3601
|
Kumar S, McLaughlin MM, McDonnell PC, Lee JC, Livi GP, Young PR. Human mitogen-activated protein kinase CSBP1, but not CSBP2, complements a hog1 deletion in yeast. J Biol Chem 1995; 270:29043-6. [PMID: 7493921 DOI: 10.1074/jbc.270.49.29043] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CSBP1 and CSBP2 are human homologues of the Saccharomyces cerevisiae Hog1 mitogen-activated protein kinase which is required for growth in high osmolarity media. Expression of CSBP1, but not CSBP2, complemented a hog1 delta phenotype. A CSBP2 mutant (A34V) that complements hog1 delta was isolated and found to have approximately 3-fold lower kinase activity than the wild-type CSBP2. Further analysis revealed that both the kinase activity and tyrosine phosphorylation of CSBP1 and CSBP2 (A34V) is regulated by salt. In contrast, wild-type CSBP2 is constitutively active but dependent on the upstream kinase, Pbs2. Mutagenesis studies showed that reduction or elimination of CSBP2 kinase activity restores salt responsiveness as measured by tyrosine phosphorylation suggesting that too high a level of kinase activity can result in desensitization of the host cell and inability to grow in high salt.
Collapse
Affiliation(s)
- S Kumar
- Department of Molecular Immunology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | | | |
Collapse
|
3602
|
Urich M, el Shemerly MY, Besser D, Nagamine Y, Ballmer-Hofer K. Activation and nuclear translocation of mitogen-activated protein kinases by polyomavirus middle-T or serum depend on phosphatidylinositol 3-kinase. J Biol Chem 1995; 270:29286-92. [PMID: 7493960 DOI: 10.1074/jbc.270.49.29286] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Several cellular signal transduction pathways activated by middle-T in polyomavirus-transformed cells are required for viral oncogenicity. Here we focus on the role of phosphatidylinositol 3-kinase (PI 3-kinase) and Ras and address the question how these signaling molecules cooperate during cell cycle activation. Ras activation is mediated through association with SHC.GRB2.SOS and leads to increased activity of several members of the mitogen-activated protein (MAP) kinase family, while activation of PI 3-kinase results in the generation of D3-phosphorylated phosphatidylinositides whose downstream targets remain elusive. PI 3-kinase activation might also ensue as a direct consequence of Ras activation. Oncogenicity of middle-T requires stimulation of both Ras- and PI 3-kinase-dependent pathways. Mutants of middle-T incapable to bind either SHC.GRB2.SOS or PI 3-kinase are not oncogenic. Sustained activation and nuclear localization of one of the MAP kinases, ERK1, was observed in wild type but not in mutant middle-T-expressing cells. Wortmannin, an inhibitor of PI 3-kinase, prevented MAP kinase activation and nuclear localization in middle-T-transformed cells. PI 3-kinase activity was also required for activation of the MAP kinase pathway in normal serum-stimulated cells, generalizing the concept that signaling through MAP kinases requires not only Ras-but also PI 3-kinase-mediated signals.
Collapse
Affiliation(s)
- M Urich
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | |
Collapse
|
3603
|
Izumi T, Shimizu T. Platelet-activating factor receptor: gene expression and signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1259:317-33. [PMID: 8541341 DOI: 10.1016/0005-2760(95)00171-9] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Izumi
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
3604
|
Marra F, Pinzani M, DeFranco R, Laffi G, Gentilini P. Involvement of phosphatidylinositol 3-kinase in the activation of extracellular signal-regulated kinase by PDGF in hepatic stellate cells. FEBS Lett 1995; 376:141-5. [PMID: 7498528 DOI: 10.1016/0014-5793(95)01261-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinase (PI 3-K) is a lipid and protein kinase which associates with the activated platelet-derived growth factor (PDGF) receptor and other tyrosine kinases. We studied the effects of wortmannin, a selective inhibitor of PI 3-K, on the activation of extracellular-signal regulated kinase (ERK) by PDGF in cultured hepatic stellate cells, mesenchymal cells responsible for extracellular matrix synthesis within the liver. Incubation with 100 nM wortmannin, a dose which almost completely blocks PI 3-K, resulted in 50% reduction of ERK activity. Direct inhibition of ERK by wortmannin could not be considered responsible for this effect, since wortmannin did not inhibit ERK activity in vitro. Rather, inhibition of PI 3-K acts on the kinase cascade that leads to ERK activation, since PDGF-dependent phosphorylation of ERK was found to be reduced after incubation with wortmannin. Wortmannin also inhibited the increase in c-fos mRNA induced by PDGF, which is dependent on ERK activation. The results of this study show that in hepatic stellate cells PI 3-K is involved in ERK activation, although it is not necessary. These data indicate cross-talk between PI 3-K and the Ras/ERK pathway in PDGF-stimulated cells.
Collapse
Affiliation(s)
- F Marra
- Istituto di Medicina Interna, Università di Firenze, Italy
| | | | | | | | | |
Collapse
|
3605
|
Mori S, Satoh T, Koide H, Nakafuku M, Villafranca E, Kaziro Y. Inhibition of Ras/Raf interaction by anti-oncogenic mutants of neurofibromin, the neurofibromatosis type 1 (NF1) gene product, in cell-free systems. J Biol Chem 1995; 270:28834-8. [PMID: 7499408 DOI: 10.1074/jbc.270.48.28834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neurofibromatosis type 1 (NF1) gene encodes a protein, neurofibromin, containing GTPase-activating protein-related domain (GRD) that stimulates intrinsic GTPase activity of Ras protein. By screening a randomly mutagenized NF1-GRD library in Saccharomyces cerevisiae, we isolated two NF1-GRD mutants (NF201 and NF204) with single amino acid substitutions, which suppress the heat shock-sensitive phenotype of the RAS2(G19V) mutant. The NF1-GRD mutants also suppress the oncogenic Ras-induced transformation of NIH 3T3 mouse fibroblasts (Nakafuku, M., Nagamine, M., Ohtoshi, A., Tanaka, K., Toh-e, A., and Kaziro, Y. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 6706-6710). In this paper, we investigated the molecular mechanism of inhibition of the transforming Ras-specific function by the NF1-GRD mutants in mammalian cells. In human embryonic kidney (HEK) 293 cells, the mutant NF1-GRDs attenuated the stimulation of mitogen-activated protein kinase by Ras(G12V), but not by platelet-derived growth factor. In cell-free systems, purified recombinant NF1-GRD mutants showed an inhibitory effect on the association of Ras.guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) with Raf at several times lower concentrations than the wild type. Furthermore, it was revealed that the binding affinity of the mutant NF1-GRDs toward Ras.GTP gamma S is approximately 5-10 times higher than the wild type. These results suggest that the mutant NF1-GRDs tightly bind to an oncogenic Ras in its GTP-bound active conformation and block the interaction between Ras and its effector, Raf.
Collapse
Affiliation(s)
- S Mori
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
3606
|
Ling L, Kung HJ. Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol 1995; 15:6582-92. [PMID: 8524223 PMCID: PMC230911 DOI: 10.1128/mcb.15.12.6582] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nyk/Mer is a recently identified receptor tyrosine kinase with neural cell adhesion molecule-like structure (two immunoglobulin G-like domains and two fibronectin III-like domains) in its extracellular region and belongs to the Ufo/Axl family of receptors. The ligand for Nyk/Mer is presently unknown, as are the signal transduction pathways mediated by this receptor. We constructed and expressed a chimeric receptor (Fms-Nyk) composed of the extracellular domain of the human colony-stimulating factor 1 receptor (Fms) and the transmembrane and cytoplasmic domains of human Nyk/Mer in NIH 3T3 fibroblasts in order to investigate the mitogenic signaling and biochemical properties of Nyk/Mer. Colony-stimulating factor 1 stimulation of the Fms-Nyk chimeric receptor in transfected NIH 3T3 fibroblasts leads to a transformed phenotype and generates a proliferative response in the absence of other growth factors. We show that phospholipase C gamma, phosphatidylinositol 3-kinase/p70 S6 kinase, Shc, Grb2, Raf-1, and mitogen-activated protein kinase are downstream components of the Nyk/Mer signal transduction pathways. In addition, Nyk/Mer weakly activates p90rsk, while stress-activated protein kinase, Ras GTPase-activating protein (GAP), and GAP-associated p62 and p190 proteins are not activated or tyrosine phosphorylated by Nyk/Mer. An analysis comparing the Nyk/Mer signal cascade with that of the epidermal growth factor receptor indicates substrate preferences by these two receptors. Our results provide a detailed description of the Nyk/Mer signaling pathways. Given the structural similarity between the Ufo/Axl family receptors, some of the information may also be applied to other members of this receptor tyrosine kinase family.
