351
|
Vijayan V, Mohapatra A, Uthaman S, Park IK. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials. Pharmaceutics 2019; 11:E534. [PMID: 31615112 PMCID: PMC6835828 DOI: 10.3390/pharmaceutics11100534] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
The development of vaccines plays a vital role in the effective control of several fatal diseases. However, effective prophylactic and therapeutic vaccines have yet to be developed for completely curing deadly diseases, such as cancer, malaria, HIV, and serious microbial infections. Thus, suitable vaccine candidates need to be designed to elicit appropriate immune responses. Nanotechnology has been found to play a unique role in the design of vaccines, providing them with enhanced specificity and potency. Nano-scaled materials, such as virus-like particles, liposomes, polymeric nanoparticles (NPs), and protein NPs, have received considerable attention over the past decade as potential carriers for the delivery of vaccine antigens and adjuvants, due to their beneficial advantages, like improved antigen stability, targeted delivery, and long-time release, for which antigens/adjuvants are either encapsulated within, or decorated on, the NP surface. Flexibility in the design of nanomedicine allows for the programming of immune responses, thereby addressing the many challenges encountered in vaccine development. Biomimetic NPs have emerged as innovative natural mimicking biosystems that can be used for a wide range of biomedical applications. In this review, we discuss the recent advances in biomimetic nanovaccines, and their use in anti-bacterial therapy, anti-HIV therapy, anti-malarial therapy, anti-melittin therapy, and anti-tumor immunity.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 58128, Korea.
| |
Collapse
|
352
|
Peng S, Liu J, Qin Y, Wang H, Cao B, Lu L, Yu X. Metal-Organic Framework Encapsulating Hemoglobin as a High-Stable and Long-Circulating Oxygen Carriers to Treat Hemorrhagic Shock. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35604-35612. [PMID: 31495166 DOI: 10.1021/acsami.9b15037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an oxygen-transporting protein, free hemoglobin (Hb) often suffers from the disadvantage of undesirable stability and short blood circulation, which severely impairs the potential clinical applications as the blood substitute. In this work, Hb was facilely encapsulated into a kind of metal-organic frameworks (MOFs) (ZIF-8) inspired by the natural biomineralization process. The obtained ZIF-8 encapsulating Hb (ZIF-8@Hb) showed the small hydrodynamic size of 180.8 nm and neutral zeta potential of -2.1 mV by adjusting the ratio of Hb in ZIF-8 frameworks. Intriguingly, Hb encapsulated by ZIF-8 exhibited significantly enhanced stability in alkaline, oxidation, high temperature, or enzymatic environment compared with free Hb because of the excellent protective MOF coatings. More importantly, the negative charge of Hb neutralized the original positive charge of ZIF-8, which led to the better biocompatibility, lower protein adsorption, and macrophage uptake of ZIF-8@Hb than bare ZIF-8 nanoparticles. Furthermore, ZIF-8@Hb displayed extended blood circulation with the elimination half-life of 13.9 h as well as reduced nonspecific distribution in normal organs compared with free Hb or ZIF-8 nanoparticles. With the above advantages, ZIF-8@Hb showed significantly extended survival time of mice in a disease model of hemorrhagic shock compared with free Hb or bare ZIF-8 nanoparticles. Overall, this work offers a high-stable and long-circulating oxygen carrier platform, which may find wide applications as a blood substitute to treat various oxygen-relevant diseases.
Collapse
|
353
|
Zhang C, Guan R, Liao X, Ouyang C, Rees TW, Liu J, Chen Y, Ji L, Chao H. A mitochondria-targeting dinuclear Ir-Ru complex as a synergistic photoactivated chemotherapy and photodynamic therapy agent against cisplatin-resistant tumour cells. Chem Commun (Camb) 2019; 55:12547-12550. [PMID: 31576841 DOI: 10.1039/c9cc05998a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A mitochondria-targeting hetero-binuclear Ir(iii)-Ru(ii) complex was developed as a photoactivated chemotherapy (PACT) and photodynamic therapy (PDT) bifunctional agent to achieve a synergistic effective therapeutic outcome for the therapy of cisplatin-resistant tumour cells.
Collapse
Affiliation(s)
- Cheng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China. and College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
354
|
Perfluorocarbon Gas Transport: an Overview of Medical History With Yet Unrealized Potentials. Shock 2019; 52:7-12. [DOI: 10.1097/shk.0000000000001150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
355
|
Han X, Shen S, Fan Q, Chen G, Archibong E, Dotti G, Liu Z, Gu Z, Wang C. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. SCIENCE ADVANCES 2019; 5:eaaw6870. [PMID: 31681841 PMCID: PMC6810293 DOI: 10.1126/sciadv.aaw6870] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Erythrocytes or red blood cells (RBCs) represent a promising cell-mediated drug delivery platform due to their inherent biocompatibility. Here, we developed an antigen delivery system based on the nanoerythrosomes derived from RBCs, inspired by the splenic antigen-presenting cell targeting capacity of senescent RBCs. Tumor antigens were loaded onto the nanoerythrosomes by fusing tumor cell membrane-associated antigens with nanoerythrosomes. This tumor antigen-loaded nanoerythrosomes (nano-Ag@erythrosome) elicited antigen responses in vivo and, in combination with the anti-programmed death ligand 1 (PD-L1) blockade, inhibited the tumor growth in B16F10 and 4T1 tumor models. We also generated a tumor model showing that "personalized nano-Ag@erythrosomes" could be achieved by fusing RBCs and surgically removed tumors, which effectively reduced tumor recurrence and metastasis after surgery.
Collapse
Affiliation(s)
- Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shufang Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Edikan Archibong
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gianpietro Dotti
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
356
|
Zou MZ, Liu WL, Gao F, Bai XF, Chen HS, Zeng X, Zhang XZ. Artificial Natural Killer Cells for Specific Tumor Inhibition and Renegade Macrophage Re-Education. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904495. [PMID: 31497903 DOI: 10.1002/adma.201904495] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/17/2019] [Indexed: 05/20/2023]
Abstract
Natural killer (NK) cells can not only recognize and eliminate abnormal cells but also recruit and re-educate immune cells to protect the host. However, the functions of NK cells are often limited in the immunosuppressive tumor microenvironment (TME). Here, artificial NK cells (designated as aNK) with minor limitations of TME for specific tumor killing and renegade macrophage re-education are created. The red blood cell membrane (RBCM) cloaks perfluorohexane (PFC) and glucose oxidase (GOX) to construct the aNK. The aNK can directly kill tumor cells by exhausting glucose and generating hydrogen peroxide (H2 O2 ). The generated H2 O2 is also similar to cytokines and chemokines for recruiting immune cells and re-educating survived macrophages to attack tumor cells. In addition, the oxygen-carried PFC can strengthen the catalytic reaction of GOX and normalize the hypoxic TME. In vitro and in vivo experiments display that aNK with slight TME limitations exhibit efficient tumor inhibition and immune activation. The aNK will provide a new sight to treat tumor as the supplement of aggressive NK cells.
Collapse
Affiliation(s)
- Mei-Zhen Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wen-Long Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xue-Feng Bai
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Han-Shi Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
357
|
Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019; 9:6885-6900. [PMID: 31660075 PMCID: PMC6815958 DOI: 10.7150/thno.36510] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains a daunting and cureless disease, which is responsible for one-sixth of human deaths worldwide. These mortality rates have been expected to rise in the future due to the side effects of conventional treatments (chemotherapy, radiotherapy, and surgery), which can be addressed by applying nanomedicine. In order to escape from biological barriers, such nanomedicine should be mimicked and designed to be stealthy while navigating in the bloodstream. To achieve this, scientists take advantage of erythrocytes (red blood cells; RBCs) as drug carriers and develop RBC membrane (RBCm) coating nanotechnology. Thanks to the significant advances in nanoengineering, various facile surface functionalization methods can be applied to arm RBCm with not only targeting moieties, but also imaging agents, therapeutic agents, and nanoparticles, which are useful for theranostic nanomedicine. This review focuses on refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery.
