351
|
Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 2020; 28:544-554. [PMID: 31926267 PMCID: PMC7214213 DOI: 10.1016/j.joca.2019.12.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a family of degenerative diseases affecting multiple joint tissues. Despite the diverse etiology and pathogenesis of OA, increasing evidence suggests that macrophages can play a significant role in modulating joint inflammation, and thus OA severity, via various secreted mediators. Recent advances in next-generation sequencing technologies coupled with proteomic and epigenetic tools have greatly facilitated research to elucidate the embryonic origin of macrophages in various tissues including joint synovium. Furthermore, scientists have now begun to appreciate that macrophage polarization can span beyond the conventionally recognized binary states (i.e., pro-inflammatory M1-like vs anti-inflammatory M2-like) and may encompass a broad spectrum of phenotypes. Although the presence of these cells has been shown in multiple joint tissues, additional mechanistic studies are required to provide a comprehensive understanding of the precise role of these diverse macrophage populations in OA onset and progression. New approaches that can modulate macrophages into desired functional phenotypes may provide novel therapeutic strategies for preventing OA or enhancing cartilage repair and regeneration.
Collapse
Affiliation(s)
- C-L Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - N S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - M A Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - K H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - F Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
352
|
Quantitative Assessment of Arthritis Activity in Rheumatoid Arthritis Patients Using [ 11C]DPA-713 Positron Emission Tomography. Int J Mol Sci 2020; 21:ijms21093137. [PMID: 32365551 PMCID: PMC7246669 DOI: 10.3390/ijms21093137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
Treatment for rheumatoid arthritis (RA) should be started as early as possible to prevent destruction of bone and cartilage in affected joints. A new diagnostic tool for both early diagnosis and therapy monitoring would be valuable to reduce permanent joint damage. Positron emission tomography (PET) imaging of macrophages is a previously demonstrated non-invasive means to visualize (sub)clinical arthritis in RA patients. We developed a kinetic model to quantify uptake of the macrophage tracer [11C]DPA-713 (N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethylpyrazolo [1,5-a]pyrimidin-3-yl]acetamide) in arthritic joints of RA patients and to assess the performance of several simplified methods. Dynamic [11C]DPA-713 scans of 60 min with both arterial and venous blood sampling were performed in five patients with clinically active disease. [11C]DPA-713 showed enhanced uptake in affected joints of RA patients, with tracer uptake levels corresponding to clinical presence and severity of arthritis. The optimal quantitative model for assessment of [11C]DPA-713 uptake was the irreversible two tissue compartment model (2T3k). Both Ki and standardized uptake value (SUV) correlated with the presence of arthritis in RA patients. Using SUV as an outcome measure allows for a simplified static imaging protocol that can be used in larger cohorts.
Collapse
|
353
|
Hu F, Jiang X, Guo C, Li Y, Chen S, Zhang W, Du Y, Wang P, Zheng X, Fang X, Li X, Song J, Xie Y, Huang F, Xue J, Bai M, Jia Y, Liu X, Ren L, Zhang X, Guo J, Pan H, Su Y, Yi H, Ye H, Zuo D, Li J, Wu H, Wang Y, Li R, Liu L, Wang XY, Li Z. Scavenger receptor-A is a biomarker and effector of rheumatoid arthritis: A large-scale multicenter study. Nat Commun 2020; 11:1911. [PMID: 32312978 PMCID: PMC7171100 DOI: 10.1038/s41467-020-15700-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Early diagnosis is critical to improve outcomes in rheumatoid arthritis (RA), but current diagnostic tools have limited sensitivity. Here we report a large-scale multicenter study involving training and validation cohorts of 3,262 participants. We show that serum levels of soluble scavenger receptor-A (sSR-A) are increased in patients with RA and correlate positively with clinical and immunological features of the disease. This discriminatory capacity of sSR-A is clinically valuable and complements the diagnosis for early stage and seronegative RA. sSR-A also has 15.97% prevalence in undifferentiated arthritis patients. Furthermore, administration of SR-A accelerates the onset of experimental arthritis in mice, whereas inhibition of SR-A ameliorates the disease pathogenesis. Together, these data identify sSR-A as a potential biomarker in diagnosis of RA, and targeting SR-A might be a therapeutic strategy.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Xiang Jiang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunqing Guo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA
- Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, USA
- Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, USA
| | - Yingni Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shixian Chen
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Yan Du
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jing Song
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Fei Huang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Limin Ren
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaoying Zhang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Hudan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Huanfa Yi
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA
- Central laboratory of Eastern Division, The First Hospital of Jilin University, Changchun, China
| | - Hua Ye
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Daming Zuo
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, First Hospital Affiliated to Baotou Medical College & Inner Mongolia Key Laboratory of Autoimmunity, Baotou, China
| | - Ru Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xiang-Yang Wang
- Department of Human & Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, USA.
- Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, USA.
- Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, USA.
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
354
|
Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J. PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3687-3696. [PMID: 31842626 DOI: 10.1080/21691401.2019.1661849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. The latest studies proved phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviving, proliferation and pro-inflammatory cytokines in RA. The purpose of this study was to explore the function and underlying mechanisms of PTEN in RA pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes (FLSs). Increased level of PTEN was observed in adjuvant-induced arthritis (AIA) FLSs in comparison to normal rats. Increased concentrations of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), chemokines (CCL-2 and CCL-3), VCAM-1 and VEGF-α expression were observed in FLSs with PTEN inhibitor bpv or PTEN-RNAi. Moreover, co-incubation FLSs with overexpression vector with PTEN-GV141 reduced the expression of pro-inflammatory cytokines, chemokines, VCAM-1 and VEGF-α in AIA. Interestingly, we also found DNA methylation could regulate PTEN expression and activation of AKT signaling was with a change of PTEN. Altogether, our findings in the present study suggested that PTEN might play a pivotal role during pro-inflammatory cytokines and chemokines of FLSs through activation of AKT signaling pathway. In addition, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Hematology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Le Xu
- Departments of Stomatology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
355
|
Zhang N, Wang Z, Zhao Y. Selective inhibition of Tumor necrosis factor receptor-1 (TNFR1) for the treatment of autoimmune diseases. Cytokine Growth Factor Rev 2020; 55:80-85. [PMID: 32327345 DOI: 10.1016/j.cytogfr.2020.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Anti-TNF biologics have achieved great success in the treatment of autoimmune diseases and have been the most selling biologics on market. However, the anti-TNF biologics have shown some disadvantages such as poor efficacy to some patients and high risk of infection and malignancies during clinical application. Current anti-TNF biologics are antibodies or antibody fragments that bind to TNF-α and subsequently block both TNF-TNFR1 and TNF-TNFR2 signaling. Transgenic animal studies indicate that TNFR1 signaling is responsible for chronic inflammation and cell apoptosis whereas TNFR2 signaling regulates tissue regeneration and inflammation. Recent studies propose to selectively inhibit TNFR1 to enhance efficacy and avoid side effects. In this review, we introduce the biology of TNF-TNFR1 and TNF-TNFR2 signaling, the advantages of selective inhibition of TNF-TNFR1 signaling and research updates on the development of selective inhibitors for TNF-TNFR1 signaling. Antibodies, small molecules and aptamers that selectively inhibit TNFR1 have showed therapeutic potential and less side effects in preclinical studies. Development of selective inhibitors for TNFR1 is a good strategy to enhance the efficacy and reduce the side effects of anti-TNF inhibitors and will be a trend for next-generation of anti-TNF inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan Province, Zhengzhou 450001, Henan, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, HeNan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, HeNan Province, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
356
|
Kung CC, Dai SP, Chiang H, Huang HS, Sun WH. Temporal expression patterns of distinct cytokines and M1/M2 macrophage polarization regulate rheumatoid arthritis progression. Mol Biol Rep 2020; 47:3423-3437. [PMID: 32277445 DOI: 10.1007/s11033-020-05422-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of synovial joints and often associated with chronic pain. Chronic joint inflammation is attributed to severe proliferation of synoviocytes and resident macrophages and infiltration of immune cells. These cells secrete pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-17 to overcome actions of anti-inflammatory cytokines, thereby maintaining chronic inflammation and pain. The imbalance between pro-inflammatory cytokines (produced by M1 macrophages) and anti-inflammatory cytokines (produced by M2 macrophages) is a feature of RA progression, but the switch time of M1/M2 polarization and which receptor regulates the switch remain unsolved. Here we used an established RA mouse model to demonstrate that TNF-α expression was responsible for the initial acute stage of inflammation and pain (1-4 weeks), IL-17 expression the transition stage (4-12 weeks), and IL-6 expression the later maintenance stage (> 12 weeks). The switch time of M1/M2 polarization occurred at 4-8 weeks. We also identified a potential compound, anthra[2,1-c][1,2,5] thiadiazole-6,11-dione (NSC745885), that specifically inhibited T-cell death-associated gene 8 (TDAG8) function and expression. NSC745885 decreased joint inflammation and destruction and attenuated pain by reducing cytokine production and regulating the M1/M2 polarization switch. TDAG8 may participate in regulating the M1/M2 polarization and temporal expression of distinct cytokines to control RA progression.
