/s12576-021-00814-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
Damage to the cochlear sensory epithelium is a key contributor to noise-induced sensorineural hearing loss (SNHL). KCNQ4 plays an important role in the cochlear potassium circulation and outer hair cells survival. As miR-153 can target and regulate KCNQ4, we sought to study the role of miR-153 in SNHL. 12-week-old male CBA/J mice were exposed to 2-20 kHz broadband noise at 96 dB SPL to induce temporary threshold shifts and 101 dB SPL to induce permanent threshold shifts. Hearing loss was determined by auditory brainstem responses (ABR). Relative expression of miR-153 and KCNQ4 in mice cochlea were determined by Real-Time quantitative PCR. miR-153 mimics were co-transfected with wild type or mutated KCNQ4 into HEK293 cells. Luciferase reporter assay was used to validate the binding between miR-153 and KCNQ4. AAV-sp-153 was constructed and administrated intra-peritoneally 24- and 2-h prior and immediately after noise exposure to knockdown miR-153. The KCNQ4 is mainly expressed in outer hair cells (OHCs). We showed that the expression of KCNQ4 in mice cochlea was reduced and miR-153 expression was significantly increased after noise exposure compared to control. miR-153 bound to 3'UTR of KNCQ4, and the knockdown of miR-153 with the AAV-sp-153 administration restored KCNQ4 mRNA and protein expression. In addition, the knockdown of miR-153 reduced ABR threshold shifts at 8, 16, and 32 kHz after permanent threshold shifts (PTS) noise exposure. Correspondingly, OHC losses were attenuated with inhibition of miR-153. This study demonstrates that miR-153 inhibition significantly restores KNCQ4 in cochlea after noise exposure, which attenuates SNHL. Our study provides a new potential therapeutic target in the prevention and treatment of SNHL.
Collapse
Affiliation(s)
- Qin Wang
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wei Li
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Cuiyun Cai
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Peng Hu
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ruosha Lai
- Department of Otolaryngology and Head & Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
336
|
Winek K, Soreq H, Meisel A. Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 2021; 158:1425-1438. [PMID: 33638173 PMCID: PMC8518971 DOI: 10.1111/jnc.15332] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Andreas Meisel
- Department of Neurology with Experimental NeurologyCenter for Stroke Research BerlinNeuroCure Clinical Research CenterCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
337
|
Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. BIOLOGY 2021; 10:854. [PMID: 34571731 PMCID: PMC8466833 DOI: 10.3390/biology10090854] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
5-Fluorouracil (5-FU) plus leucovorin (LV) remain as the mainstay standard adjuvant chemotherapy treatment for early stage colon cancer, and the preferred first-line option for metastatic colon cancer patients in combination with oxaliplatin in FOLFOX, or irinotecan in FOLFIRI regimens. Despite treatment success to a certain extent, the incidence of chemotherapy failure attributed to chemotherapy resistance is still reported in many patients. This resistance, which can be defined by tumor tolerance against chemotherapy, either intrinsic or acquired, is primarily driven by the dysregulation of various components in distinct pathways. In recent years, it has been established that the incidence of 5-FU resistance, akin to multidrug resistance, can be attributed to the alterations in drug transport, evasion of apoptosis, changes in the cell cycle and DNA-damage repair machinery, regulation of autophagy, epithelial-to-mesenchymal transition, cancer stem cell involvement, tumor microenvironment interactions, miRNA dysregulations, epigenetic alterations, as well as redox imbalances. Certain resistance mechanisms that are 5-FU-specific have also been ascertained to include the upregulation of thymidylate synthase, dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase, and the downregulation of thymidine phosphorylase. Indeed, the successful modulation of these mechanisms have been the game plan of numerous studies that had employed small molecule inhibitors, plant-based small molecules, and non-coding RNA regulators to effectively reverse 5-FU resistance in colon cancer cells. It is hoped that these studies would provide fundamental knowledge to further our understanding prior developing novel drugs in the near future that would synergistically work with 5-FU to potentiate its antitumor effects and improve the patient's overall survival.
