301
|
González-Rioja R, Salazar VA, Bastús NG, Puntes V. The development of highly dense highly protected surfactant ionizable lipid RNA loaded nanoparticles. Front Immunol 2023; 14:1129296. [PMID: 36923400 PMCID: PMC10009161 DOI: 10.3389/fimmu.2023.1129296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
The long quest for efficient drug administration has been looking for a universal carrier that can precisely transport traditional drugs, new genomic and proteic therapeutic agents. Today, researchers have found conditions to overcome the two main drug delivery dilemmas. On the one side, the versatility of the vehicle to efficiently load, protect and transport the drug and then release it at the target place. On the other hand, the questions related to the degree of PEGylation which are needed to avoid nanoparticle (NP) aggregation and opsonization while preventing cellular uptake. The development of different kinds of lipidic drug delivery vehicles and particles has resulted in the development of ionizable lipid nanoparticles (iLNPs), which can overcome most of the typical drug delivery problems. Proof of their success is the late approval and massive administration as the prophylactic vaccine for SARS-CoV-2. These ILNPs are built by electrostatic aggregation of surfactants, the therapeutic agent, and lipids that self-segregate from an aqueous solution, forming nanoparticles stabilized with lipid polymers, such as PEG. These vehicles overcome previous limitations such as low loading and high toxicity, likely thanks to low charge at the working pH and reduced size, and their entry into the cells via endocytosis rather than membrane perforation or fusion, always associated with higher toxicity. We herein revise their primary features, synthetic methods to prepare and characterize them, pharmacokinetic (administration, distribution, metabolization and excretion) aspects, and biodistribution and fate. Owing to their advantages, iLNPs are potential drug delivery systems to improve the management of various diseases and widely available for clinical use.
Collapse
Affiliation(s)
- Ramon González-Rioja
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Vivian A. Salazar
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Neus G. Bastús
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina, Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) en Bioingeniería, Biomateriales y Nanomedicina, Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Malalties Infeccioses, Nanopartícules farmacocinétiques, Vall d’Hebron Institut de Recerca, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
302
|
Gu J, Chu X, Huo Y, Liu C, Chen Q, Hu S, Pei Y, Ding P, Pang S, Wang M. Gastric cancer-derived exosomes facilitate pulmonary metastasis by activating ERK-mediated immunosuppressive macrophage polarization. J Cell Biochem 2023; 124:557-572. [PMID: 36842167 DOI: 10.1002/jcb.30390] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
Gastric cancer (GC) with pulmonary metastasis is one of the deadliest diseases in the world; however, the underlying pathological mechanisms and potential therapeutic targets remain to be elucidated. As exosomes play indispensable roles in the formation of premetastatic niches (PMN) and cancer metastasis. Therefore, investigating the underlying mechanisms of exosome-mediated pulmonary metastasis of GC may shed new light on identifying novel therapeutic targets for GC treatment. GC-derived exosomes were isolated from the conditioned medium of mouse forestomach carcinoma (MFC) cell line. The effects of MFC-derived exosomes on pulmonary macrophage polarization were analyzed by reverse- transcription polymerase chain reaction and flow cytometry. Expression of PD-L1 and other proteins was evaluated by Western blot. Exosomal microRNAs (miRNAs) were analyzed by microarray. GC-derived exosomes (GC-exo) accumulated in high numbers in the lungs and were ingested by macrophages. The extracellular-signal-regulated kinase (ERK) signaling pathway was activated by GC-exo, inducing macrophage immunosuppressive-phenotype differentiation and increased PD-L1 expression. miRNA-sequencing identified 130 enriched miRNAs in GC-exo. Among the enriched miRNAs, miR-92a-3p plays a major role in activating ERK signaling via inhibition of PTEN expression. In addition, inhibiting ERK signaling with PD98059 significantly reduced the expression of PD-L1 in macrophages and, therefore, reversed the immunosuppressive PMN and inhibited the colonization of GC cells in the lungs. This study identified a novel mechanism of GC-exo mediated PD-L1 expression in lung macrophages that facilitates lung PMN formation and GC pulmonary metastasis, which also provided a potential therapeutic target for GC with pulmonary metastasis treatment.
Collapse
Affiliation(s)
- Juan Gu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Xu Chu
- The First Affiliated Hospital of Henan University of Science and Technology, Luo Yang, China
| | - Yujia Huo
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Chaoyi Liu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Qingge Chen
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Shengnan Hu
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Yanyan Pei
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Pu Ding
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Sen Pang
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| | - Ming Wang
- Huanghe Science and Technology University, Zheng Zhou, Henan, China
| |
Collapse
|
303
|
Chakravarti AR, Groer CE, Gong H, Yudistyra V, Forrest ML, Berkland CJ. Design of a Tumor Binding GMCSF as Intratumoral Immunotherapy of Solid Tumors. Mol Pharm 2023; 20:1975-1989. [PMID: 36825806 DOI: 10.1021/acs.molpharmaceut.2c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Next-generation cancer immunotherapies may utilize immunostimulants to selectively activate the host immune system against tumor cells. Checkpoint inhibitors (CPIs) like anti-PD1/PDL-1 that inhibit immunosuppression have shown unprecedented success but are only effective in the 20-30% of patients that possess an already "hot" (immunogenic) tumor. In this regard, intratumoral (IT) injection of immunostimulants is a promising approach since they can work synergistically with CPIs to overcome the resistance to immunotherapies by inducing immune stimulation in the tumor. One such immunostimulant is granulocyte macrophage-colony-stimulating factor (GMCSF) that functions by recruiting and activating antigen-presenting cells (dendritic cells) in the tumor, thereby initiating anti-tumor immune responses. However, key problems with GMCSF are lack of efficacy and the risk of systemic toxicity caused by the leakage of GMCSF from the tumor tissue. We have designed tumor-retentive versions of GMCSF that are safe yet potent immunostimulants for the local treatment of solid tumors. The engineered GMCSFs (eGMCSF) were synthesized by recombinantly fusing tumor-ECM (extracellular matrix) binding peptides to GMCSF. The eGMCSFs exhibited enhanced tumor binding and potent immunological activity in vitro and in vivo. Upon IT administration, the tumor-retentive eGMCSFs persisted in the tumor, thereby alleviating systemic toxicity, and elicited localized immune activation to effectively turn an unresponsive immunologically "cold" tumor "hot".
Collapse
Affiliation(s)
| | - Chad E Groer
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Huan Gong
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Vivian Yudistyra
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marcus Laird Forrest
- HylaPharm, LLC, Lawrence, Kansas 66047, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Cory J Berkland
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States.,Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, United States.,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
304
|
Zhou AL, Jensen DR, Peterson FC, Thomas MA, Schlimgen RR, Dwinell MB, Smith BC, Volkman BF. Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00019-9. [PMID: 36841432 DOI: 10.1016/j.slasd.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.
Collapse
Affiliation(s)
- Angela L Zhou
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
305
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
306
|
Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin. Cancers (Basel) 2023; 15:cancers15041221. [PMID: 36831562 PMCID: PMC9954237 DOI: 10.3390/cancers15041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.
Collapse
|
307
|
Flores-Torres S, Jiang T, Kort-Mascort J, Yang Y, Peza-Chavez O, Pal S, Mainolfi A, Pardo LA, Ferri L, Bertos N, Sangwan V, Kinsella JM. Constructing 3D In Vitro Models of Heterocellular Solid Tumors and Stromal Tissues Using Extrusion-Based Bioprinting. ACS Biomater Sci Eng 2023; 9:542-561. [PMID: 36598339 DOI: 10.1021/acsbiomaterials.2c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant tumor tissues exhibit inter- and intratumoral heterogeneities, aberrant development, dynamic stromal composition, diverse tissue phenotypes, and cell populations growing within localized mechanical stresses in hypoxic conditions. Experimental tumor models employing engineered systems that isolate and study these complex variables using in vitro techniques are under development as complementary methods to preclinical in vivo models. Here, advances in extrusion bioprinting as an enabling technology to recreate the three-dimensional tumor milieu and its complex heterogeneous characteristics are reviewed. Extrusion bioprinting allows for the deposition of multiple materials, or selected cell types and concentrations, into models based upon physiological features of the tumor. This affords the creation of complex samples with representative extracellular or stromal compositions that replicate the biology of patient tissue. Biomaterial engineering of printable materials that replicate specific features of the tumor microenvironment offer experimental reproducibility, throughput, and physiological relevance compared to animal models. In this review, we describe the potential of extrusion-based bioprinting to recreate the tumor microenvironment within in vitro models.