Collapse
Affiliation(s)
- Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yuan Wang
- Chongqing Business Vocational College, Chongqing, 401331, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Wei Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
358
|
Yang Z, Wang J, Ai S, Sun J, Mai X, Guan W. Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging. Theranostics 2019; 9:6809-6823. [PMID: 31660070 PMCID: PMC6815961 DOI: 10.7150/thno.36988] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor hypoxia is an important reason for the limited therapeutic efficacy of photodynamic therapy (PDT) because of the oxygen requirement of the therapeutic process. PDT consumes tissue oxygen and destroys tumor vasculature, further hampering its own efficacy in promoting tumor deterioration. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia is urgent. Methods: Herein, we report a photodynamic nanoparticle with sustainable hypoxia remission skills by both intratumoral H2O2 catalysis and targeted mitochondrial destruction. The Mn3O4@MSNs@IR780 nanoparticles are formed by absorbing a photosensitizer (IR780) into 90 nm mesoporous silica nanoparticles (MSNs) and capping the surface pores with 5 nm Mn3O4 nanoparticles. Results: These Mn3O4 nanoparticles can accumulate in tumors and respond to the H2O2-enriched tumor microenvironment by decomposing and catalyzing H2O2 into O2. Afterwards, IR780 is released and activated, spontaneously targeting the mitochondria due to its natural mitochondrial affinity. Under laser irradiation, this self-generated oxygen-enhanced PDT can destroy mitochondria and inhibit cell respiration, resulting in sustainable hypoxia remission in tumor tissues and consequently enhancing the therapeutic outcome. In vitro experiments suggest that Mn3O4@MSNs@IR780 exhibited highly mitochondrion-targeted properties and could sustainably inhibit tumor hypoxia. Additionally, the highest photoacoustic signal of HbO2 with the lowest Hb was observed in tumors from mice after PDT, indicating that these nanoparticles can also prevent tumor hypoxia in vivo. Conclusion: Taken together, our study indicated a new approach for overcoming the sustainable hypoxia limitation in traditional PDT by targeted oxygen supplementation and mitochondria destruction.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Jiafeng Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Shichao Ai
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Jianfei Sun
- School of Biological Science and Medical Engineering, Southeast University, No. 87 Dingjiaqiao, Nanjing, 210009, China
| | - Xiaoli Mai
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
359
|
Ou W, Byeon JH, Soe ZC, Kim BK, Thapa RK, Gupta B, Poudel BK, Ku SK, Yong CS, Kim JO. Tailored Black Phosphorus for Erythrocyte Membrane Nanocloaking with Interleukin-1 α siRNA and Paclitaxel for Targeted, Durable, and Mild Combination Cancer Therapy. Am J Cancer Res 2019; 9:6780-6796. [PMID: 31660068 PMCID: PMC6815959 DOI: 10.7150/thno.37123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several therapeutic nanosystems have been engineered to remedy the shortcomings of cancer monotherapies, including immunotherapy (stimulating the host immune system to eradicate cancer), to improve therapeutic efficacy with minimizing off-target effects and tumor-induced immunosuppression. Light-activated components in nanosystems confer additional phototherapeutic effects as combinatorial modalities; however, systemic and thermal toxicities with unfavorable accumulation and excretion of nanoystem components now hamper their practical applications. Thus, there remains a need for optimal multifunctional nanosystems to enhance targeted, durable, and mild combination therapies for efficient cancer treatment without notable side effects. Methods: A nanosystem constructed with a base core (poly-L-histidine [H]-grafted black phosphorus [BP]) and a shell (erythrocyte membrane [EM]) is developed to offer a mild photoresponsive (near-infrared) activity with erythrocyte mimicry. In-flight electrostatic tailoring to extract uniform BP nanoparticles maintains a hydrodynamic size of <200 nm (enabling enhanced permeability and retention) after EM cloaking and enhances their biocompatibility. Results: Ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells), interleukin-1α silencing small interfering RNA (ILsi, restricting regulatory T cell trafficking), and paclitaxel (X, inducing durable chemotherapeutics) are incorporated within the base core@shell constructs to create BP-H-ILsi-X@EM-YSA architectures, which provide a more intelligent nanosystem for combination cancer therapies. Conclusion: The in-flight tailoring of BP particles provides a promising base core for fabricating <200 nm EM-mimicking multifunctional nanosystems, which could be beneficial for constructing smarter nanoarchitectures to use in combination cancer therapies.
Collapse
|
360
|
Yang Y, Chen M, Wang B, Wang P, Liu Y, Zhao Y, Li K, Song G, Zhang X, Tan W. NIR‐II Driven Plasmon‐Enhanced Catalysis for a Timely Supply of Oxygen to Overcome Hypoxia‐Induced Radiotherapy Tolerance. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Bingzhe Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yongchun Liu
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Yan Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Kun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
361
|
Yang Y, Chen M, Wang B, Wang P, Liu Y, Zhao Y, Li K, Song G, Zhang X, Tan W. NIR‐II Driven Plasmon‐Enhanced Catalysis for a Timely Supply of Oxygen to Overcome Hypoxia‐Induced Radiotherapy Tolerance. Angew Chem Int Ed Engl 2019; 58:15069-15075. [DOI: 10.1002/anie.201906758] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Yue Yang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Bingzhe Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Yongchun Liu
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Yan Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Kun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
362
|
Xie X, Wang H, Williams GR, Yang Y, Zheng Y, Wu J, Zhu LM. Erythrocyte Membrane Cloaked Curcumin-Loaded Nanoparticles for Enhanced Chemotherapy. Pharmaceutics 2019; 11:E429. [PMID: 31450749 PMCID: PMC6781301 DOI: 10.3390/pharmaceutics11090429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022] Open
Abstract
In this study, curcumin-loaded porous poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were prepared and surface modified with red blood cell membranes (RBCM) to yield biomimetic RBCM-p-PLGA@Cur NPs. The NPs displayed a visible cell-membrane structure at their exterior and had a uniform size of 162 ± 3 nm. In vitro studies showed that drug release from non-porous PLGA NPs was slow and that much of the drug remained trapped in the NPs. In contrast, release was accelerated from the porous PLGA NPs, and after the RBCM coating, a sustained release over 48 h was obtained. Confocal microscopy and flow cytometry results revealed that the RBCM-p-PLGA NPs led to a greater cellular uptake by H22 hepatocarcinoma cells than the uncoated analogue NPs, but could avoid phagocytosis by macrophages. The drug-free formulations were highly biocompatible, while the drug-loaded systems were effective in killing cancer cells. RBCM-p-PLGA@Cur NPs possess potent anti-tumor activity in a murine H22 xenograft cancer model (in terms of reduced tumor volume and mass, as well as inducing apoptosis of tumor cells), and have no observable systemic toxicity. Overall, our study demonstrates that the use of the RBCM to cloak nanoscale drug delivery systems holds great promise for targeted cancer treatment, and can ameliorate the severe side effects currently associated with chemotherapy.
Collapse
Affiliation(s)
- Xiaotian Xie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Haijun Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yanbo Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yongli Zheng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Junzi Wu
- College of Basic Medicine, Yunnan University of Traditional of Chinese Medicine, Kunming 650500, China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
363
|
Li W, Yong J, Xu Y, Wang Y, Zhang Y, Ren H, Li X. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement. Colloids Surf B Biointerfaces 2019; 183:110453. [PMID: 31465940 DOI: 10.1016/j.colsurfb.2019.110453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a prospective approach to cure tumor diseases. However, tumor micro-environment is notably characterized with severe hypoxia and high expression of glutathione (GSH), which seriously limit its clinical application. Here, based on the characteristics of perfluorocarbon (PFC) to dissolve substantial oxygen (O2) and the sensitivity of reductive GSH to S-NO group, we designed GSH depletion and dual-model O2 supply strategies to promote PDT enhancement. The PFC nanoliposomes (FI@Lip) and biocompatible NO donor S-nitrosated human serum albumin (HSA-SNO) were combined to synergistically combat the obstacle of tumor micro-environment, reducing GSH concentration and increasing singlet oxygen (1O2) generation. In vitro, after irradiation with NIR laser, the PFC in FI@Lip dissolved more O2 to increase 1O2 generation. In addition, with co-delivery of HSA-SNO, it can effectively promote GSH depletion to recover 1O2 level and release NO concurrently to inhibit mitochondrial respiration. This combination strategy of FI@Lip and HSA-SNO obviously relieved intracellular hypoxia and decreased GSH to increase more toxic 1O2 generation for PDT enhancement. The present work will play as an enlightening role in PDT design and clinical application in the near future.
Collapse
Affiliation(s)
- Weilan Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiahui Yong
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yonglu Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
364
|
Cui X, Zhang J, Wan Y, Fang F, Chen R, Shen D, Huang Z, Tian S, Xiao Y, Li X, Chelora J, Liu Y, Zhang W, Lee CS. Dual Fenton Catalytic Nanoreactor for Integrative Type-I and Type-II Photodynamic Therapy Against Hypoxic Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:3854-3860. [DOI: 10.1021/acsabm.9b00456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Jinfeng Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Rui Chen
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Dong Shen
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Yafang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Jipsa Chelora
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
365
|
Internalization Characterization of Si Nanorod with Camouflaged Cell Membrane Proteins Reveals ATXN2 as a Negative Regulator. Cells 2019; 8:cells8080931. [PMID: 31430912 PMCID: PMC6721741 DOI: 10.3390/cells8080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The fabrication of shape-controlled nanocarriers is critical for efficient delivery of biomolecules across the cell membrane. Surface coating of the nanocarrier can improve internalization efficiency. Here, we developed a facile method of silicon nanorod fabrication leading to a controlled size and shape. We then systematically evaluated five surface modifications with membrane proteins from different cancer cell lines including MCF7, MD231, Hela, Panc-PDX, and Panc-1. We demonstrated that silicon nanorods coated with either a homolytic or heterolytic membrane protein coating have significantly improved internalization efficiency as compared with uncoated Si nanorods. To elucidate the molecular mechanism of the improved efficiency associated with a modified coating, we analyzed the coating membrane proteins derived from five cell lines with proteomics and identified 601 proteins shared by different cell sources. These proteins may function as cell-substrate adhesion molecules that contribute to the enhanced internalization. We also tested the internalization efficiency of nanorods with different coatings in each of the five cell lines to determine the influencing factors from target cells. We found that the internalization efficiency varied among different target cells, and the ranking of the average efficiency was as follows: Hela > Panc-PDX > MD231 > MCF7 > Panc-1. The bioinformatics analysis suggested that the low internalization efficiency in Panc-1 cells might be associated with the upregulation of ATXN2, which is a negative regulator of endocytosis. We further demonstrated that ATXN2 knockdown with specific siRNA significantly improved nanorod internalization efficiency in Panc-1 cells suggesting that ATXN2 can be a reference for efficiency prediction of nanoparticle delivery to tumor cells. Thus, we studied the effect of different cancer cell membrane proteins on nanorod uptake efficiencies. These results can improve nanorod internalization to cancer cells, including a fundamental understanding of the internalization efficiency of cancer cells.