Collapse
Affiliation(s)
- Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (S.A.); (H.F.S.); (M.A.)
| |
Collapse
|
338
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
339
|
Sindhu KJ, Venkatesan N, Karunagaran D. MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:545-566. [PMID: 34448651 DOI: 10.1089/omi.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) that are mutually modulated by their interacting partners (interactome) are being increasingly noted for their significant role in pathogenesis and treatment of various human cancers. Recently, miRNA interactome dissected with multiomics approaches has been the subject of focus since individual tools or methods failed to provide the necessary comprehensive clues on the complete interactome. Even though single-omics technologies such as proteomics can uncover part of the interactome, the biological and clinical understanding still remain incomplete. In this study, we present an expert review of studies involving multiomics approaches to identification of miRNA interactome and its application in mechanistic characterization, classification, and therapeutic target identification in a variety of cancers, and with a focus on proteomics. We also discuss individual or multiple miRNA-based interactome identification in various pathological conditions of relevance to clinical medicine. Various new single-omics methods that can be integrated into multiomics cancer research and the computational approaches to analyze and predict miRNA interactome are also highlighted in this review. In all, we contextulize the power of multiomics approaches and the importance of the miRNA interactome to achieve the vision and practice of predictive, preventive, and personalized medicine in cancer research and clinical oncology.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nalini Venkatesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
340
|
Ramorola BR, Goolam-Hoosen T, Alves de Souza Rios L, Mowla S. Modulation of Cellular MicroRNA by HIV-1 in Burkitt Lymphoma Cells-A Pathway to Promoting Oncogenesis. Genes (Basel) 2021; 12:genes12091302. [PMID: 34573283 PMCID: PMC8468732 DOI: 10.3390/genes12091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses and viral components have been shown to manipulate the expression of host microRNAs (miRNAs) to their advantage, and in some cases to play essential roles in cancer pathogenesis. Burkitt lymphoma (BL), a highly aggressive B-cell derived cancer, is significantly over-represented among people infected with HIV. This study adds to accumulating evidence demonstrating that the virus plays a direct role in promoting oncogenesis. A custom miRNA PCR was used to identify 32 miRNAs that were differently expressed in Burkitt lymphoma cells exposed to HIV-1, with a majority of these being associated with oncogenic processes. Of those, hsa-miR-200c-3p, a miRNA that plays a crucial role in cancer cell migration, was found to be significantly downregulated in both the array and in single-tube validation assays. Using an in vitro transwell system we found that this downregulation correlated with significantly enhanced migration of BL cells exposed to HIV-1. Furthermore, the expression of the ZEB1 and ZEB2 transcription factors, which are promotors of tumour invasion and metastasis, and which are direct targets of hsa-miR-200c-3p, were found to be enhanced in these cells. This study therefore identifies novel miRNAs as role players in the development of HIV-associated BL, with one of these miRNAs, hsa-miR-200c-3p, being a candidate for further clinical studies as a potential biomarker for prognosis in patients with Burkitt lymphoma, who are HIV positive.
Collapse
|
341
|
Tozaki T, Kwak HG, Nakamura K, Takasu M, Ishii H, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Kusano K, Hirata M, Nirasawa T, Nagata SI. Sequence determination of phosphorothioated oligonucleotides using MALDI-TOF mass spectrometry for controlling gene doping in equestrian sports. Drug Test Anal 2021; 14:175-180. [PMID: 34418319 DOI: 10.1002/dta.3154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
In human and equestrian sporting events, one method of gene doping is the illegal use of therapeutic oligonucleotides to alter gene expression. In this study, we aimed to identify therapeutic oligonucleotides via sequencing using matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS). As a model of therapeutic oligonucleotides, 22 bp-long phosphorothioated oligonucleotides (PSOs) were used. By using a Clarity OTX kit for extracting short-length oligonucleotides, a spectrum of singly charged PSO with a mean intensity of 6.08 × 104 (standard deviation: 4.34 × 103 ) was detected from 500 pmol PSO in 1 ml horse plasma using the linear negative mode of MALDI-TOF MS. In addition, a 17 bp sequence was determined using in-source decay (ISD) mode, indicating that 500 pmol of a PSO in 1 ml plasma is the detection limit for sequencing. Using the determined sequences (17 bp), a targeted gene for PSO was singly identified on the horse reference genome, EquCab2.0, via a GGGenome search. These procedures can be potentially used to identify therapeutic oligonucleotides, whose nucleotides are unknown, for gene doping control.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan.,Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Ho-Geun Kwak
- Daltonics Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Kotono Nakamura
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Gifu, Japan
| | - Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Kei-Ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| | - Kanichi Kusano
- Equine Department, Japan Racing Association, Tokyo, Japan
| | - Minoru Hirata
- Daltonics Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Takashi Nirasawa
- Daltonics Division, Bruker Japan K.K., Yokohama, Kanagawa, Japan
| | - Shun-Ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan
| |
Collapse
|
342
|