Collapse
Affiliation(s)
- L Ling
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
3607
|
Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270:1491-4. [PMID: 7491495 DOI: 10.1126/science.270.5241.1491] [Citation(s) in RCA: 1399] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The phosphorylation of the human estrogen receptor (ER) serine residue at position 118 is required for full activity of the ER activation function 1 (AF-1). This Ser118 is phosphorylated by mitogen-activated protein kinase (MAPK) in vitro and in cells treated with epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo. Overexpression of MAPK kinase (MAPKK) or of the guanine nucleotide binding protein Ras, both of which activate MAPK, enhanced estrogen-induced and antiestrogen (tamoxifen)-induced transcriptional activity of wild-type ER, but not that of a mutant ER with an alanine in place of Ser118. Thus, the activity of the amino-terminal AF-1 of the ER is modulated by the phosphorylation of Ser118 through the Ras-MAPK cascade of the growth factor signaling pathways.
Collapse
Affiliation(s)
- S Kato
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3608
|
Treier M, Bohmann D, Mlodzik M. JUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell 1995; 83:753-60. [PMID: 8521492 DOI: 10.1016/0092-8674(95)90188-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
R7 photoreceptor fate in the Drosophila eye induced by the activation of the Sevenless receptor tyrosine kinase and the RAS/MAP kinase signal transduction pathway. We show that expression of a constitutively activated JUN isoform in ommatidial precursor cells is sufficient to induce R7 fate independent of upstream signals normally required for photoreceptor determination. We present evidence that JUN interacts with the ETS domain protein Pointed to promote R7 formation. This interaction is cooperative when both proteins are targeted to the same promoter and is antagonized by another ETS domain protein, YAN, a negative regulator of R7 development. Furthermore, phyllopod, a putative transcriptional target of RAS pathway activation during R7 induction, behaves as a suppressor of activated JUN. Taken together, these data suggest that JUN and Pointed act on common target genes to promote neuronal differentiation in the Drosophila eye, and that phyllopod might be such a common target.
Collapse
Affiliation(s)
- M Treier
- Differentiation Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
3609
|
Chen Q, Olashaw N, Wu J. Participation of reactive oxygen species in the lysophosphatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem 1995; 270:28499-502. [PMID: 7499358 DOI: 10.1074/jbc.270.48.28499] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent evidence suggests that reactive oxygen species (ROS) may function as second messengers in intracellular signal transduction pathways. We explored the possibility that ROS were involved in lysophosphatidic acid (LPA)-induced mitogen-activated protein (MAP) kinase signaling pathway in HeLa cells. Antioxidant N-acetylcysteine inhibited the LPA-stimulated MAP kinase kinase activity. Direct exposure of HeLa cells to hydrogen peroxide resulted in a concentration- and time-dependent activation of MAP kinase kinase. Inhibition of catalase with aminotriazole enhanced the effect of LPA on induction of MAP kinase kinase. Further, LPA stimulated ROS production in HeLa cells. These findings suggest that ROS participate in the LPA-elicited MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Q Chen
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
3610
|
Abstract
The mitogen-activated protein (MAP) kinase signal transduction pathway is an intracellular signaling cascade which mediates cellular responses to growth and differentiation factors. The MAP kinase pathway can be activated by a wide range of stimuli dependent on the cell types, and this is normally a transient response. Oncogenes such as ras, src, raf, and mos have been proposed to transform cells in part by prolonging the activated stage of components within this signaling pathway. The human papillomavirus (HPV) oncogenes E6 and E7 play an essential role in the in vitro transformation of primary human keratinocytes and rodent cells. The HPV type 16 E5 gene has also been shown to have weak transforming activity and may enhance the epidermal growth factor (EGF)-mediated signal transduction to the nucleus. In the present study, we have investigated the effects of the oncogenic HPV type 16 E5, E6, and E7 genes on the induction of the MAP kinase signaling pathway. The E5 gene induced an increase in the MAP kinase activity both in the absence and in the presence of EGF. In comparison, the E6 and E7 oncoproteins do not alter the MAP kinase activity or prolong the MAP kinase activity induced with EGF. These findings suggest that E5 may function, at least in part, to enhance the cell response through the MAP kinase pathway. However, the transforming activity of E6 and E7 is not associated with alterations in the MAP kinase pathway. These findings are consistent with E5 enhancing the response to growth factor stimulation.
Collapse
Affiliation(s)
- Z Gu
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
3611
|
Berndt MC, Ward CM, De Luca M, Facey DA, Castaldi PA, Harris SJ, Andrews RK. The molecular mechanism of platelet adhesion. AUSTRALIAN AND NEW ZEALAND JOURNAL OF MEDICINE 1995; 25:822-30. [PMID: 8770359 DOI: 10.1111/j.1445-5994.1995.tb02887.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the most primitive of host-defence mechanisms is haemostasis, the ability to control blood loss. In response to vascular trauma, platelets rapidly adhere to the exposed subendothelial matrix, a process that ultimately results in the sealing of the vessel by a plug of platelets stabilised by fibrin. Paradoxically, it is the same cascade of events that leads to thrombosis and vessel occlusion, resulting in heart attack and stroke. The molecular events involved in platelet adhesion have therefore been the subject of intense investigation. In all but the largest blood vessels, the initial contact adhesion of platelets is mediated by subendothelial matrix bound von Willebrand Factor (vWF) and a specific vWF receptor on platelets, the glycoprotein (GP) Ib-V-IX complex. Our understanding of this process arose from analysis of two congenital bleeding disorders, von Willebrand's disease and the Bernard-Soulier syndrome, in which vWF or the GP Ib-V-IX, respectively, are either absent or dysfunctional. This overview discusses our current molecular understanding of platelet adhesion and how engagement of vWF by the GP Ib-V-IX complex on platelets initiates the subsequent events in platelet activation leading to either haemostasis or thrombosis.
Collapse
Affiliation(s)
- M C Berndt
- Vascular Biology Laboratory, Baker Medical Research Institute, Melbourne, Vic
| | | | | | | | | | | | | |
Collapse
|
3612
|
Rusanescu G, Qi H, Thomas SM, Brugge JS, Halegoua S. Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 1995; 15:1415-25. [PMID: 8845164 DOI: 10.1016/0896-6273(95)90019-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We find that calcium influx through voltage-dependent calcium channels causes extensive neurite outgrowth in PC12 cells. The calcium signal transduction pathway promoting neurite outgrowth causes the rapid activation of protein tyrosine kinases, which include Src. Protein tyrosine phosphorylation results in the formation of an Shc/Grb2 complex, leading to Ras activation, MAP kinase activation, and the subsequent induction of the immediate early gene NGFI-A. Protein tyrosine phosphorylation, gene induction, and neurite outgrowth are inhibited by the expression of dominant negative forms of both Src and Ras, indicating a requirement for both proto-oncoproteins in calcium signaling. Our results suggest that a signaling cassette which includes Src and Ras is likely to underlie a broad range of calcium of actions in the nervous system.
Collapse
Affiliation(s)
- G Rusanescu
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794-5230, USA
| | | | | | | | | |
Collapse
|
3613
|
Seger R, Biener Y, Feinstein R, Hanoch T, Gazit A, Zick Y. Differential activation of mitogen-activated protein kinase and S6 kinase signaling pathways by 12-O-tetradecanoylphorbol-13-acetate (TPA) and insulin. Evidence for involvement of a TPA-stimulated protein-tyrosine kinase. J Biol Chem 1995; 270:28325-30. [PMID: 7499332 DOI: 10.1074/jbc.270.47.28325] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AG-18, an inhibitor of protein-tyrosine kinases, was employed to study the role of tyrosine-phosphorylated proteins in insulin- and phorbol ester-induced signaling cascades. When incubated with Chinese hamster ovary cells overexpressing the insulin receptor, AG-18 reversibly inhibited insulin-induced tyrosine phosphorylation of insulin receptor substate-1, with minimal effects either on receptor autophosphorylation or on phosphorylation of Shc64. Under these conditions, AG-18 inhibited insulin-stimulated phosphorylation of the ribosomal protein S6, while no inhibition of insulin-induced activation of mitogen-activated protein kinase (MAPK) kinase or MAPK was detected. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of MAPK kinase and MAPK and phosphorylation of S6 were inhibited by AG-18. This correlated with inhibition of TPA-stimulated tyrosine phosphorylation of several proteins, the most prominent ones being pp114 and pp120. We conclude that Tyr-phosphorylated insulin receptor substrate-1 is the main upstream regulator of insulin-induced S6 phosphorylation by p70s6k, whereas MAPK signaling seems to be activated in these cells primarily through the adaptor molecule Shc. In contrast, TPA-induced S6 phosphorylation is mediated by the MAPK/p90rsk cascade. A key element of this TPA-stimulated signaling pathway is an AG-18-sensitive protein-tyrosine kinase.
Collapse
Affiliation(s)
- R Seger
- Department of Membrane Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
3614
|
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326-31. [PMID: 7481820 DOI: 10.1126/science.270.5240.1326] [Citation(s) in RCA: 4304] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.
