351
|
Worthington JJ, Reimann F, Gribble FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity. Mucosal Immunol 2018; 11:3-20. [PMID: 28853441 DOI: 10.1038/mi.2017.73] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium must balance efficient absorption of nutrients with partitioning commensals and pathogens from the bodies' largest immune system. If this crucial barrier fails, inappropriate immune responses can result in inflammatory bowel disease or chronic infection. Enteroendocrine cells represent 1% of this epithelium and have classically been studied for their detection of nutrients and release of peptide hormones to mediate digestion. Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release cytokines in response to pathogen associated molecules and peptide hormone receptors are expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely equipped to be crucial and novel orchestrators of intestinal inflammation. In this review, we introduce enteroendocrine chemosensory roles, summarize studies correlating enteroendocrine perturbations with intestinal inflammation and describe the mechanistic interactions by which enteroendocrine and mucosal immune cells interact during disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.
Collapse
Affiliation(s)
- J J Worthington
- Lancaster University, Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster, Lancashire, UK
| | - F Reimann
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| | - F M Gribble
- University of Cambridge, Metabolic Research Laboratories, Wellcome Trust/MRC Institute of Metabolic Science & MRC Metabolic Diseases Unit, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
352
|
Xu Y, Carradori D, Alhouayek M, Muccioli GG, Cani PD, Préat V, Beloqui A. Size Effect on Lipid Nanocapsule-Mediated GLP-1 Secretion from Enteroendocrine L Cells. Mol Pharm 2017; 15:108-115. [DOI: 10.1021/acs.molpharmaceut.7b00742] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yining Xu
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Dario Carradori
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Bioanalysis
and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- Bioanalysis
and Pharmacology of Bioactive Lipids, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Patrice D. Cani
- Metabolism
and Nutrition Group, Louvain Drug Research Institute, WELBIO (Walloon
Excellence in Life sciences and BIOtechnology), Université catholique de Louvain, 1200 Brussels, Belgium
| | - Véronique Préat
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Ana Beloqui
- Advanced
Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
353
|
Jin M, Zhang X, Zhen Q, He Y, Chen X, Lyu W, Han R, Ding M. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode. Biosens Bioelectron 2017; 98:392-397. [DOI: 10.1016/j.bios.2017.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 11/29/2022]
|
354
|
Qu Y, Ma Q, Liu Z, Wang W, Tang H, Zhou J, Xu P. Unveiling the biotransformation mechanism of indole in a Cupriavidus sp. strain. Mol Microbiol 2017; 106:905-918. [PMID: 28963777 DOI: 10.1111/mmi.13852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 01/13/2023]
Abstract
Indole, an important signaling molecule as well as a typical N-heterocyclic aromatic pollutant, is widespread in nature. However, the biotransformation mechanisms of indole are still poorly studied. Here, we sought to unlock the genetic determinants of indole biotransformation in strain Cupriavidus sp. SHE based on genomics, proteomics and functional studies. A total of 177 proteins were notably altered (118 up- and 59 downregulated) in cells grown in indole mineral salt medium when compared with that in sodium citrate medium. RT-qPCR and gene knockout assays demonstrated that an indole oxygenase gene cluster was responsible for the indole upstream metabolism. A functional indole oxygenase, termed IndA, was identified in the cluster, and its catalytic efficiency was higher than those of previously reported indole oxidation enzymes. Furthermore, the indole downstream metabolism was found to proceed via the atypical CoA-thioester pathway rather than conventional gentisate and salicylate pathways. This unusual pathway was catalyzed by a conserved 2-aminobenzoyl-CoA gene cluster, among which the 2-aminobenzoyl-CoA ligase initiated anthranilate transformation. This study unveils the genetic determinants of indole biotransformation and will provide new insights into our understanding of indole biodegradation in natural environments and its functional studies.
Collapse
Affiliation(s)
- Yuanyuan Qu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Qiao Ma
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ziyan Liu
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jiti Zhou
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
355
|
Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen Sulfide and Sulfate Prebiotic Stimulates the Secretion of GLP-1 and Improves Glycemia in Male Mice. Endocrinology 2017; 158:3416-3425. [PMID: 28977605 DOI: 10.1210/en.2017-00391] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Recently, the gastrointestinal microbiome, and its metabolites, has emerged as a potential regulator of host metabolism. However, to date little is known on the precise mechanisms of how this regulation occurs. Hydrogen sulfide (H2S) is abundantly produced in the colon by sulfate-reducing bacteria (SRB). H2S is a bioactive gas that plays regulatory roles in many systems, including metabolic hormone regulation. This gas metabolite is produced in close proximity to the glucagonlike peptide-1 (GLP-1)-secreting cells in the gut epithelium. GLP-1 is a peptide hormone that plays pivotal roles in both glucose homeostasis and appetite regulation. We hypothesized that H2S can directly regulate GLP-1 secretion. We demonstrated that H2S donors (NaHS and GYY4137) directly stimulate GLP-1 secretion in murine L-cells (GLUTag) and that this occurs through p38 mitogen-activated protein kinase without affecting cell viability. We then increased SRB in mice by supplementing the diet with a prebiotic chondroitin sulfate for 4 weeks. Mice treated with chondroitin sulfate had elevated Desulfovibrio piger levels in the feces and increased colonic and fecal H2S concentration. These animals also had enhanced GLP-1 and insulin secretion, improved oral glucose tolerance, and reduced food consumption. These results indicate that H2S plays a stimulatory role in GLP-1 secretion and that sulfate prebiotics can enhance GLP-1 release and its downstream metabolic actions.