Mody D, Verma V, Rani V. Modulating host gene expression via gut microbiome-microRNA interplay to treat human diseases. Crit Rev Microbiol 2021; 47:596-611. [PMID: 34407384 DOI: 10.1080/1040841x.2021.1907739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human gastrointestinal (GI) tract hosts trillions of microbial inhabitants involved in maintaining intestinal homeostasis, dysbiosis of which provokes a motley of pathogenic and autoimmune disorders. While the mechanisms by which the microbiota modulates human health are manifold, their liberated metabolites from ingested dietary supplements play a crucial role by bidirectionally regulating the expression of micro-ribonucleic acids (miRNAs). miRNAs are small endogenous non-coding RNAs (ncRNAs) that have been confirmed to be involved in an interplay with microbiota to regulate host gene expression. This comprehensive review focuses on key principles of miRNAs, their regulation, and crosstalk with gut microbiota to influence host gene expression in various human disorders, by bringing together important recent findings centric around miRNA-microbiota interactions in diseases along various axis of the gut with other organs. We also attempt to lay emphasis on exploiting the avenues of gut-directed miRNA therapeutics using rudimentary dietary supplements to regulate abnormal host gene expression in diseases, opening doors to an accessible and economical therapeutic strategy.
Collapse
Affiliation(s)
- Deepansh Mody
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vedika Verma
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vibha Rani
- Transcriptome Laboratory, Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
343
|
Chen M, Medarova Z, Moore A. Role of microRNAs in glioblastoma. Oncotarget 2021; 12:1707-1723. [PMID: 34434499 PMCID: PMC8378762 DOI: 10.18632/oncotarget.28039] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary human brain cancer. MicroRNAs (miRNAs) are a set of small endogenous non-coding RNA molecules which play critical roles in different biological processes including cancer. The realization of miRNA regulatory functions in GBM has demonstrated that these molecules play a critical role in its initiation, progression and response to therapy. In this review we discuss the studies related to miRNA discovery and function in glioblastoma. We first summarize the typical miRNAs and their roles in GBM. Then we debate the potential for miRNA-based therapy for glioblastoma, including various delivery strategies. We surmise that future directions identified by these studies will point towards the necessity for therapeutic development and optimization to improve the outcomes for patients with glioblastoma.
Collapse
Affiliation(s)
- Ming Chen
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
344
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
345
|
Shadbad MA, Safaei S, Brunetti O, Derakhshani A, Lotfinejad P, Mokhtarzadeh A, Hemmat N, Racanelli V, Solimando AG, Argentiero A, Silvestris N, Baradaran B. A Systematic Review on the Therapeutic Potentiality of PD-L1-Inhibiting MicroRNAs for Triple-Negative Breast Cancer: Toward Single-Cell Sequencing-Guided Biomimetic Delivery. Genes (Basel) 2021; 12:genes12081206. [PMID: 34440380 PMCID: PMC8391239 DOI: 10.3390/genes12081206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The programmed death-ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) is a well-established inhibitory immune checkpoint axis in triple-negative breast cancer (TNBC). Growing evidence indicates that tumoral PD-L1 can lead to TNBC development. Although conventional immune checkpoint inhibitors have improved TNBC patients’ prognosis, their effect is mainly focused on improving anti-tumoral immune responses without substantially regulating oncogenic signaling pathways in tumoral cells. Moreover, the conventional immune checkpoint inhibitors cannot impede the de novo expression of oncoproteins, like PD-L1, in tumoral cells. Accumulating evidence has indicated that the restoration of specific microRNAs (miRs) can downregulate tumoral PD-L1 and inhibit TNBC development. Since miRs can target multiple mRNAs, miR-based gene therapy can be an appealing approach to inhibit the de novo expression of oncoproteins, like PD-L1, restore anti-tumoral immune responses, and regulate various intracellular singling pathways in TNBC. Therefore, we conducted the current systematic review based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) to provide a comprehensive and unbiased synthesis of currently available evidence regarding the effect of PD-L1-inhibiting miRs restoration on TNBC development and tumor microenvironment. For this purpose, we systematically searched the Cochrane Library, Embase, Scopus, PubMed, ProQuest, Web of Science, Ovid, and IranDoc databases to obtain the relevant peer-reviewed studies published before 25 May 2021. Based on the current evidence, the restoration of miR-424-5p, miR-138-5p, miR-570-3p, miR-200c-3p, miR-383-5p, miR-34a-5p, miR-3609, miR-195-5p, and miR-497-5p can inhibit tumoral PD-L1 expression, transform immunosuppressive tumor microenvironment into the pro-inflammatory tumor microenvironment, inhibit tumor proliferation, suppress tumor migration, enhance chemosensitivity of tumoral cells, stimulate tumor apoptosis, arrest cell cycle, repress the clonogenicity of tumoral cells, and regulate various oncogenic signaling pathways in TNBC cells. Concerning the biocompatibility of biomimetic carriers and the valuable insights provided by the single-cell sequencing technologies, single-cell sequencing-guided biomimetic delivery of these PD-L1-inhibiting miRs can decrease the toxicity of traditional approaches, increase the specificity of miR-delivery, enhance the efficacy of miR delivery, and provide the affected patients with personalized cancer therapy.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy
| | - Parisa Lotfinejad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (M.A.S.); (P.L.)