Collapse
|
366
|
Zhang C, Yan L, Gu Z, Zhao Y. Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy. Chem Sci 2019; 10:6932-6943. [PMID: 31588260 PMCID: PMC6676466 DOI: 10.1039/c9sc02107h] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/10/2019] [Indexed: 01/02/2023] Open
Abstract
Radiotherapy (RT) is one of the most effective and frequent clinical cancer treatments. Nevertheless, RT can cause damage to normal tissues around tumors under high-dose ionizing radiation. Inspired by versatile metal-based nanomaterials, great efforts have been devoted to developing nanomaterials with high-Z metal elements as radiosensitizers by depositing more energy into tumors for RT enhancement. However, these metal-based nanomaterial-mediated RTs are highly O2-dependent. Unfortunately, O2 concentrations within the majority of solid tumors exhibit low levels, which seriously hampers the antitumor efficacy of these nanomaterials during RT. Therefore, the development of novel metal-based nanomaterials as radiosensitizers capable of avoiding the radioresistance induced by tumor hypoxia is highly desirable and important. Currently, the most effective approaches to reverse the radioresistance of hypoxic tumors are to introduce nanomaterials with O2-elevating ability by delivering exogenous O2, generating O2 in situ, increasing intratumoral blood flow, or reducing HIF-1 expression to harness the O2 level in solid tumors. Besides these, recently, some innovative and simple strategies by employing nanoradiosensitizers with diminished oxygen dependence have also been applied to combat unmet hypoxic challenges, in which nanoradiosensitizers can target tumor hypoxia for selective RT, enhance oxygen-independent ROS generation, or combine with non-oxygen dependent cancer therapies for synergistic treatments. These approaches and strategies provide new avenues for enhanced hypoxic-tumor RT. Nevertheless, an overall review aiming specifically at these strategies is still rare. Herein, we present an overview about recent advances in metal-based nanomaterials for hypoxic-tumor RT, and give a detailed discussion about the design and working mechanisms of these strategies in their application of RT. Finally, current challenges and future perspectives are also pointed out in this field.
Collapse
Affiliation(s)
- Chenyang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China .
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China .
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China .
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuliang Zhao
- CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100190 , China .
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
367
|
Liu G, Zhao X, Zhang Y, Xu J, Xu J, Li Y, Min H, Shi J, Zhao Y, Wei J, Wang J, Nie G. Engineering Biomimetic Platesomes for pH-Responsive Drug Delivery and Enhanced Antitumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900795. [PMID: 31222856 DOI: 10.1002/adma.201900795] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/11/2019] [Indexed: 05/21/2023]
Abstract
Biomimetic camouflage, i.e., using natural cell membranes for drug delivery, has demonstrated advantages over synthetic materials in both pharmacokinetics and biocompatibility, and so represents a promising solution for the development of safe nanomedicine. However, only limited efforts have been dedicated to engineering such camouflage to endow it with optimized or additional properties, in particular properties critical to a "smart" drug delivery system, such as stimuli-responsive drug release. A pH-responsive biomimetic "platesome" for specific drug delivery to tumors and tumor-triggered drug release is described. This platesome nanovehicle is constructed by merging platelet membranes with functionalized synthetic liposomes and exhibits enhanced tumor affinity, due to its platelet membrane-based camouflage, and selectively releases its cargo in response to the acidic microenvironment of lysosomal compartments. In mouse cancer models, it shows significantly better antitumor efficacy than nanoformulations based on a platesome without pH responsiveness or those based on traditional pH-sensitive liposomes. A convenient way to incorporate stimuli-responsive features into biomimetic nanoparticles is described, demonstrating the potential of engineered cell membranes as biomimetic camouflages for a new generation of biocompatible and efficient nanocarriers.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huan Min
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jian Shi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
368
|
Forster JC, Marcu LG, Bezak E. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys Med 2019; 64:145-156. [PMID: 31515013 DOI: 10.1016/j.ejmp.2019.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
AIM The negative impact of tumour hypoxia on cancer treatment outcome has been long-known, yet there has been little success combating it. This paper investigates the potential role of in silico modelling to help test emerging hypoxia-targeting treatments in cancer therapy. METHODS A Medline search was undertaken on the current landscape of in silico models that simulate cancer therapy and evaluate their ability to test hypoxia-targeting treatments. Techniques and treatments to combat tumour hypoxia and their current challenges are also presented. RESULTS Hypoxia-targeting treatments include tumour reoxygenation, hypoxic cell radiosensitization with nitroimidazoles, hypoxia-activated prodrugs and molecular targeting. Their main challenges are toxicity and not achieving adequate delivery to hypoxic regions of the tumour. There is promising research toward combining two or more of these techniques. Different types of in silico therapy models have been developed ranging from temporal to spatial and from stochastic to deterministic models. Numerous models have compared the effectiveness of different radiotherapy fractionation schedules for controlling hypoxic tumours. Similarly, models could help identify and optimize new treatments for overcoming hypoxia that utilize novel hypoxia-targeting technology. CONCLUSION Current therapy models should attempt to incorporate more sophisticated modelling of tumour angiogenesis/vasculature and vessel perfusion in order to become more useful for testing hypoxia-targeting treatments, which typically rely upon the tumour vasculature for delivery of additional oxygen, (pro)drugs and nanoparticles.
Collapse
Affiliation(s)
- Jake C Forster
- SA Medical Imaging, Department of Nuclear Medicine, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Loredana G Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide SA 5005, Australia; Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| |
Collapse
|
369
|
Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9:675-689. [PMID: 31384529 PMCID: PMC6663920 DOI: 10.1016/j.apsb.2019.01.011] [Citation(s) in RCA: 382] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Erythrocytes (red blood cells, RBCs) are the most abundant circulating cells in the blood and have been widely used in drug delivery systems (DDS) because of their features of biocompatibility, biodegradability, and long circulating half-life. Accordingly, a "camouflage" comprised of erythrocyte membranes renders nanoparticles as a platform that combines the advantages of native erythrocyte membranes with those of nanomaterials. Following injection into the blood of animal models, the coated nanoparticles imitate RBCs and interact with the surroundings to achieve long-term circulation. In this review, the biomimetic platform of erythrocyte membrane-coated nano-cores is described with regard to various aspects, with particular focus placed on the coating mechanism, preparation methods, verification methods, and the latest anti-tumor applications. Finally, further functional modifications of the erythrocyte membranes and attempts to fuse the surface properties of multiple cell membranes are discussed, providing a foundation to stimulate extensive research into multifunctional nano-biomimetic systems.