Collapse
Affiliation(s)
- Jennifer Pichette
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| | - Nancy Fynn-Sackey
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| | - Jeffrey Gagnon
- Laurentian University, Department of Biology, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
356
|
Tse H, Gu Q, Sze KH, Chu IK, Kao RYT, Lee KC, Lam CW, Yang D, Tai SSC, Ke Y, Chan E, Chan WM, Dai J, Leung SP, Leung SY, Yuen KY. A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis. J Biol Chem 2017; 292:19503-19520. [PMID: 28972161 DOI: 10.1074/jbc.m117.791558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Cytotoxin-producing Klebsiella oxytoca is the causative agent of antibiotic-associated hemorrhagic colitis (AAHC). Recently, the cytotoxin associated with AAHC was identified as tilivalline, a known pentacyclic pyrrolobenzodiazepine (PBD) metabolite produced by K. oxytoca Although this assertion of tilivalline's role in AAHC is supported by evidence from animal experiments, some key aspects of this finding appear to be incompatible with toxicity mechanisms of known PBD toxins. We therefore hypothesized that K. oxytoca may produce some other uncharacterized cytotoxins. To address this question, we investigated whether tilivalline alone is indeed necessary and sufficient to induce cytotoxicity or whether K. oxytoca also produces other cytotoxins. LC-MS- and NMR-based metabolomic analyses revealed the presence of an abundant tricyclic PBD, provisionally designated kleboxymycin, in the supernatant of toxigenic K. oxytoca strains. Moreover, by generating multiple mutants with gene deletions affecting tilivalline biosynthesis, we show that a tryptophanase-deficient, tilivalline-negative K. oxytoca mutant induced cytotoxicity in vitro similar to tilivalline-positive K. oxytoca strains. Furthermore, synthetic kleboxymycin exhibited greater than 9-fold higher cytotoxicity than tilivalline in TC50 cell culture assays. We also found that the biosynthetic pathways for kleboxymycin and tilivalline appear to overlap, as tilivalline is an indole derivative of kleboxymycin. In summary, our results indicate that tilivalline is not essential for inducing cytotoxicity observed in K. oxytoca-associated AAHC and that kleboxymycin is a tilivalline-related bacterial metabolite with even higher cytotoxicity.
Collapse
Affiliation(s)
- Herman Tse
- From the Department of Microbiology.,Research Centre of Infection and Immunity, and.,the State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR, Hong Kong, China.,the Carol Yu Centre for Infection
| | | | - Kong-Hung Sze
- From the Department of Microbiology.,Research Centre of Infection and Immunity, and.,the State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR, Hong Kong, China.,the Carol Yu Centre for Infection
| | | | - Richard Y-T Kao
- From the Department of Microbiology.,Research Centre of Infection and Immunity, and.,the State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR, Hong Kong, China.,the Carol Yu Centre for Infection
| | - Kam-Chung Lee
- From the Department of Microbiology.,Research Centre of Infection and Immunity, and.,the State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR, Hong Kong, China.,the Carol Yu Centre for Infection
| | | | | | | | | | | | | | - Jun Dai
- From the Department of Microbiology
| | | | | | - Kwok-Yung Yuen
- From the Department of Microbiology, .,Research Centre of Infection and Immunity, and.,the State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR, Hong Kong, China.,the Carol Yu Centre for Infection
| |
Collapse
|
357
|
Turroni S, Brigidi P, Cavalli A, Candela M. Microbiota–Host Transgenomic Metabolism, Bioactive Molecules from the Inside. J Med Chem 2017; 61:47-61. [DOI: 10.1021/acs.jmedchem.7b00244] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Silvia Turroni
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
- Compunet, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Marco Candela
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, 40126 Bologna, Italy
| |
Collapse
|
358
|
Guida C, Stephen S, Guitton R, Ramracheya RD. The Role of PYY in Pancreatic Islet Physiology and Surgical Control of Diabetes. Trends Endocrinol Metab 2017; 28:626-636. [PMID: 28533020 DOI: 10.1016/j.tem.2017.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/27/2017] [Indexed: 12/30/2022]
Abstract
Bariatric surgery in obese individuals leads to rapid and lasting remission of type 2 diabetes (T2D). This phenomenon occurs independently of weight loss possibly via a combination of factors. The incretin hormone GLP-1 has so far been recognised as a critical factor. However, recent data have indicated that elevation in another gut hormone, peptide tyrosine tyrosine (PYY), may drive the beneficial effects of surgery. Here we discuss recent findings on PYY-mediated control of glucose homeostasis and its role in diabetes, in the context of what is known for GLP-1. Identification of factors that increase the expression of PYY following bariatric surgery and elucidation of its role in diabetes reversal may have clinical relevance as a nonsurgical therapy for T2D.
Collapse
Affiliation(s)
- Claudia Guida
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK
| | - Sam Stephen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK
| | - Romain Guitton
- Angers University Hospital, 18 Avenue du Général Patton, 49000 Angers, France
| | - Reshma D Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX37LJ Oxford, UK.
| |
Collapse
|
359
|
Mani S. Indole microbial metabolites: expanding and translating target(s). Oncotarget 2017; 8:52014-52015. [PMID: 28881709 PMCID: PMC5581008 DOI: 10.18632/oncotarget.19443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sridhar Mani
- Departments of Medicine and Genetics, The Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
360
|
Signalling in the gut endocrine axis. Physiol Behav 2017; 176:183-188. [DOI: 10.1016/j.physbeh.2017.02.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
|
361
|
Abstract
Obesity and metabolic syndrome is a multisystemic disorder, that is characterized by excess caloric intake and spillover lipotoxicity caused by ectopic lipid accumulation in non-adipose tissues. Low grade chronic inflammation and insulin resistance are the hallmarks of the disorder, which further aggravate the condition. Gut microbiota constitutes an indispensible part of human superorganism's energy harvesting apparatus. The dynamic composition of microbiota changes with age, life style and host metabolic background. The wealth of genetic repertoire provided by these microorganism enables to extend host's substrate processing and harvesting capability. Some of these compounds including short chain fatty acids and indole act as signalling molecules on mammalian cells and modulate their behaviour. Nonetheless, this symbiotic style of interaction is restrained by immune system. The role of chronic low grade inflammation in metabolic syndrome is well established. Treg cells are the key players that sense and reshape the composition of microbiota. In this regard, any disturbance in Treg functionality may aggravate the inflammation and shift the symbiotic balance towards dysbiosis, which is characterized by autoimmunity and insulin resistance. Thus, immune system is responsible for the modulation of host and microbiota metabolisms and Treg cells act as a bridge in between.