Collapse
Affiliation(s)
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | | | - Yun Yang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, Hunan 410073, China
| | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Sanjima Pal
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Alisia Mainolfi
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lucas Antonio Pardo
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Lorenzo Ferri
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Nicholas Bertos
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec H4A 3J1, Canada
| | - Veena Sangwan
- Department of Surgery, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| |
Collapse
|
308
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. Exploiting Autophagy-Dependent Neoantigen Presentation in Tumor Microenvironment. Genes (Basel) 2023; 14:474. [PMID: 36833401 PMCID: PMC9956312 DOI: 10.3390/genes14020474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Autophagy constitutes a well-known homeostatic and catabolic process that is responsible for degradation and recycling of cellular components. It is a key regulatory mechanism for several cellular functions, whereas its dysregulation is associated with tumorigenesis, tumor-stroma interactions and resistance to cancer therapy. A growing body of evidence has proven that autophagy affects the tumor microenvironment, while it is also considered a key factor for function of several immune cells, such as APCs, T-cells, and macrophages. Moreover, it is implicated in presentation of neo-antigens of tumor cells in both MHC-I and MHC-II in dendritic cells (DCs) in functional activity of immune cells by creating T-cell memory, as well as in cross-presentation of neo-antigens for MHC-I presentation and the internalization process. Currently, autophagy has a crucial role in immunotherapy. Emergence of cancer immunotherapy has already shown some remarkable results, having changed therapeutic strategy in clinical practice for several cancer types. Despite these promising long-term responses, several patients seem to lack the ability to respond to immune checkpoint inhibitors. Thus, autophagy through neo-antigen presentation is a potential target in order to strengthen or attenuate the effects of immunotherapy against different types of cancer. This review will shed light on the recent advances and future directions of autophagy-dependent neo-antigen presentation and consequently its role in immunotherapy for malignant tumors.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
309
|
Hong E, Barczak W, Park S, Heo JS, Ooshima A, Munro S, Hong CP, Park J, An H, Park JO, Park SH, La Thangue NB, Kim SJ. Combination treatment of T1-44, a PRMT5 inhibitor with Vactosertib, an inhibitor of TGF-β signaling, inhibits invasion and prolongs survival in a mouse model of pancreatic tumors. Cell Death Dis 2023; 14:93. [PMID: 36765032 PMCID: PMC9918730 DOI: 10.1038/s41419-023-05630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal type of cancer and the third leading cause of cancer death with the lowest 5-year survival rate. Heterogeneity, difficulty in diagnosis, and rapid metastatic progression are the causes of high mortality in pancreatic cancer. Recent studies have shown that Protein arginine methyltransferase 5 (PRMT5) is overexpressed in pancreatic cancers, and these patients have a worse prognosis. Recently, PRMT5 as an anti-cancer target has gained considerable interest. In this study, we investigated whether inhibition of PRMT5 activity was synergistic with blockade of TGF-β1 signaling, which plays an important role in the construction of the desmoplastic matrix in pancreatic cancer and induces therapeutic vulnerability. Compared with T1-44, a selective inhibitor of PRMT5 activity, the combination of T1-44 with the TGF-β1 signaling inhibitor Vactosertib significantly reduced tumor size and surrounding tissue invasion and significantly improved long-term survival. RNA sequencing analysis of mouse tumors revealed that the combination of T1-44 and Vactosertib significantly altered the expression of genes involved in cancer progression, such as cell migration, extracellular matrix, and apoptotic processes. In particular, the expression of Btg2, known as a tumor suppressor factor in various cancers, was markedly induced by combination treatment. Ectopic overexpression of Btg2 inhibited the EMT response, blocking cell migration, and promoted cancer cell death. These data demonstrate that the combination therapy of T1-44 with Vactosertib is synergistic for pancreatic cancer, suggesting that this novel combination therapy has value in the treatment strategy of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Eunji Hong
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Wojciech Barczak
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Sujin Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Akira Ooshima
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Shonagh Munro
- Argonaut Therapeutics Ltd, Magdalen Centre, Oxford Science Park, Oxford, UK
| | | | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, Republic of Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Joon Oh Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Nick B La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Old Road Campus, Oxford, UK
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
310
|
Duro-Sánchez S, Alonso MR, Arribas J. Immunotherapies against HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041069. [PMID: 36831412 PMCID: PMC9954045 DOI: 10.3390/cancers15041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer, which represents 15-20% of all cases, is characterized by the overexpression of the HER2 receptor. Despite the variety of treatments available for HER2-positive breast cancer, both targeted and untargeted, many patients do not respond to therapy and relapse and eventually metastasize, with a poor prognosis. Immunotherapeutic approaches aim to enhance the antitumor immune response to prevent tumor relapse and metastasis. Several immunotherapies have been approved for solid tumors, but their utility for HER2-positive breast cancer has yet to be confirmed. In this review, we examine the different immunotherapeutic strategies being tested in HER2-positive breast cancer, from long-studied cancer vaccines to immune checkpoint blockade, which targets immune checkpoints in both T cells and tumor cells, as well as the promising adoptive cell therapy in various forms. We discuss how some of these new approaches may contribute to the prevention of tumor progression and be used after standard-of-care therapies for resistant HER2-positive breast tumors, highlighting the benefits and drawbacks of each. We conclude that immunotherapy holds great promise for the treatment of HER2-positive tumors, with the potential to completely eradicate tumor cells and prevent the progression of the disease.
Collapse
Affiliation(s)
- Santiago Duro-Sánchez
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Macarena Román Alonso
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
311
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
312
|
Zhou M, Ma Y, Chiang CC, Rock EC, Luker KE, Luker GD, Chen YC. High-Throughput Cellular Heterogeneity Analysis in Cell Migration at the Single-Cell Level. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206754. [PMID: 36449634 PMCID: PMC9908848 DOI: 10.1002/smll.202206754] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Cancer cell migration represents an essential step toward metastasis and cancer deaths. However, conventional drug discovery focuses on cytotoxic and growth-inhibiting compounds rather than inhibitors of migration. Drug screening assays generally measure the average response of many cells, masking distinct cell populations that drive metastasis and resist treatments. Here, this work presents a high-throughput microfluidic cell migration platform that coordinates robotic liquid handling and computer vision for rapidly quantifying individual cellular motility. Using this innovative technology, 172 compounds were tested and a surprisingly low correlation between migration and growth inhibition was found. Notably, many compounds were found to inhibit migration of most cells while leaving fast-moving subpopulations unaffected. This work further pinpoints synergistic drug combinations, including Bortezomib and Danirixin, to stop fast-moving cells. To explain the observed cell behaviors, single-cell morphological and molecular analysis were performed. These studies establish a novel technology to identify promising migration inhibitors for cancer treatment and relevant applications.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C. Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
313
|
Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan Receptors as Mediators and Modulators of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2202118. [PMID: 36373221 PMCID: PMC11469756 DOI: 10.1002/adhm.202202118] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) is a dynamic and complex matter shaped by heterogenous cancer and cancer-associated cells present at the tumor site. Hyaluronan (HA) is a major TME component that plays pro-tumorigenic and carcinogenic functions. These functions are mediated by different hyaladherins expressed by cancer and tumor-associated cells triggering downstream signaling pathways that determine cell fate and contribute to TME progression toward a carcinogenic state. Here, the interaction of HA is reviewed with several cell-surface hyaladherins-CD44, RHAMM, TLR2 and 4, LYVE-1, HARE, and layilin. The signaling pathways activated by these interactions and the respective response of different cell populations within the TME, and the modulation of the TME, are discussed. Potential cancer therapies via targeting these interactions are also briefly discussed.