Collapse
Key Words
- ABC, accelerated blood clearance
- APCs, antigen presenting cells
- Antitumor
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- Biomimetic nanoparticles
- C8bp, C8 binding protein
- CR1, complement receptor 1
- DAF, decay accelerating factor
- DDS, drug delivery systems
- DLS, dynamic light scattering
- Dox, doxorubicin
- Drug delivery
- ECM, extracellular matrix
- EPR, enhanced permeability and retention
- ETA, endothelin A
- EpCam, epithelial cell adhesion molecule
- FA, folic acid
- GA, gambogic acid
- H&E, hematoxylin and eosin
- HRP, homologous restriction protein
- MCP, membrane cofactor protein
- MNCs, magnetic nanoclusters
- MNs, magnetic nanoparticles
- MPS, mononuclear phagocyte system
- MRI, magnetic resonance imaging
- MSNs, mesoporous silica nanoparticles
- Membrane
- NIR, near-infrared radiation
- Nanoparticles
- PAI, photoacoustic imaging
- PBS, phosphate buffered saline
- PCL, poly(caprolactone)
- PDT, photodynamic therapy
- PEG, polyethylene glycol
- PFCs, perfluorocarbons
- PLA, poly(lactide acid)
- PLGA, poly(d,l-lactide-co-glycolide)
- PPy, polypyrrole
- PS, photosensitizers
- PTT, photothermal therapy
- PTX, paclitaxel
- RBCM-NPs, RBCM-coated nanoparticles
- RBCMs, RBC membranes
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- RVs, RBCM-derived vesicles
- Red blood cells
- SEM, scanning electron microscopy
- SIRPα, signal-regulatory protein alpha
- TEM, transmission electron microscopy
- TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl oxyl
- TPP, triphenylphosphonium
- UCNPs, upconversion nanoparticles
- UV, ultraviolet
- rHuPH20, recombinant hyaluronidase, PH20
Collapse
Affiliation(s)
| | | | | | | | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
370
|
Starvation-amplified CO generation for enhanced cancer therapy via an erythrocyte membrane-biomimetic gas nanofactory. Acta Biomater 2019; 92:241-253. [PMID: 31078766 DOI: 10.1016/j.actbio.2019.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Carbon monoxide (CO)-based gas therapy has emerged as an attractive therapeutic strategy for cancer therapy. However, the main challenges are the in situ-triggered and efficient delivery of CO in tumors, which limit its further clinical application. Herein, we developed an erythrocyte membrane-biomimetic gas nanofactory (MGP@RBC) to amplify the in situ generation of CO for combined energy starvation of cancer cells and gas therapy. This nanofactory was constructed by encapsulating glucose oxidase (GOx) and Mn2(CO)10 (CO-donor) into the biocompatible polymer poly(lactic-co-glycolic acid), obtaining MGP nanoparticles, which are further covered by red blood cell (RBC) membrane. Because of the presence of proteins on RBC membranes, the nanoparticles could effectively avoid immune clearance in macrophages (Raw264.7) and significantly prolong their blood circulation time, thereby achieving higher accumulation at the tumor site. After that, the GOx in GMP@RBC could effectively catalyze the conversion of endogenous glucose to hydrogen peroxide (H2O2) in the presence of oxygen. The concomitant generation of H2O2 could efficiently trigger CO release to cause dysfunction of mitochondria and activate caspase, thereby resulting in apoptosis of the cancer cells. In addition, the depletion of intratumoral glucose could starve tumor cells by shutting down the energy supply. Altogether, the in vitro and in vivo studies of our synthesized biomimetic gas nanofactory exhibited an augmentative synergistic efficacy of CO gas therapy and energy starvation to inhibit tumor growth. It provides an attractive strategy to amplify CO generation for enhanced cancer therapy in an accurate and more efficient manner. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) based gas therapy has emerged as an attractive therapeutic strategy for cancer therapy. In this study, we developed an erythrocyte membrane biomimetic gas nanofactory to amplify the in-situ generation of CO for combined cancer starvation and gas therapy. It is constructed by coating glucose oxidase (GOx) and CO donor-loaded nanoparticles with erythrocyte membrane. Due to the erythrocyte membrane, it can effectively prolong blood circulation time and achieve higher tumor accumulation. After accumulated in tumor, endogenous glucose can be effectively catalyzed to hydrogen peroxide, in-situ amplified CO release to induce the apoptosis of cancer cells. In addition, depleting glucose can also starve tumor cells by shutting down the energy supply. Overall, our biomimetic gas nanofactory exhibits an augmentative synergistic efficacy of CO gas therapy and starvation to increased tumor inhibition. It provide a novel strategy to deliver CO in an accurate and more efficient manner, promising for combined cancer therapy in future clinical application.
Collapse
|
371
|
Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J, Wang Q, Wu W, Wang G. Biomimetic Nanotherapies: Red Blood Cell Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900172. [PMID: 31380165 PMCID: PMC6662054 DOI: 10.1002/advs.201900172] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Indexed: 05/06/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. Atherosclerosis, one of the most common forms of the disease, is characterized by a gradual formation of atherosclerotic plaque, hardening, and narrowing of the arteries. Nanomaterials can serve as powerful delivery platforms for atherosclerosis treatment. However, their therapeutic efficacy is substantially limited in vivo due to nonspecific clearance by the mononuclear phagocytic system. In order to address this limitation, rapamycin (RAP)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles are cloaked with the cell membrane of red blood cells (RBCs), creating superior nanocomplexes with a highly complex functionalized bio-interface. The resulting biomimetic nanocomplexes exhibit a well-defined "core-shell" structure with favorable hydrodynamic size and negative surface charge. More importantly, the biomimetic nature of the RBC interface results in less macrophage-mediated phagocytosis in the blood and enhanced accumulation of nanoparticles in the established atherosclerotic plaques, thereby achieving targeted drug release. The biomimetic nanocomplexes significantly attenuate the progression of atherosclerosis. Additionally, the biomimetic nanotherapy approach also displays favorable safety properties. Overall, this study demonstrates the therapeutic advantages of biomimetic nanotherapy for atherosclerosis treatment, which holds considerable promise as a new generation of drug delivery system for safe and efficient management of atherosclerosis.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Kang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Tianhan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Sean McGinty
- Division of Biomedical EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo – CNRVia dei Taurini 1900185RomaItaly
| | - Jun Ren
- Department of Radiation OncologyMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Qiwei Wang
- Department of Cancer BiologyDana‐Farber Cancer Institute and Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030China
| |
Collapse
|
372
|
Recent Progress in the Development of Poly(lactic- co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019; 11:pharmaceutics11060280. [PMID: 31197096 PMCID: PMC6630460 DOI: 10.3390/pharmaceutics11060280] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diverse nanosystems for use in cancer imaging and therapy have been designed and their clinical applications have been assessed. Among a variety of materials available to fabricate nanosystems, poly(lactic-co-glycolic acid) (PLGA) has been widely used due to its biocompatibility and biodegradability. In order to provide tumor-targeting and diagnostic properties, PLGA or PLGA nanoparticles (NPs) can be modified with other functional materials. Hydrophobic or hydrophilic therapeutic cargos can be placed in the internal space or adsorbed onto the surface of PLGA NPs. Protocols for the fabrication of PLGA-based NPs for cancer imaging and therapy are already well established. Moreover, the biocompatibility and biodegradability of PLGA may elevate its feasibility for clinical application in injection formulations. Size-controlled NP’s properties and ligand–receptor interactions may provide passive and active tumor-targeting abilities, respectively, after intravenous administration. Additionally, the introduction of several imaging modalities to PLGA-based NPs can enable drug delivery guided by in vivo imaging. Versatile platform technology of PLGA-based NPs can be applied to the delivery of small chemicals, peptides, proteins, and nucleic acids for use in cancer therapy. This review describes recent findings and insights into the development of tumor-targeted PLGA-based NPs for use of cancer imaging and therapy.
Collapse
|
373
|
Jiang W, Zhang Z, Wang Q, Dou J, Zhao Y, Ma Y, Liu H, Xu H, Wang Y. Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. NANO LETTERS 2019; 19:4060-4067. [PMID: 31136712 DOI: 10.1021/acs.nanolett.9b01458] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Both diffusion-limited and perfusion-limited hypoxia are associated with tumor progression, metastasis, and the resistance to therapeutic modalities. A strategy that can efficiently overcome both types of hypoxia to enhance the efficacy of cancer treatment has not been reported yet. Here, it is shown that by using biomimetic ultrathin graphdiyne oxide (GDYO) nanosheets, both types of hypoxia can be simultaneously addressed toward an ideal photodynamic therapy (PDT). The GDYO nanosheets, which are oxidized and exfoliated from graphdiyne (GDY), are able to efficiently catalyze water oxidation to release O2 and generate singlet oxygen (1O2) using near-infrared irradiation. Meanwhile, GDYO nanosheets also exhibit excellent light-to-heat conversion performance with a photothermal conversion efficiency of 60.8%. Thus, after the GDYO nanosheets are coated with iRGD peptide-modified red blood membrane (i-RBM) to achieve tumor targeting, the biomimetic GDYO@i-RBM nanosheets can simultaneously enhance tumor reoxygenation and blood perfusion for PDT. This study provides new insights into utilizing novel water-splitting materials to relieve both diffusion- and perfusion-limited hypoxia for the development of a novel therapeutic platform.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Zhen Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qin Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Jiaxiang Dou
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Yangyang Zhao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Yinchu Ma
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Huarong Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yucai Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences , University of Science and Technology of China , Hefei , Anhui 230027 , China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory , Guangzhou , Guangdong 510005 , China
| |
Collapse
|
374
|
Yang Q, Xiao Y, Yin Y, Li G, Peng J. Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo-Chemo Combination Therapy. Mol Pharm 2019; 16:3208-3220. [PMID: 31145853 DOI: 10.1021/acs.molpharmaceut.9b00413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional systemic chemotherapy leads to poor therapeutic outcomes at moments in cancer therapy because the nontargeting anticancer drug release results in adverse effects and consequently drug resistance. The combination therapeutic strategy provides an alternative way to solve the conundrums. Herein, drug delivery systems with a rational design and tumor-targeting abilities become the ideal carriers for combinatorial therapy. IR780 iodide possesses near-infrared fluorescence intensity for fluorescence imaging (FI) and photothermal conversion for photoacoustic imaging (PAI), which also can be employed for tumor phototherapy (including photothermal therapy and photodynamic therapy). However, hydrophobicity and rapid elimination in vivo limit its biomedical applications. Furthermore, the hydrophobicity and high crystallization of IR780 result in poor drug-loading capacity and low stability. In this study, the high-pressure homogenization method was utilized for hydrophobic molecular IR780 and DTX coloading to construct IR780/DTX-PCEC nanoparticles which exhibit narrow size distribution and satisfactory drug-loading capacity. With further erythrocyte membrane [red blood cell (RBC)] camouflaging, the obtained IR780/DTX-PCEC@RBC nanoparticles present desired stability and prolonged circulation time in vivo. Additionally, the IR780/DTX-PCEC@RBC nanoparticles not only can be employed as a FI/PAI dual model imaging probe but also exhibit the property for phototherapy and chemotherapy of tumors. Based on the therapeutic outcome of combination therapy, the IR780/DTX-PCEC@RBC nanoparticles can serve as promising FI- and PAI-guided photo-chemo combination therapy agents for the future treatment of breast cancer.