Collapse
|
362
|
Rossi E, Cimdins A, Lüthje P, Brauner A, Sjöling Å, Landini P, Römling U. "It's a gut feeling" - Escherichia coli biofilm formation in the gastrointestinal tract environment. Crit Rev Microbiol 2017; 44:1-30. [PMID: 28485690 DOI: 10.1080/1040841x.2017.1303660] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.
Collapse
Affiliation(s)
- Elio Rossi
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy.,b Novo Nordisk Center for Biosustainabiliy , Technical University of Denmark , Kgs. Lyngby , Denmark
| | - Annika Cimdins
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,d Institute of Hygiene, University of Münster , Münster , Germany
| | - Petra Lüthje
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden.,e Division of Clinical Microbiology, Department of Laboratory Medicine , Karolinska Institutet and Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Annelie Brauner
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Åsa Sjöling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| | - Paolo Landini
- a Department of Biosciences , Università degli Studi di Milano , Milan , Italy
| | - Ute Römling
- c Department of Microbiology, Tumor and Cell Biology (MTC) , Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
363
|
Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Tercé F, Burcelin R. A Specific Gut Microbiota Dysbiosis of Type 2 Diabetic Mice Induces GLP-1 Resistance through an Enteric NO-Dependent and Gut-Brain Axis Mechanism. Cell Metab 2017; 25:1075-1090.e5. [PMID: 28467926 DOI: 10.1016/j.cmet.2017.04.013] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
Glucagon-like peptide-1 (GLP-1)-based therapies control glycemia in type 2 diabetic (T2D) patients. However, in some patients the treatment must be discontinued, defining a state of GLP-1 resistance. In animal models we identified a specific set of ileum bacteria impairing the GLP-1-activated gut-brain axis for the control of insulin secretion and gastric emptying. Using prediction algorithms, we identified bacterial pathways related to amino acid metabolism and transport system modules associated to GLP-1 resistance. The conventionalization of germ-free mice demonstrated their role in enteric neuron biology and the gut-brain-periphery axis. Altogether, insulin secretion and gastric emptying require functional GLP-1 receptor and neuronal nitric oxide synthase in the enteric nervous system within a eubiotic gut microbiota environment. Our data open a novel route to improve GLP-1-based therapies.
Collapse
Affiliation(s)
- Estelle Grasset
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Anthony Puel
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Julie Charpentier
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Xavier Collet
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Jeffrey E Christensen
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - François Tercé
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), 31024 Toulouse, France; Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: Intestinal Risk Factors, Diabetes, Dyslipidemia, Heart Failure, F-31432 Toulouse, Cedex 4, France.
| |
Collapse
|
364
|
Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 2017; 7:46337. [PMID: 28397877 PMCID: PMC5387722 DOI: 10.1038/srep46337] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Wide-scale profiling technologies including metabolomics broaden the possibility of novel discoveries related to the pathogenesis of type 2 diabetes (T2D). By applying non-targeted metabolomics approach, we investigated here whether serum metabolite profile predicts T2D in a well-characterized study population with impaired glucose tolerance by examining two groups of individuals who took part in the Finnish Diabetes Prevention Study (DPS); those who either early developed T2D (n = 96) or did not convert to T2D within the 15-year follow-up (n = 104). Several novel metabolites were associated with lower likelihood of developing T2D, including indole and lipid related metabolites. Higher indolepropionic acid was associated with reduced likelihood of T2D in the DPS. Interestingly, in those who remained free of T2D, indolepropionic acid and various lipid species were associated with better insulin secretion and sensitivity, respectively. Furthermore, these metabolites were negatively correlated with low-grade inflammation. We replicated the association between indolepropionic acid and T2D risk in one Finnish and one Swedish population. We suggest that indolepropionic acid, a gut microbiota-produced metabolite, is a potential biomarker for the development of T2D that may mediate its protective effect by preservation of β-cell function. Novel lipid metabolites associated with T2D may exert their effects partly through enhancing insulin sensitivity.
Collapse
|
365
|
Li J, Liu Y, Kim E, March JC, Bentley WE, Payne GF. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology. Free Radic Biol Med 2017; 105:110-131. [PMID: 28040473 DOI: 10.1016/j.freeradbiomed.2016.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/06/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H2O2) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this electrochemical tool for in vitro redox-probing.
Collapse
Affiliation(s)
- Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Yi Liu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Eunkyoung Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - John C March
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
366
|
Lee JH, Kim YG, Kim M, Kim E, Choi H, Kim Y, Lee J. Indole-associated predator-prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ Microbiol 2017; 19:1776-1790. [PMID: 28028877 DOI: 10.1111/1462-2920.13649] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/29/2022]
Abstract
Indole is an intercellular and interkingdom signalling molecule found in diverse ecological niches. Caenorhabditis elegans is a bacterivorous nematode that lives in soil and compost environments and a useful model host for studies of host-microbe interactions. Although various bacteria and some plants produce large quantities of extracellular indole, little is known about the effects of indole, its derivatives, or of indole-producing bacteria on the behaviours of C. elegans or other animals. Here, they show that C. elegans senses and moves toward indole and several indole-producing bacteria, but avoids non-indole producing pathogenic bacteria. Furthermore, it was found indole-producing and non-indole-producing bacteria exert divergent effects on the egg-laying behaviour of C. elegans, and that various indole derivatives also modulate chemotaxis, egg-laying behaviour and the survival of C. elegans. In contrast, indole at high concentration can kill C. elegans, which in turn, has the ability to detoxify indole by oxidation and glucosylation. Transcriptional analysis showed indole markedly up-regulated the gene expressions of cytochrome P450s, UDP-glucuronosyltransferases and glutathione S-transferase, which well explained the modification of indole by C. elegans while indole down-regulated the expressions of collagen and F-box genes. Their findings suggest that indole and its derivatives are important signalling molecules during bacteria-nematode interactions.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Minsu Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eonmi Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Younghoon Kim
- Department of Animal Science, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
367
|
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18:2. [PMID: 28061847 PMCID: PMC5219689 DOI: 10.1186/s12865-016-0187-3] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. Methods This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). Results In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. Conclusions A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.