Collapse
Affiliation(s)
- Ana M. Carvalho
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Rui L. Reis
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| | - Iva Pashkuleva
- 3Bs Research Group, I3Bs ‐ Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineBarco4805‐017Portugal
- ICVS/3B's – PT Government Associate LaboratoryUniversity of MinhoBraga4710‐057Portugal
| |
Collapse
|
314
|
Kocatürk B. Identification of thioredoxin domain containing family members' expression pattern and prognostic value in diffuse gliomas via in silico analysis. Cancer Med 2023; 12:3830-3844. [PMID: 36106447 PMCID: PMC9939227 DOI: 10.1002/cam4.5169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are the most prevalent primary tumors of the central nervous system. Their aggressive nature and the obstacles arising during therapy highlights the importance of finding new prognostic markers and therapy targets for gliomas. TXNDC genes are members of the thioredoxin superfamily and were shown to play a role in redox homeostasis, protein folding, electron transfer and also acting as cellular adapters. The well known contribution of these processes in cancer progression prompted us to investigate if TXNDC family members may also play a role in carcinogenesis, in particular diffuse gliomas. METHODS The present study used in silico analysis tools GEPIA, UCSC Xena, Gliovis, cBioPortal, and Ivy GAP to evaluate the expression pattern, prognostic value and clinical significance of TXNDC family members in diffuse gliomas. RESULTS Our analysis showed that TXNDC family members' expression pattern differ between tumors and healthy tissues and among tumors with different grades. The detailed analysis of TXNDC5 in glioma pathogenesis revealed that TXNDC5 expression is associated with more aggressive clinical and molecular features and poor therapy success both in LGG and GBM samples. Kaplan-Meier survival curves represented a worse prognosis for patients with leveated TXNDC5 levels in LGG and all grade glioma patients. The levels of TXNDC5 was shown to be possibly regulated by hypoxia-ER stress axis and a potential mechanism for TXNDC5-driven glioma progression was found to be extracellular matrix (ECM) production which is known to promote tumor aggressiveness. CONCLUSIONS Our results uncovered the previously unknown role of TXNDC family members in glioma pathogenesis and showed that TXNDC5 levels could serve as a predictor of clinical outcome and therapy success and may very well be used for targeted therapy.
Collapse
Affiliation(s)
- Begüm Kocatürk
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
315
|
Liu G, Xia Y, Wang H, Jin X, Chen S, Chen W, Zhang C, He Y. Downregulation of CYRI-B promotes migration, invasion and EMT by activating the Rac1-STAT3 pathway in gastric cancer. Exp Cell Res 2023; 423:113453. [PMID: 36584745 DOI: 10.1016/j.yexcr.2022.113453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND CYRI-B plays key roles in regulating cell motility in nontumor cells. However, the role and function of CYRI-B have rarely been studied in cancer cells, including gastric cancer. The purpose of this study was to investigate the clinical significance, biological function and underlying molecular mechanism of CYRI-B in gastric cancer. METHOD CYRI-B protein levels were detected by immunohistochemistry (IHC) and western blotting (WB). Gastric cancer cells and organoid models were evaluated to explore the correlation of CYRI-B with collagen type I. The function of CYRI-B in proliferation, migration, invasion in gastric cancer was evaluated by in vitro and in vivo experiments. RESULT CYRI-B protein levels were downregulated in gastric cancer. Low expression of CYRI-B was related to later tumor stage and poorer prognosis. CYRI-B expression was reduced when cells were cultured in collagen type I, which was mediated by collagen receptor DDR1. Knockdown of CYRI-B promoted migration, invasion and EMT in vivo and in vitro. Mechanistically, knockdown of CYRI-B activated the Rac1-STAT3 pathway. CONCLUSION Our findings showed that CYRI-B plays an important role in the tumor microenvironment, and is associated with malignant characteristics acquired by gastric cancer. This study may provide new targets for future therapeutic interventions for tumor metastasis.
Collapse
Affiliation(s)
- Guangyao Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of gastrointestinal surgery, Affiliated Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Yujian Xia
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huijin Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Xinghan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
316
|
Shen C, Yan Y, Yang S, Wang Z, Wu Z, Li Z, Zhang Z, Lin Y, Li P, Hu H. Construction and validation of a bladder cancer risk model based on autophagy-related genes. Funct Integr Genomics 2023; 23:46. [PMID: 36689018 DOI: 10.1007/s10142-022-00957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
Autophagy has an important association with tumorigenesis, progression, and prognosis. However, the mechanism of autophagy-regulated genes on the risk prognosis of bladder cancer (BC) patients has not been fully elucidated yet. In this study, we created a prognostic model of BC risk based on autophagy-related genes, which further illustrates the value of genes associated with autophagy in the treatment of BC. We first downloaded human autophagy-associated genes and BC datasets from Human Autophagy Database and The Cancer Genome Atlas (TCGA) database, and finally obtained differential prognosis-associated genes for autophagy by univariate regression analysis and differential analysis of cancer versus normal tissues. Subsequently, we downloaded two datasets from Gene Expression Omnibus (GEO), GSE31684 and GSE15307, to expand the total number of samples. Based on these genes, we distinguished the molecular subtypes (C1, C2) and gene classes (A, B) of BC by consistent clustering analysis. Using the genes merged from TCGA and the two GEO datasets, we conducted least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to obtain risk genes and construct autophagy-related risk prediction models. The accuracy of this risk prediction model was assessed by receiver operating characteristic (ROC) and calibration curves, and then nomograms were constructed to predict the survival of bladder cancer patients at 1, 3, and 5 years, respectively. According to the median value of the risk score, we divided BC samples into the high- and low-risk groups. Kaplan-Meier (K-M) survival analysis was performed to compare survival differences between subgroups. Then, we used single sample gene set enrichment analysis (ssGSEA) for immune cell infiltration abundance, immune checkpoint genes, immunotherapy response, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and tumor mutation burden (TMB) analysis for different subgroups. We also applied quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) techniques to verify the expression of these six genes in the model. Finally, we chose the IMvigor210 dataset for external validation. Six risk genes associated with autophagy (SPOCD1, FKBP10, NAT8B, LDLR, STMN3, and ANXA2) were finally screened by LASSO regression algorithm and multivariate Cox regression analysis. ROC and calibration curves showed that the model established was accurate and reliable. Univariate and multivariate regression analyses were used to verify that the risk model was an independent predictor. K-M survival analysis indicated that patients in the high-risk group had significantly worse overall survival than those in the low-risk group. Analysis by algorithms such as correlation analysis, gene set variation analysis (GSVA), and ssGSEA showed that differences in immune microenvironment, enrichment of multiple biologically active pathways, TMB, immune checkpoint genes, and human leukocyte antigens (HLAs) were observed in the different risk groups. Then, we constructed nomograms that predicted the 1-, 3-, and 5-year survival rates of different BC patients. In addition, we screened nine sensitive chemotherapeutic drugs using the correlation between the obtained expression status of risk genes and drug sensitivity results. Finally, the external dataset IMvigor210 verified that the model is reliable and efficient. We established an autophagy-related risk prognostic model that is accurate and reliable, which lays the foundation for future personalized treatment of bladder cancer.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yan Yan
- Department of Vascular Surgery, University Hospital Aachen, Pauwelsstr 30, 52074, Aachen, Germany
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zejin Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Yuda Lin
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Peng Li
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China. .,Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
317
|
Wang S, Rong R, Yang DM, Fujimoto J, Bishop JA, Yan S, Cai L, Behrens C, Berry LD, Wilhelm C, Aisner D, Sholl L, Johnson BE, Kwiatkowski DJ, Wistuba II, Bunn PA, Minna J, Xiao G, Kris MG, Xie Y. Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer. J Clin Invest 2023; 133:e160330. [PMID: 36647832 PMCID: PMC9843059 DOI: 10.1172/jci160330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/08/2022] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) are effective for many patients with lung cancer with EGFR mutations. However, not all patients are responsive to EGFR TKIs, including even those harboring EGFR-sensitizing mutations. In this study, we quantified the cells and cellular interaction features of the tumor microenvironment (TME) using routine H&E-stained biopsy sections. These TME features were used to develop a prediction model for survival benefit from EGFR TKI therapy in patients with lung adenocarcinoma and EGFR-sensitizing mutations in the Lung Cancer Mutation Consortium 1 (LCMC1) and validated in an independent LCMC2 cohort. In the validation data set, EGFR TKI treatment prolonged survival in the predicted-to-benefit group but not in the predicted-not-to-benefit group. Among patients treated with EGFR TKIs, the predicted-to-benefit group had prolonged survival outcomes compared with the predicted not-to-benefit group. The EGFR TKI survival benefit positively correlated with tumor-tumor interaction image features and negatively correlated with tumor-stroma interaction. Moreover, the tumor-stroma interaction was associated with higher activation of the hepatocyte growth factor/MET-mediated PI3K/AKT signaling pathway and epithelial-mesenchymal transition process, supporting the hypothesis of fibroblast-involved resistance to EGFR TKI treatment.