Collapse
Affiliation(s)
- Chia-Chi Kung
- Department of Life Sciences, Zhongli District, National Central University, Taoyuan City, Taiwan.,Division of Anesthesiology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Shih-Ping Dai
- Department of Life Sciences, Zhongli District, National Central University, Taoyuan City, Taiwan
| | - Hao Chiang
- Department of Life Sciences, Zhongli District, National Central University, Taoyuan City, Taiwan
| | - Hsu-Shan Huang
- Graduated Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei City, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences, Zhongli District, National Central University, Taoyuan City, Taiwan. .,Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, No. 155, Sec2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
357
|
Interleukin 26 Skews Macrophage Polarization Towards M1 Phenotype by Activating cJUN and the NF-κB Pathway. Cells 2020; 9:cells9040938. [PMID: 32290250 PMCID: PMC7227026 DOI: 10.3390/cells9040938] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Interleukin 26 (IL-26) is a new member of the IL-10 family that is highly expressed in rheumatoid arthritis (RA). However, the functions of IL-26 produced by macrophages in RA have not been elucidated. In the present work, we evaluated the effects and the mechanisms of IL-26 on M1 and M2 macrophage differentiation. Human or mouse macrophage cells were treated with lipopolysaccharides (LPS), interferon gamma (IFNγ), or IL-4 alone or concurrently treated with IL-26 to monitor M1 or M2 macrophage subtypes. The expression level of M1 or M2 macrophage genes was evaluated by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The molecular mechanisms of downstream signaling activation during differentiation were investigated by immunoblotting assay. Our results found that IL-26 promoted macrophage cells from CD80+ M1 macrophage differentiation, not from the CD206+ M2 phenotype. The messenger RNA of M1-type macrophage markers tumor necrosis factor alpha (TNFα) and inducible nitric oxide synthase (iNOS) was up-regulated in the IL-26-treated group. Also, the M1-related proinflammatory cytokines TNFα and IL-6 were induced after IL-26 stimulation. Interestingly, IL-10, a cytokine marker of M2 macrophage, was also elevated after IL-26 stimulation. Moreover, the M1-like macrophage stimulated by IL-26 underwent cJUN, nuclear factor kappa B (NF-κB), and signal transducer and activator of transcription 1 (STAT1) activation. Our findings suggested the role of IL-26 in synovial macrophages of active rheumatoid arthritis and provided a new insight into IL-26 as a candidate therapeutic target in rheumatoid arthritis.
Collapse
|
358
|
Shi Y, Xie F, Rao P, Qian H, Chen R, Chen H, Li D, Mu D, Zhang L, Lv P, Shi G, Zheng L, Liu G. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J Control Release 2020; 320:304-313. [DOI: 10.1016/j.jconrel.2020.01.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
|
359
|
Delivery of benzoylaconitine using biodegradable nanoparticles to suppress inflammation via regulating NF-κB signaling. Colloids Surf B Biointerfaces 2020; 191:110980. [PMID: 32252000 DOI: 10.1016/j.colsurfb.2020.110980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a kind of systemic autoimmune disease, and patients with RA usually suffer serious pain, resulting in low quality of life. The development of drug delivery systems (DDSs) provides a valid approach for RA therapy via inhibiting the secretion of inflammatory cytokines from macrophages. As a prevailing drug nanocarrier with distinctive superiority, polymeric nanoparticles (NPs) have attracted much attention in recent years. However, low biocompatibility and limited exploitation of drug with high efficiency are still the main challenges in RA treatment. To overcome the limitations, we prepared a biocompatible copolymer methoxy-poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA). Moreover, benzoylaconitine (BAC) with superior anti-inflammatory effect was selected as model drug. It was isolated from Aconitum kusnezoffii Reichb and encapsulated into mPEG-PLGA NPs (NP/BAC) to increase the bioavailablity of BAC. The NPs exhibited high cytocompatibility for activated macrophages and well compatibility with red blood cells. Furthermore, the anti-inflammatory property of NP/BAC was testified by substantially inhibiting secretion of pro-inflammatory cytokines. The TNF-α and IL-1β cytokines of NP/BAC group reduced 70 % and 66 % compared with that of activated macrophages. Especially, NP/BAC reduced the overexpression of NF-κB p65 to inhibit NF-κB signaling pathway, which was a critical regulator of inflammatory responses. NP/BAC also showed efficient in vivo anti-inflammatory effect with high ear (69.8 %) and paw (87.1 %) swelling suppressing rate. These results revealed the anti-inflammatory mechanism of NP/BAC and proved it was a suitable DDS to suppress inflammation, providing a promising strategy for RA therapy and research of Aconitum kusnezoffii Reichb.
Collapse
|
360
|
Nasser MI, Zhu S, Huang H, Zhao M, Wang B, Ping H, Geng Q, Zhu P. Macrophages: First guards in the prevention of cardiovascular diseases. Life Sci 2020; 250:117559. [PMID: 32198051 DOI: 10.1016/j.lfs.2020.117559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide, especially in developing countries. It is widely known that severe inflammation can lead to atherosclerosis, which can cause various downstream pathologies, including myocardial injury and viral myocarditis. To date, several strategies have been proposed to prevent and cure CVD. The use of targeting macrophages has emerged as one of the most effective therapeutic approaches. Macrophages play a crucial role in eliminating senescent and dead cells while maintaining myocardial electrical activity and repairing myocardial injury. They also contribute to tissue repair and remodeling and plaque stabilization. Targeting macrophage pathways can, therefore, be advantageous in CVD care since it can lead to decreased aggregation of mononuclear cells at the injured site in the heart. Furthermore, it inhibits the development of pro-inflammatory factors, facilitates cholesterol outflow, and reduces the lipid concentration. More in-depth studies are still needed to formulate a comprehensive classification of phenotypes for different macrophages and determine their roles in the pathogenesis of CVD. In this review, we summarize the recent advances in the understanding of the role of macrophages in the prevention and cure of CVD.