Collapse
Affiliation(s)
- Lan Lin
- Department of Bioengineering, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| | - Jianqiong Zhang
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
368
|
Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol 2017; 13:11-25. [PMID: 27616451 DOI: 10.1038/nrendo.2016.150] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The life of all animals is dominated by alternating feelings of hunger and satiety - the main involuntary motivations for feeding-related behaviour. Gut bacteria depend fully on their host for providing the nutrients necessary for their growth. The intrinsic ability of bacteria to regulate their growth and to maintain their population within the gut suggests that gut bacteria can interfere with molecular pathways controlling energy balance in the host. The current model of appetite control is based mainly on gut-brain signalling and the animal's own needs to maintain energy homeostasis; an alternative model might also involve bacteria-host communications. Several bacterial components and metabolites have been shown to stimulate intestinal satiety pathways; at the same time, their production depends on bacterial growth cycles. This short-term bacterial growth-linked modulation of intestinal satiety can be coupled with long-term regulation of appetite, controlled by the neuropeptidergic circuitry in the hypothalamus. Indeed, several bacterial products are detected in the systemic circulation, which might act directly on hypothalamic neurons. This Review analyses the data relevant to possible involvement of the gut bacteria in the regulation of host appetite and proposes an integrative homeostatic model of appetite control that includes energy needs of both the host and its gut bacteria.
Collapse
Affiliation(s)
- Sergueï O Fetissov
- Nutrition, Gut &Brain Laboratory, Inserm UMR 1073, University of Rouen Normandy, 22 Boulevard Gambetta, 76183 Rouen, France
| |
Collapse
|
369
|
Mazzoli R, Pessione E. The Neuro-endocrinological Role of Microbial Glutamate and GABA Signaling. Front Microbiol 2016; 7:1934. [PMID: 27965654 PMCID: PMC5127831 DOI: 10.3389/fmicb.2016.01934] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota provides the host with multiple functions (e.g., by contributing to food digestion, vitamin supplementation, and defense against pathogenic strains) and interacts with the host organism through both direct contact (e.g., through surface antigens) and soluble molecules, which are produced by the microbial metabolism. The existence of the so-called gut–brain axis of bi-directional communication between the gastrointestinal tract and the central nervous system (CNS) also supports a communication pathway between the gut microbiota and neural circuits of the host, including the CNS. An increasing body of evidence has shown that gut microbiota is able to modulate gut and brain functions, including the mood, cognitive functions, and behavior of humans. Nonetheless, given the extreme complexity of this communication network, its comprehension is still at its early stage. The present contribution will attempt to provide a state-of-the art description of the mechanisms by which gut microbiota can affect the gut–brain axis and the multiple cellular and molecular communication circuits (i.e., neural, immune, and humoral). In this context, special attention will be paid to the microbial strains that produce bioactive compounds and display ascertained or potential probiotic activity. Several neuroactive molecules (e.g., catecholamines, histamine, serotonin, and trace amines) will be considered, with special focus on Glu and GABA circuits, receptors, and signaling. From the basic science viewpoint, “microbial endocrinology” deals with those theories in which neurochemicals, produced by both multicellular organisms and prokaryotes (e.g., serotonin, GABA, glutamate), are considered as a common shared language that enables interkingdom communication. With regards to its application, research in this area opens the way toward the possibility of the future use of neuroactive molecule-producing probiotics as therapeutic agents for the treatment of neurogastroenteric and/or psychiatric disorders.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| | - Enrica Pessione
- Laboratory of Biochemistry, Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino Torino, Italy
| |
Collapse
|
370
|
Beloqui A, Alhouayek M, Carradori D, Vanvarenberg K, Muccioli GG, Cani PD, Préat V. A Mechanistic Study on Nanoparticle-Mediated Glucagon-Like Peptide-1 (GLP-1) Secretion from Enteroendocrine L Cells. Mol Pharm 2016; 13:4222-4230. [DOI: 10.1021/acs.molpharmaceut.6b00871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ana Beloqui
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Mireille Alhouayek
- Université catholique de Louvain, Louvain Drug Research
Institute, Bioanalysis and Pharmacology of Bioactive Lipids Group, 1200 Brussels, Belgium
| | - Dario Carradori
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Giulio G. Muccioli
- Université catholique de Louvain, Louvain Drug Research
Institute, Bioanalysis and Pharmacology of Bioactive Lipids Group, 1200 Brussels, Belgium
| | - Patrice D. Cani
- Université catholique de Louvain, WELBIO (Walloon Excellence
in Life sciences and BIOtechnology), Louvain Drug Research Institute,
Metabolism and Nutrition Group, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| |
Collapse
|
371
|
O'Malley D. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2016; 311:G934-G941. [PMID: 27742703 PMCID: PMC5130550 DOI: 10.1152/ajpgi.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
372
|
Portune KJ, Beaumont M, Davila AM, Tomé D, Blachier F, Sanz Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
373
|
Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes 2016; 8:753-765. [PMID: 27287542 DOI: 10.1111/1753-0407.12439] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a cell type-specific post-translational product of proglucagon. It is encoded by the proglucagon gene and released primarily from intestinal endocrine L-cells in response to hormonal, neuronal, and nutritional stimuli. In addition to serving as an incretin in mediating the effect of meal consumption on insulin secretion, GLP-1 exerts other functions in pancreatic islets, including regulation of β-cell proliferation and protection of β-cells against metabolic stresses. Furthermore, GLP-1 exerts numerous other functions in extrapancreatic organs, whereas brain GLP-1 signaling controls satiety. Herein we review the discovery of two incretins and the development of GLP-1-based drugs. We also describe the development of cellular models for studying mechanisms underlying GLP-1 secretion over the past 30 years. However, the main content of this review is a summary of studies on the exploration of mechanisms underlying GLP-1 secretion. We not only summarize studies conducted over the past three decades on elucidating the role of nutritional components and hormonal factors in regulating GLP-1 secretion, but also present a few very recent studies showing the possible role of dietary polyphenols. Finally, the emerging role of gut microbiota in metabolic homeostasis with the potential implication on GLP-1 secretion is discussed.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
374
|
Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
375
|
Mrozinska S, Radkowski P, Gosiewski T, Szopa M, Bulanda M, Ludwig-Galezowska AH, Morawska I, Sroka-Oleksiak A, Matejko B, Kapusta P, Salamon D, Malecki MT, Wolkow P, Klupa T. Qualitative Parameters of the Colonic Flora in Patients with HNF1A-MODY Are Different from Those Observed in Type 2 Diabetes Mellitus. J Diabetes Res 2016; 2016:3876764. [PMID: 27807544 PMCID: PMC5078663 DOI: 10.1155/2016/3876764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023] Open
Abstract
Background. Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY). Methods. The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A-MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed. Results. There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher (p = 0.0006) and the amount of Bacteroidetes was lower (p = 0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group (p = 0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group. Conclusions. It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted.