Collapse
Affiliation(s)
- Qian Yang
- School of Pharmacy , Chengdu Medical College , No. 783, Xindu Avenue , Xindu District, Chengdu 610500 , Sichuan , P. R. China
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu , Sichuan 610041 , P. R. China
| | - Yanlong Yin
- School of Pharmacy , Chengdu Medical College , No. 783, Xindu Avenue , Xindu District, Chengdu 610500 , Sichuan , P. R. China
| | - Gaoyin Li
- School of Pharmacy , Chengdu Medical College , No. 783, Xindu Avenue , Xindu District, Chengdu 610500 , Sichuan , P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University and Collaborative Innovation Center of Biotherapy , Chengdu , Sichuan 610041 , P. R. China
| |
Collapse
|
375
|
Wang H, Wu J, Williams GR, Fan Q, Niu S, Wu J, Xie X, Zhu LM. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J Nanobiotechnology 2019; 17:60. [PMID: 31084622 PMCID: PMC6513513 DOI: 10.1186/s12951-019-0494-y] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/04/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Nanoscale drug-delivery systems (DDSs) have great promise in tumor diagnosis and treatment. Platelet membrane (PLTM) biomimetic DDSs are expected to enhance retention in vivo and escape uptake by macrophages, as well as minimizing immunogenicity, attributing to the CD47 protein in PLTM sends "don't eat me" signals to macrophages. In addition, P-selectin is overexpressed on the PLTM, which would allow a PLTM-biomimetic DDS to specifically bind to the CD44 receptors upregulated on the surface of cancer cells. RESULTS In this study, porous nanoparticles loaded with the anti-cancer drug bufalin (Bu) were prepared from a chitosan oligosaccharide (CS)-poly(lactic-co-glycolic acid) (PLGA) copolymer. These were subsequently coated with platelet membrane (PLTM) to form PLTM-CS-pPLGA/Bu NPs. The PLTM-CS-pPLGA/Bu NPs bear a particle size of ~ 192 nm, and present the same surface proteins as the PLTM. Confocal microscopy and flow cytometry results revealed a greater uptake of PLTM-CS-pPLGA/Bu NPs than uncoated CS-pPLGA/Bu NPs, as a result of the targeted binding of P-selectin on the surface of the PLTM to the CD44 receptors of H22 hepatoma cells. In vivo biodistribution studies in H22-tumor carrying mice revealed that the PLTM-CS-pPLGA NPs accumulated in the tumor, because of a combination of active targeting effect and the EPR effect. The PLTM-CS-pPLGA/Bu NPs led to more effective tumor growth inhibition over other bufalin formulations. CONCLUSIONS Platelet membrane biomimetic nanoparticles played a promising targeted treatment of cancer with low side effect.
Collapse
Affiliation(s)
- Haijun Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Junzi Wu
- College of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500 China
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX UK
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, 250117 China
| | - Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Xiaotian Xie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| |
Collapse
|
376
|
Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev 2019; 6:551-561. [PMID: 34691904 PMCID: PMC8291551 DOI: 10.1093/nsr/nwz037] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
Surface engineering of synthetic carriers is an essential and important strategy for drug delivery in vivo. However, exogenous properties make synthetic nanosystems invaders that easily trigger the passive immune clearance mechanism, increasing the retention effect caused by the reticuloendothelial systems and bioadhesion, finally leading to low therapeutic efficacy and toxic effects. Recently, a cell membrane cloaking technique has been reported as a novel interfacing approach from the biological/immunological perspective, and has proved useful for improving the performance of synthetic nanocarriers in vivo. After cell membrane cloaking, nanoparticles not only acquire the physiochemical properties of natural cell membranes but also inherit unique biological functions due to the presence of membrane-anchored proteins, antigens, and immunological moieties. The derived biological properties and functions, such as immunosuppressive capability, long circulation time, and targeted recognition integrated in synthetic nanosystems, have enhanced their potential in biomedicine in the future. Here, we review the cell membrane-covered nanosystems, highlight their novelty, introduce relevant biomedical applications, and describe the future prospects for the use of this novel biomimetic system constructed from a combination of cell membranes and synthetic nanomaterials.
Collapse
Affiliation(s)
- Mingjun Xuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Jingxin Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| |
Collapse
|
377
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
378
|
Fu X, Ohta S, Kamihira M, Sakai Y, Ito T. Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4094-4100. [PMID: 30791688 DOI: 10.1021/acs.langmuir.9b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed microsized perfluorocarbon (PFC) emulsions with different sizes as artificial oxygen carriers (OCs) via Shirasu porous glass membrane emulsification. Monodispersed PFC emulsions with narrow size distribution were obtained. By changing the membrane pore size, we were able to precisely control the size of emulsions and fabricate emulsions similar in size to human red blood cells. Behaviors of Pluronics with different physiochemical properties (F127, F68, P85, and P103) as surfactants were also investigated, which evidenced that the type and concentration of Pluronics have a major impact on the size of emulsions and the response to different thermal conditions. The F127-stabilized microsized PFC emulsions were stable even during autoclave sterilization. The emulsions were loaded with Ru(ddp)-an oxygen-sensitive probe-on their surfaces to indicate oxygen concentration. Finally, incubations with HeLa cells that show fluorescence in response to hypoxia cultured in 2D and 3D suggested promising potential of our emulsions for OCs.
Collapse
Affiliation(s)
- Xiaoting Fu
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yasuyuki Sakai
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Taichi Ito
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| |
Collapse
|
379
|
Xiang Y, Bernards N, Hoang B, Zheng J, Matsuura N. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing. Nanotheranostics 2019; 3:135-144. [PMID: 31008022 PMCID: PMC6470341 DOI: 10.7150/ntno.29908] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
Nanoscale perfluorocarbon (PFC) droplets have enormous potential as clinical theranostic agents. They are biocompatible and are currently used in vivo as contrast agents for a variety of medical imaging modalities, including ultrasound, computed tomography, photoacoustic and 19F-magnetic resonance imaging. PFC nanodroplets can also carry molecular and nanoparticulate drugs and be activated in situ by ultrasound or light for targeted therapy. Recently, there has been renewed interest in using PFC nanodroplets for hypoxic tumor reoxygenation towards radiosensitization based on the high oxygen solubility of PFCs. Previous studies showed that tumor oxygenation using PFC agents only occurs in combination with enhanced oxygen breathing. However, recent studies suggest that PFC agents that accumulate in solid tumors can contribute to radiosensitization, presumably due to tumor reoxygenation without enhanced oxygen breathing. In this study, we quantify the impact of oxygenation due to PFC nanodroplet accumulation in tumors alone in comparison with other reoxygenation methodologies, in particular, carbogen breathing. Methods: Lipid-stabilized, PFC (i.e., perfluorooctyl bromide, CF3(CF2)7Br, PFOB) nanoscale droplets were synthesized and evaluated in xenograft prostate (DU145) tumors in male mice. Biodistribution assessment of the nanodroplets was achieved using a fluorescent lipophilic indocarbocyanine dye label (i.e., DiI dye) on the lipid shell in combination with fluorescence imaging in mice (n≥3 per group). Hypoxia reduction in tumors was measured using PET imaging and a known hypoxia radiotracer, [18F]FAZA (n≥ 3 per group). Results: Lipid-stabilized nanoscale PFOB emulsions (mean diameter of ~250 nm), accumulated in the xenograft prostate tumors in mice 24 hours post-injection. In vivo PET imaging with [18F]FAZA showed that the accumulation of the PFOB nanodroplets in the tumor tissues alone significantly reduced tumor hypoxia, without enhanced oxygen (i.e., carbogen) breathing. This reoxygenation effect was found to be comparable with carbogen breathing alone. Conclusion: Accumulation of nanoscale PFOB agents in solid tumors alone successfully reoxygenated hypoxic tumors to levels comparable with carbogen breathing alone, an established tumor oxygenation method. This study confirms that PFC agents can be used to reoxygenate hypoxic tumors in addition to their current applications as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Yun Xiang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Nicholas Bernards
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Bryan Hoang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Naomi Matsuura
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
- Department of Materials Science and Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
380
|
Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, Yin X, Cai Y, Han W, Dong X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci 2019; 10:2778-2784. [PMID: 30996997 PMCID: PMC6419942 DOI: 10.1039/c8sc04123g] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022] Open
Abstract
Herein, a nano-integrated strategy was used to combine an anti-angiogenic agent sorafenib and a photosensitizer chlorin e6 to form carrier-free multifunctional nanoparticles (SC NPs) for synergetic anti-angiogenic therapy and phototherapy. SC NPs (diameter, ∼152 nm) presented excellent water dispersity and passive targeting ability towards tumor sites in vivo based on the enhanced permeability and retention (EPR) effect, which could be monitored by fluorescence imaging. Besides, SC NPs exhibited effective reactive oxygen species (ROS) generation and photothermal conversion abilities for both photodynamic therapy (PDT) and photothermal therapy (PTT). At a rather low dosage (200 μg kg-1) and illumination with laser (660 nm, 500 mW cm-2), SC NPs could attack tumor tissues by killing the internal tumor cells via mild phototherapy, simultaneously cutting off the external nutrient and oxygen supplements of the tumor cells via anti-angiogenesis. Besides, oxygen consumption in the PDT process may be combined with anti-angiogenic therapy to further cause cell apoptosis by tumor starvation. In addition to the highly efficient therapeutic effect in vivo, SC NPs possessed excellent biosafety and biocompatibility, making them promising for fluorescence imaging-guided synergetic anti-angiogenic therapy and phototherapy in clinic.