Collapse
Affiliation(s)
- M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Huang Ping
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China
| | - Qingshan Geng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, Guangdong 510100, China.
| |
Collapse
|
361
|
Ray JP, de Boer CG, Fulco CP, Lareau CA, Kanai M, Ulirsch JC, Tewhey R, Ludwig LS, Reilly SK, Bergman DT, Engreitz JM, Issner R, Finucane HK, Lander ES, Regev A, Hacohen N. Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features. Nat Commun 2020; 11:1237. [PMID: 32144282 PMCID: PMC7060350 DOI: 10.1038/s41467-020-15022-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
Genome-wide association studies have associated thousands of genetic variants with complex traits and diseases, but pinpointing the causal variant(s) among those in tight linkage disequilibrium with each associated variant remains a major challenge. Here, we use seven experimental assays to characterize all common variants at the multiple disease-associated TNFAIP3 locus in five disease-relevant immune cell lines, based on a set of features related to regulatory potential. Trait/disease-associated variants are enriched among SNPs prioritized based on either: (1) residing within CRISPRi-sensitive regulatory regions, or (2) localizing in a chromatin accessible region while displaying allele-specific reporter activity. Of the 15 trait/disease-associated haplotypes at TNFAIP3, 9 have at least one variant meeting one or both of these criteria, 5 of which are further supported by genetic fine-mapping. Our work provides a comprehensive strategy to characterize genetic variation at important disease-associated loci, and aids in the effort to identify trait causal genetic variants.
Collapse
Affiliation(s)
- John P Ray
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Carl G de Boer
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Charles P Fulco
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Caleb A Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Masahiro Kanai
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jacob C Ulirsch
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Ryan Tewhey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Leif S Ludwig
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Steven K Reilly
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Society of Fellows, Harvard University, Cambridge, MA, 02138, USA
| | - Robbyn Issner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
362
|
Castegna A, Gissi R, Menga A, Montopoli M, Favia M, Viola A, Canton M. Pharmacological targets of metabolism in disease: Opportunities from macrophages. Pharmacol Ther 2020; 210:107521. [PMID: 32151665 DOI: 10.1016/j.pharmthera.2020.107521] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
From advances in the knowledge of the immune system, it is emerging that the specialized functions displayed by macrophages during the course of an immune response are supported by specific and dynamically-connected metabolic programs. The study of immunometabolism is demonstrating that metabolic adaptations play a critical role in modulating inflammation and, conversely, inflammation deeply influences the acquisition of specific metabolic settings.This strict connection has been proven to be crucial for the execution of defined immune functional programs and it is now under investigation with respect to several human disorders, such as diabetes, sepsis, cancer, and autoimmunity. The abnormal remodelling of the metabolic pathways in macrophages is now emerging as both marker of disease and potential target of therapeutic intervention. By focusing on key pathological conditions, namely obesity and diabetes, rheumatoid arthritis, atherosclerosis and cancer, we will review the metabolic targets suitable for therapeutic intervention in macrophages. In addition, we will discuss the major obstacles and challenges related to the development of therapeutic strategies for a pharmacological targeting of macrophage's metabolism.
Collapse
Affiliation(s)
- Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| | - Rosanna Gissi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Alessio Menga
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy; Department of Molecular Biotechnologies and Health Sciences, University of Turin, Turin, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Marcella Canton
- Department of Biomedical Sciences, University of Padua, Italy; Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy.
| |
Collapse
|
363
|
Kim J, Jung KH, Yoo J, Park JH, Yan HH, Fang Z, Lim JH, Kwon SR, Kim MK, Park HJ, Hong SS. PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis. Biomol Ther (Seoul) 2020; 28:172-183. [PMID: 31739383 PMCID: PMC7059814 DOI: 10.4062/biomolther.2019.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022] Open
Abstract
Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/ AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Jaeho Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Hee Park
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Hong Hua Yan
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Zhenghuan Fang
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Seong-Ryul Kwon
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Myung Ku Kim
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22313, Republic of Korea
| |
Collapse
|
364
|
Zezina E, Sercan‐Alp O, Herrmann M, Biesemann N. Glucose transporter 1 in rheumatoid arthritis and autoimmunity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1483. [DOI: 10.1002/wsbm.1483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Ekaterina Zezina
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Oezen Sercan‐Alp
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Matthias Herrmann
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| | - Nadine Biesemann
- Sanofi R&D Immunology and Inflammation Therapeutic Area Type 1/17 Inflammation and Arthritis Cluster, Industriepark Hoechst Frankfurt am Main Germany
| |
Collapse
|
365
|
Effect of particle size on the cellular uptake and anti-inflammatory activity of oral nanotherapeutics. Colloids Surf B Biointerfaces 2020; 187:110880. [PMID: 32098717 DOI: 10.1016/j.colsurfb.2020.110880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
To elucidate the impacts of particle size on the cell internalization and anti-inflammatory activity of oral nanotherapeutics, curcumin (CUR)-loaded polymeric nanoparticles (NPs) with different particle sizes were fabricated. The obtained NPs with particle sizes (185-884 nm) and negative zeta potentials (approximately -25 mV) had desirable CUR loading amounts (5.1-6.1 %) and high CUR encapsulation efficiency (73.2-89.6 %). In vitro cellular uptake assays revealed that the cell internalization efficiencies of NPs were increased with the increase of their particle sizes, and NPs (900) showed the highest phagocytosis efficiency in macrophages among all the tested NPs. Importantly, NPs (900) exhibited significantly stronger capability to downregulate the production of the main pro-inflammatory cytokines from macrophages when they were compared with NPs (200) and NPs (500). Further animal studies suggested that oral administration of hydrogel (chitosan and alginate)-embedding NPs (900) could efficiently accumulate in colitis tissue in a manner that was comparable to that of NPs (200) and NPs (500) and could achieve the best treatment efficacy against ulcerative colitis (UC). Collectively, these findings can serve as a guideline for the rational design of nanotherapeutics with desirable accumulation profiles in colitis tissue, maximized cellular uptake efficiency in macrophages, and good therapeutic outcomes against UC.
Collapse
|
366
|
Drutskaya MS, Nosenko MA, Gorshkova EA, Mokhonov VV, Zvartsev RV, Polinova AI, Kruglov AA, Nedospasov SA. Effects of myeloid cell-restricted TNF inhibitors in vitro and in vivo. J Leukoc Biol 2020; 107:933-939. [PMID: 32040234 DOI: 10.1002/jlb.3ab0120-532r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/01/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo. Pretreatment with MYSTI-2, containing the anti-F4/80 module, can restrict the release of human TNF (hTNF) from LPS-activated bone marrow-derived macrophage (BMDM) cultures of humanized TNF knock-in (mice; hTNFKI) more effectively than MYSTI-3, containing the anti-CD11b module. MYSTI-2 was also superior to MYSTI-3 in providing in vivo protection in acute toxicity model. Finally, MYSTI-2 was at least as effective as Infliximab in preventing collagen antibody-induced arthritis. This study demonstrates that a 33 kDa bispecific mini-antibody that specifically restricts TNF secretion by macrophages is efficient for amelioration of experimental arthritis.