Collapse
Affiliation(s)
- Z Xia
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
3615
|
Rao GN, Delafontaine P, Runge MS. Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem 1995; 270:27871-5. [PMID: 7499260 DOI: 10.1074/jbc.270.46.27871] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It has recently been reported that protein-tyrosine kinase activity is required for thrombin-induced growth in vascular smooth muscle cells (VSMC). In the present study, we have identified several phosphoproteins that are tyrosine-phosphorylated in response to thrombin in quiescent VSMC. These proteins are insulin-like growth factor-1 receptor beta-subunit (IGF-IR beta), insulin receptor substrate-1 (IRS-1), and phospholipase C-gamma 1 (PLC-gamma 1). Thrombin-stimulated phosphorylation of these proteins was rapid; it was maximal at 1 min and reduced thereafter. Thrombin also activated mitogen-activated protein kinases (MAPK) in quiescent VSMC in a biphasic manner with a rapid and larger peak at 10 min (6-fold) followed by a sustained smaller second peak at 2 h (2-fold). Inhibition of protein-tyrosine kinase activity by the use of two structurally different protein-tyrosine kinase inhibitors, genistein and herbimycin A, significantly blocked the thrombin-induced tyrosine phosphorylation of IGF-1R beta, IRS-1, and PLC-gamma 1 and decreased thrombin-stimulated DNA synthesis. In contrast, however, inhibition of protein-tyrosine kinase activity had no effect on thrombin activation of MAPK. Collectively, these findings suggest a role for tyrosine phosphorylation of IGF-IR beta, IRS-1, and PLC-gamma 1 in thrombin-induced mitogenic signaling events in VSMC. Furthermore, while protein tyrosine phosphorylation is essential for thrombin-induced DNA synthesis, it is not required for thrombin-stimulated MAPK activation. Since thrombin rapidly activated Src in VSMC, Src may be involved in the cross-talk between the G-protein-coupled receptor agonist and a tyrosine kinase receptor such as IGF-1R.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Benzoquinones
- Cells, Cultured
- DNA/biosynthesis
- DNA Replication/drug effects
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Genistein
- Insulin Receptor Substrate Proteins
- Isoenzymes/metabolism
- Isoflavones/pharmacology
- Lactams, Macrocyclic
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Quinones/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/metabolism
- Rifabutin/analogs & derivatives
- Thrombin/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- G N Rao
- Division of Cardiology, University of Texas Medical Branch, Galveston 77555, USA
| | | | | |
Collapse
|
3616
|
Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270:27489-94. [PMID: 7499206 DOI: 10.1074/jbc.270.46.27489] [Citation(s) in RCA: 2828] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PD 098059 has been shown previously to inhibit the dephosphorylated form of mitogen-activated protein kinase kinase-1 (MAPKK1) and a mutant MAPKK1(S217E,S221E), which has low levels of constitutive activity (Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 7686-7689). Here we report that PD 098059 does not inhibit Raf-activated MAPKK1 but that it prevents the activation of MAPKK1 by Raf or MEK kinase in vitro at concentrations (IC50 = 2-7 microM) similar to those concentrations that inhibit dephosphorylated MAPKK1 or MAPKK1(S217E,S221E). PD 098059 inhibited the activation of MAPKK2 by Raf with a much higher IC50 value (50 microM) and did not inhibit the phosphorylation of other Raf or MEK kinase substrates, indicating that it exerts its effect by binding to the inactive form of MAPKK1. PD 098059 also acts as a specific inhibitor of the activation of MAPKK in Swiss 3T3 cells, suppressing by 80-90% its activation by a variety of agonists. The high degree of specificity of PD 098059 in vitro and in vivo is indicated by its failure to inhibit 18 protein Ser/Thr kinases (including two other MAPKK homologues) in vitro by its failure to inhibit the in vivo activation of MAPKK and MAP kinase homologues that participate in stress and interleukin-1-stimulated kinase cascades in KB and PC12 cells, and by lack of inhibition of the activation of p70 S6 kinase by insulin or epidermal growth factor in Swiss 3T3 cells. PD 098059 (50 microM) inhibited the activation of p42MAPK and isoforms of MAP kinase-activated protein kinase-1 in Swiss 3T3 cells, but the extent of inhibition depended on how potently c-Raf and MAPKK were activated by any particular agonist and demonstrated the enormous amplification potential of this kinase cascade. PD 098059 not only failed to inhibit the activation of Raf by platelet-derived growth factor, serum, insulin, and phorbol esters in Swiss 3T3 cells but actually enhanced Raf activity. The rate of activation of Raf by platelet-derived growth factor was increased 3-fold, and the subsequent inactivation that occurred after 10 min was prevented. These results indicate that the activation of Raf is suppressed and that its inactivation is accelerated by a downstream component(s) of the MAP kinase pathway.
Collapse
Affiliation(s)
- D R Alessi
- Department of Biochemistry, The University, Dundee
| | | | | | | | | |
Collapse
|
3617
|
Terada K, Kaziro Y, Satoh T. Ras is not required for the interleukin 3-induced proliferation of a mouse pro-B cell line, BaF3. J Biol Chem 1995; 270:27880-6. [PMID: 7499262 DOI: 10.1074/jbc.270.46.27880] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It has been demonstrated that Ras is involved in interleukin 3 (IL-3)-stimulated signal transduction in various hematopoietic cultured cells (Satoh, T., Nakafuku, M., Miyajima, A., and Kaziro, Y. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3314-3318; Duronio, V., Welham, M. J., Abraham, S., Dryden, P., and Schrader, J. W. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1587-1591). However, it has not been fully understood which of IL-3-promoted cellular responses, i.e. proliferation, survival, and differentiation, requires Ras function. We employed a system of inducible expression of the dominant-negative (S17N) or dominant-active (G12V) mutant of Ras in BaF3 mouse pro-B cell line to analyze the role of Ras in IL-3-stimulated signal transduction. Induction of the dominant-negative Ras(S17N) effectively inhibited the IL-3-induced activation of c-Raf-1 and mitogen-activated protein kinase (MAPK). Furthermore, the activation of fos gene promoter following IL-3 stimulation was almost completely abolished when Ras(S17N) was induced. Under these conditions, Ras(S17N) exhibited no inhibitory effect on IL-3-dependent proliferation assessed by the increase of cell numbers and a mitochondrial enzyme activity. The results indicate that Ras-dependent pathways, including the Raf/MAPK/Fos pathway, are dispensable for IL-3-induced growth stimulation. When BaF3 cells were treated with a tyrosine kinase inhibitor, herbimycin A, IL-3-dependent proliferation of the cells was impaired, suggesting that tyrosine kinase-mediated pathways are critical for growth promotion. On the other hand, apoptotic cell death caused by deprivation of IL-3 was prevented by the induction of the activated mutant Ras(G12V), although the rate of cell number increase was markedly reduced. Thus, it is likely that Ras-independent pathways play important roles to facilitate the proliferation although they may not be essential for IL-3-stimulated antiapoptotic signal transduction.
Collapse
Affiliation(s)
- K Terada
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
3618
|
Chen Z, Nield HS, Sun H, Barbier A, Patel TB. Expression of type V adenylyl cyclase is required for epidermal growth factor-mediated stimulation of cAMP accumulation. J Biol Chem 1995; 270:27525-30. [PMID: 7499211 DOI: 10.1074/jbc.270.46.27525] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Previously, this laboratory has demonstrated that epidermal growth factor (EGF) increases adenylyl cyclase activity in cardiac membranes and elevates cAMP accumulation in hearts and cardiac myocytes. Since EGF does not increase cAMP accumulation in all tissues, we investigated the possibility that the expression of a specific isoform of adenylyl cyclase (AC) was necessary to observe EGF-elicited stimulation of cAMP accumulation. HEK 293 cells were transfected with different isoforms of AC, and the ability of EGF to increase AC activity as well as elevate cAMP accumulation was determined. In cells transfected with AC I, II, V, and VI cDNAs, neither the expression nor the amount of the two isoforms of Gs alpha (45 and 52 kDa) were altered. Similarly, EGF-elicited phosphorylation of cellular proteins on tyrosine residues in various transfectants was unaltered. However, EGF increased AC activity and elevated cAMP accumulation only in cells expressing the rat and canine ACV. EGF did not alter either AC activity or cAMP accumulation in cells overexpressing types I, II, and VI isozymes. As assessed by the ability of an anti-Gs alpha antibody to obliterate the effect, stimulation of AC activity in AC V transfectants involved the participation of Gs alpha, a finding consistent with previous data concerning EGF effects on cardiac AC (Nair, B. G., Parikh, B., Milligan, G., and Patel, T. B. (1990) J. Biol. Chem. 265, 21317-21322). Thus we conclude that the expression of AC V isoform confers specificity to the ability of EGF to stimulate AC activity.