Collapse
Affiliation(s)
- Shidan Wang
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin A. Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shirley Yan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ling Cai
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lynne D. Berry
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Clare Wilhelm
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dara Aisner
- Department of Pathology, University of Colorado, Denver, Colorado, USA
| | - Lynette Sholl
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, Massachusetts, USA
| | - Bruce E. Johnson
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David J. Kwiatkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul A. Bunn
- Division of Medical Oncology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - John Minna
- Hamon Center for Therapeutic Oncology Research
- Departments of Internal Medicine and Pharmacology
- Simmons Comprehensive Cancer Center, and
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, and
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mark G. Kris
- Department of Thoracic Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, The Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, and
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
318
|
Feng Y, Zeng Y, Fu J, Che B, Jing G, Liu Y, Sun D, Zhang C. A Stand-Alone Microfluidic Chip for Long-Term Cell Culture. MICROMACHINES 2023; 14:207. [PMID: 36677268 PMCID: PMC9863834 DOI: 10.3390/mi14010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Live-cell microscopy is crucial for biomedical studies and clinical tests. The technique is, however, limited to few laboratories due to its high cost and bulky size of the necessary culture equipment. In this study, we propose a portable microfluidic-cell-culture system, which is merely 15 cm×11 cm×9 cm in dimension, powered by a conventional alkali battery and costs less than USD 20. For long-term cell culture, a fresh culture medium exposed to 5% CO2 is programmed to be delivered to the culture chamber at defined time intervals. The 37 °C culture temperature is maintained by timely electrifying the ITO glass slide underneath the culture chamber. Our results demonstrate that 3T3 fibroblasts, HepG2 cells, MB-231 cells and tumor spheroids can be well-maintained for more than 48 h on top of the microscope stage and show physical characters (e.g., morphology and mobility) and growth rate on par with the commercial stage-top incubator and the widely adopted CO2 incubator. The proposed portable cell culture device is, therefore, suitable for simple live-cell studies in the lab and cell experiments in the field when samples cannot be shipped.
Collapse
Affiliation(s)
- Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Yang Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Jiahao Fu
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
| | - Bingchen Che
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi’an 710127, China
| | - Guangyin Jing
- School of Physics, Northwest University, No. 1 Xuefu Avenue, Xi’an 710127, China
| | - Yonggang Liu
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
- RongGuangYun Biotechnology Co., Ltd., No. G2018, Building C, Qin Han Innovation Center, Xianyang 712039, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, No. 1, Xuefu Avenue, Xi’an 710127, China
- RongGuangYun Biotechnology Co., Ltd., No. G2018, Building C, Qin Han Innovation Center, Xianyang 712039, China
| |
Collapse
|
319
|
Bock N, Forouz F, Hipwood L, Clegg J, Jeffery P, Gough M, van Wyngaard T, Pyke C, Adams MN, Bray LJ, Croft L, Thompson EW, Kryza T, Meinert C. GelMA, Click-Chemistry Gelatin and Bioprinted Polyethylene Glycol-Based Hydrogels as 3D Ex Vivo Drug Testing Platforms for Patient-Derived Breast Cancer Organoids. Pharmaceutics 2023; 15:pharmaceutics15010261. [PMID: 36678890 PMCID: PMC9867511 DOI: 10.3390/pharmaceutics15010261] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. Tunable hydrogel matrices provide enhanced capability for drug testing in breast cancer (BCa), by better mimicking key physicochemical characteristics of this disease’s extracellular matrix. Here, we encapsulated patient-derived breast cancer cells in bioprinted polyethylene glycol-derived hydrogels (PEG), functionalized with adhesion peptides (RGD, GFOGER and DYIGSR) and gelatin-derived hydrogels (gelatin methacryloyl; GelMA and thiolated-gelatin crosslinked with PEG-4MAL; GelSH). Within ranges of BCa stiffnesses (1−6 kPa), GelMA, GelSH and PEG-based hydrogels successfully supported the growth and organoid formation of HR+,−/HER2+,− primary cancer cells for at least 2−3 weeks, with superior organoid formation within the GelSH biomaterial (up to 268% growth after 15 days). BCa organoids responded to doxorubicin, EP31670 and paclitaxel treatments with increased IC50 concentrations on organoids compared to 2D cultures, and highest IC50 for organoids in GelSH. Cell viability after doxorubicin treatment (1 µM) remained >2-fold higher in the 3D gels compared to 2D and doxorubicin/paclitaxel (both 5 µM) were ~2.75−3-fold less potent in GelSH compared to PEG hydrogels. The data demonstrate the potential of hydrogel matrices as easy-to-use and effective preclinical tools for therapy assessment in patient-derived breast cancer organoids.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4059, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD 4102, Australia
- Correspondence:
| | - Farzaneh Forouz
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD 4102, Australia
| | - Luke Hipwood
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4059, Australia
- Gelomics Pty Ltd., Brisbane, QLD 4059, Australia
| | - Julien Clegg
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4059, Australia
- Gelomics Pty Ltd., Brisbane, QLD 4059, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, QUT, Brisbane, QLD 4059, Australia
- School of Mechanical, Medical and Process Engineering, QUT, Brisbane, QLD 4000, Australia
| | - Penny Jeffery
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | | | - Tirsa van Wyngaard
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Breast and Endocrine Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | | - Mark N. Adams
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, QUT, Brisbane, QLD 4059, Australia
- Centre for Genomics and Personalised Health, Brisbane, QLD 4000, Australia
| | - Laura J. Bray
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4059, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, QUT, Brisbane, QLD 4059, Australia
| | - Laura Croft
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Centre for Genomics and Personalised Health, Brisbane, QLD 4000, Australia
| | - Erik W. Thompson
- School of Biomedical Sciences, Faculty of Health, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Thomas Kryza
- Mater Research Institute, Brisbane, QLD 4102, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, QUT, Brisbane, QLD 4059, Australia
- Gelomics Pty Ltd., Brisbane, QLD 4059, Australia
| |
Collapse
|
320
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
321
|
Nelson MS, Liu Y, Wilson HM, Li B, Rosado-Mendez IM, Rogers JD, Block WF, Eliceiri KW. Multiscale Label-Free Imaging of Fibrillar Collagen in the Tumor Microenvironment. Methods Mol Biol 2023; 2614:187-235. [PMID: 36587127 DOI: 10.1007/978-1-0716-2914-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With recent advances in cancer therapeutics, there is a great need for improved imaging methods for characterizing cancer onset and progression in a quantitative and actionable way. Collagen, the most abundant extracellular matrix protein in the tumor microenvironment (and the body in general), plays a multifaceted role, both hindering and promoting cancer invasion and progression. Collagen deposition can defend the tumor with immunosuppressive effects, while aligned collagen fiber structures can enable tumor cell migration, aiding invasion and metastasis. Given the complex role of collagen fiber organization and topology, imaging has been a tool of choice to characterize these changes on multiple spatial scales, from the organ and tumor scale to cellular and subcellular level. Macroscale density already aids in the detection and diagnosis of solid cancers, but progress is being made to integrate finer microscale features into the process. Here we review imaging modalities ranging from optical methods of second harmonic generation (SHG), polarized light microscopy (PLM), and optical coherence tomography (OCT) to the medical imaging approaches of ultrasound and magnetic resonance imaging (MRI). These methods have enabled scientists and clinicians to better understand the impact collagen structure has on the tumor environment, at both the bulk scale (density) and microscale (fibrillar structure) levels. We focus on imaging methods with the potential to both examine the collagen structure in as natural a state as possible and still be clinically amenable, with an emphasis on label-free strategies, exploiting intrinsic optical properties of collagen fibers.
Collapse
Affiliation(s)
- Michael S Nelson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yuming Liu
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen M Wilson
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Bin Li
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Ivan M Rosado-Mendez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy D Rogers
- Morgridge Institute for Research, Madison, WI, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA. .,Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
322
|
Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc Natl Acad Sci U S A 2023; 120:e2209260120. [PMID: 36574668 PMCID: PMC9910605 DOI: 10.1073/pnas.2209260120] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles (NPs) are confronted with limited and disappointing delivery efficiency in tumors clinically. The tumor extracellular matrix (ECM), whose physical traits have recently been recognized as new hallmarks of cancer, forms a main steric obstacle for NP diffusion, yet the role of tumor ECM physical traits in NP diffusion remains largely unexplored. Here, we characterized the physical properties of clinical gastric tumor samples and observed limited distribution of NPs in decellularized tumor tissues. We also performed molecular dynamics simulations and in vitro hydrogel experiments through single-particle tracking to investigate the diffusion mechanism of NPs and understand the influence of tumor ECM physical properties on NP diffusion both individually and collectively. Furthermore, we developed an estimation matrix model with evaluation scores of NP diffusion efficiency through comprehensive analyses of the data. Thus, beyond finding that loose and soft ECM with aligned structure contribute to efficient diffusion, we now have a systemic model to predict NP diffusion efficiency based on ECM physical traits and provide critical guidance for personalized tumor diagnosis and treatment.