Collapse
Affiliation(s)
- Sandra Mrozinska
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- University Hospital, 36 Kopernika Street, 31-501 Kraków, Poland
| | - Piotr Radkowski
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7c Kopernika Street, 31-034 Kraków, Poland
| | - Tomasz Gosiewski
- Department of Microbiology, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Magdalena Szopa
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- University Hospital, 36 Kopernika Street, 31-501 Kraków, Poland
| | - Malgorzata Bulanda
- Department of Microbiology, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Agnieszka H. Ludwig-Galezowska
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7c Kopernika Street, 31-034 Kraków, Poland
| | - Iwona Morawska
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- University Hospital, 36 Kopernika Street, 31-501 Kraków, Poland
| | - Agnieszka Sroka-Oleksiak
- Department of Microbiology, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Bartlomiej Matejko
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
| | - Przemyslaw Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7c Kopernika Street, 31-034 Kraków, Poland
| | - Dominika Salamon
- Department of Microbiology, Jagiellonian University Medical College, 18 Czysta Street, 31-121 Kraków, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- University Hospital, 36 Kopernika Street, 31-501 Kraków, Poland
| | - Pawel Wolkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, 7c Kopernika Street, 31-034 Kraków, Poland
| | - Tomasz Klupa
- Department of Metabolic Diseases, Jagiellonian University Medical College, 15 Kopernika Street, 31-501 Kraków, Poland
- University Hospital, 36 Kopernika Street, 31-501 Kraków, Poland
| |
Collapse
|
376
|
Gagnon J. Adapting L-Cells to the Rescue! Endocrinology 2016; 157:3769-3770. [PMID: 27690675 DOI: 10.1210/en.2016-1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jeffrey Gagnon
- Department of biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
| |
Collapse
|
377
|
Portune KJ, Benítez-Páez A, Del Pulgar EMG, Cerrudo V, Sanz Y. Gut microbiota, diet, and obesity-related disorders-The good, the bad, and the future challenges. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600252] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin J. Portune
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Alfonso Benítez-Páez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Eva Maria Gomez Del Pulgar
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Victor Cerrudo
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council, Valencia (IATA-CSIC); C/ Catedràtic Agustín Escardino Benlloch, 7; Valencia Spain
| |
Collapse
|
378
|
Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, Bibiloni R, Bruneau A, Gérard P, Siddharth J, Lauber CL, Chou CJ. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 2016; 6:32484. [PMID: 27577172 PMCID: PMC5006052 DOI: 10.1038/srep32484] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.
Collapse
Affiliation(s)
- Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Déborah Moine
- Nestlé Research Centre, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Lutz Krause
- Nestlé Research Centre, Lausanne, Switzerland
| | | | - Aurélia Bruneau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jay Siddharth
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Chieh Jason Chou
- Nestlé Research Centre, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
379
|
Abstract
The intestinal microbiome is a signalling hub that integrates environmental inputs, such as diet, with genetic and immune signals to affect the host's metabolism, immunity and response to infection. The haematopoietic and non-haematopoietic cells of the innate immune system are located strategically at the host-microbiome interface. These cells have the ability to sense microorganisms or their metabolic products and to translate the signals into host physiological responses and the regulation of microbial ecology. Aberrations in the communication between the innate immune system and the gut microbiota might contribute to complex diseases.
Collapse
|
380
|
Hodge RJ, Nunez DJ. Therapeutic potential of Takeda-G-protein-receptor-5 (TGR5) agonists. Hope or hype? Diabetes Obes Metab 2016; 18:439-43. [PMID: 26818602 DOI: 10.1111/dom.12636] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 12/27/2022]
Abstract
The gastrointestinal tract regulates glucose and energy metabolism, and there is increasing recognition that bile acids function as key signalling molecules in these processes. For example, bile acid changes that occur after bariatric surgery have been implicated in the effects on satiety, lipid and cholesterol regulation, glucose and energy metabolism, and the gut microbiome. In recent years, Takeda-G-protein-receptor-5 (TGR5), a bile acid receptor found in widely dispersed tissues, has been the target of significant drug discovery efforts in the hope of identifying effective treatments for metabolic diseases including type 2 diabetes, obesity, atherosclerosis, fatty liver disease and cancer. Although the benefits of targeting the TGR5 receptor are potentially great, drug development work to date has identified risks that include histopathological changes, tumorigenesis, gender differences, and questions about the translation of animal data to humans. The present article reviews the noteworthy challenges that must be addressed along the path of development of a safe and effective TGR5 agonist therapy.