Collapse
Affiliation(s)
- Z Chen
- Department of Pharmacology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
3619
|
Moriguchi T, Gotoh Y, Nishida E. Activation of two isoforms of mitogen-activated protein kinase kinase in response to epidermal growth factor and nerve growth factor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:32-8. [PMID: 8529659 DOI: 10.1111/j.1432-1033.1995.032_c.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mitogen-activated protein kinase kinase (MAPKK) is a dual-specificity protein kinase which phosphorylates and activates mitogen-activated protein kinase (MAPK). cDNAs encoding two isoforms of MAPKK, MAPKK1 and MAPKK2 (also known as MEK1 and MEK2), have been cloned in mammalian cells. To analyze the characteristics of MAPKK1 and MAPKK2 individually, we have produced specific anti-MAPKK serum against each isoform. MAPKK1 and MAPKK2 have apparent molecular masses of 45 kDa and 47 kDa, respectively, on SDS/polyacrylamide gel electrophoresis. In mouse tissues, MAPKK1 was highly enriched in brain, while MAPKK2 was present relatively evenly. In rat fibroblastic 3Y1 cells, epidermal growth factor (EGF) treatment induced activation of both MAPKK1 and MAPKK2. Immunoprecipitation experiments have shown that the time courses of activation and deactivation of both isoforms of MAPKK were superimposed. In PC12 cells, both MAPKK1 and MAPKK2 were activated in response to nerve growth factor (NGF) as well as EGF, and the time courses of activation and deactivation of both isoforms were indistinguishable from each other in the NGF-stimulated cells and also in the EGF-stimulated cells. Furthermore, localization of both MAPKK1 and MAPKK2 in the cytoplasm was unchanged in response to EGF and NGF. Thus, the same or quite similar mechanisms may operate in the regulation of the activation and deactivation of two isoforms of MAPKK, and both kinases might have redundant functions when expressed in the same cell.
Collapse
Affiliation(s)
- T Moriguchi
- Department of Genetics and Molecular Biology, Kyoto University, Japan
| | | | | |
Collapse
|
3620
|
Baxter RM, Cohen P, Obermeier A, Ullrich A, Downes CP, Doza YN. Phosphotyrosine residues in the nerve-growth-factor receptor (Trk-A). Their role in the activation of inositolphospholipid metabolism and protein kinase cascades in phaeochromocytoma (PC12) cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:84-91. [PMID: 8529673 DOI: 10.1111/j.1432-1033.1995.084_c.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PC12 cells, which lack platelet derived-growth-factor (PDGF) receptors, have been stably transfected with a chimaera consisting of the extracellular domain of the beta-PDGF receptor and the intracellular and transmembrane domains of the nerve-growth-factor receptor Trk-A (termed PT-R). Mutation of the Trk-A residue Tyr490 to phenylalanine prevents the association with Shc, while similar mutations at Tyr751 or Tyr785 are reported to prevent interaction of Trk-A with the p85 subunit of inositol phospholipid 3-kinase and phospholipase C-gamma 1, respectively. The strong and sustained activation of p42 and p44 mitogen-activated-protein kinases induced by PDGF-B/B in PC12/PT-R cells was unaffected by mutation of Tyr785 or Tyr751 to phenylalanine, but was smaller and transient after mutation of Tyr490, and almost abolished by the double mutation of Tyr490 and Tyr785. Mutation of Tyr490 reduced by 70% the PDGF-induced increase in inositol phospholipid 3-kinase activity immunoprecipitated from cell extracts with antiphosphotyrosine monoclonal antibodies and greatly suppressed the PDGF-induced increase in the intracellular products of inositol phospholipid 3-kinase, while mutation of Tyr751 or Tyr785 had no effect. Mutation of Tyr785 (but not mutation of Tyr490 or Tyr751) abolished PDGF-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate. Mutation of Tyr490, alone or in combination with mutation of Tyr751 and Tyr785, had no effect on the PDGF-induced activation of p70 S6 kinase (p70S6K). However, the activation of p70S6K by PDGF (or nerve growth factor), but not the activation of mitogen-activated-protein kinase, was prevented by two structurally unrelated inhibitors of inositol phospholipid 3-kinase, wortmannin or LY294002. Our results demonstrate the following: (1) the phosphorylation of Tyr490 plays a major role in the activation of inositol phospholipid 3-kinase and formation of 3-phosphorylated inositol lipids and confirm that the phosphorylation of Tyr 785 triggers the activation of phospholipase C-gamma 1 in vivo. (2) Tyr490 phosphorylation (but not inositol phospholipid 3-kinase activation) is also required for strong and sustained activation of mitogen-activated-protein kinase and neuronal differentiation, while the smaller and more transient activation of mitogen-activated-protein kinase, produced by the activation of phospholipase C-gamma 1 is insufficient to trigger the neuronal differentiation of PT-R cells. (3) Inositol phospholipid 3-kinase is required for the activation of p70S6K, but only a small increase in inositol phospholipid 3-kinase activity and the level of 3-phosphorylated inositol lipids is required for maximal p70S6K activation.
Collapse
Affiliation(s)
- R M Baxter
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | | | | | |
Collapse
|
3621
|
Frost V, Morley SJ, Mercep L, Meyer T, Fabbro D, Ferrari S. The phosphodiesterase inhibitor SQ 20006 selectively blocks mitogen activation of p70S6k and transition to S phase of the cell division cycle without affecting the steady state phosphorylation of eIF-4E. J Biol Chem 1995; 270:26698-706. [PMID: 7592897 DOI: 10.1074/jbc.270.44.26698] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In quiescent cells high levels of protein synthesis are required in order to re-enter the cell cycle upon stimulation. Initiation of polypeptide synthesis is the step most often subject to regulation, controlled in part by phosphorylation of 40 S ribosomal protein S6 and a number of initiation factors. The kinase responsible for S6 phosphorylation is p70S6k. We now show that the p70S6k pathway can be selectively blocked by the aminopurine analogue, SQ 20006. This agent is known to raise cAMP levels, resulting in activation of protein kinase A. We present evidence that the increase in cAMP is not responsible for the inhibitory effect observed. We also show that SQ 20006 can prevent the activation of p70S6k in a rapid and reversible manner. The compound does not exert its inhibitory activity on p70S6k but can inhibit in vitro two protein kinase C isozymes (alpha and gamma). In a B lymphoblastoid cell line, treatment with SQ 20006 results in inhibition of protein synthesis at the initiation stage. In contrast, when tested directly upon the translational machinery in the reticulocyte lysate, inhibition is manifest at both the level of initiation and elongation. The role of protein kinase A in the modulation of p70S6k and the rate of translation is discussed.
Collapse
Affiliation(s)
- V Frost
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | | | | | | | | | | |
Collapse
|
3622
|
Qian YW, Lee EY. Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 1995; 270:25507-13. [PMID: 7503932 DOI: 10.1074/jbc.270.43.25507] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The retinoblastoma protein (Rb) interacts with multiple cellular proteins that mediate its cellular function. We have identified nine polypeptides that bind to the T-binding domains of Rb using an Rb affinity resin. RbAp48 and RbAp46 are quantitatively the major Rb-associated proteins purified by this approach. RbAp48 was characterized previously and was found to be related to MSI1, a negative regulator of Ras in the yeast Saccharomyces cerevisiae. Here we report the cloning and characterization of RbAp46. RbAp46 shares 89.4% amino acid identity with RbAp48. The internal WD repeats, which are found in a growing number of eukaryotic proteins, are conserved between RbAp46 and RbAp48. Like RbAp48, RbAp46 forms a complex with Rb both in vitro and in vivo and suppresses the heat-shock sensitivity of the yeast RAS2Val-19 strains. We have also isolated the murine cDNA homologs of RbAp48 and RbAp46. Although both mRNA can be detected in all mouse tissues, their mRNA levels vary dramatically between different tissues. No significant differences were observed in the expression patterns of these genes in most tissues except thymus, testis, and ovary/uterus, in which 2-fold differences were observed. Interestingly, the mouse and human RbAp48 amino acid sequences are completely identical, and the mouse and human RbAp46 differ only by one conserved amino acid substitution. These results suggest that RbAp48 and RbAp46 may have shared as well as unique functions in the regulation of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Y W Qian
- Center for Molecular Medicine, University of Texas, Health Science Center, San Antonio 78245-3207, USA
| | | |
Collapse
|
3623
|
Haque SJ, Flati V, Deb A, Williams BR. Roles of protein-tyrosine phosphatases in Stat1 alpha-mediated cell signaling. J Biol Chem 1995; 270:25709-14. [PMID: 7592750 DOI: 10.1074/jbc.270.43.25709] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Different Stat proteins are activated through phosphorylation of unique tyrosine residues in response to different cytokines and growth factors. Interferon-gamma activates Stat1 molecules that form homodimers and bind cognate DNA elements. Here we show that treatment of permeabilized cells with 200-500 microM peroxo-derivatives of vanadium, molybdenum, and tungsten results in the accumulation of constitutively phosphorylated Stat1 alpha molecules. In contrast, treatment of permeabilized cells with orthovanadate, vanadyl sulfate, molybdate, and tungstate at the same range of concentrations does not result in the accumulation of activated Stat1 alpha molecules in the absence of ligand. However, these compounds inhibit the inactivation of interferon-gamma-induced DNA-binding activity of Stat1 alpha. A 4-6-h exposure of the permeabilized cells to orthovanadate, molybdate, and tungstate, but not vanadyl sulfate, results in a ligand-independent activation of Stat1 alpha, which is blocked by the inhibition or depletion of NADPH oxidase activity in the cells, indicating that NADPH oxidase-catalyzed superoxide formation is required for the bioconversion of these metal oxides to the corresponding peroxo-compounds. Interestingly, ligand-independent Stat1 alpha activation by peroxo-derivatives of these transition metals does not require Jak1, Jak2, or Tyk2 kinase activity, suggesting that other kinases can phosphorylate Stat1 alpha on tyrosine 701.