Collapse
|
323
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
324
|
Shah L, Latif A, Williams KJ, Mancuso E, Tirella A. Invasion and Secondary Site Colonization as a Function of In Vitro Primary Tumor Matrix Stiffness: Breast to Bone Metastasis. Adv Healthc Mater 2023; 12:e2201898. [PMID: 36351739 PMCID: PMC11468571 DOI: 10.1002/adhm.202201898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 11/11/2022]
Abstract
Increased breast tissue stiffness is correlated with breast cancer risk and invasive cancer progression. However, its role in promoting bone metastasis, a major cause of mortality, is not yet understood. It is previously identified that the composition and stiffness of alginate-based hydrogels mimicking normal (1-2 kPa) and cancerous (6-10 kPa) breast tissue govern phenotype of breast cancer cells (including MDA-MB-231) in vitro. Here, to understand the causal effect of primary tumor stiffness on metastatic potential, a new breast-to-bone in vitro model is described. Together with alginate-gelatin hydrogels to mimic breast tissue, 3D printed biohybrid poly-caprolactone (PCL)-composite scaffolds, decellularized following bone-ECM deposition through Saos-2 engraftment, are used to mimic the bone tissue. It is reported that higher hydrogel stiffness results in the increased migration and invasion capacity of MDA-MB 231 cells. Interestingly, increased expression of osteolytic factors PTHrP and IL-6 is observed when MDA-MB-231 cells pre-conditioned in stiffer hydrogels (10 kPa, 3% w/v gelatin) colonize the bone/PCL scaffolds. The new breast-to-bone in vitro models herein described are designed with relevant tissue microenvironmental factors and could emerge as future non-animal technological platforms for monitoring metastatic processes and therapeutic efficacy.
Collapse
Affiliation(s)
- Lekha Shah
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- Present address:
BIOtech Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| | - Ayşe Latif
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Kaye J. Williams
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Elena Mancuso
- Nanotechnology and Integrated Bio‐Engineering Centre (NIBEC)Ulster UniversityShore RoadNewtownabbeyBT37 0QBUK
- Present address:
Engineering Ingegneria Informatica S.P.A. ‐ R&D DivisionPiazzale dell'Agricoltura 24Rome00144Italy
| | - Annalisa Tirella
- Division of Pharmacy and OptometryFaculty of BiologyMedicine and HealthUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- BIOtech – Center for Biomedical TechnologiesDepartment of Industrial EngineeringUniversity of TrentoVia delle Regole 101Trento38123Italy
| |
Collapse
|
325
|
Verma AH, Haldavnekar R, Venkatakrishnan K, Tan B. Dual-Purpose 3D-Silica Nanostructure Matrix for Rapid Epigenetic Reprogramming of Tumor Cell to Cancer Stem Cell Spheroid. SMALL METHODS 2023; 7:e2200798. [PMID: 36424183 DOI: 10.1002/smtd.202200798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Cancer stem cells (CSCs), a rare subpopulation responsible for tumorigenesis and therapeutic resistance, are difficult to characterize and isolate. Conventional method of growing CSCs takes up to 2-8 weeks inhibiting the rate of research. Therefore, rapid reprogramming (RR) of tumor cells into CSCs is crucial to accelerate the stem cell oncology research. The current RR techniques cannot be utilized for CSC RR due to many limitations posed due to isolation requirements resulting in loss of vital data. Hence, a technique that can induce CSC RR without the need for isolation procedures is needed. Here, fabrication of a 3D-silica nanostructured extracellular matrix for RR and in situ monitoring is reported. The RR is tested using three preclinical cancer models. The 3D matrix and a zeta potential study confirm an intense material-cellular interaction resulting in the enhanced expressions of surface and epigenetic biomarkers. Cancer cells require only 3-day period to form CSC spheroids with 3D-silica extracellular matrix. Real-time single-cell monitoring of the methylene blue-induced photodynamic demonstrates the dual functionality. To the authors' knowledge, this is the first study to demonstrate a CSC epigenetic reprogramming using nanostructures. These findings may pave the path for accelerating the stem cell research in oncology.
Collapse
Affiliation(s)
- Anish Hiresha Verma
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Rupa Haldavnekar
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
- Nano-characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
326
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
327
|
Sinha S, Ayushman M, Tong X, Yang F. Dynamically Crosslinked Poly(ethylene-glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D. Adv Healthc Mater 2023; 12:e2202147. [PMID: 36239185 PMCID: PMC9813196 DOI: 10.1002/adhm.202202147] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive brain tumor in adults. Hydrogels have been employed as 3D in vitro culture models to elucidate how matrix cues such as stiffness and degradation drive GBM progression and drug responses. Recently, viscoelasticity has been identified as an important niche cue in regulating stem cell differentiation and morphogenesis in 3D. Brain is a viscoelastic tissue, yet how viscoelasticity modulates GBM fate and drug response remains largely unknown. Using dynamic hydrazone crosslinking chemistry, a poly(ethylene-glycol)-based hydrogel system with brain-mimicking stiffness and tunable stress relaxation is reported to interrogate the role of viscoelasticity on GBM fates in 3D. The hydrogel design allows tuning stress relaxation without changing stiffness, biochemical ligand density, or diffusion. The results reveal that increasing stress relaxation promotes invasive GBM behavior, such as cell spreading, migration, and GBM stem-like cell marker expression. Furthermore, increasing stress relaxation enhances GBM proliferation and drug sensitivity. Stress-relaxation induced changes on GBM fates and drug response are found to be mediated through the cytoskeleton and transient receptor potential vanilloid-type 4. These results highlight the importance of incorporating viscoelasticity into 3D in vitro GBM models and provide novel insights into how viscoelasticity modulates GBM cell fates.
Collapse
Affiliation(s)
- Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
328
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
329
|
Germon A, Heesom KJ, Amoah R, Adams JC. Protein disulfide isomerase A3 activity promotes extracellular accumulation of proteins relevant to basal breast cancer outcomes in human MDA-MB-A231 breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C113-C132. [PMID: 36374169 PMCID: PMC9799142 DOI: 10.1152/ajpcell.00445.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Metastasis and recurrence of breast cancer remain major causes of patient mortality, and there is an ongoing need to identify new therapeutic targets relevant to tumor invasion. Protein disulfide isomerase A3 (PDIA3) is a disulfide oxidoreductase and isomerase of the endoplasmic reticulum that has known extracellular substrates and has been correlated with aggressive breast cancers. We show that either prior PDIA3 inhibition by the disulfide isomerase inhibitor 16F16 or depletion of heparin-binding proteins strongly reduces the activity of conditioned medium (CM) of MDA-MB-231 human breast cancer cells to support promigratory cell spreading and F-actin organization by newly adherent MDA-MB-231 cells. Quantitative proteomics to investigate effects of 16F16 inhibition on heparin-binding proteins in the CM of MDA-MB-231 cells identified 80 proteins reproducibly decreased at least twofold (at q ≤ 0.05) after 16F16 treatment. By Gene Ontology analysis, many of these have roles in extracellular matrix (ECM) structure and function and cell adhesion; ribosomal proteins that also correlate with extracellular vesicles were also identified. Protein-protein interaction analysis showed that many of the extracellular proteins have known network interactions with each other. The predominant types of disulfide-bonded domains in the extracellular proteins contained β-hairpin folds, with the knottin fold the most common. From human breast cancer data sets, the extracellular proteins were found to correlate specifically with the basal subtype of breast cancer and their high expression in tumors correlated with reduced distant metastasis-free survival. These data provide new evidence that PDIA3 may be a relevant therapeutic target to alter properties of the ECM-associated microenvironment in basal breast cancer.
Collapse
Affiliation(s)
- Anna Germon
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Reiss Amoah
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, https://ror.org/0524sp257University of Bristol, Bristol, United Kingdom
| |
Collapse
|
330
|
Antitumor Therapy Targeting the Tumor Microenvironment. JOURNAL OF ONCOLOGY 2023; 2023:6886135. [PMID: 36908706 PMCID: PMC10005879 DOI: 10.1155/2023/6886135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The development and progression of tumors in human tissues extensively rely on its surrounding environment, that is, tumor microenvironment which includes a variety of cells, molecules, and blood vessels. These components are modified, organized, and integrated to support and facilitate the growth, invasion, and metabolism of tumor cells, suggesting them as potential therapeutic targets in anticancer treatment. An increasing number of pharmacological agents have been developed and clinically applied to target the oncogenic components in the tumor microenvironment, and in this review, we will summarize these pharmacological agents that directly or indirectly target the cellular or molecular components in the tumor microenvironment. However, difficulties and challenges still exist in this field, which will also be reported in this literature.