Collapse
MESH Headings
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Drug Design
- Drug Discovery/trends
- Drug Evaluation, Preclinical
- Drugs, Investigational/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/therapeutic use
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Models, Biological
- Molecular Targeted Therapy
- Obesity/drug therapy
- Obesity/metabolism
- Organ Specificity
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Translational Research, Biomedical/trends
Collapse
Affiliation(s)
- R J Hodge
- Discovery Medicine, Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline Research and Development, Research Triangle Park, NC, USA
| | - D J Nunez
- Discovery Medicine, Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
381
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
382
|
Ramracheya RD, McCulloch LJ, Clark A, Wiggins D, Johannessen H, Olsen MK, Cai X, Zhao CM, Chen D, Rorsman P. PYY-Dependent Restoration of Impaired Insulin and Glucagon Secretion in Type 2 Diabetes following Roux-En-Y Gastric Bypass Surgery. Cell Rep 2016; 15:944-950. [PMID: 27117413 PMCID: PMC5063952 DOI: 10.1016/j.celrep.2016.03.091] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/18/2016] [Accepted: 03/25/2016] [Indexed: 02/07/2023] Open
Abstract
Roux-en-Y gastric bypass (RYGB) is a weight-reduction procedure resulting in rapid resolution of type 2 diabetes (T2D). The role of pancreatic islet function in this restoration of normoglycemia has not been fully elucidated. Using the diabetic Goto-Kakizaki (GK) rat model, we demonstrate that RYGB restores normal glucose regulation of glucagon and insulin secretion and normalizes islet morphology. Culture of isolated islets with serum from RYGB animals mimicked these effects, implicating a humoral factor. These latter effects were reversed following neutralization of the gut hormone peptide tyrosine tyrosine (PYY) but persisted in the presence of a glucagon-like peptide-1 (GLP-1) receptor antagonist. The effects of RYGB on secretion were replicated by chronic exposure of diabetic rat islets to PYY in vitro. These findings indicate that the mechanism underlying T2D remission may be mediated by PYY and suggest that drugs promoting PYY release or action may restore pancreatic islet function in T2D. Roux-en-Y gastric bypass rapidly restores islet function and morphology in diabetic GK rats The effects of RYGB on islet function are mediated by the gut hormone PYY and not GLP-1 In vitro PYY application to diabetic islets restores insulin and glucagon secretion
Collapse
Affiliation(s)
- Reshma D Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxon OX3 7LE, UK.
| | - Laura J McCulloch
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxon OX3 7LE, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxon OX3 7LE, UK
| | - David Wiggins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxon OX3 7LE, UK
| | - Helene Johannessen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Magnus Kringstad Olsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Xing Cai
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chun-Mei Zhao
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, Oxon OX3 7LE, UK; Metabolic Research, Department of Physiology, Institute of Neuroscience and Physiology, University of Goteborg, Box 432, 40530 Göteborg, Sweden
| |
Collapse
|
383
|
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8:46. [PMID: 27102537 PMCID: PMC4840492 DOI: 10.1186/s13073-016-0296-x] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry- and nuclear magnetic resonance-based metabolomic studies comparing diseased versus healthy individuals have shown that microbial metabolites are often the compounds most markedly altered in the disease state. Recent studies suggest that several of these metabolites that derive from microbial transformation of dietary components have significant effects on physiological processes such as gut and immune homeostasis, energy metabolism, vascular function, and neurological behavior. Here, we review several of the most intriguing diet-dependent metabolites that may impact host physiology and may therefore be appropriate targets for therapeutic interventions, such as short-chain fatty acids, trimethylamine N-oxide, tryptophan and tyrosine derivatives, and oxidized fatty acids. Such interventions will require modulating either bacterial species or the bacterial biosynthetic enzymes required to produce these metabolites, so we briefly describe the current understanding of the bacterial and enzymatic pathways involved in their biosynthesis and summarize their molecular mechanisms of action. We then discuss in more detail the impact of these metabolites on health and disease, and review current strategies to modulate levels of these metabolites to promote human health. We also suggest future studies that are needed to realize the full therapeutic potential of targeting the gut microbiota.
Collapse
Affiliation(s)
- Linda S Zhang
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sean S Davies
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA. .,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
384
|
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition.
Collapse
|
385
|
Utzschneider KM, Kratz M, Damman CJ, Hullar M. Mechanisms Linking the Gut Microbiome and Glucose Metabolism. J Clin Endocrinol Metab 2016; 101:1445-54. [PMID: 26938201 PMCID: PMC4880177 DOI: 10.1210/jc.2015-4251] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This review details potential mechanisms linking gut dysbiosis to metabolic dysfunction, including lipopolysaccharide, bile acids, short chain fatty acids, gut hormones, and branched-chain amino acids.
Collapse
Affiliation(s)
- Kristina M Utzschneider
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mario Kratz
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chris J Damman
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Meredith Hullar
- Division of Metabolism, Endocrinology and Nutrition (K.M.U.), Department of Medicine, VA Puget Sound Health Care System and the University of Washington, Seattle, Washington; Division of Public Health Sciences (M.K.), Fred Hutchinson Cancer Research Center, and the Department of Epidemiology, University of Washington, Seattle, Washington; Division of Gastroenterology (C.J.D.), Department of Medicine, University of Washington, Seattle, Washington; and Division of Public Health Sciences (M.H.), Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
386
|
Clara R, Langhans W, Mansouri A. Oleic acid stimulates glucagon-like peptide-1 release from enteroendocrine cells by modulating cell respiration and glycolysis. Metabolism 2016; 65:8-17. [PMID: 26892511 DOI: 10.1016/j.metabol.2015.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/22/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. METHODS First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. RESULTS OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. CONCLUSION These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1.
Collapse
Affiliation(s)
- Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach (Zürich), Switzerland.
| |
Collapse
|
387
|
Saha S, Rajpal DK, Brown JR. Human microbial metabolites as a source of new drugs. Drug Discov Today 2016; 21:692-8. [PMID: 26916596 DOI: 10.1016/j.drudis.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/01/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Crosstalk between the microbiome and the human host is mediated by specific ligand-receptor interactions involving microbially generated metabolites that can be either agonists or antagonists of human proteins. The evolved co-compatibility of gut microbiota with human systems points to a potentially rich area for discovering new drug-like molecules that are both highly specific modulators of human pathways and derisked for adverse effects. In this review, we discuss the rapidly growing research into the role of microbial metabolites in human health and suggest potential strategies for developing these molecules into therapeutic agents.
Collapse
Affiliation(s)
- Somdutta Saha
- Computational Biology, Target Sciences, R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426-0989, USA
| | - Deepak K Rajpal
- Computational Biology, Target Sciences, R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426-0989, USA
| | - James R Brown
- Computational Biology, Target Sciences, R&D, GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426-0989, USA.
| |
Collapse
|
388
|
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon like peptide-1 (GLP-1) are secreted from enteroendocrine cells in the gut and regulate physiological and homeostatic functions related to glucose control, metabolism and food intake. This review provides a systematic summary of the molecular mechanisms underlying secretion from incretin cells, and an understanding of how they sense and interact with lumen and vascular factors and the enteric nervous system through transporters and G-protein coupled receptors (GPCRs) present on their surface to ultimately culminate in hormone release. Some of the molecules described below such as sodium coupled glucose transporter 1 (SGLT1), G-protein coupled receptor (GPR) 119 and GPR40 are targets of novel therapeutics designed to enhance endogenous gut hormone release. Synthetic ligands at these receptors aimed at treating obesity and type 2 diabetes are currently under investigation.