Collapse
Affiliation(s)
- S J Haque
- Department of Cancer Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
3624
|
Vambutas V, Kaplan DR, Sells MA, Chernoff J. Nerve growth factor stimulates tyrosine phosphorylation and activation of Src homology-containing protein-tyrosine phosphatase 1 in PC12 cells. J Biol Chem 1995; 270:25629-33. [PMID: 7592737 DOI: 10.1074/jbc.270.43.25629] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rat PC12 cells respond to extracellular peptide growth factors in at least two distinct ways. When treated with nerve growth factor (NGF) PC12 cells exit the cell cycle and differentiate to a neuronal phenotype, whereas when treated with epidermal growth factor, they proliferate. We examined the potential role of Src homology 2 (SH2)-containing protein tyrosine phosphatases (PTPs) in the differentiation process. PC12 cells express substantial amounts of both SH-PTP1 and 2. SH-PTP1, but not SH-PTP2, becomes tyrosine phosphorylated following NGF, but not epidermal growth factor treatment. The enzymatic activity of SH-PTP1 toward an exogenous substrate following NGF treatment is increased 2-fold. We found that SH-PTP1 binds to the NGF receptor TrkA in vitro and that anti-TrkA immunoprecipitates have PTP activity. These results show that SH-PTP1 is differentially phosphorylated and activated by NGF in PC12 cells and suggest that this activation may play a role in NGF-induced differentiation.
Collapse
Affiliation(s)
- V Vambutas
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
3625
|
Rosenthal SM, Cheng ZQ. Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci U S A 1995; 92:10307-11. [PMID: 7479773 PMCID: PMC40785 DOI: 10.1073/pnas.92.22.10307] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.
Collapse
Affiliation(s)
- S M Rosenthal
- Department of Pediatrics, University of California, San Francisco 94143, USA
| | | |
Collapse
|
3626
|
Crespo P, Cachero TG, Xu N, Gutkind JS. Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition. J Biol Chem 1995; 270:25259-65. [PMID: 7559665 DOI: 10.1074/jbc.270.42.25259] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The enzymatic activity of mitogen-activated protein kinases (MAP kinases) increases in response to agents acting on a variety of cell surface receptors, including receptors linked to heterotrimeric G proteins of the Gi and Gq family. Recently, it has been shown that stimulation of beta-adrenergic receptors, which are typical of those that act through Gs to activate adenylyl cyclases, potently activates MAP kinases in the heart, resulting in the hypertrophy of the cardiac muscle (Lazou, A., Bogoyevitch, M.A., Clerk, A., Fuller, S.J., Marshall, C.J., and Sudgen, P.H. (1994) Circ. Res. 75, 938-941). We have observed that exposure of COS-7 cells to a beta-adrenergic agonist, isoproterenol, raises intracellular levels of cAMP and effectively activates protein kinase A (PKA) and an epitope-tagged MAP kinase. However, MAP kinase stimulation by isoproterenol was neither mimicked by expression of an activated mutant of G alpha s, nor by treatment with PKA-stimulating agents. Moreover, pretreatment of COS-7 with a permeable cAMP analog, 8-Br-cAMP, markedly decreased MAP kinase activation by either isoproterenol or epidermal growth factor. Thus, in COS-7 cells cAMP and PKA do not appear to mediate MAP kinase activation by beta-adrenergic receptors. Signaling from beta-adrenergic receptors to MAP kinase was inhibited by transfection of a chimeric molecule consisting of the CD8 receptor and the carboxyl terminus of the beta-adrenergic receptor kinase, which includes the beta gamma-binding domain. MAP kinase activation by isoproterenol was not affected by depletion of protein kinase C, but it was completely abolished by expression of Ras-inhibiting molecules. We conclude that signaling from beta-adrenergic receptors to MAP kinase involves an activating signal mediated by beta gamma subunits acting on a Ras-dependent pathway and a G alpha s-induced inhibitory signal mediated by cAMP and PKA. The balance between these two opposing mechanisms of regulation would be expected to control the MAP kinase response to beta-adrenergic agonists as well as to other biologically active agents known to act on Gs coupled receptors, including a number of hormones, neurotransmitters, and lipid mediators.
Collapse
Affiliation(s)
- P Crespo
- Molecular Signaling Unit, NIDR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
3627
|
Feng XH, Filvaroff EH, Derynck R. Transforming growth factor-beta (TGF-beta)-induced down-regulation of cyclin A expression requires a functional TGF-beta receptor complex. Characterization of chimeric and truncated type I and type II receptors. J Biol Chem 1995; 270:24237-45. [PMID: 7592630 DOI: 10.1074/jbc.270.41.24237] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transforming growth factor-beta (TGF-beta) inhibits the proliferation of epithelial cells by altering the expression or function of various components of the cell cycle machinery. Expression of one of these components, cyclin A, is inhibited by TGF-beta treatment. We have identified a 760-base pair fragment of the human cyclin A gene promoter that is sufficient to confer TGF-beta responsiveness. Using this promoter fragment, we have developed a cyclin A-based luciferase reporter assay that quantitates the growth inhibitory effect of TGF-beta in transient transfection assays. This assay was used to determine which domains of the type I (RI) and type II (RII) receptors were required for the antiproliferative effect of TGF-beta. In parallel, the functionality of chimeric receptors, between RI and RII (RI-RII or RII-RI), was tested for TGF-beta effect on gene expression using a reporter assay based on the plasminogen activator inhibitor type 1 (PAI-1) promoter. We found that TGF-beta-induced inhibition of cyclin A expression was absent in RI or RII-deficient Mv1Lu cells and that this response was restored by expression of wild-type type I or type II receptors in these cells. Furthermore, expression of a single chimeric receptor, either RI-RII or RII-RI, did not confer cyclin A regulation by TGF-beta. However, expression of two reciprocal chimeras (RI-RII and RII-RI) resulted in growth inhibition, similarly to wild-type receptors. In addition, chimeric receptors as well as mutant receptors with a deleted cytoplasmic domain and kinase-negative receptors inhibited TGF-beta responsiveness in the cyclin A reporter assay in a dominant negative fashion. Finally, in both receptor types, the juxtamembrane domain preceding the kinase domain was essential for receptor function but the cytoplasmic tail was dispensable. Our results suggest that a functional TGF-beta receptor complex is required for TGF-beta-dependent down-regulation of cyclin A gene expression and illustrate the identical receptor requirements for TGF-beta-induced growth inhibition and gene expression.
Collapse
Affiliation(s)
- X H Feng
- Department of Growth and Development, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
3628
|
Seufferlein T, Rozengurt E. Sphingosylphosphorylcholine activation of mitogen-activated protein kinase in Swiss 3T3 cells requires protein kinase C and a pertussis toxin-sensitive G protein. J Biol Chem 1995; 270:24334-42. [PMID: 7592645 DOI: 10.1074/jbc.270.41.24334] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sphingosylphosphorylcholine (SPC) is a potent mitogen for Swiss 3T3 cells, but the signaling mechanisms involved are poorly characterized. Here, we report that addition of SPC induces a rapid and transient activation of p42 mitogen-activated protein kinase (p42MAPK) in these cells. SPC-induced p42MAPK activation peaked at 5 min and was undetectable after 30 min of incubation with SPC. The effect of SPC on p42MAPK activation was comparable to that induced by bombesin and platelet-derived growth factor. As SPC strongly induced phosphorylation of the major protein kinase C (PKC) substrate 80K/MARCKS in either intact or permeabilized cells, we examined whether PKC could be involved in SPC-induced p42MAPK activation. Here, we demonstrate that p42MAPK activation by SPC was dependent on PKC activity as shown by inhibition of PKC with the bisindolymaleimide GF 109203X or down-regulation of PKC by prolonged treatment of Swiss 3T3 cells with phorbol esters. Activation of both PKC and p42MAPK by SPC was markedly inhibited by treatment with pertussis toxin, implicating a G proteins(s) of the Gi/G(o) subfamily in the action of SPC. SPC-induced rapid activation of a downstream target of p42MAPK, p90 ribosomal S6 kinase (p90rsk), also required PKC and a pertussis toxin-sensitive G protein. In addition, SPC-induced mitogenesis was dependent on a Gi protein in Swiss 3T3 cells. SPC also induced p42MAPK activation and DNA synthesis in secondary cultures of mouse embryo fibroblasts through a pertussis toxin-sensitive pathway. As G proteins link many cell surface receptors to effector proteins, we hypothesize, therefore, that SPC could bind to a receptor that mediates at least some of its biological effects in Swiss 3T3 cells and mouse embryo fibroblasts.