Collapse
|
331
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
332
|
Samarth N, Gulhane P, Singh S. Immunoregulatory framework and the role of miRNA in the pathogenesis of NSCLC - A systematic review. Front Oncol 2022; 12:1089320. [PMID: 36620544 PMCID: PMC9811680 DOI: 10.3389/fonc.2022.1089320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
With a 5-year survival rate of only 15%, non-small cell lung cancer (NSCLC), the most common kind of lung carcinoma and the cause of millions of deaths annually, has drawn attention. Numerous variables, such as disrupted signaling caused by somatic mutations in the EGFR-mediated RAS/RAF/MAPK, PI3K/AKT, JAK/STAT signaling cascade, supports tumour survival in one way or another. Here, the tumour microenvironment significantly contributes to the development of cancer by thwarting the immune response. MicroRNAs (miRNAs) are critical regulators of gene expression that can function as oncogenes or oncosuppressors. They have a major influence on the occurrence and prognosis of NSCLC. Though, a myriad number of therapies are available and many are being clinically tested, still the drug resistance, its adverse effect and toxicity leading towards fatality cannot be ruled out. In this review, we tried to ascertain the missing links in between perturbed EGFR signaling, miRNAs favouring tumorigenesis and the autophagy mechanism. While connecting all the aforementioned points multiple associations were set, which can be targeted in order to combat NSCLC. Here, we tried illuminating designing synthetically engineered circuits with the toggle switches that might lay a prototype for better therapeutic paradigm.
Collapse
Affiliation(s)
| | | | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, India
| |
Collapse
|
333
|
Xie Z, Wang L, Zhang Y. Advances in Organoid Culture Research. Glob Med Genet 2022; 9:268-276. [PMID: 36530528 PMCID: PMC9750796 DOI: 10.1055/s-0042-1756662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.
Collapse
Affiliation(s)
- Zhiyuan Xie
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Linghao Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China,Address for correspondence Yan Zhang Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityNo.1954 Huashan Road, Shanghai 200030People's Republic of China
| |
Collapse
|
334
|
Qin Y, Xu G. Enhancing CAR T-cell therapies against solid tumors: Mechanisms and reversion of resistance. Front Immunol 2022; 13:1053120. [PMID: 36569859 PMCID: PMC9773088 DOI: 10.3389/fimmu.2022.1053120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, belonging to adoptive immune cells therapy, utilizes engineered immunoreceptors to enhance tumor-specific killing. By now new generations of CAR T-cell therapies dramatically promote the effectiveness and robustness in leukemia cases. However, only a few CAR T-cell therapies gain FDA approval till now, which are applied to hematologic cancers. Targeting solid tumors through CAR T-cell therapies still faces many problems, such as tumor heterogeneity, antigen loss, infiltration inability and immunosuppressive micro-environment. Recent advances provide new insights about the mechanisms of CAR T-cell therapy resistance and give rise to potential reversal therapies. In this review, we mainly introduce existing barriers when treating solid tumors with CAR T-cells and discuss the methods to overcome these challenges.
Collapse
Affiliation(s)
- Yue Qin
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Guotai Xu
- National Institute of Biological Sciences, Beijing, China,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China,*Correspondence: Guotai Xu,
| |
Collapse
|
335
|
Zhong ME, Duan X, Ni-jia-ti MYDL, Qi H, Xu D, Cai D, Li C, Huang Z, Zhu Q, Gao F, Wu X. CT-based radiogenomic analysis dissects intratumor heterogeneity and predicts prognosis of colorectal cancer: a multi-institutional retrospective study. J Transl Med 2022; 20:574. [PMID: 36482390 PMCID: PMC9730572 DOI: 10.1186/s12967-022-03788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to develop a radiogenomic prognostic prediction model for colorectal cancer (CRC) by investigating the biological and clinical relevance of intratumoural heterogeneity. METHODS This retrospective multi-cohort study was conducted in three steps. First, we identified genomic subclones using unsupervised deconvolution analysis. Second, we established radiogenomic signatures to link radiomic features with prognostic subclone compositions in an independent radiogenomic dataset containing matched imaging and gene expression data. Finally, the prognostic value of the identified radiogenomic signatures was validated using two testing datasets containing imaging and survival information collected from separate medical centres. RESULTS This multi-institutional retrospective study included 1601 patients (714 females and 887 males; mean age, 65 years ± 14 [standard deviation]) with CRC from 5 datasets. Molecular heterogeneity was identified using unsupervised deconvolution analysis of gene expression data. The relative prevalence of the two subclones associated with cell cycle and extracellular matrix pathways identified patients with significantly different survival outcomes. A radiogenomic signature-based predictive model significantly stratified patients into high- and low-risk groups with disparate disease-free survival (HR = 1.74, P = 0.003). Radiogenomic signatures were revealed as an independent predictive factor for CRC by multivariable analysis (HR = 1.59, 95% CI:1.03-2.45, P = 0.034). Functional analysis demonstrated that the 11 radiogenomic signatures were predominantly associated with extracellular matrix and immune-related pathways. CONCLUSIONS The identified radiogenomic signatures might be a surrogate for genomic signatures and could complement the current prognostic strategies.
Collapse
Affiliation(s)
- Min-Er Zhong
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.413405.70000 0004 1808 0686Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Duan
- grid.12981.330000 0001 2360 039XSchool of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ma-yi-di-li Ni-jia-ti
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang China
| | - Haoning Qi
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongwei Xu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Du Cai
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chenghang Li
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zeping Huang
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiqi Zhu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.507012.10000 0004 1798 304XDepartment of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Feng Gao
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xiaojian Wu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
336
|
Londoño-Berrio M, Castro C, Cañas A, Ortiz I, Osorio M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022; 14:pharmaceutics14122709. [PMID: 36559203 PMCID: PMC9784359 DOI: 10.3390/pharmaceutics14122709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Tumor organoids are defined as self-organized three-dimensional assemblies of heterogeneous cell types derived from patient samples that mimic the key histopathological, genetic, and phenotypic characteristics of the original tumor. This technology is proposed as an ideal candidate for the evaluation of possible therapies against cancer, presenting advantages over other models which are currently used. However, there are no reports in the literature that relate the techniques and material development of tumor organoids or that emphasize in the physicochemical and biological properties of materials that intent to biomimicry the tumor extracellular matrix. There is also little information regarding the tools to identify the correspondence of native tumors and tumoral organoids (tumoroids). Moreover, this paper relates the advantages of organoids compared to other models for drug evaluation. A growing interest in tumoral organoids has arisen from 2009 to the present, aimed at standardizing the process of obtaining organoids, which more accurately resemble patient-derived tumor tissue. Likewise, it was found that the characteristics to consider for the development of organoids, and therapeutic responses of them, are cell morphology, physiology, the interaction between cells, the composition of the cellular matrix, and the genetic, phenotypic, and epigenetic characteristics. Currently, organoids have been used for the evaluation of drugs for brain, lung, and colon tumors, among others. In the future, tumor organoids will become closer to being considered a better model for studying cancer in clinical practice, as they can accurately mimic the characteristics of tumors, in turn ensuring that the therapeutic response aligns with the clinical response of patients.
Collapse
Affiliation(s)
- Maritza Londoño-Berrio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Cristina Castro
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
| | - Ana Cañas
- Corporation for Biological Research, Medical, and Experimental Research Group, Carrera 72A # 78b-141, Medellin 050034, Colombia
| | - Isabel Ortiz
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
| | - Marlon Osorio
- Systems Biology Research Group, Pontifical Bolivarian University (Universidad Pontificia Bolivariana), Carrera 78B No. 72a-109, Medellin 050034, Colombia
- New Materials Research Group, School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellin 050031, Colombia
- Correspondence:
| |
Collapse
|
337
|
Almolakab ZM, El-Nesr KA, Mohamad EH, Elkaffas R, Nabil A. Gene polymorphisms of interleukin 10 (− 819 C/T and − 1082 G/A) in women with ovarian cancer. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Abstract
Background
Ovarian cancer (OC) is the leading cause of death associated with gynecologic cancer. IL-10 plays an important role in tumorigenesis. We investigated IL-10 gene polymorphisms in OC patients. The current case–control study screened forty-eight women with OC and forty-eight healthy women who did not have OC. The genotyping of SNPs (− 1082 G > A; rs1800896 and − 819 C > T; rs1800871) of the IL-10 gene was done by tetra primers sequence-specific primer polymerase chain reaction (SSP-PCR) technique. The plasma levels of IL-10 were measured using an enzyme-linked immunosorbent assay (ELISA).