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonio Giovanni Solimando
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; (O.B.); (A.G.S.); (A.A.)
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
- Correspondence: (N.S.); (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (S.S.); (A.D.); (N.H.); (A.M.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.)
| |
Collapse
|
346
|
Yang H, Qi C, Li B, Cheng L. Non-coding RNAs as Novel Biomarkers in Cancer Drug Resistance. Curr Med Chem 2021; 29:837-848. [PMID: 34348605 DOI: 10.2174/0929867328666210804090644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Chemotherapy is often the primary and most effective anticancer treatment; however, drug resistance remains a major obstacle to it being curative. Recent studies have demonstrated that non-coding RNAs (ncRNAs), especially microRNAs and long non-coding RNAs, are involved in drug resistance of tumor cells in many ways, such as modulation of apoptosis, drug efflux and metabolism, epithelial-to-mesenchymal transition, DNA repair, and cell cycle progression. Exploring the relationships between ncRNAs and drug resistance will not only contribute to our understanding of the mechanisms of drug resistance and provide ncRNA biomarkers of chemoresistance, but will also help realize personalized anticancer treatment regimens. Due to the high cost and low efficiency of biological experimentation, many researchers have opted to use computational methods to identify ncRNA biomarkers associated with drug resistance. In this review, we summarize recent discoveries related to ncRNA-mediated drug resistance and highlight the computational methods and resources available for ncRNA biomarkers involved in chemoresistance.
Collapse
Affiliation(s)
- Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081. China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081. China
| | - Boyan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081. China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081. China
| |
Collapse
|
347
|
Nguyen LXT, Zhang B, Hoang DH, Zhao D, Wang H, Wu H, Su YL, Dong H, Rodriguez-Rodriguez S, Armstrong B, Ghoda LY, Perrotti D, Pichiorri F, Chen J, Li L, Kortylewski M, Rockne RC, Kuo YH, Khaled S, Carlesso N, Marcucci G. Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia. Leukemia 2021; 35:2285-2298. [PMID: 33589748 PMCID: PMC8973317 DOI: 10.1038/s41375-021-01166-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 01/29/2023]
Abstract
We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the "gatekeeper" Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of "canonical" miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage. MiR-155, a BIC-155 long noncoding (lnc) RNA-hosted oncogenic miRNA, has previously been implicated in FLT3-ITD+ AML blast hyperproliferation. We showed that FLT3-ITD upregulates miR-155 by inhibiting DDX3X, a protein implicated in the splicing of lncRNAs, via p-AKT. Inhibition of DDX3X increases unspliced BIC-155 that is then shuttled by NXF1 from the nucleus to the cytoplasm, where it is processed into mature miR-155 by cytoplasmic DROSHA, thereby bypassing the XPO5/RAN-GTP blockage via "non-canonical" mechanisms of miRNA biogenesis.
Collapse
Affiliation(s)
- Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA.