Collapse
Affiliation(s)
- T Seufferlein
- Imperial Cancer Research Fund, London, United Kingdom
| | | |
Collapse
|
3629
|
Abstract
Biological responses to neurotrophins appear to be mediated by multiple signalling pathways. These emanate from, and are regulated by, the contributions of both Trk and p75 receptors. Early events in Trk signalling are becoming more clearly defined and point to cooperate interaction of both Ras-dependent and Ras-independent pathways. Work over the past year has clarified the steps by which Trk receptor occupation leads to Ras activation and has highlighted the required roles of Ras and extracellular signal regulated kinases in certain neurotrophin responses, including neurite outgrowth. Pharmacologic and mutagenesis studies have additionally supported the importance of the phosphatidylinositol-3' kinase and SNT protein pathways in neurotrophin signalling. Although many findings point to clear involvement for p75 in neurotrophin signalling, the molecular mechanisms by which these occur are just beginning to be identified. Recent studies indicate that p75 dramatically influences Trk activity and ligand interactions, and may mediate signals through the ceramide second-messenger pathway.
Collapse
Affiliation(s)
- L A Greene
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | |
Collapse
|
3630
|
Kranenburg O, Scharnhorst V, Van der Eb AJ, Zantema A. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells. J Cell Biol 1995; 131:227-34. [PMID: 7559779 PMCID: PMC2120591 DOI: 10.1083/jcb.131.1.227] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.
Collapse
Affiliation(s)
- O Kranenburg
- Sylvius Laboratory, Department of Molecular Carcinogenesis, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
3631
|
Naor Z, Shacham S, Harris D, Seger R, Reiss N. Signal transduction of the gonadotropin releasing hormone (GnRH) receptor: cross-talk of calcium, protein kinase C (PKC), and arachidonic acid. Cell Mol Neurobiol 1995; 15:527-44. [PMID: 8719039 PMCID: PMC11563094 DOI: 10.1007/bf02071315] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/1995] [Accepted: 02/20/1995] [Indexed: 02/01/2023]
Abstract
1. The decapeptide neurohormone gonadotropin releasing hormone (GnRH) is the first key hormone of the reproductive system. Produced in the hypothalamus, GnRH is released in a pulsatile manner into the hypophysial portal system to reach the anterior pituitary and stimulates the release and synthesis of the gonadotropin hormones LH and FSH. GnRH, a Ca2+ mobilizing ligand, binds to its respective binding protein, which is a member of the seven transmembrane domain receptor family and activates a G-protein (Gq). 2. The alpha subunit of Gq triggers enhanced phosphoinositide turnover and the elevation of multiple second messengers required for gonadotropin release and biosynthesis. 3. The messenger molecules IP3, diacylglycerol, Ca2+, protein kinase C, arachidonic acid and leukotriene C4 cross-talk in a complex networks of signaling, culminating in gonadotropin release and gene expression.
Collapse
Affiliation(s)
- Z Naor
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
3632
|
Yamada M, Enokido Y, Ikeuchi T, Hatanaka H. Epidermal growth factor prevents oxygen-triggered apoptosis and induces sustained signalling in cultured rat cerebral cortical neurons. Eur J Neurosci 1995; 7:2130-8. [PMID: 8542070 DOI: 10.1111/j.1460-9568.1995.tb00635.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermal growth factor (EGF), a conventional mitogenic factor, acts as a neurotrophic factor on several types of neurons in the central nervous system. We found that EGF prevented the death of rat cerebral cortical neurons cultured in a 50% oxygen atmosphere. This high-oxygen-triggered cell death showed features of apoptotic cell death, which was blocked by inhibitors of RNA or protein synthesis. EGF prevented the oxygen-induced death of the cultured cortical neurons in a dose-dependent manner. Basic fibroblast growth factor (bFGF) also prevented this cell death, although there was no apparent additive effect of EGF and bFGF. Among the cultured cortical neurons, we observed neurons possessing the EGF receptor and cells expressing c-Fos protein in response to EGF. The cortical neurons were cultured in the presence of cytosine arabinoside, and the number of glial fibrillary acidic protein-positive astroglial cells was < 0.5% of that of the corresponding microtubule-associated protein 2-positive neurons. Therefore, the effect of EGF on the cultured cortical neurons is thought to be due to a direct action. We also examined EGF-induced signalling in the cultured cortical neurons. We found that EGF induced the sustained tyrosine phosphorylation of the EGF receptor and sustained the activation of mitogen-activated protein kinase in the cultured cortical neurons. We suggest that EGF may exert the survival effect through the prolonged activation of the EGF signalling.
Collapse
Affiliation(s)
- M Yamada
- Division of Protein Biosynthesis, Osaka University, Japan
| | | | | | | |
Collapse
|
3633
|
Watanabe Y, Irie K, Matsumoto K. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 1995; 15:5740-9. [PMID: 7565726 PMCID: PMC230825 DOI: 10.1128/mcb.15.10.5740] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The MPK1 (SLT2) gene of Saccharomyces cerevisiae encodes a mitogen-activated protein kinase that is regulated by a kinase cascade whose known elements are Pkc1 (a homolog of protein kinase C), Bck1 (Slk1) (a homolog of MEK kinase), and the functionally redundant Mpk1 activators Mkk1 and Mkk2 (homologs of MEK). An activated mutation of MKK1, MKK1P386, inhibits growth when overexpressed. This growth-inhibitory effect was suppressed by the mpk1 delta mutation, suggesting that hyperactivation of the Mpk1 pathway is toxic to cells. To search for genes that interact with the Mpk1 pathway, we isolated both chromosomal mutations and dosage suppressor genes that ameliorate the growth-inhibitory effect of overexpressed Mkk1P386. One of the genes identified by the analysis of chromosomal mutations is RLM1 (resistance to lethality of MKK1P386 overexpression), which encodes a protein homologous to a conserved domain of the MADS (Mcm1, Agamous, Deficiens, and serum response factor) box family of transcription factors. Although rlm1 delta cells grow normally at any temperature, they display a caffeine-sensitive phenotype similar to that observed in mutants defective in BCK1, MKK1/MKK2, or MPK1. A gene fusion that provides Rlm1 with a transcriptional activation domain of Gal4 suppresses bck1 delta and mpk1 delta. A screening for dosage suppressors yielded the MSG5 genes, which encode a dual-specificity protein phosphatase. Our results suggest that Rlm1 functions as a transcription factor downstream of Mpk1 that is subject to activation by the Mpk1 mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | |
Collapse
|
3634
|
Rapraeger AC. In the clutches of proteoglycans: how does heparan sulfate regulate FGF binding? CHEMISTRY & BIOLOGY 1995; 2:645-9. [PMID: 9383470 DOI: 10.1016/1074-5521(95)90025-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factors and their receptors bind to heparan sulfate glycosaminoglycans. This is thought to promote ligand-receptor binding and enhance signaling by promoting receptor multimerization. Synthetic mimetics designed to occupy these binding sites may provide the means to understand and to regulate FGF signaling.
Collapse
Affiliation(s)
- A C Rapraeger
- Department of Pathology, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
3635
|
Catling AD, Schaeffer HJ, Reuter CW, Reddy GR, Weber MJ. A proline-rich sequence unique to MEK1 and MEK2 is required for raf binding and regulates MEK function. Mol Cell Biol 1995; 15:5214-25. [PMID: 7565670 PMCID: PMC230769 DOI: 10.1128/mcb.15.10.5214] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.
Collapse
Affiliation(s)
- A D Catling
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | | | |
Collapse
|
3636
|
Miura M, Surmacz E, Burgaud JL, Baserga R. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. J Biol Chem 1995; 270:22639-44. [PMID: 7673254 DOI: 10.1074/jbc.270.38.22639] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The wild type insulin-like growth factor I (IGF-I) receptor has both mitogenic and transforming activities. We have examined the effect of point mutations at tyrosine residues 1250 and 1251 on these two properties of the receptor. For this purpose, we stably transfected plasmids expressing mutant and wild type receptors into R- cells, which are 3T3-like cells, derived from mouse embryos with a targeted disruption of the IGF-I receptor genes, and therefore devoid of endogenous IGF-I receptors. A tyrosine to phenylalanine mutation of either the 1250 or 1251 residue, or both, has no effect on the ability of the receptor to transmit a mitogenic signal. However, the tyrosine 1251 mutant receptor and the double mutant have lost the ability to transform R- cells (colony formation in soft agar), even when the receptors are expressed at very high levels, while the Y1250F mutant is fully transforming. These experiments show that the 1251 tyrosine residue is required for the transforming activity of the IGF-I receptor.