Collapse
Affiliation(s)
- Ramona Pais
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Fiona M. Gribble
- The Wellcome Trust–MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Addenbrookes’s Hospital, Box 289, Hills Road, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
389
|
Anbazhagan AN, Priyamvada S, Gujral T, Bhattacharyya S, Alrefai WA, Dudeja PK, Borthakur A. A novel anti-inflammatory role of GPR120 in intestinal epithelial cells. Am J Physiol Cell Physiol 2016; 310:C612-21. [PMID: 26791484 DOI: 10.1152/ajpcell.00123.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022]
Abstract
GPR120 (free fatty acid receptor-4) is a G protein-coupled receptor for medium- and long-chain unsaturated fatty acids, including ω-3 fatty acids. Recent studies have shown GPR120 to play cardinal roles in metabolic disorders via modulation of gut hormone secretion and insulin sensitivity and to exert anti-inflammatory effects in macrophages and adipose tissues. However, information on anti-inflammatory role of GPR120 at the level of intestinal epithelium is very limited. Current studies demonstrated differential levels of GPR120 mRNA and protein along the length of the human, mouse, and rat intestine and delineated distinct anti-inflammatory responses following GPR120 activation in model human intestinal epithelial Caco-2 cells, but not in model mouse intestinal epithelial endocrine cell line STC-1. In Caco-2 cells, GPR120 was internalized, bound to β-arrestin-2, and attenuated NF-κB activation in response to 30-min exposure to the agonists GW9508, TUG-891, or docosahexaenoic acid. These effects were abrogated in response to small interfering RNA silencing of β-arrestin-2. Treatment of STC-1 cells with these agonists did not induce receptor internalization and had no effects on NF-κB activation, although treatment with the agonists GW9508 or TUG-891 for 6 h augmented the synthesis and secretion of the gut hormone glucagon-like peptide-1 in this cell line. Our studies for the first time demonstrated a GPR120-mediated novel anti-inflammatory pathway in specific intestinal epithelial cell types that could be of therapeutic relevance to intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Arivarasu N Anbazhagan
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Shubha Priyamvada
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Tarunmeet Gujral
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Sumit Bhattacharyya
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Waddah A Alrefai
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Alip Borthakur
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
390
|
Lee JH, Wood TK, Lee J. Roles of Indole as an Interspecies and Interkingdom Signaling Molecule. Trends Microbiol 2015; 23:707-718. [DOI: 10.1016/j.tim.2015.08.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
|
391
|
Bouillon R, Drucker DJ, Ferrannini E, Grinspoon S, Rosen CJ, Zimmet P. The past 10 years-new hormones, new functions, new endocrine organs. Nat Rev Endocrinol 2015; 11:681-6. [PMID: 26323661 DOI: 10.1038/nrendo.2015.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the publication of the first issue of this journal in November 2005, our understanding of the endocrine system has evolved, with the identification of novel hormones and novel endocrine roles for previously identified molecules. Here, we have asked six of our Advisory Board Members to comment on how these insights have led to the recognition that many organs and tissues that were not widely considered part of the classic endocrine system in the past have important endocrine functions.
Collapse
Affiliation(s)
- Roger Bouillon
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49 ON1, Box 902, 3000 Leuven, Belgium
| | - Daniel J Drucker
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, 600 University Avenue, TCP5-1004 MailBox 39, Toronto, ON M5G 1X5, Canada
| | - Ele Ferrannini
- University of Pisa, Department of Internal Medicine, Via Roma 67, Pisa, PI 56100, Italy
| | - Steven Grinspoon
- Harvard Medical School, MGH Program in Nutritional Metabolism, 5 Longfellow Place, Room 207, Boston, MA 02114, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Paul Zimmet
- Baker IDI Heart and Diabetes Institute, Epidemiology &Clinical Diabetes, 99 Commercial Road, Melbourne, VIC 3004, Australia
| |
Collapse
|
392
|
Medkour Y, Svistkova V, Titorenko VI. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:259-97. [PMID: 26811290 DOI: 10.1016/bs.ircmb.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging.
Collapse
Affiliation(s)
- Younes Medkour
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
393
|
Abstract
The enteroendocrine system orchestrates how the body responds to the ingestion of foods, employing a diversity of hormones to fine-tune a wide range of physiological responses both within and outside the gut. Recent interest in gut hormones has surged with the realization that they modulate glucose tolerance and food intake through a variety of mechanisms, and such hormones are therefore excellent therapeutic candidates for the treatment of diabetes and obesity. Characterizing the roles and functions of different enteroendocrine cells is an essential step in understanding the physiology, pathophysiology, and therapeutics of the gut-brain-pancreas axis.
Collapse
Affiliation(s)
- Fiona M Gribble
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| | - Frank Reimann
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, and Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; ,
| |
Collapse
|
394
|
Delzenne NM, Cani PD, Everard A, Neyrinck AM, Bindels LB. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015. [PMID: 26224102 DOI: 10.1007/s00125-015-3712-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Each human intestine harbours not only hundreds of trillions of bacteria but also bacteriophage particles, viruses, fungi and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. An increasing number of data obtained during the last 10 years have indicated changes in gut bacterial composition or function in type 2 diabetic patients. Analysis of this 'dysbiosis' enables the detection of alterations in specific bacteria, clusters of bacteria or bacterial functions associated with the occurrence or evolution of type 2 diabetes; these bacteria are predominantly involved in the control of inflammation and energy homeostasis. Our review focuses on two key questions: does gut dysbiosis truly play a role in the occurrence of type 2 diabetes, and will recent discoveries linking the gut microbiota to host health be helpful for the development of novel therapeutic approaches for type 2 diabetes? Here we review how pharmacological, surgical and nutritional interventions for type 2 diabetic patients may impact the gut microbiota. Experimental studies in animals are identifying which bacterial metabolites and components act on host immune homeostasis and glucose metabolism, primarily by targeting intestinal cells involved in endocrine and gut barrier functions. We discuss novel approaches (e.g. probiotics, prebiotics and faecal transfer) and the need for research and adequate intervention studies to evaluate the feasibility and relevance of these new therapies for the management of type 2 diabetes.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium.