Collapse
Affiliation(s)
- Zheng Wei
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Pediatric Dentistry , Nanjing Stomatology hospital , Medical school of Nanjing University , 30 zhongyang road , Nanjing , 210008 , China
| | - Pingping Liang
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Junqi Xie
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Chuanhui Song
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Chuanchao Tang
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Yufeng Wang
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Xiteng Yin
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Yu Cai
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| | - Wei Han
- Central Laboratory of Stomatology , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
- Department of Oral and Maxillofacial Surgery , Nanjing Stomatological Hospital , Medical School of Nanjing University , 30 Zhongyang Road , Nanjing , 210008 , China .
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) , Institute of Advanced Materials (IAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing , 211800 , China .
| |
Collapse
|
381
|
Ma S, Zhou J, Zhang Y, Yang B, He Y, Tian C, Xu X, Gu Z. An Oxygen Self-sufficient Fluorinated Nanoplatform for Relieved Tumor Hypoxia and Enhanced Photodynamic Therapy of Cancers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7731-7742. [PMID: 30694643 DOI: 10.1021/acsami.8b19840] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The efficacy of photodynamic therapy (PDT) in the solid tumor is hampered by many challenges, including its oxygen self-consuming nature, insufficient oxygen levels within the hypoxic tumor microenvironment, and limited penetration of photosensitizers within tumors. Herein, we develop the IR780@O2-SFNs/iRGD as an oxygen self-sufficient and tumor-penetrating nanoplatform, which consists of IR780-loaded pH-sensitive fluorocarbon-functionalized nanoparticles (SFNs) and iRGD as a tumor targeting peptide that can penetrate deeper within the tumor. Because of the high oxygen affinity and outstanding permeability of the obtained nanoplatform, oxygen and IR780 which are encapsulated in the same core can play their roles to the utmost, resulting in remarkably accelerated singlet oxygen production, as demonstrated in vitro by the 3D multicellular spheroids and in vivo by tumor tissues. More interestingly, a single-dose intravenous administration of IR780@O2-SFNs/iRGD into mice bearing orthotopic breast cancer could selectively accumulate at the tumor site, highly alleviate the tumor hypoxia, significantly inhibit the primary tumor growth, and reduce the lung and liver metastasis, enabling the improved photodynamic therapeutic performance. Thus, this work paves an effective way to improve PDT efficacy through increasing tumor oxygenation and selective delivery of photosensitizers to the deep and hypoxic tumor.
Collapse
Affiliation(s)
- Shengnan Ma
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Yuxin Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Bo Yang
- College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China
| | - Yiyan He
- College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Chen Tian
- College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China
| | - Xianghui Xu
- College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| | - Zhongwei Gu
- College of Materials Science and Engineering , Nanjing Tech University , No. 30 Puzhu Road(S) , Nanjing 211816 , P. R. China
- National Engineering Research Center for Biomaterials , Sichuan University , No. 29 Wangjiang Road , Chengdu 610064 , P. R. China
| |
Collapse
|
382
|
Zhang KL, Wang YJ, Sun J, Zhou J, Xing C, Huang G, Li J, Yang H. Artificial chimeric exosomes for anti-phagocytosis and targeted cancer therapy. Chem Sci 2019; 10:1555-1561. [PMID: 30809374 PMCID: PMC6357862 DOI: 10.1039/c8sc03224f] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
Development of exosome-based delivery systems is still facing some formidable challenges, including the lack of standardized isolation and purification methods, non-large-scale production and low drug-loading efficiency. Inspired by biomimetic technologies, we turned to the design of artificial chimeric exosomes (ACEs) constructed by integrating cell membrane proteins from multiple cell types into synthetic phospholipid bilayers. For benchmarking, hybrid membrane proteins derived from red blood cells (RBCs) and MCF-7 cancer cells were selected as models. The resulting ACEs were engineered much like "Emperor Qin's Terra-Cotta Warriors", simultaneously equipped with armor (anti-phagocytosis capability from RBCs) and dagger-axes (homologous targeting ability from cancer cells). ACEs demonstrated higher tumor accumulation, lower interception and better antitumor therapeutic effect than plain liposomes in vivo, alongside large-scale standardized preparation, stable structure, high drug-loading capacity and custom-tailored functionality, highlighting the suitability of ACEs as promising alternatives of exosomes in clinical applications.
Collapse
Affiliation(s)
- Kai-Long Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Ying-Jie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Jin Sun
- Institute of Molecular Medicine , Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai , 200240 , P. R. China
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| | - Guoming Huang
- College of Biological Science and Engineering , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
- Institute of Molecular Medicine , Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai Jiao Tong University , Shanghai , 200240 , P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology , Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety , State Key Laboratory of Photocatalysis on Energy and Environment , College of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China . ;
| |
Collapse
|
383
|
Hu D, Zhong L, Wang M, Li H, Qu Y, Liu Q, Han R, Yuan L, Shi K, Peng J, Qian Z. Perfluorocarbon-Loaded and Redox-Activatable Photosensitizing Agent with Oxygen Supply for Enhancement of Fluorescence/Photoacoustic Imaging Guided Tumor Photodynamic Therapy. ADVANCED FUNCTIONAL MATERIALS 2019. [DOI: 10.1002/adfm.201806199] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- DanRong Hu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Lin Zhong
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - MengYao Wang
- Department of Hematology and Research Laboratory of Hematology; State Key Laboratory of Biotherapy; West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - HaoHuan Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems; Ministry of Education; West China School of Pharmacy; Sichuan University; Chengdu Sichuan 610041 P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of Hematology; State Key Laboratory of Biotherapy; West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - QingYa Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - LiPing Yuan
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
384
|
Sung SY, Su YL, Cheng W, Hu PF, Chiang CS, Chen WT, Hu SH. Graphene Quantum Dots-Mediated Theranostic Penetrative Delivery of Drug and Photolytics in Deep Tumors by Targeted Biomimetic Nanosponges. NANO LETTERS 2019; 19:69-81. [PMID: 30521346 DOI: 10.1021/acs.nanolett.8b03249] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dual-targeted delivery of drugs and energy by nanohybrids can potentially alleviate side effects and improve the unique features required for precision medicine. To realize this aim, however, the hybrids which are often rapidly removed from circulation and the piled up tumors periphery near the blood vessels must address the difficulties in low blood half-lives and tumor penetration. In this study, a sponge-inspired carbon composites-supported red blood cell (RBC) membrane that doubles as a stealth agent and photolytic carrier that transports tumor-penetrative agents (graphene quantum dots and docetaxel (GQD-D)) and heat with irradiation was developed. The RBC-membrane enveloped nanosponge (RBC@NS) integrated to a targeted protein that accumulates in tumor spheroids via high lateral bilayer fluidity exhibits an 8-fold increase in accumulation compared to the NS. Penetrative delivery of GQDs to tumor sites is actuated by near-infrared irradiation through a one-atom-thick structure, facilitating penetration and drug delivery deep into the tumor tissue. The synergy of chemotherapy and photolytic effects was delivered by the theranostic GQDs deep into tumors, which effectively damaged and inhibited the tumor in 21 days when treated with a single irradiation. This targeted RBC@GQD-D/NS with the capabilities of enhanced tumor targeting, NIR-induced drug penetration into tumors, and thermal ablation for photolytic therapy promotes tumor suppression and exhibits potential for other biomedical applications.
Collapse
|
385
|
Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors. Biomaterials 2019; 197:129-145. [PMID: 30641264 DOI: 10.1016/j.biomaterials.2019.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Hypoxia plays vital roles in the development of tumor resistance against typical anticancer therapies and local reoxygenation has proved effective to overcome the hypoxia-induced chemoresistance. Perfluorocarbon (PFC) is an FDA approved oxygen carrier and currently vigorously investigated for oxygen delivery to tumors. This study reports a perfluorocarbon and etoposide (EP) loaded porous hollow Fe3O4-based theranostic nanoplatform capable of delivering oxygen to solid tumors to enhance their susceptibility against EP. Results show that oxygen could be released at a moderate rate from the porous hollow magnetic Fe3O4 nanoparticles (PHMNPs) over an extended period of time, therefore effectively reducing the hypoxia-induced EP resistance of tumor cells. Moreover, the surface of PHMNPs was modified with lactobionic acid (LA)-containing amphiphilic polymers via hydrophobic interaction, which could provide targeting effect against certain types of tumors. The hydrophilic moiety would be subsequently shed by the intratumoral GSH after cellular internalization and result in the agglomeration of nanocarriers inside tumor cells, consequently impeding the nanoparticle exocytosis to enhance their intracellular retention. The enhanced retention could elevate the intracellular EP level and effectively boost the tumor cell killing effect. In addition to the therapeutic benefits, the Fe3O4 nanocage could also be used for the magnetic resonance imaging of the tumor area. The assorted benefits of the composite nanosystem are anticipated to be advantageous for the treatment of drug-resistant hypoxic tumors.