Collapse
Affiliation(s)
- M Miura
- Jefferson Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
3637
|
Gong Q, Pitas RE. Synergistic effects of growth factors on the regulation of smooth muscle cell scavenger receptor activity. J Biol Chem 1995; 270:21672-8. [PMID: 7665582 DOI: 10.1074/jbc.270.37.21672] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rabbit smooth muscle cells (SMC) express types I and II scavenger receptors (ScR) that are up-regulated by platelet secretion products. In the current studies we investigated the effect of growth factors secreted by platelets on ScR activity in rabbit and human SMC. Platelet-derived growth factor (PDGF BB) and transforming growth factor beta 1 (TGF-beta 1) at 10 ng/ml increased ScR activity in rabbit SMC (by approximately 4- and 2-fold, respectively) but not in human SMC. Epidermal growth factor (EGF) or insulin-like growth factor I (IGF-I) alone had little effect on SMC ScR activity. The growth factors had synergistic effects on ScR activity and on types I and II ScR mRNA expression. In rabbit SMC, PDGF BB, EGF, and TGF-beta 1 together stimulated ScR activity 12-fold. In human SMC, EGF and TGF-beta 1, together with either IGF-I or PDGF BB, stimulated receptor activity approximately 7-fold. Growth factor-mediated induction of ScR activity in rabbit and human SMC was blocked by the tyrosine kinase inhibitor tyrphostin 47, whereas the induction of ScR activity in rabbit but not human SMC was blocked by the protein kinase C inhibitor MDL.29,152. Studies using neutralizing antibodies demonstrated that TGF-beta 1 is the predominant factor in in vitro preparations of platelet secretory products which regulates ScR activity. The growth factors that act synergistically in regulating ScR activity in vitro are all present in atherosclerotic lesions, where they are produced by macrophages, endothelial cells, SMC, and platelets. The data suggest that these growth factors may regulate ScR activity in SMC in vivo and contribute to foam cell formation.
Collapse
Affiliation(s)
- Q Gong
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94141-9100, USA
| | | |
Collapse
|
3638
|
Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 1995; 269:1270-2. [PMID: 7652575 DOI: 10.1126/science.7652575] [Citation(s) in RCA: 921] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Members of the Rho family of small guanosine triphosphatases (GTPases) regulate the organization of the actin cytoskeleton; Rho controls the assembly of actin stress fibers and focal adhesion complexes, Rac regulates actin filament accumulation at the plasma membrane to produce lamellipodia and membrane ruffles, and Cdc42 stimulates the formation of filopodia. When microinjected into quiescent fibroblasts, Rho, Rac, and Cdc42 stimulated cell cycle progression through G1 and subsequent DNA synthesis. Furthermore, microinjection of dominant negative forms of Rac and Cdc42 or of the Rho inhibitor C3 transferase blocked serum-induced DNA synthesis. Unlike Ras, none of the Rho GTPases activated the mitogen-activated protein kinase (MAPK) cascade that contains the protein kinases c-Raf1, MEK (MAPK or ERK kinase), and ERK (extracellular signal-regulated kinase). Instead, Rac and Cdc42, but not Rho, stimulated a distinct MAP kinase, the c-Jun kinase JNK/SAPK (Jun NH2-terminal kinase or stress-activated protein kinase). Rho, Rac, and Cdc42 control signal transduction pathways that are essential for cell growth.
Collapse
Affiliation(s)
- M F Olson
- Department of Biochemistry, University College, London, UK
| | | | | |
Collapse
|
3639
|
Landry J, Huot J. Modulation of actin dynamics during stress and physiological stimulation by a signaling pathway involving p38 MAP kinase and heat-shock protein 27. Biochem Cell Biol 1995; 73:703-7. [PMID: 8714691 DOI: 10.1139/o95-078] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
HSP27, like other proteins of the heat-shock protein family, accumulates to high levels after exposure of cells to a short period of hyperthermia and contributes to the development of a transient state of thermoresistance. In vitro, HSP27 behaves as an actin cap-binding protein and can inhibit actin polymerization. In vivo, the protective function of HSP27 is exerted mainly at the level of the microfilaments and appears as an extension of a normal function of the protein. This function is regulated by phosphorylation in a mitogen- and stress-sensitive signaling pathway involving the newly characterized p38 MAP kinase. The phosphorylation-modulated function of HSP27 can contribute to agonist-induced reorganization of the actin cytoskeleton and, in the case of stress activation, provides an actin-based adaptive response of cells to the new environmental conditions.
Collapse
Affiliation(s)
- J Landry
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
3640
|
Guiton M, Gunn-Moore FJ, Glass DJ, Geis DR, Yancopoulos GD, Tavaré JM. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J Biol Chem 1995; 270:20384-90. [PMID: 7657612 DOI: 10.1074/jbc.270.35.20384] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurotrophin-3 binds to the receptor tyrosine kinase, TrkC. Several naturally occurring splice variants of TrkC exist including those with 14- and 39-amino acid inserts within the tyrosine kinase homology region. When expressed in fibroblasts, full-length TrkC, but not the kinase insert variants, mediated neurotrophin-3-stimulated cell proliferation. We investigated the molecular basis of this signaling defect. The kinase inserts blocked the ability of TrkC to mediate neurotrophin-3 stimulated c-myc and c-fos transcription and activation of the AP-1 transcriptional complex. In cells expressing full-length TrkC, neurotrophin-3 promoted a sustained activation of mitogen-activated protein kinase; TrkC containing kinase inserts only mediated transient activation of mitogen-activated protein kinase. The kinase inserts specifically blocked neurotrophin-3-stimulated autophosphorylation of the phospholipase C gamma binding site on TrkC (tyrosine 789) resulting in a severe reduction in phospholipase C gamma association with TrkC and its tyrosine phosphorylation. Neurotrophin-3-stimulated phosphorylation of the Shc binding site (tyrosine 485) on TrkC, and tyrosine phosphorylation of Shc itself, was unaffected by the kinase inserts; however, the kinase inserts blocked high affinity Shc association with TrkC. It is proposed that the lack of high affinity binding of Shc and/or phospholipase C gamma to the TrkC kinase insert variants may be responsible for the inability of these variants to bring about a full biological response in fibroblasts.
Collapse
Affiliation(s)
- M Guiton
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
3641
|
Yao H, Labudda K, Rim C, Capodieci P, Loda M, Stork PJ. Cyclic adenosine monophosphate can convert epidermal growth factor into a differentiating factor in neuronal cells. J Biol Chem 1995; 270:20748-53. [PMID: 7657657 DOI: 10.1074/jbc.270.35.20748] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The rat pheochromocytoma (PC12) cell line is a model for studying the mechanism of growth factor action. Both epidermal growth factor and nerve growth factor stimulate mitogen-activated protein (MAP) kinase in these cells. Recent data suggest that the transient activation of MAP kinase may trigger proliferation, whereas sustained activation triggers differentiation in these cells. We have tested this model by asking whether agents that stimulate MAP kinase without inducing differentiation can act additively to trigger differentiation. Neither forskolin nor epidermal growth factor can stimulate differentiation, yet both activate MAP kinase in these cells. Together, their actions on MAP kinase are synergistic. Cells treated with both agents differentiate, measured morphologically and by the induction of neural-specific genes. We propose that cellular responses to growth factor action are dependent not only on the activation of growth factor receptors by specific growth factors but on synchronous signals that may elevate MAP kinase levels within the same cells.
Collapse
Affiliation(s)
- H Yao
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | | | | | | | |
Collapse
|
3642
|
Abstract
Protein tyrosine phosphorylation is prevalent throughout the nervous system. It has been implicated to play an important role in the development and maintenance of neuronal functions. In the past few years significant advances have been made in our understanding of the molecular mechanisms of synapse formation and synaptic plasticity. Protein tyrosine phosphorylation appears to be important in the neuron-induced synthesis of the nicotinic acetylcholine receptor and aggregation of synaptic proteins at the neuromuscular junction during development. In addition, protein tyrosine phosphorylation may regulate the ion channel activity of the nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- L Mei
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | |
Collapse
|
3643
|
Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 1995; 376:737-45. [PMID: 7544443 DOI: 10.1038/376737a0] [Citation(s) in RCA: 1109] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The protein tyrosine kinase PYK2, which is highly expressed in the central nervous system, is rapidly phosphorylated on tyrosine residues in response to various stimuli that elevate the intracellular calcium concentration, as well as by protein kinase C activation. Activation of PYK2 leads to modulation of ion channel function and activation of the MAP kinase signalling pathway. PYK2 activation may provide a mechanism for a variety of short- and long-term calcium-dependent signalling events in the nervous system.
Collapse
Affiliation(s)
- S Lev
- Department of Pharmacology, New York University Medical Center, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3644
|
Lee NH, Weinstock KG, Kirkness EF, Earle-Hughes JA, Fuldner RA, Marmaros S, Glodek A, Gocayne JD, Adams MD, Kerlavage AR. Comparative expressed-sequence-tag analysis of differential gene expression profiles in PC-12 cells before and after nerve growth factor treatment. Proc Natl Acad Sci U S A 1995; 92:8303-7. [PMID: 7667285 PMCID: PMC41145 DOI: 10.1073/pnas.92.18.8303] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nerve growth factor-induced differentiation of adrenal chromaffin PC-12 cells to a neuronal phenotype involves alterations in gene expression and represents a model system to study neuronal differentiation. We have used the expressed-sequence-tag approach to identify approximately 600 differentially expressed mRNAs in untreated and nerve growth factor-treated PC-12 cells that encode proteins with diverse structural and biochemical functions. Many of these mRNAs encode proteins belonging to cellular pathways not previously known to be regulated by nerve growth factor. Comparative expressed-sequence-tag analysis provides a basis for surveying global changes in gene-expression patterns in response to biological signals at an unprecedented scale, is a powerful tool for identifying potential interactions between different cellular pathways, and allows the gene-expression profiles of individual genes belonging to a particular pathway to be followed.