Collapse
Affiliation(s)
- Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim A Nosenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav V Mokhonov
- Blokhina Scientific Research Institute of Epidemiology and Microbiology of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ruslan V Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey A Kruglov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
367
|
Comertpay B, Gov E. Identification of key biomolecules in rheumatoid arthritis through the reconstruction of comprehensive disease-specific biological networks. Autoimmunity 2020; 53:156-166. [DOI: 10.1080/08916934.2020.1722107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
368
|
Quero L, Tiaden AN, Hanser E, Roux J, Laski A, Hall J, Kyburz D. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front Immunol 2020; 10:3087. [PMID: 32047494 PMCID: PMC6996464 DOI: 10.3389/fimmu.2019.03087] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives: Macrophages are conventionally classified as pro-inflammatory (M1) and anti-inflammatory (M2) functional types. There is evidence for a predominance of macrophages with an inflammatory phenotype (M1) in the rheumatoid arthritis (RA) synovium. MicroRNAs (miRs) play a pivotal role in regulating the inflammatory response in innate immune cells and are found at dysregulated levels in RA patients. Here we explored miRs that tune the inflammatory function of M2-macrophages. Methods: Expression profiles of miR-221-3p and miR-155-5p were analyzed in clinical samples from RA, other inflammatory arthritis (OIA), osteoarthritis (OA), and healthy donors (HD) by qPCR. In vitro generated macrophages were transfected with miR-mimics and inhibitors. Transcriptome profiling through RNA-sequencing was performed on M2-macrophages overexpressing miR-221-3p mimic with or without LPS treatment. Secretion of IL-6, IL-10, IL-12, IL-8, and CXCL13 was measured in M1- and M2-macrophages upon TLR2/TLR3/TLR4-stimulation using ELISA. Inflammatory pathways including NF-κB, IRF3, MAPKs, and JAK3/STAT3 were evaluated by immunoblotting. Direct target interaction of miR-221-3p and predicted target sites in 3'UTR of JAK3 were examined by luciferase reporter gene assay. Results: miR-221-3p in synovial tissue and fluid was increased in RA vs. OA or OIA. Endogenous expression levels of miR-221-3p and miR-155-5p were higher in M1- than M2-macrophages derived from RA patients or HD. TLR4-stimulation of M1- and M2-macrophages resulted in downregulation of miR-221-3p, but upregulation of miR-155-5p. M2-macrophages transfected with miR-221-3p mimics secreted less IL-10 and CXCL13 but more IL-6 and IL-8, exhibited downregulation of JAK3 protein and decreased pSTAT3 activation. JAK3 was identified as new direct target of miR-221-3p in macrophages. Co-transfection of miR-221-3p/miR-155-5p mimics in M2-macrophages increased M1-specific IL-12 secretion. Conclusions: miR-221-3p acts as a regulator of TLR4-induced inflammatory M2-macrophage function by directly targeting JAK3. Dysregulated miR-221-3p expression, as seen in synovium of RA patients, leads to a diminished anti-inflammatory response and drives M2-macrophages to exhibit a M1-cytokine profile.
Collapse
Affiliation(s)
- Lilian Quero
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - André N Tiaden
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Edveena Hanser
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Julien Roux
- Bioinformatics Core Facility, Department of Biomedicine, University of Basel, Basel, Switzerland.,Bioinformatic Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Artur Laski
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Diego Kyburz
- Experimental Rheumatology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
369
|
Abstract
The development of rheumatoid arthritis (RA), at least in its autoantibody-positive subset, evolves through a series of events starting well before the appearance of synovitis. The distinction between 'early' and 'established' RA is, therefore, an evolving concept. In routine practice, however, the management of RA still starts with the occurrence of clinically detectable synovitis. As such, the synovial membrane remains a major target for the exploitation of possible stage-specific drivers of the disease. The recognition of a 'window of opportunity', in which treatment is more likely to succeed, raises the hypothesis that there might be a period in which the biological processes of RA are less mature and potentially reversible. The present review aims to provide a general picture of the modifications occurring in RA synovium, analysing the contribution of both infiltrating immune cells and stromal cells. When available, differences between early and established RA will be discussed.
Collapse
|
370
|
Locati M, Curtale G, Mantovani A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. ANNUAL REVIEW OF PATHOLOGY 2020; 15:123-147. [PMID: 31530089 PMCID: PMC7176483 DOI: 10.1146/annurev-pathmechdis-012418-012718] [Citation(s) in RCA: 1293] [Impact Index Per Article: 258.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are a diverse set of cells present in all body compartments. This diversity is imprinted by their ontogenetic origin (embryonal versus adult bone marrow-derived cells); the organ context; by their activation or deactivation by various signals in the contexts of microbial invasion, tissue damage, and metabolic derangement; and by polarization of adaptive T cell responses. Classic adaptive responses of macrophages include tolerance, priming, and a wide spectrum of activation states, including M1, M2, or M2-like. Moreover, macrophages can retain long-term imprinting of microbial encounters (trained innate immunity). Single-cell analysis of mononuclear phagocytes in health and disease has added a new dimension to our understanding of the diversity of macrophage differentiation and activation. Epigenetic landscapes, transcription factors, and microRNA networks underlie the adaptability of macrophages to different environmental cues. Macrophage plasticity, an essential component of chronic inflammation, and its involvement in diverse human diseases, most notably cancer, is discussed here as a paradigm.
Collapse
Affiliation(s)
- Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, 20089 Milan, Italy
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, 20089 Milan, Italy;
- Humanitas University, 20090 Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
371
|
First in man study of [ 18F]fluoro-PEG-folate PET: a novel macrophage imaging technique to visualize rheumatoid arthritis. Sci Rep 2020; 10:1047. [PMID: 31974480 PMCID: PMC6978456 DOI: 10.1038/s41598-020-57841-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
Non-invasive imaging of arthritis activity in rheumatoid arthritis (RA) patients using macrophage PET holds promise for early diagnosis and therapeutic response monitoring. Previously obtained results with macrophage tracer (R)-[11C]PK11195 were encouraging, but the imaging signal could be further improved by reduction of background uptake. Recently, the novel macrophage tracer [18F]fluoro-PEG-folate was developed. This tracer showed excellent targeting of the folate receptor β on activated macrophages in synovial tissue in a preclinical arthritic rat model. We performed three substudies to investigate the biodistribution, potential for imaging arthritis and kinetic properties of [18F]fluoro-PEG-folate in RA patients. Firstly, biodistribution demonstrated fast clearance of [18F]fluoro-PEG-folate from heart and blood vessels and no dose limiting uptake in organs. Secondly, [18F]fluoro-PEG-folate showed uptake in arthritic joints with significantly lower background and hence significantly higher target-to-background ratios as compared to reference macrophage tracer (R)-[11C]PK11195. Lastly, dynamic scanning demonstrated fast tracer uptake in affected joints, reaching a plateau after 1 minute, co-existing with a rapid blood clearance. In conclusion, this first in man study demonstrates the potential of [18F]fluoro-PEG-folate to image arthritis activity in RA with favourable imaging characteristics of rapid clearance and low background uptake, that allow for detection of inflammatory activity in the whole body.
Collapse
|
372
|
Small A, Wechalekar MD. Synovial biopsies in inflammatory arthritis: precision medicine in rheumatoid arthritis. Expert Rev Mol Diagn 2020; 20:315-325. [PMID: 31865803 DOI: 10.1080/14737159.2020.1707671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Synovial tissue (ST) is composed of a lining and sublining layer and is the target tissue involved in the inflammatory arthritides (IA), in which there is lining layer hyperplasia, inflammatory cell influx, macrophage recruitment and change in number and behavior of lining fibroblasts. Understanding synovial pathology has been critical in providing insights into pathogenetic mechanisms of disease and therapeutics. Pathobiological insights into ST have been underpinned by progress in molecular analytic methods; research in this area holds promise in individualizing treatment and optimizing response.Areas covered: We explore ST in IA and cover in-depth the utility of synovial biopsy and ST heterogeneity. We review recent advances in ST research and discuss implications with regards to therapeutic response. Finally, we provide perspectives on the identification of new drug targets and new diagnostic and prognostic markers.Expert opinion: ST holds the potential to individualize therapy by detecting biomarkers of diagnosis, therapeutic choice, and treatment modification in IA. Advances in molecular biology including high-throughput omics are likely to provide information that has hitherto remained unknown. ST analyzes pre- and post-treatment needs to be standard of care; only by routinely collecting and analyzing ST will we achieve the precision medicine outcomes described herein.