Collapse
|
386
|
Cheng H, Jiang XY, Zheng RR, Zuo SJ, Zhao LP, Fan GL, Xie BR, Yu XY, Li SY, Zhang XZ. A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 2019; 195:75-85. [PMID: 30616030 DOI: 10.1016/j.biomaterials.2019.01.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/08/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Targeted drug delivery with precisely controlled drug release and activation is highly demanding and challenging for tumor precision therapy. Herein, a biomimetic cascade nanoreactor (designated as Mem@GOx@ZIF-8@BDOX) is constructed for tumor targeted starvation therapy-amplified chemotherapy by assembling tumor cell membrane cloak and glucose oxidase (GOx) onto zeolitic imidazolate framework (ZIF-8) with the loading prodrug of hydrogen peroxide (H2O2)-sensitive BDOX. Biomimetic membrane camouflage affords superior immune evasion and homotypic binding capacities, which significantly enhance the tumor preferential accumulation and uptake for targeted drug delivery. Moreover, GOx-induced glycolysis would cut off glucose supply and metabolism pathways for tumor starvation therapy with the transformation of tumor microenvironments. Importantly, this artificial adjustment could trigger the site-specific BDOX release and activation for cascade amplified tumor chemotherapy regardless of the complexity and variability of tumor physiological environments. Both in vitro and in vivo investigations indicate that the biomimetic cascade nanoreactor could remarkably improve the therapeutic efficacy with minimized side effects through the synergistic starvation therapy and chemotherapy. This biomimetic cascade strategy would contribute to developing intelligent drug delivery systems for tumor precision therapy.
Collapse
Affiliation(s)
- Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, PR China.
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Sheng-Jia Zuo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Gui-Ling Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Bo-Ru Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
387
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
388
|
Lu J, Yang L, Zhang W, Li P, Gao X, Zhang W, Wang H, Tang B. Photodynamic therapy for hypoxic solid tumors via Mn-MOF as a photosensitizer. Chem Commun (Camb) 2019; 55:10792-10795. [DOI: 10.1039/c9cc05107d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypoxia, as an important feature in tumor sites, greatly hinders the performance of photosensitizers, thus affecting the efficacy of photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jun Lu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Li Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wei Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Ping Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaonan Gao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Hui Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
389
|
Ke L, Zhang C, Liao X, Qiu K, Rees TW, Chen Y, Zhao Z, Ji L, Chao H. Mitochondria-targeted Ir@AuNRs as bifunctional therapeutic agents for hypoxia imaging and photothermal therapy. Chem Commun (Camb) 2019; 55:10273-10276. [DOI: 10.1039/c9cc05610f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gold nanorods with surfaces modified by iridium(iii)-azo complexes (Ir@AuNRs) were developed as mitochondria-targeted bifunctional therapeutic agents for hypoxia-imaging and photothermal therapy.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Cheng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Kangqiang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Zizhuo Zhao
- Department of Ultrasound
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
390
|
Long W, Wang J, Yang J, Wu H, Wang J, Mu X, He H, Liu Q, Sun YM, Wang H, Zhang XD. Naturally-Derived PHA-L Protein Nanoparticle as a Radioprotector Through Activation of Toll-Like Receptor 5. J Biomed Nanotechnol 2019; 15:62-76. [PMID: 30480515 PMCID: PMC6300143 DOI: 10.1166/jbn.2019.2665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High energy ray in medical diagnosis and therapy can benefit to patients, but can also cause the significant damages to biomolecules such as DNA, as well as free radical generation, inevitably leading to numerous side effects. Small molecular radioprotectors provide an effective route to preserve the healthy tissue and whole body from ionizing radiation, but always have a short circulation time in body. Inorganic nanoparticles show major protection effect but their heavy metal components considerably jeopardize translational promise due to suboptimal biocompatibility. Herein, we report a novel protein nanoparticle that can overcome limitations of both small molecular and inorganic nanoparticle radioprotectors and can be used as a radioprotector with spontaneous biocompatibility, outstanding pharmacokinetics and improvement on survival rate under exposure to γ-ray irradiation. PHA-L protein nanoparticle serves to clear excessive reactive oxygen species in vivo, prevents radiation-induced hematopoietic and gastrointestinal damages and boosts the survival rate of irradiated mice to ∼70%. A detailed study of the mechanism shows PHA-L protein nanoparticle can target and activate the toll-like receptor 5 in vitro and in vivo, and thus protect irradiated cells by immune response. Importantly, the PHA-L protein nanoparticle can perform highly efficient clearance while eliciting negligible toxicological response.
Collapse
Affiliation(s)
- Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin 300192, China
| | - Junying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hongying Wu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin 300192, China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin 300192, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin 300192, China
| | - Yuan-Ming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 238, Baidi Road, Tianjin 300192, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
391
|
Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802244. [PMID: 30156333 DOI: 10.1002/adma.201802244] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Nano-radiosensitization has been a hot concept for the past ten years, and the nanomaterial-mediated tumor radiosensitization method is mainly focused on increasing intracellular radiation deposition by high atomic number (high Z) nanomaterials, particularly gold (Au)-mediated radiation enhancement. Recently, various new nanomaterial-mediated radiosensitive approaches have been successively reported, such as catalyzing reactive oxygen species (ROS) generation, consuming intracellular reduced glutathione (GSH), overcoming tumor hypoxia, and various synergistic radiotherapy ways. These strategies may open a new avenue for enhancing the radiotherapeutic effect and avoiding its side effects. Nevertheless, reviews systematically summarizing these newly emerging methods and their radiosensitive mechanisms are still rare. Therefore, the general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods. The strategies are divided into three general parts. First, methods on account of the intrinsic radiosensitive properties of nanoradiosensitizers for radiosensitization are highlighted. Then, newly developed synergistic strategies based on multifunctional nanomaterials for enhancing radiotherapy efficacy are emphasized. Third, nanomaterial-mediated radioprotection approaches for increasing the radiotherapeutic ratio are discussed. Importantly, the clinical translation of nanomaterial-mediated tumor radiosensitization is also covered. Finally, further challenges and outlooks in this field are discussed.
Collapse
Affiliation(s)
- Jiani Xie
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Linji Gong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Zhu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Yong
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuliang Zhao
- Prof. Z. Gu, Prof. Y. Zhao, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
392
|
Biomimetic surface modification of discoidal polymeric particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:79-87. [PMID: 30529792 DOI: 10.1016/j.nano.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 11/23/2022]
Abstract
The rationale for the design of drug delivery nanoparticles is traditionally based on co-solvent self-assembly following bottom-up approaches or in combination with top-down approaches leading to tailored physiochemical properties to regulate biological responses. However, the optimal design and control of material properties to achieve specific biological responses remain the central challenge in drug delivery research. Considering this goal, we herein designed discoidal polymeric particles (DPPs) whose surfaces are re-engineered with isolated red blood cell (RBC) membranes to tailor their pharmacokinetics. The RBC membrane-coated DPPs (RBC-DPPs) were found to be biocompatible in cell-based in vitro experiments and exhibited extended blood circulation half-life. They also demonstrated unique kinetics at later time points in a mouse model compared to that of bare DPPs. Our results suggested that the incorporation of biomimicry would enable the biomimetic particles to cooperate with systems in the body such as cells and biomolecules to achieve specific biomedical goals.
Collapse
|
393
|
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu JF, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao Y. Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9397-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
394
|
Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z. Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803262. [PMID: 30307701 DOI: 10.1002/smll.201803262] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Indexed: 05/06/2023]
Abstract
Despite the promises of applying nano-photosensitizers (nano-PSs) for photodynamic therapy (PDT) against cancer, severe tumor hypoxia and limited tumor penetration of nano-PSs would lead to nonoptimized therapeutic outcomes of PDT. Therefore, herein a biocompatible nano-PS is prepared by using tamoxifen (TAM), an anti-estrogen compound, to induce self-assembly of chlorin e6 (Ce6) modified human serum albumin (HSA). The formed HSA-Ce6/TAM nanocomplexes, which are stable under neutral pH with a diameter of ≈130 nm, would be dissociated into individual HSA-Ce6 and TAM molecules under the acidic tumor microenvironment, owing to the pH responsive transition of TAM from hydrophobic to hydrophilic. Upon systemic administration, such HSA-Ce6/TAM nanoparticles exhibit prolonged blood circulation and high accumulation in the tumor, where it would undergo rapid pH responsive dissociation to enable obviously enhanced intratumoral penetration of HSA-Ce6. Furthermore, utilizing the ability of TAM in reducing the oxygen consumption of cancer cells, it is found that HSA-Ce6/TAM after systemic administration could efficiently attenuate the tumor hypoxia status. Those effects acting together lead to remarkably enhanced PDT treatment. This work presents a rather simple approach to fabricate smart nano-PSs with multiple functions integrated into a single system via self-assembly of all-biocompatible components, promising for the next generation cancer PDT.