Collapse
Affiliation(s)
- N H Lee
- Institute for Genomic Research, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3645
|
Kotanides H, Moczygemba M, White MF, Reich NC. Characterization of the interleukin-4 nuclear activated factor/STAT and its activation independent of the insulin receptor substrate proteins. J Biol Chem 1995; 270:19481-6. [PMID: 7642632 DOI: 10.1074/jbc.270.33.19481] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activation of a latent DNA binding factor by interleukin-4 (IL-4), the IL-4 nuclear activated factor (IL-4 NAF), occurs within minutes of IL-4 binding to its receptor. Molecular characterization of IL-4NAF by ultraviolet light cross-linking experiments revealed a single protein of 120-130 kDa in contact with the DNA target site. Glycerol gradient sedimentation analysis indicated a molecular mass of IL-4 NAF consistent with a monomer that is capable of binding DNA. The IL-4 NAF target site is a palindromic sequence that is also recognized by the interferon-induced transcription factor, p91/STAT1 alpha. However, IL-4 NAF and p91/STAT1 alpha display distinguishable DNA binding specificities that may generate one level of specificity in the expression of target genes. Previous studies suggested the involvement of the insulin receptor substrate-1 (IRS-1) in the IL-4 signal transduction pathway. Although IRS-1 is involved in the stimulation of mitogenesis, our results demonstrate that activation of IL-4 NAF is independent of IRS-signaling proteins. The results of this study indicate that IL-4 stimulates bifurcating signal pathways that can direct mitogenesis via the IRS-signaling proteins and specific gene expression via the IL-4 NAF.
Collapse
Affiliation(s)
- H Kotanides
- Graduate Program in Molecular and Cellular Biology, State University of New York, Stony Brook 11794-8691, USA
| | | | | | | |
Collapse
|
3646
|
McCarthy SA, Samuels ML, Pritchard CA, Abraham JA, McMahon M. Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes Dev 1995; 9:1953-64. [PMID: 7649477 DOI: 10.1101/gad.9.16.1953] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have used differential display PCR to search for mRNAs induced by delta Raf-1:ER, an estradiol-dependent form of Raf-1 kinase. Through this approach the gene encoding heparin-binding epidermal growth factor (HB-EGF) was identified as an immediate-early transcriptional target of oncogenic Raf kinases. Activation of delta Raf-1:ER and a conditional oncogenic form of B-Raf, delta B-RAF:ER, resulted in rapid and sustained induction of HB-EGF mRNA expression and secretion of mature HB-EGF from cells. Neutralizing anti-HB-EGF antisera prevented the delayed activation of the c-Jun amino-terminal kinases that is observed in cells transformed by delta Raf-1:ER. These results demonstrate that distinct signaling pathways can cross talk via the secretion of polypeptide growth factors. Furthermore, cells transformed by oncogenic Ras, which also induced HB-EGF expression, demonstrated a marked increase in sensitivity to the cytotoxic action of diphtheria toxin, for which the membrane anchored HB-EGF precursor acts as a cell-surface receptor.
Collapse
Affiliation(s)
- S A McCarthy
- DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
3647
|
Abstract
A unique and highly conserved structural feature of approximately 90-kDa ribosomal S6 kinase (p90rsk or RSK) is the presence of two non-identical kinase domains. To explore the mechanism of RSK activation, a cloned human RSK cDNA (RSK3) was used to generate and characterize several site-directed RSK mutants; K91A (N-Lys, NH2-terminal ATP-binding mutant), K444A (C-Lys, COOH-terminal ATP-binding mutant), N/C-Lys (double ATP-binding mutant) T570A (C-Thr, mutant of the putative MAPK phosphorylation site in subdomain VIII of the C-domain), S218A (N-Ser, mutant of the corresponding NH2-terminal residue). Epitope-tagged RSKs were expressed in transfected COS cells followed by immunoprecipitation with or without prior in vivo epidermal growth factor stimulation. Kinase activity (S6 peptide) of N/C-Lys and N-Lys was ablated (and partially impaired with N-Ser). In contrast, both C-Lys and C-Thr retained high levels of kinase activity and were capable of responding to stimulation. C-Lys also retained partial kinase activity toward other substrates (c-Fos, S40 ribosomes, protein phosphatase 1 G-subunit, histones, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide)) whereas N-Lys did not. The isolated NH2-and COOH-terminal domains were also expressed; the C-domain was inactive, whereas the N-domain retained partial activity. Relative to wild-type, both N-Lys and C-Lys (as well as N-Ser and C-Thr) underwent partial in vitro autophosphorylation that was further stimulated by EGF protein tyrosine phosphatase. We conclude that 1) the NH2-terminal RSK kinase domain mediates substrate phosphorylation; 2) both domains contribute to autophosphorylation; 3) the putative MAPK phosphorylation site is not required for growth factor-stimulated autophosphorylation or kinase activation.
Collapse
Affiliation(s)
- C Bjørbaek
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
3648
|
Zhao Y, Bjørbaek C, Weremowicz S, Morton CC, Moller DE. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol 1995; 15:4353-63. [PMID: 7623830 PMCID: PMC230675 DOI: 10.1128/mcb.15.8.4353] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A novel pp90rsk Ser/Thr kinase (referred to as RSK3) was cloned from a human cDNA library. The RSK3 cDNA encodes a predicted 733-amino-acid protein with a unique N-terminal region containing a putative nuclear localization signal. RSK3 mRNA was widely expressed (but was predominant in lung and skeletal muscle). By using fluorescence in situ hybridization, the human RSK3 gene was localized to band q27 of chromosome 6. Hemagglutinin epitope-tagged RSK3 was expressed in transiently transfected COS cells. Growth factors, serum, and phorbol ester stimulated autophosphorylation of recombinant RSK3 and its kinase activity toward several protein substrates known to be phosphorylated by RSKs. However, the relative substrate specificity of RSK3 differed from that reported for other isoforms. RSK3 also phosphorylated potential nuclear target proteins including c-Fos and histones. Furthermore, although RSK3 was inactivated by protein phosphatase 2A in vitro, the enzyme was not activated by ERK2/mitogen-activated protein (MAP) kinase. In contrast, the kinase activity of another epitope-tagged RSK isoform (RSK-1) was significantly increased by in vitro incubation with ERK2/MAP kinase. Finally, we used affinity-purified RSK3 antibodies to demonstrate by immunofluorescence that endogenous RSK3 undergoes serum-stimulated nuclear translocation in cultured HeLa cells. These results provide evidence that RSK3 is a third distinct isoform of pp90rsk which translocates to the cell nucleus, phosphorylates potential nuclear targets, and may have a unique upstream activator. RSK3 may therefore subserve a discrete physiologic role(s) that differs from those of the other two known mammalian RSK isoforms.
Collapse
Affiliation(s)
- Y Zhao
- Charles A. Dana Research Institute, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
3649
|
Peng X, Greene LA, Kaplan DR, Stephens RM. Deletion of a conserved juxtamembrane sequence in Trk abolishes NGF-promoted neuritogenesis. Neuron 1995; 15:395-406. [PMID: 7646892 DOI: 10.1016/0896-6273(95)90043-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Deletion of a conserved juxtamembrane sequence (KFG) in the Trk NGF receptor resulted in impaired neurite outgrowth, somatic hypertrophy, and induction of c-fos, c-jun, and TIS1 immediate-early genes. In contrast, these receptors retained the ability to mediate NGF-promoted survival and TIS8 and TIS11 immediate-early gene induction. The mutated receptor also mediated unimpaired autophosphorylation; SHC, PLC-gamma 1, and ERK tyrosine phosphorylation; and PI-3 kinase and ERK activation. However, SNT protein tyrosine phosphorylation, which wild-type receptors mediate via a ras-independent pathway, was undetectable. These findings indicate that the KFG sequence is indispensable for activating a ras-independent NGF signaling pathway involved in promoting neuronal differentiation and highlight potential roles of non-tyrosine-containing receptor domains in growth factor signal transduction.
Collapse
MESH Headings
- 1-Phosphatidylinositol 4-Kinase
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Sequence
- Animals
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cell Size
- Culture Media, Serum-Free
- Isoenzymes/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nerve Growth Factors/pharmacology
- Nerve Tissue Proteins/metabolism
- Neurites/drug effects
- Neurites/physiology
- Neurites/ultrastructure
- PC12 Cells
- Phospholipase C gamma
- Phosphorylation
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Protein Processing, Post-Translational
- Proteins/metabolism
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, trkA
- Receptors, Nerve Growth Factor/chemistry
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/physiology
- Sequence Deletion
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- X Peng
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
3650
|
Abstract
Fibroblast-growth-factor receptors (FGFRs), members of the tyrosine-kinase receptor family, play a crucial role in signal transduction and development. Recently, unique mutations in three human FGFR-encoding genes (FGFR1-3) have been identified as the cause of a variety of skeletal disorders. Comparison of these specific mutations with the resulting phenotypes is now providing new insight into the role of these receptors in normal and abnormal bone development.
Collapse
Affiliation(s)
- M Muenke
- Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia 19104-4399, USA
| | | |
Collapse
|