Results
For IL-10 (− 1082 G/A) polymorphism, the G (wild allele) was significantly associated with increasing the risk of OC (OR = 2.054 with CI = 1.154–3.657; P < 0.05), while the A (variant allele) and AA genotype was significantly associated with decreasing the risk of OC (OR = 0.487 with CI = 0.273–0.867; P < 0.05) and (OR = 0.15; 95% CI = 0.04–0.63; P < 0.05), respectively. For IL-10 (− 819C/T) polymorphisms, the T allele (variant allele) and (TT, CT genotypes) were significantly associated with increasing the risk of OC (OR = 2.800 with 95% CI = 1.577–5.037; P < 0.05), (OR = 18.33 with 95% CI = 3.46–97.20; P < 0.001), and (OR = 9.44 with 95% CI = 2.52–35.40; P < 0.001), respectively, while the C (wild allele) was significantly associated with decreasing the risk of OC (OR = 0.357 with 95% CI = 0.199–0.642; P < 0.05). The haplotype analysis for (− 1082 G > A and − 819 C > T shows the GT haplotype was significantly associated with increasing the risk of OC (OR = 50.09 with CI = 6.34–395.92; P < 0.001). OC was substantially correlated with IL-10 level (r = 0.457; p < 0.001). There is no linkage disequilibrium (LD) between IL 10 − 1082 G/A and IL 10 − 819 C/T (D′ = 0.1315, r2 = 0.016; P = NS). A statistically significant positive relationship existed between IL-10 and CA125 and ALT (P < 0.05). IL-10 and albumin showed a strong negative association (P < 0.05), whereas the correlation of IL10 plasma level with BUN, AST, T. Bil., TLC, PLT, Cr., and HB has not any significant value (P > 0.05).
Conclusions
Overall, this study supports an association of IL-10 (− 1082 G/A and − 819C/T) polymorphisms with the risk of ovarian cancer.
Collapse
|
338
|
Yi M, Wu Y, Niu M, Zhu S, Zhang J, Yan Y, Zhou P, Dai Z, Wu K. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer 2022; 10:jitc-2022-005543. [PMID: 36460337 PMCID: PMC9723957 DOI: 10.1136/jitc-2022-005543] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Agents blocking programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have been approved for triple-negative breast cancer (TNBC). However, the response rate of anti-PD-1/PD-L1 is still unsatisfactory, partly due to immunosuppressive factors such as transforming growth factor-beta (TGF-β). In our previous pilot study, the bispecific antibody targeting TGF-β and murine PD-L1 (termed YM101) showed potent antitumor effect. In this work, we constructed a bispecific antibody targeting TGF-β and human PD-L1 (termed BiTP) and explored the antitumor effect of BiTP in TNBC. METHODS BiTP was developed using Check-BODYTM bispecific platform. The binding affinity of BiTP was measured by surface plasmon resonance, ELISA, and flow cytometry. The bioactivity was assessed by Smad and NFAT luciferase reporter assays, immunofluorescence, western blotting, and superantigen stimulation assays. The antitumor activity of BiTP was explored in humanized epithelial-mesenchymal transition-6-hPDL1 and 4T1-hPDL1 murine TNBC models. Immunohistochemical staining, flow cytometry, and bulk RNA-seq were used to investigate the effect of BiTP on immune cell infiltration. RESULTS BiTP exhibited high binding affinity to dual targets. In vitro experiments verified that BiTP effectively counteracted TGF-β-Smad and PD-L1-PD-1-NFAT signaling. In vivo animal experiments demonstrated that BiTP had superior antitumor activity relative to anti-PD-L1 and anti-TGF-β monotherapy. Mechanistically, BiTP decreased collagen deposition, enhanced CD8+ T cell penetration, and increased tumor-infiltrating lymphocytes. This improved tumor microenvironment contributed to the potent antitumor activity of BiTP. CONCLUSION BiTP retains parent antibodies' binding affinity and bioactivity, with superior antitumor activity to parent antibodies in TNBC. Our data suggest that BiTP might be a promising agent for TNBC treatment.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Wuhan YZY Biopharma Co Ltd, Wuhan, China
| | | | | | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
339
|
Cheng Y, Yao J, Fang Q, Chen B, Zang G. A circadian rhythm-related biomarker for predicting prognosis and immunotherapy efficacy in lung adenocarcinoma. Aging (Albany NY) 2022; 14:9617-9631. [PMID: 36455876 PMCID: PMC9792196 DOI: 10.18632/aging.204411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Lung adenocarcinoma (LUAD) remains a major reason of cancer-associated mortality globally, and there exists a lack of indicators for survival in LUAD patients. Therefore, it is clinically required to obtain a novel prognostically indicator for guiding clinical management. In this study, we established a circadian rhythm (CR) related signature by a combinative investigation of multiple datasets. The newly-established signature showed an acceptable ability to predict survival and could serve as an independent indicator for prognosis. Moreover, the newly-established signature was critically associated with tumor malignancy, including proliferation, invasion, EMT and metastasis. The newly-established signature was predictive of response to immune checkpoint blockade. Collectively, we established a CR-related gene signature that could forecast survival, tumor malignancy and therapeutic response; our findings could help guiding clinical management.
Collapse
Affiliation(s)
- Yuanjun Cheng
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Qianru Fang
- Department of Obstetrics, People’s Hospital of Chizhou, Chizhou, China
| | - Bin Chen
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| | - Guohui Zang
- Department of Cardiothoracic Surgery, People’s Hospital of Chizhou, Chizhou, China
| |
Collapse
|
340
|
Langthasa J, Mishra S, U M, Kalal R, Bhat R. Mutations in a set of ancient matrisomal glycoprotein genes across neoplasia predispose to disruption of morphogenetic transduction. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2022. [DOI: 10.1002/cso2.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jimpi Langthasa
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Satyarthi Mishra
- Centre for Nano Science and Engineering Indian Institute of Science Bengaluru India
| | - Monica U
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
| | - Ronak Kalal
- Department of Zoology University College of Science, Mohanlal Sukhadia University Udaipur India
| | - Ramray Bhat
- Department of Molecular Reproduction Development and Genetics Indian Institute of Science Bengaluru India
- Centre for BioSystems Science and Engineering Indian Institute of Science Bengaluru India
| |
Collapse
|
341
|
Zhang H, Yan X, Gu H, Xue Q, Liu X. High SERPINH1 expression predicts poor prognosis in lung adenocarcinoma. J Thorac Dis 2022; 14:4785-4802. [PMID: 36647484 PMCID: PMC9840017 DOI: 10.21037/jtd-22-1518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Background Serpine Protease Inhibitorclade H1 (SERPINH1) is abnormally expressed in a variety of tumor tissues and is linked to the biological processes of tumorigenesis, migration, invasion, and metastasis. SERPINH1 expression and prognosis in malignant tumors, such as gastric, colorectal, and breast cancers, have previously been studied, but the gene has not yet been investigated in lung adenocarcinoma (LUAD) in terms of prognosis and the potential mechanisms of action. Methods SERPINH1 was identified as an independent prognostic factor for LUAD in The Cancer Genome Atlas (TCGA) cohort and Affiliated Hospital of Nantong University (NTU) cohort (the LUAD data set) by univariate and multivariate Cox regression analyses. Additionally, we performed immunohistochemical staining to analyze the expression of SERPINH1 in LUAD and normal lung tissue. Based on the TCGA database, we analyzed the correlation of this gene with the tumor mutation burden (TMB), tumor microenvironment, immune infiltration, immune checkpoints, and anti-tumor drugs using the R language-related R package. Results SERPINH1 was highly expressed in LUAD tissue. Kaplan-Meier survival curves in both the TCGA cohort and the NTU cohort showed that the SERPINH1 low-expression group had a higher survival rate than the high-expression group. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the SERPINH1 co-expressed genes revealed that the gene was associated with the extracellular matrix and cell proliferation and migration. The analysis of SERPINH1 and the TMB revealed a superior survival advantage for patients with high TMB and high SERPINH1 expression, and worse survival for those with low TMB and high SERPINH1 expression. The analysis of the tumor microenvironment (TME) and immune infiltration revealed that the high and low expression of SERPINH1 was associated with different immune infiltration characteristics. The analysis of the immune checkpoints and anti-tumor drugs showed that immunotherapy and anti-neoplastic treatment were more efficacious in the high SERPINH1 expression group than the low SERPINH1 expression group. Conclusions Using LUAD tissues and clinical samples, we showed that SERPINH1 can be used as a prognostic biomarker for LUAD. Our findings provide a new approach and strategy for the clinical treatment of LUAD patients.