Collapse
Affiliation(s)
- Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiawen Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
395
|
Deng Y, Jia F, Chen S, Shen Z, Jin Q, Fu G, Ji J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018; 187:55-65. [PMID: 30292942 DOI: 10.1016/j.biomaterials.2018.09.043] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
A glutathione (GSH)-sensitive supramolecular nitric oxide (NO) nanogenerator is developed as an all-rounder for enhanced photodynamic therapy (PDT). By integrating GSH-sensitive NO prodrug into the system via LEGO-like host-guest interaction, the nanocarrier could not only deplete intracellular GSH, but also relieve hypoxia at tumor sites through NO mediated blood vessel relaxation. Furthermore, reactive nitrogen species (RNS) with enhanced biocidal activity could be produced by the reaction between NO and reactive oxygen species (ROS), generated from α-cyclodextrin (α-CD) conjugated S-nitrosothiol and light-activated chlorin e6 (Ce6) respectively. Due to multiple combined effects between NO and PDT, the NO acts as the loaded gunpowder inside a 'grenade', 'explosively' amplifying the therapeutic effects that the light responsive 'fuse' Ce6 could exert. The present work may well serve as an inspiration for future creative approaches of photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yongyan Deng
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China.
| |
Collapse
|
396
|
Zhuang J, Ying M, Spiekermann K, Holay M, Zhang Y, Chen F, Gong H, Lee JH, Gao W, Fang RH, Zhang L. Biomimetic Nanoemulsions for Oxygen Delivery In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804693. [PMID: 30294884 PMCID: PMC6487258 DOI: 10.1002/adma.201804693] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/02/2018] [Indexed: 05/18/2023]
Abstract
Blood transfusion is oftentimes required for patients suffering from acute trauma or undergoing surgical procedures in order to help maintain the body's oxygen levels. The continued demand worldwide for blood products is expected to put significant strain on available resources and infrastructure. Unfortunately, efforts to develop viable alternatives to human red blood cells for transfusion are generally unsuccessful. Here, a hybrid natural-synthetic nanodelivery platform that combines the biocompatibility of the natural RBC membrane with the oxygen-carrying ability of perfluorocarbons is reported. The resulting formulation can be stored long-term and exhibits a high capacity for oxygen delivery, helping to mitigate the effects of hypoxia in vitro. In an animal model of hemorrhagic shock, mice are resuscitated at an efficacy comparable to whole blood infusion. By leveraging the advantageous properties of its constituent parts, this biomimetic oxygen delivery system may have the potential to address a critical need in the clinic.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Man Ying
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin Spiekermann
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maya Holay
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Fang Chen
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joo Hee Lee
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
397
|
Jiang Q, Liu Y, Guo R, Yao X, Sung S, Pang Z, Yang W. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 2018; 192:292-308. [PMID: 30465973 DOI: 10.1016/j.biomaterials.2018.11.021] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/19/2022]
Abstract
Cell membrane coating has emerged as an intriguing biomimetic strategy to endow nanomaterials with functions and properties inherent to source cells for various biomedical applications. Hybrid membrane of different types of cells could be coated onto nanoparticle surface to achieve additional functions. Herein, we fused red blood cell (RBC) membrane together with MCF-7 cell membrane and fabricated an erythrocyte-cancer (RBC-M) hybrid membrane-camouflaged melanin nanoparticle (Melanin@RBC-M) platform for enhancing therapeutic efficacy of photothermal therapy (PTT). The fused RBC-M hybrid membrane vesicles retained both RBC and MCF-7 cell membrane proteins and the resultant Melanin@RBC-M exhibited prolonged blood circulation and homotypic targeting to source MCF-7 cells simultaneously. Interestingly, increasing MCF-7 membrane components in RBC-M significantly enhanced the homotypic targeting function of Melanin@RBC-M while increasing RBC membrane components in RBC-M effectively reduced the cellular uptake of Melanin@RBC-M by macrophages and improved their circulation time in the blood. After intravenous injection into MCF-7 tumor-bearing athymic nude mice, Melanin@RBC-M with 1:1 membrane protein weight ratio of RBC to MCF-7 exhibited significantly higher tumor accumulation and better PTT efficacy compared with other Melanin@RBC-M with different membrane protein weight ratios as well as pristine melanin nanoparticles, due to the optimal balance between prolonged blood circulation and homotypic targeting. In addition, in vitro photoacoustic results revealed that Melanin@RBC-M had a photoacoustic signal enhancement with the increase of nanoparticle size (64 → 148 nm) and the photoacoustic amplitudes increased linearly with nanoparticle concentration at the excitation wavelength ranged from 680 nm to 800 nm, which could be used for quantification of Melanin@RBC-M in vivo. Looking forward, coating hybrid membrane onto nanoparticles could add flexibility and controllability in enhancing nanoparticles functionality and offer new opportunities for biomedical applications.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Yao Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ranran Guo
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
| | - Seunghyun Sung
- Department of Chemistry, Hankuk University of Foreign Studies, Seoul Campus 107, Imun-ro, Dongdaemun-gu, Seoul 02450, Republic of Korea
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
398
|
Wang XQ, Peng M, Li CX, Zhang Y, Zhang M, Tang Y, Liu MD, Xie BR, Zhang XZ. Real-Time Imaging of Free Radicals for Mitochondria-Targeting Hypoxic Tumor Therapy. NANO LETTERS 2018; 18:6804-6811. [PMID: 30350653 DOI: 10.1021/acs.nanolett.8b02670] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Free radicals have emerged as new-type and promising candidates for hypoxic tumor treatment, and further study of their therapeutic mechanism by real-time imaging is of great importance to explore their biomedical applications. Herein, we present a smart free-radical generator AuNC-V057-TPP for hypoxic tumor therapy; the AuNC-V057-TPP not only exhibits good therapeutic effect under both hypoxic and normoxic conditions but also can monitor the release of free radicals in real-time both in vitro and in vivo. What is more, with the mitochondria-targeting ability, the AuNC-V057-TPP is demonstrated with improved antitumor efficacy through enhanced free radical level in mitochondria, which leads to mitochondrial membrane damage and ATP production reduction and finally induces cancer cell apoptosis.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Mengyun Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Ying Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430072 , P. R. China
| | - Miao-Deng Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Bo-Ru Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies & Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
399
|
Wang C, Wang Y, Zhang L, Miron RJ, Liang J, Shi M, Mo W, Zheng S, Zhao Y, Zhang Y. Pretreated Macrophage-Membrane-Coated Gold Nanocages for Precise Drug Delivery for Treatment of Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804023. [PMID: 30285289 DOI: 10.1002/adma.201804023] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/21/2018] [Indexed: 05/29/2023]
Abstract
Pathogenic bacterial infections and drug resistance make it urgent to develop new antibacterial agents with targeted delivery. Here, a new targeting delivery nanosystem is designed based on the potential interaction between bacterial recognizing receptors on macrophage membranes and distinct pathogen-associated molecular patterns in bacteria. Interestingly, the expression of recognizing receptors on macrophage membranes increases significantly when cultured with specific bacteria. Therefore, by coating pretreated macrophage membrane onto the surface of a gold-silver nanocage (GSNC), the nanosystem targets bacteria more efficiently. Previously, it has been shown that GSNC alone can serve as an effective antibacterial agent owing to its photothermal effect under near-infrared (NIR) laser irradiation. Furthermore, the nanocage can be utilized as a delivery vehicle for antibacterial drugs since the gold-silver nanocage presents a hollow interior and porous wall structure. With significantly improved bacterial adherence, the Sa-M-GSNC nanosystem, developed within this study, is effectively delivered and retained at the infection site both via local or systemic injections; the system also shows greatly prolonged blood circulation time and excellent biocompatibility. The present work described here is the first to utilize bacterial pretreated macrophage membrane receptors in a nanosystem to achieve specific bacterial-targeted delivery, and provides inspiration for future therapy based on this concept.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yulan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Lingling Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Richard J Miron
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jianfei Liang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Wenting Mo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shihang Zheng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
400
|
Li J, Shang W, Li Y, Fu S, Tian J, Lu L. Advanced nanomaterials targeting hypoxia to enhance radiotherapy. Int J Nanomedicine 2018; 13:5925-5936. [PMID: 30319257 PMCID: PMC6171520 DOI: 10.2147/ijn.s173914] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia within solid tumors is often responsible for the failure of radiotherapy. The development of hypoxia-targeting nanomaterials - aimed at enhancing the effect of radiotherapy by electrical or heat effects and at modulating hypoxia in the tumor microenvironment - is a promising strategy to address this issue. We provide an overview of recently developed advanced materials that potentiate radiotherapy. First, we summarize novel materials for oxygen delivery or production to modify the tumor microenvironment, thus improving the effects of ionizing radiation. Second, we present new approaches for the design of high-Z element-based multifunctional nanoplatforms to enhance radiotherapy. Third, novel drug delivery systems for hypoxic regions and hypoxia-inducible factor-1-targeted therapies are discussed. Fourth, we establish the effectiveness of X-ray- or near-infrared-responsive nanoparticles for selectively triggering therapeutic effects under hypoxic conditions. Finally, this review emphasizes the importance of research in the field of nanomedicine focused on tumor hypoxia to improve clinical outcomes.
Collapse
Affiliation(s)
- Jia Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Yong Li
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
| | - Sirui Fu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China,
- Beijing Key Laboratory of Molecular Imaging, Beijing, China,
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, China,
| |
Collapse
|