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Dandan Zhao
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Huafeng Wang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Herman Wu
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yu-Lin Su
- Department of Immuno-Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Haojie Dong
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Sonia Rodriguez-Rodriguez
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Brian Armstrong
- Light Microscopy Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lucy Y Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Danilo Perrotti
- Department of Medicine, Biochemistry and Molecular Biology and the Marlene and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Flavia Pichiorri
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of System Biology, City of Hope Medical Center, Duarte, CA, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Russell C Rockne
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Samer Khaled
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Nadia Carlesso
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
348
|
Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice. Neurochem Int 2021; 149:105146. [PMID: 34343653 DOI: 10.1016/j.neuint.2021.105146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/21/2022]
Abstract
Embolic stroke results in a necrotic core of cells destined to die, but also a peri-ischemic, watershed penumbral region of potentially salvageable brain tissue. Approaches to effectively differentiate between the ischemic and peri-ischemic zones is critical for novel therapeutic discovery to improve outcomes in survivors of stroke. MicroRNAs are a class of small non-coding RNAs regulating gene translation that have region- and cell-specific expression and responses to ischemia. We have previously reported that global inhibition of cerebral microRNA-200c after experimental stroke in mice is protective, however delineating the post-stroke sub-regional and cell-type specific patterns of post-stroke miR-200c expression are necessary to minimize off-target effects and advance translational application. Here, we detail a novel protocol to visualize regional miR-200c expression after experimental stroke, complexed with visualization of regional ischemia and markers of oxidative stress in an experimental stroke model in mice. In the present study we demonstrate that the fluorescent hypoxia indicator pimonidazole hydrochloride, the reactive-oxygen-species marker 8-hydroxy-deoxyguanosine, neuronal marker MAP2 and NeuN, and the reactive astrocyte marker GFAP can be effectively complexed to determine regional differences in ischemic injury as early as 30 min post-reperfusion after experimental stroke, and can be effectively used to distinguish ischemic core from surrounding penumbral and unaffected regions for targeted therapy. This multi-dimensional post-stroke immunofluorescent imaging protocol enables a greater degree of sub-regional mechanistic investigation, with the ultimate goal of developing more effective post-stroke pharmaceutical therapy.
Collapse
|
349
|
Kim HS, Kim JS, Park NR, Nam H, Sung PS, Bae SH, Choi JY, Yoon SK, Hur W, Jang JW. Exosomal miR-125b Exerts Anti-Metastatic Properties and Predicts Early Metastasis of Hepatocellular Carcinoma. Front Oncol 2021; 11:637247. [PMID: 34386414 PMCID: PMC8354570 DOI: 10.3389/fonc.2021.637247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND & AIMS Cancer metastasis is responsible for the majority of cancer-related deaths. Exosomal miRNAs have emerged as promising biomarkers for cancer, serving as signaling molecules that can regulate tumor growth and metastasis. This study examined circulating exosomal miRNAs that could predict hepatocellular carcinoma (HCC) metastasis. METHODS Exosomal miRNA was measured by quantitative real-time PCR (qRT-PCR) in a large set of patients (n = 284). To investigate the role of exosomal miRNA in HCC, we performed a series of in vitro tests, such as exosome labeling, qRT-PCR, reverse transcription PCR, wound healing assay, transwell assay, and Western blot assay. RESULTS Exosomal miR-125b was drastically downregulated in HCC patients with metastasis than in those without metastasis. In vitro, we observed the uptake of miR-125b by exosome in recipient cells. Exosome-mediated miR-125b significantly inhibited migration and invasion abilities and downregulated the mRNA expressions of MMP-2, MMP-9, and MMP-14 in recipient cells via intercellular communication. Further investigation revealed that miR-125b suppressed SMAD2 protein expression in recipient cells by binding to its 3' untranslated regions. Exosome-mediated miR-125b transfer also disrupted TGF-β1-induced epithelial-mesenchymal transition and TGF-β1/SMAD signaling pathway in recipient cells by leading to a decrease of SMAD2 protein expression. Moreover, exosomal miR-125b was downregulated after metastasis compared with that at baseline in patients with serial measurements before and after metastasis. CONCLUSIONS The results imply that exosome-mediated miR-125b exerts anti-metastatic properties in HCC. These findings highlight that circulating exosomal miR-125b might represent a reliable biomarker with diagnostic and therapeutic implications for extrahepatic metastasis from HCC.
Collapse
Affiliation(s)
- Hye Seon Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Seoub Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na Ri Park
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Heechul Nam
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Wonhee Hur
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Disease, National Institute of Health, Chungbuk, South Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
350
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|