Collapse
Affiliation(s)
- Hailing Zhang
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaodi Yan
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmei Gu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiang Xue
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiancheng Liu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
342
|
Norcross RG, Abdelmoti L, Rouchka EC, Andreeva K, Tussey O, Landestoy D, Galperin E. Shoc2 controls ERK1/2-driven neural crest development by balancing components of the extracellular matrix. Dev Biol 2022; 492:156-171. [PMID: 36265687 PMCID: PMC10019579 DOI: 10.1016/j.ydbio.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 02/02/2023]
Abstract
The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.
Collapse
Affiliation(s)
- Rebecca G Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA
| | - Kalina Andreeva
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY, 40292, USA; Department of Neuroscience Training, University of Louisville, Louisville, KY, 40292, USA; Department of Genetics, Stanford University, Palo Alto, CA, 94304, USA
| | - Olivia Tussey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daileen Landestoy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
343
|
Park S, Kim J, Lee C. Injectable rapidly dissolving needle-type gelatin implant capable of delivering high concentrations of H2O2 through intratumoral injection. Biomed Pharmacother 2022; 156:113910. [DOI: 10.1016/j.biopha.2022.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
|
344
|
Han SJ, Kwon S, Kim KS. Contribution of mechanical homeostasis to epithelial-mesenchymal transition. Cell Oncol (Dordr) 2022; 45:1119-1136. [PMID: 36149601 DOI: 10.1007/s13402-022-00720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Metastasis refers to the spread of cancer cells from a primary tumor to other parts of the body via the lymphatic system and bloodstream. With tremendous effort over the past decades, remarkable progress has been made in understanding the molecular and cellular basis of metastatic processes. Metastasis occurs through five steps, including infiltration and migration, intravasation, survival, extravasation, and colonization. Various molecular and cellular factors involved in the metastatic process have been identified, such as epigenetic factors of the extracellular matrix (ECM), cell-cell interactions, soluble signaling, adhesion molecules, and mechanical stimuli. However, the underlying cause of cancer metastasis has not been elucidated. CONCLUSION In this review, we have focused on changes in the mechanical properties of cancer cells and their surrounding environment to understand the causes of cancer metastasis. Cancer cells have unique mechanical properties that distinguish them from healthy cells. ECM stiffness is involved in cancer cell growth, particularly in promoting the epithelial-mesenchymal transition (EMT). During tumorigenesis, the mechanical properties of cancer cells change in the direction opposite to their environment, resulting in a mechanical stress imbalance between the intracellular and extracellular domains. Disruption of mechanical homeostasis may be one of the causes of EMT that triggers the metastasis of cancer cells.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Korea.,Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
345
|
Faisal Hamdi AI, How SH, Islam MK, Lim JCW, Stanslas J. Adaptive therapy to circumvent drug resistance to tyrosine kinase inhibitors in cancer: is it clinically relevant? Expert Rev Anticancer Ther 2022; 22:1309-1323. [PMID: 36376248 DOI: 10.1080/14737140.2022.2147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Cancer is highly adaptable and is constantly evolving against current targeted therapies such as tyrosine kinase inhibitors. Despite advances in recent decades, the emergence of drug resistance to tyrosine kinase inhibitors constantly hampers therapeutic efficacy of cancer treatment. Continuous therapy versus intermittent clinical regimen has been a debate in drug administration of cancer patients. An ecologically-inspired shift in cancer treatment known as 'adaptive therapy' intends to improve the drug administration of drugs to cancer patients that can delay emergence of drug resistance. AREAS COVERED We discuss improved understanding of the concept of drug resistance, the basis of continuous therapy, intermittent clinical regimens, and adaptive therapy will be reviewed. In addition, we discuss how adaptive therapy provides guidance for future cancer treatment. EXPERT OPINION The current understanding of drug resistance in cancer leads to poor prognosis and limited treatment options in patients. Fighting drug resistance mutants is constantly followed by new forms of resistance. In most reported cases, continuous therapy leads to drug resistance and an intermittent clinical regimen vaguely delays it. However, adaptive therapy, conceptually, exploits multiple parameters that can suppress the growth of drug resistance and provides safe treatment for cancer patients in the future.
Collapse
Affiliation(s)
- Amir Imran Faisal Hamdi
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Soon Hin How
- Kuliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Kuliyyah of Medicine, 25200, Kuantan, Malaysia
| | | | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutics Unit, Department of Medicine, Universiti Putra MalaysiaMedicine, 43400, Serdang, Malaysia
| |
Collapse
|
346
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
347
|
Ikeda-Imafuku M, Gao Y, Shaha S, Wang LLW, Park KS, Nakajima M, Adebowale O, Mitragotri S. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J Control Release 2022; 352:1093-1103. [PMID: 36351520 DOI: 10.1016/j.jconrel.2022.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Mayuka Nakajima
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Omokolade Adebowale
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
348
|
Cha J, Sim W, Yong I, Park J, Shim JK, Chang JH, Kang SG, Kim P. Assessing Spatial Distribution of Multicellular Self-Assembly Enables the Prediction of Phenotypic Heterogeneity in Glioblastoma. Cancers (Basel) 2022; 14:5910. [PMID: 36497392 PMCID: PMC9737258 DOI: 10.3390/cancers14235910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Phenotypic heterogeneity of glioblastomas is a leading determinant of therapeutic resistance and treatment failure. However, functional assessment of the heterogeneity of glioblastomas is lacking. We developed a self-assembly-based assessment system that predicts inter/intracellular heterogeneity and phenotype associations, such as cell proliferation, invasiveness, drug responses, and gene expression profiles. Under physical constraints for cellular interactions, mixed populations of glioblastoma cells are sorted to form a segregated architecture, depending on their preference for binding to cells of the same phenotype. Cells distributed at the periphery exhibit a reduced temozolomide (TMZ) response and are associated with poor patient survival, whereas cells in the core of the aggregates exhibit a significant response to TMZ. Our results suggest that the multicellular self-assembly pattern is indicative of the intertumoral and intra-patient heterogeneity of glioblastomas, and is predictive of the therapeutic response.
Collapse
Affiliation(s)
- Junghwa Cha
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Woogwang Sim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Insung Yong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
349
|
Franchi M, Karamanos KA, Cappadone C, Calonghi N, Greco N, Franchi L, Onisto M, Masola V. Substrate Type and Concentration Differently Affect Colon Cancer Cells Ultrastructural Morphology, EMT Markers, and Matrix Degrading Enzymes. Biomolecules 2022; 12:1786. [PMID: 36551219 PMCID: PMC9775446 DOI: 10.3390/biom12121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Aim of the study was to understand the behavior of colon cancer LoVo-R cells (doxorubicin-resistant) vs. LoVo-S (doxorubicin sensitive) in the initial steps of extracellular matrix (ECM) invasion. We investigated how the matrix substrates Matrigel and type I collagen-mimicking the basement membrane (BM) and the normal or desmoplastic lamina propria, respectively-could affect the expression of epithelial-to-mesenchymal transition (EMT) markers, matrix-degrading enzymes, and phenotypes. Gene expression with RT-qPCR, E-cadherin protein expression using Western blot, and phenotypes using scanning electron microscopy (SEM) were analyzed. The type and different concentrations of matrix substrates differently affected colon cancer cells. In LoVo-S cells, the higher concentrated collagen, mimicking the desmoplastic lamina propria, strongly induced EMT, as also confirmed by the expression of Snail, metalloproteases (MMPs)-2, -9, -14 and heparanase (HPSE), as well as mesenchymal phenotypes. Stimulation in E-cadherin expression in LoVo-S groups suggests that these cells develop a hybrid EMT phenotype. Differently, LoVo-R cells did not increase their aggressiveness: no changes in EMT markers, matrix effectors, and phenotypes were evident. The low influence of ECM components in LoVo-R cells might be related to their intrinsic aggressiveness related to chemoresistance. These results improve understanding of the critical role of tumor microenvironment in colon cancer cell invasion, driving the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnologies, University of Bologna, 40126 Bologna, Italy
| | - Natalia Calonghi
- Department of Pharmacy and Biotechnologies, University of Bologna, 40126 Bologna, Italy
| | - Nicola Greco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Leonardo Franchi
- Department of Medicine, University of Bologna, 40126 Bologna, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
350
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|