Collapse
Affiliation(s)
- Annabelle Small
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia.,Rheumatology Department, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
373
|
Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Front Endocrinol (Lausanne) 2020; 11:7. [PMID: 32038499 PMCID: PMC6989423 DOI: 10.3389/fendo.2020.00007] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
Endometriosis is a complex, heterogeneous, chronic inflammatory condition impacting ~176 million women worldwide. It is associated with chronic pelvic pain, infertility, and fatigue, and has a substantial impact on health-related quality of life. Endometriosis is defined by the growth of endometrial-like tissue outside the uterus, typically on the lining of the pelvic cavity and ovaries (known as "lesions"). Macrophages are complex cells at the center of this enigmatic condition; they are critical for the growth, development, vascularization, and innervation of lesions as well as generation of pain symptoms. In health, tissue-resident macrophages are seeded during early embryonic life are vital for development and homeostasis of tissues. In the adult, under inflammatory challenge, monocytes are recruited from the blood and differentiate into macrophages in tissues where they fulfill functions, such as fighting infection and repairing wounds. The interplay between tissue-resident and recruited macrophages is now at the forefront of macrophage research due to their differential roles in inflammatory disorders. In some cancers, tumor-associated macrophages (TAMs) are comprised of tissue-resident macrophages and recruited inflammatory monocytes that differentiate into macrophages within the tumor. These macrophages of different origins play differential roles in disease progression. Herein, we review the complexities of macrophage dynamics in health and disease and explore the paradigm that under disease-modified conditions, macrophages that normally maintain homeostasis become modified such that they promote disease. We also interrogate the evidence to support the existence of multiple phenotypic populations and origins of macrophages in endometriosis and how this could be exploited for therapy.
Collapse
Affiliation(s)
- Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- *Correspondence: Erin Greaves
| |
Collapse
|
374
|
Kuang L, Wu J, Su N, Qi H, Chen H, Zhou S, Xiong Y, Du X, Tan Q, Yang J, Jin M, Luo F, Ouyang J, Zhang B, Wang Z, Jiang W, Chen L, Chen S, Wang Z, Liu P, Yin L, Guo F, Deng C, Chen D, Liu C, Xie Y, Ni Z, Chen L. FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice. Ann Rheum Dis 2020; 79:112-122. [PMID: 31662319 DOI: 10.1136/annrheumdis-2019-215696] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES This study aims to investigate the role and mechanism of FGFR3 in macrophages and their biological effects on the pathology of arthritis. METHODS Mice with conditional knockout of FGFR3 in myeloid cells (R3cKO) were generated. Gait behaviours of the mice were monitored at different ages. Spontaneous synovial joint destruction was evaluated by digital radiographic imaging and μCT analysis; changes of articular cartilage and synovitis were determined by histological analysis. The recruitment of macrophages in the synovium was examined by immunostaining and monocyte trafficking assay. RNA-seq analysis, Western blotting and chemotaxis experiment were performed on control and FGFR3-deficient macrophages. The peripheral blood from non-osteoarthritis (OA) donors and patients with OA were analysed. Mice were treated with neutralising antibody against CXCR7 to investigate the role of CXCR7 in arthritis. RESULTS R3cKO mice but not control mice developed spontaneous cartilage destruction in multiple synovial joints at the age of 13 months. Moreover, the synovitis and macrophage accumulation were observed in the joints of 9-month-old R3cKO mice when the articular cartilage was not grossly destructed. FGFR3 deficiency in myeloid cells also aggravated joint destruction in DMM mouse model. Mechanically, FGFR3 deficiency promoted macrophage chemotaxis partly through activation of NF-κB/CXCR7 pathway. Inhibition of CXCR7 could significantly reverse FGFR3-deficiency-enhanced macrophage chemotaxis and the arthritic phenotype in R3cKO mice. CONCLUSIONS Our study identifies the role of FGFR3 in synovial macrophage recruitment and synovitis, which provides a new insight into the pathological mechanisms of inflammation-related arthritis.
Collapse
Affiliation(s)
- Liang Kuang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiangyi Wu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nan Su
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Huabing Qi
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zuqiang Wang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Wanling Jiang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuai Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziming Wang
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Peng Liu
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangjun Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing, China
| | - Chuxia Deng
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Di Chen
- Biochemistry, Rush University Medical Center, Chicago, Illinois, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York University Medical Center, New York City, New York, USA
| | - Yangli Xie
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
375
|
Zhu H, Fu J, Chen S, Li X, Liang H, Hou Y, Dou H. FC-99 reduces macrophage tenascin-C expression by upregulating miRNA-494 in arthritis. Int Immunopharmacol 2019; 79:106105. [PMID: 31881378 DOI: 10.1016/j.intimp.2019.106105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023]
Abstract
The excessive production of inflammatory mediators by inflammatory cells contributes to the pathogenesis of rheumatoid arthritis. Tenascin-C (TN-C) is expressed in rheumatoid joint, and is associated with levels of inflammatory mediators. FC-99 (N1-[(4-methoxy)methyl]-4-methyl-1,2-Benzenediamine), a novel 1,2-benzenediamine derivative, was previously reported to block the prolonged expression of key rheumatoid arthritis inflammatory cytokines and relieve zymosan-induced joint inflammation. However, the specific mechanism is unknown. This study aimed to examine the effects of FC-99 on TN-C expression and inflammation and investigate its possible molecular mechanism. The results showed that FC-99 treatment reduced the high expression of TN-C in ankle joints of arthritis mice. Besides, FC-99 reduced the increased number of macrophages in arthritis mice, while did not change the number of synovioblasts. Concomitantly, expression of TN-C in synovial fibroblasts exhibited no difference between control and ZIA groups, and was not apparently altered following FC-99 treatment, while FC-99 decreased TN-C expression in macrophages both in vivo and in vitro. Meanwhile, TargetScan and luciferase assays indicated that TN-C was negatively regulated by miR-494. Transfection assay further demonstrated that FC-99 inhibited TN-C by targeting miR-494. Furthermore, the reduction of miR-494 mimic on expression of TN-C was associated with NF-κB pathway. Similarly, the down-regulation of FC-99 on TN-C was considerably decreased when NF-κB pathway was inhibited. These results indicated that FC-99 relieved macrophages inflammation via the miR-494/TN-C/NF-κB pathway, finally leading to the relief of inflammation in arthritis. The findings suggested that FC-99 might be a potential therapeutic candidate for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Haiyan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Sheng Chen
- Nangjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xiaoqin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, The Army Medical University, Chongqing 400042, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
376
|
Yang X, Li S, Zhao Y, Li S, Zhao T, Tai Y, Zhang B, Wang X, Wang C, Chen J, Wang Q, Zhang L, Xu D, Chang Y, Wei W. GRK2 Mediated Abnormal Transduction of PGE2-EP4-cAMP-CREB Signaling Induces the Imbalance of Macrophages Polarization in Collagen-Induced Arthritis Mice. Cells 2019; 8:cells8121596. [PMID: 31818003 PMCID: PMC6953022 DOI: 10.3390/cells8121596] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the massive infiltration of various chronic inflammatory cells in synovia. In synovial fluid of patients with RA, M1 macrophages are dominant among all subtypes of macrophages, the mechanisms of macrophages polarization imbalance in RA has not been fully illuminated. The prostaglandin E2 (PGE2) augments M2 polarization in part via the cyclic adenosine monophosphate (cAMP)-cyclic AMP responsive element binding (CREB) signaling. However, previous study found constant stimulus of PGE2 on fibroblast-like synovial cells of adjuvant arthritis rats induced the decrease of cAMP, which is primarily caused by G protein-coupled receptor kinase 2 (GRK2)-induced EP4 over- desensitization. Whether GRK2 mediated-EP4 over-desensitization reduces the level of cAMP and inhibits M2 polarization in RA is unclear. Here we observed M1 macrophages were dominant in peritoneal macrophages (PMs), bone-marrow-derived macrophages (BMMs) and synovial macrophages of collagen-induced arthritis (CIA) mice. PGE2 stimulated M2 polarization via the EP4-cAMP-CREB in normal mice, while failed to promote M2 polarization in the PMs of CIA mice. Further, we found the EP4 over-desensitization stimulated by PGE2 induced abnormal PGE2-cAMP-CREB signaling as well as the imbalance of macrophage polarization. Targeted disruption of GRK2 in Raw264.7 (RAW) through GRK2 siRNA or CRISPR/Cas9 downregulated the M1 macrophage markers, upregulated the M2 macrophage markers and the EP4 membrane localization. The reduced M1/M2 ratio and increased p-CREB expression were observed in BMMs and PMs of GRK2+/− mice. This study highlighted a novel role of GRK2 in regulating macrophages function in RA and provided new idea for precision treatment of RA.