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
- Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier, 73, B1.73.11, 1200, Brussels, Belgium
| |
Collapse
|
395
|
Berstad A, Raa J, Valeur J. Indole - the scent of a healthy 'inner soil'. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2015; 26:27997. [PMID: 26282698 PMCID: PMC4539392 DOI: 10.3402/mehd.v26.27997] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022]
Abstract
Tryptophan is an essential amino acid with an indole nucleus. Humans cannot produce this amino acid themselves, but must obtain it through their diet. Much attention is currently paid to the wide physiological and clinical implications of the tryptophan-derived substances, serotonin and kynurenines, generated by human enzymes following the intestinal absorption of tryptophan. However, even before being absorbed, several microbial metabolites of tryptophan are formed, mainly from ‘malabsorbed’ (incompletely digested) proteins within the colon. The normal smell of human faeces is largely due to indole, one of the major metabolites. Recent studies indicate that this foul-smelling substance is also of utmost importance for our health.
Collapse
Affiliation(s)
- Arnold Berstad
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway;
| | - Jan Raa
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Jørgen Valeur
- Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
| |
Collapse
|
396
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
397
|
Yusta B, Baggio LL, Koehler J, Holland D, Cao X, Pinnell LJ, Johnson-Henry KC, Yeung W, Surette MG, Bang KWA, Sherman PM, Drucker DJ. GLP-1R Agonists Modulate Enteric Immune Responses Through the Intestinal Intraepithelial Lymphocyte GLP-1R. Diabetes 2015; 64:2537-49. [PMID: 25735732 DOI: 10.2337/db14-1577] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 11/13/2022]
Abstract
Obesity and diabetes are characterized by increased inflammation reflecting disordered control of innate immunity. We reveal a local intestinal intraepithelial lymphocyte (IEL)-GLP-1 receptor (GLP-1R) signaling network that controls mucosal immune responses. Glp1r expression was enriched in intestinal IEL preparations and copurified with markers of Tαβ and Tγδ IELs, the two main subsets of intestinal IELs. Exendin-4 increased cAMP accumulation in purified IELs and reduced the production of cytokines from activated IELs but not from splenocytes ex vivo. These actions were mimicked by forskolin, absent in IELs from Glp1r(-/-) mice, and attenuated by the GLP-1R agonist exendin (9-39) consistent with a GLP-1R-dependent mechanism of action. Furthermore, Glp1r(-/-) mice exhibited dysregulated intestinal gene expression, an abnormal representation of microbial species in feces, and enhanced sensitivity to intestinal injury following administration of dextran sodium sulfate. Bone marrow transplantation using wild-type C57BL/6 donors normalized expression of multiple genes regulating immune function and epithelial integrity in Glp1r(-/-) recipient mice, whereas acute exendin-4 administration robustly induced the expression of genes encoding cytokines and chemokines in normal and injured intestine. Taken together, these findings define a local enteroendocrine-IEL axis linking energy availability, host microbial responses, and mucosal integrity to the control of innate immunity.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Laurie L Baggio
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Jacqueline Koehler
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Dianne Holland
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Xiemin Cao
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Lee J Pinnell
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Kathene C Johnson-Henry
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - William Yeung
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michael G Surette
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - K W Annie Bang
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Philip M Sherman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| |
Collapse
|
398
|
The gut microbiota of nonalcoholic fatty liver disease: current methods and their interpretation. Hepatol Int 2015; 9:406-15. [PMID: 26067771 PMCID: PMC4473019 DOI: 10.1007/s12072-015-9640-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
The role of intestinal bacteria in the pathogenesis of nonalcoholic fatty liver disease is increasingly acknowledged. Recently developed microbial profiling techniques are beginning to shed light on the nature of gut microbiota alterations in nonalcoholic fatty liver disease. In this review, we summarize the gut microbiota composition changes that have been reported during different stages of human nonalcoholic fatty liver disease, and highlight the relation between bile acids and gut bacteria in this context. In addition, we discuss the different methodologies used in microbiota analyses as well as the interpretation of microbiota data. Whereas the currently available studies have provided useful information, future large-scale prospective studies with carefully phenotyped subjects and sequential sampling will be required to demonstrate a causal role of gut microbiota changes in the etiology of nonalcoholic fatty liver disease.
Collapse
|
399
|
Abstract
The enteroendocrine system is the primary sensor of ingested nutrients and is responsible for secreting an array of gut hormones, which modulate multiple physiological responses including gastrointestinal motility and secretion, glucose homeostasis, and appetite. This Review provides an up-to-date synopsis of the molecular mechanisms underlying enteroendocrine nutrient sensing and highlights our current understanding of the neuro-hormonal regulation of gut hormone secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the development of novel therapeutic strategies.
Collapse
|
400
|
Mani S, Boelsterli UA, Redinbo MR. Understanding and modulating mammalian-microbial communication for improved human health. Annu Rev Pharmacol Toxicol 2013; 3. [PMID: 27942535 PMCID: PMC5145265 DOI: 10.11131/2016/101199] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular basis for the regulation of the intestinal barrier is a very fertile research area. A growing body of knowledge supports the targeting of various components of intestinal barrier function as means to treat a variety of diseases, including the inflammatory bowel diseases. Herein, we will summarize the current state of knowledge of key xenobiotic receptor regulators of barrier function, highlighting recent advances, such that the field and its future are succinctly reviewed. We posit that these receptors confer an additional dimension of host-microbe interaction in the gut, by sensing and responding to metabolites released from the symbiotic microbiota, in innate immunity and also in host drug metabolism. The scientific evidence for involvement of the receptors and its molecular basis for the control of barrier function and innate immunity regulation would serve as a rationale towards development of non-toxic probes and ligands as drugs.
Collapse
Affiliation(s)
- Sridhar Mani
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|