Collapse
Affiliation(s)
- Xuezhi Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
- Public Health and Preventive Medicine Postdoctoral Research Station of Anhui Medical University, Hefei 230032, China
| | - Susu Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Yingjie Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Siyu Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Tianjiao Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Bingjie Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Xinwei Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
| | - Dexiang Xu
- Public Health and Preventive Medicine Postdoctoral Research Station of Anhui Medical University, Hefei 230032, China
- Correspondence: (D.X.); (Y.C.); (W.W.); Tel./Fax: +86-551-516-1209 (W.W.)
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
- Correspondence: (D.X.); (Y.C.); (W.W.); Tel./Fax: +86-551-516-1209 (W.W.)
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine (Anhui Medical University), Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; (X.Y.); (S.L.); (Y.Z.); (S.L.); (T.Z.); (Y.T.); (B.Z.); (X.W.); (C.W.); (J.C.); (Q.W.); (L.Z.)
- Correspondence: (D.X.); (Y.C.); (W.W.); Tel./Fax: +86-551-516-1209 (W.W.)
| |
Collapse
|
377
|
He W, Kapate N, Shields CW, Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev 2019; 165-166:15-40. [PMID: 31816357 DOI: 10.1016/j.addr.2019.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Macrophages play a key role in defending against foreign pathogens, healing wounds, and regulating tissue homeostasis. Driving this versatility is their phenotypic plasticity, which enables macrophages to respond to subtle cues in tightly coordinated ways. However, when this coordination is disrupted, macrophages can aid the progression of numerous diseases, including cancer, cardiovascular disease, and autoimmune disease. The central link between these disorders is aberrant macrophage polarization, which misguides their functional programs, secretory products, and regulation of the surrounding tissue microenvironment. As a result of their important and deterministic roles in both health and disease, macrophages have gained considerable attention as targets for drug delivery. Here, we discuss the role of macrophages in the initiation and progression of various inflammatory diseases, summarize the leading drugs used to regulate macrophages, and review drug delivery systems designed to target macrophages. We emphasize strategies that are approved for clinical use or are poised for clinical investigation. Finally, we provide a prospectus of the future of macrophage-targeted drug delivery systems.
Collapse
Affiliation(s)
- Wei He
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
378
|
Bo M, Erre GL, Bach H, Slavin YN, Manchia PA, Passiu G, Sechi LA. PtpA and PknG Proteins Secreted by Mycobacterium avium subsp. paratuberculosis are Recognized by Sera from Patients with Rheumatoid Arthritis: A Case-Control Study. J Inflamm Res 2019; 12:301-308. [PMID: 31819587 PMCID: PMC6899068 DOI: 10.2147/jir.s220960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose Rheumatoid arthritis (RA) can result from complex interactions between the affected person’s genetic background and environment. Viral and bacterial infections may play a pathogenetic role in RA through different mechanisms of action. We aimed to evaluate the presence of antibodies (Abs) directed against two proteins of Mycobacterium avium subsp. paratuberculosis (MAP) in sera of RA subjects, which are crucial for the survival of the pathogen within macrophages. Moreover, we analyzed the correlation of immune response to both proteins with the following homologous peptides: BOLF1305–320, MAP_402718–32 and IRF5424–434 to understand how the synergic role of Epstein–Barr virus (EBV) and MAP infection in genetically predisposed subjects may lead to a possible deregulation of interferon regulatory factor 5 (IRF5). Materials and methods The presence of Abs against protein tyrosine phosphatase A (PtpA) and protein kinase G (PknG) in sera from Sardinian RA patients (n=84) and healthy volunteers (HCs, n=79) was tested by indirect ELISA. Results RA sera showed a remarkably high frequency of reactivity against PtpA in comparison to HCs (48.8% vs 7.6%; p<0.001) and lower but statistically significant responses towards PknG (27.4% vs 10.1%; p=0.0054). We found a significant linear correlation between the number of swollen joints and the concentrations of antibodies against PtpA (p=0.018). Furthermore, a significant bivariate correlation between PtpA and MAP MAP_402718–32 peptide has been found, suggesting that MAP infection may induce a secondary immune response through cross-reaction with IRF5 (R2=0.5). Conclusion PtpA and PknG are strongly recognized in RA which supports the hypothesis that MAP infection may be involved in the pathogenesis of RA.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Horacio Bach
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yael N Slavin
- Division of Infectious Diseases, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | | | - Giuseppe Passiu
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Sassari 07100, Italy
| | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
379
|
Wang Q, Zhou X, Yang L, Luo M, Han L, Lu Y, Shi Q, Wang Y, Liang Q. Gentiopicroside (GENT) protects against sepsis induced by lipopolysaccharide (LPS) through the NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:731. [PMID: 32042747 DOI: 10.21037/atm.2019.11.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Sepsis is a high-mortality disease without effective therapeutic options. The hyperactivation of the monocyte-macrophage system, especially M1 macrophages, triggers the onset of septic shock. Gentiopicroside (GENT), the main active component in the traditional Chinese medicinal herb Radix Gentianae, has been shown to have anti-inflammatory properties. Nevertheless, this anti-inflammatory effect has not been fully elucidated. Methods In vitro, we stimulated primary bone marrow-derived macrophages (BMMs) or peritoneal elucidated macrophages (PEMs) by lipopolysaccharide (LPS) and interferon (IFN)-γ and pre-treated with GENT and we tested the cytokines such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF) α production by enzyme linked immunosorbent assay (ELISA) or real-time quantitative PCR (qPCR). Further, we determined the NF-κB-mediated inflammatory pathway such as IKKα/β and p65 phosphorylation by Western blot. Then we detected the p65 nuclear localization by immunofluorescent staining. Moreover, NF-κB inhibitor and p65-targeted siRNAs were further used to validate the anti-inflammatory mechanism of GENT. In vivo, GENT (50 mg/kg) was administered intragastrically before and after LPS (40 mg/kg) injection. The death time were recorded and the serum levels of IL-1β, IL-6 and TNFα were tested by ELISA, and the IL-1β, IL-6 and TNFα mRNA expression in the lung were test by qPCR and the M1 infiltration in the lung were determined by F4/80 and INOS immunofluorescent staining. Results In vitro, we observed that GENT reduced the inflammatory cytokine production of BMMs stimulated by (LPS)/IFN-γ and ameliorated the phosphorylation of IKKα/β and p65, the degradation of IκBα, and the translocation of p65 into the nucleus. We did not find GENT has any effect on MAPK signaling under LPS/IFN-γ stimulation. NF-κB inhibitor and p65 siRNAs eliminated the inhibition effect of GENT. In vivo, we observed GENT prevented mice from dying in the LPS-induced shock model and decreased the serum levels of IL-1β and IL-6, the mRNA expression of IL-1β, IL-6 and TNFα in lung tissue, and the amount of M1 macrophage infiltration in the lung. Conclusions GENT prevented LPS/IFN-γ-induced inflammatory cytokine production by macrophages through the NF-κB signaling pathway in vitro and protected against the endotoxin shock induced by LPS in vivo.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Key Laboratory of theory and Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xin Zhou
- Shanghai Institute of Biochemistry and Cell Biology CAS, Shanghai 200031, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Long Yang
- Department of Rehabilitation Medicine, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Maocai Luo
- Department of Pediatrics, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Han
- Shanghai Institute of Biochemistry and Cell Biology CAS, Shanghai 200031, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yao Lu
- Shanghai Institute of Biochemistry and Cell Biology CAS, Shanghai 200031, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Shi
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Key Laboratory of theory and Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yongjun Wang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Key Laboratory of theory and Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qianqian Liang
- Institute of Spine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Key Laboratory of theory and Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
380
|
Korneev KV, Sviriaeva EN, Mitkin NA, Gorbacheva AM, Uvarova AN, Ustiugova AS, Polanovsky OL, Kulakovskiy IV, Afanasyeva MA, Schwartz AM, Kuprash DV. Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165626. [PMID: 31785408 DOI: 10.1016/j.bbadis.2019.165626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
Toll-like receptor 4 (TLR4) is an innate immunity receptor predominantly expressed on myeloid cells and involved in the development of various diseases, many of them with complex genetics. Here we present data on functionality of single nucleotide polymorphism rs7873784 located in the 3'-untranslated region (3'-UTR) of TLR4 gene and associated with various pathologies involving chronic inflammation. We demonstrate that TLR4 3'-UTR strongly enhanced the activity of TLR4 promoter in U937 human monocytic cell line while minor rs7873784(C) allele created a binding site for transcription factor PU.1 (encoded by SPI1 gene), a known regulator of TLR4 expression. Increased binding of PU.1 further augmented the TLR4 transcription while PU.1 knockdown or complete disruption of the PU.1 binding site abrogated the effect. We hypothesize that additional functional PU.1 site may increase TLR4 expression in individuals carrying minor C variant of rs7873784 and modulate the development of certain pathologies, such as rheumatoid arthritis and type-2 diabetes mellitus.
Collapse
Affiliation(s)
- Kirill V Korneev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina N Sviriaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nikita A Mitkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alisa M Gorbacheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Oleg L Polanovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
381
|
Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo. Sci Rep 2019; 9:16793. [PMID: 31727971 PMCID: PMC6856359 DOI: 10.1038/s41598-019-53424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
The tocotrienol-rich fraction (TRF) from palm oil contains vitamin E, which possesses potent antioxidant and anti-inflammatory activities. Rheumatoid arthritis (RA) is a chronic joint inflammatory disease characterised by severe joint pain, cartilage destruction, and bone erosion owing to the effects of various pro-inflammatory mediators and cytokines. Here, we investigated the therapeutic effects of TRF in a rat model of collagen-induced arthritis (CIA). Arthritis was induced by a single intradermal injection of collagen type II in Dark Agouti (DA) rats. Rats were then treated with or without TRF by oral gavage from day 28 after the first collagen injection. Arthritic rats supplemented with TRF showed decreased articular index scores, ankle circumferences, paw volumes, and radiographic scores when compared with untreated rats. The untreated arthritic rats showed higher plasma C-reactive protein levels (p < 0.05) and production of pro-inflammatory cytokines than arthritic rats fed TRF. Moreover, there was a marked reduction in the severity of histopathological changes observed in arthritic rats treated with TRF compared with that in untreated arthritic rats. Overall, the results show that TRF had beneficial effects in this rat model of RA.
Collapse
|
382
|
Hou Z, Wang Q, Guo Z, Wang T, Wu H, Ma C, Wang W, Su F, Zhang H, Su X. Gadolinium-conjugated CB86: a novel TSPO-targeting MRI contrast agent for imaging of rheumatoid arthritis. J Drug Target 2019; 28:398-407. [PMID: 31530199 DOI: 10.1080/1061186x.2019.1669040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhenyu Hou
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Zhide Guo
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Huanhua Wu
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Chao Ma
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Weixing Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Fu Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Huijuan Zhang
- Department of Radiology, Jinshan Branch, Fujian Provincial Hospital of Fujian Medical University, Fuzhou, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
383
|
Li X, Qu J, Zhang T, He X, Jiang Y, Chen J. Nuclear Factor kappa B (NF-κB) Targeted Self-Assembled Nanoparticles Loaded with Methotrexate for Treatment of Rheumatoid Arthritis. Med Sci Monit 2019; 25:8204-8212. [PMID: 31674342 PMCID: PMC6849372 DOI: 10.12659/msm.917396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Nanotechnology is one of the most productive approaches for specifically delivering drug payloads to the region of interest to decrease nonspecific distribution and unwanted toxicities. Material/Methods We prepared glycol chitosan stearate self-assembled nanoparticles loaded with methotrexate (MTX) for NF-κB targeting in treatment of rheumatoid arthritis (RA). The nanoparticles were prepared using hydrophobic modification of glycol chitosan (GC) with steric acid (SA) and was characterized using IR. The efficiency of nanoparticles after their physiochemical characterization was measured in vitro and by in vivo studies in mice. Results The nanoparticles thus prepared were spherical in shape, 235 nm in diameter, and had negative zeta potential. The entrapment efficiency of MTX-GC-SA was more than 70%. The in vitro higher uptake of MTX-GC-SA in murine macrophage cells (RAW 264.7) was confirmed using confocal microscopy and FACS analysis. Systemic administration of MTX-GC-SA into collagen-induced arthritis (CIA) mice resulted in high accumulation in inflamed joints. The MTX-GS-SA revealed significantly better therapeutic efficacy against CIA mice compared to free MTX. Conclusions These findings highlight the potential of using this MTX-GC-SA nanoparticle formulation in suppressing inflammatory arthritis for effective treatment of RA.
Collapse
Affiliation(s)
- Xiong Li
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| | - Jin Qu
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| | - Xi He
- Department of Sports Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| | - Ying Jiang
- Department of Rheumatology, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| | - Jiangyan Chen
- Department of Rheumatology, Xiangya Hospital Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
384
|
Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev 2019; 18:102397. [DOI: 10.1016/j.autrev.2019.102397] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
|
385
|
Tu Y, Wang K, Wan JB, He C. Anti-inflammatory effects of Glycine tabacina extract in LPS-stimulated macrophages and collagen-induced arthritis mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
386
|
Silvagni E, Bortoluzzi A, Ciancio G, Govoni M. Biological and synthetic target DMARDs in psoriatic arthritis. Pharmacol Res 2019; 149:104473. [PMID: 31585178 DOI: 10.1016/j.phrs.2019.104473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Abstract
Psoriatic arthritis (PsA) is a chronic multi-faceted immune-mediated systemic disorder, characterized by articular, cutaneous, enthesis, nail and spine involvement. Articular manifestations of PsA are particularly common and highly disabling for patients, while the heterogeneous clinical subsets of the disease are challenging for clinicians. In recent years, research has made many advances in understanding the pathogenesis of the disease from genetic, epigenetic and molecular points of view. New drugs are now available for the treatment of this condition, and, in particular, TNF-alfa inhibitors, historically the first biologicals approved in PsA, are now juxtaposed by new biological disease modifying anti-rheumatic drugs (bDMARDs) with different modes of action. Targeting IL-12/IL-23 p40 common subunit with ustekinumab, IL-17A with secukinumab and ixekizumab, T cells co-stimulation with abatacept, is now possible, safe and effective. Moreover, targeted synthetic molecules with oral administration are available, with the possibility to interfere with phosphodiesterase-4 and JAK/STAT pathways. Indeed, new drugs are under development, with the possibility to target selectively IL-17 receptor, IL-23, and other key molecular targets in the pathogenesis of this condition. In this narrative review, we provide an up-to-date overview of the current application of biological and targeted synthetic DMARDs in the field of PsA, with particular regard to the clinical significance of this possibility to target a higher number of distinct immune-pathways.
Collapse
Affiliation(s)
- Ettore Silvagni
- Department of Medical Sciences, Section of Rheumatology, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna, Cona, Ferrara, Italy
| | - Alessandra Bortoluzzi
- Department of Medical Sciences, Section of Rheumatology, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna, Cona, Ferrara, Italy
| | - Giovanni Ciancio
- Department of Medical Sciences, Section of Rheumatology, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna, Cona, Ferrara, Italy.
| | - Marcello Govoni
- Department of Medical Sciences, Section of Rheumatology, University of Ferrara and Azienda Ospedaliero-Universitaria Sant'Anna, Cona, Ferrara, Italy
| |
Collapse
|
387
|
Culemann S, Grüneboom A, Krönke G. Origin and function of synovial macrophage subsets during inflammatory joint disease. Adv Immunol 2019; 143:75-98. [PMID: 31607368 DOI: 10.1016/bs.ai.2019.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mononuclear phagocytes, including monocytes and macrophages, are a central component of the host's innate immune system designated to protect against invading pathogens. However, these cells do not only interact with various parts of the innate and adaptive immune system, but also fulfill indispensable duties during the control of tissue homeostasis and organ function. Moreover, macrophages are crucially involved in tissue remodeling and repair in response to damage. Simultaneously, mononuclear phagocytes might also contribute to the pathogenesis of various inflammatory and autoimmune diseases. In particular, their potential role in inflammatory joint diseases such as rheumatoid arthritis (RA) has drawn increasing attention and substantially shaped our general understanding of the role of monocytes and macrophages during health and disease. This review summarizes our current knowledge about the origin and function of mononuclear phagocytes within the joint and addresses their involvement in joint inflammation.
Collapse
Affiliation(s)
- Stephan Culemann
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anika Grüneboom
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.; Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
388
|
Yang P, Qian F, Zhang M, Xu A, Wang X, Jiang B, Zhou L. Th17 cell pathogenicity and plasticity in rheumatoid arthritis. J Leukoc Biol 2019; 106:1233-1240. [DOI: 10.1002/jlb.4ru0619-197r] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pei Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Fei‐Ya Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ming‐Fei Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - A‐Lan Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Xiang Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Bao‐Ping Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| | - Ling‐Ling Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaSchool of PharmacyNanjing University of Chinese Medicine Nanjing Jiangsu Province People's Republic of China
| |
Collapse
|
389
|
Paoletti A, Rohmer J, Ly B, Pascaud J, Rivière E, Seror R, Le Goff B, Nocturne G, Mariette X. Monocyte/Macrophage Abnormalities Specific to Rheumatoid Arthritis Are Linked to miR-155 and Are Differentially Modulated by Different TNF Inhibitors. THE JOURNAL OF IMMUNOLOGY 2019; 203:1766-1775. [PMID: 31484730 DOI: 10.4049/jimmunol.1900386] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
Proinflammatory macrophages and miR-155 are increased in patients with rheumatoid arthritis (RA). We studied membrane TNF (mTNF) expression on blood monocytes, polarization into macrophages, miR-155 expression, and the effect of anti-TNF on these biomarkers in RA patients. Sixty-seven RA patients and 109 controls (55 healthy, 54 with spondyloarthritis and connective tissue diseases) were studied. Monocytes were isolated and differentiated into macrophages with or without anti-TNF. mTNF expression was increased on monocytes from RA patients, but not from other inflammatory diseases, correlated with disease activity. Under human serum AB or M-CSF, only monocytes from RA had a defect of differentiation into M2-like macrophages and had a propensity for preferential maturation toward M1-like macrophages that contributed to synovial inflammation. This defect was correlated to mTNF expression and was partially reversed by monoclonal anti-TNF Abs but not by the TNF soluble receptor. miR-155 was increased in M2-macrophages except in adalimumab-treated patients. Transfection of healthy monocytes with miR-155 induced a decrease in M2-like markers, and transfection of RA monocytes with antagomir-155 allowed restoration of M2-like polarization. Defect in differentiation of monocytes into M2-like-macrophages linked to increased miR-155 and correlated with increased mTNF on monocytes could play a key role in RA pathogenesis. Monoclonal anti-TNF Abs but not the TNF soluble receptor partially restored this defect.
Collapse
Affiliation(s)
- Audrey Paoletti
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France;
| | - Julien Rohmer
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Bineta Ly
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Juliette Pascaud
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Elodie Rivière
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France
| | - Raphaele Seror
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France.,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| | - Benoit Le Goff
- Rheumatology Department, Centre Hospitalier Universitaire de Nantes, 44000 Nantes, Pays de la Loire, France
| | - Gaetane Nocturne
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France.,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| | - Xavier Mariette
- Université Paris-Sud, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, 94270 Le Kremlin Bicêtre, France; .,Rheumatology Department, Hôpitaux Universitaires Paris-Sud, Assistance Publique - Hôpitaux de Paris, 94270 Le Kremlin Bicêtre, France; and
| |
Collapse
|
390
|
Burbano C, Villar-Vesga J, Vásquez G, Muñoz-Vahos C, Rojas M, Castaño D. Proinflammatory Differentiation of Macrophages Through Microparticles That Form Immune Complexes Leads to T- and B-Cell Activation in Systemic Autoimmune Diseases. Front Immunol 2019; 10:2058. [PMID: 31555283 PMCID: PMC6724570 DOI: 10.3389/fimmu.2019.02058] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) demonstrate increased circulating microparticles (MP). These vesicles, primarily those that form immune complexes (MP-IC), may activate monocytes. We evaluated the effect of MP and MP-IC in the differentiation of monocytes to macrophages (monocyte-derived macrophages; MDM) and for consequences in autologous lymphocyte activation. Monocytes from healthy controls (HC) and patients with RA and SLE that differentiated into MDM in the presence of MP-IC showed a proinflammatory (M1-like) profile, which was more evident using MP-IC from patients with RA than those from patients with SLE. Notably, MDM from HC and patients with RA that differentiated with MP-IC were more prone to M1-like profile than those from patients with SLE. In HC and patients with RA, monocyte differentiation using MP-IC decreased the frequency of MDM that bound/internalized latex beads. The M1-like profile did not completely revert following IL-4 treatment. The effect of M1-like MDM on T lymphocytes stimulated with phytohemagglutinin was further evaluated. MDM differentiated with MP enhanced the proliferation of T cells obtained from patients with RA compared with those differentiated with MP-IC or without vesicles. Neither MP nor MP-IC induced interferon (IFN)-γ+ and tumor necrosis factor (TNF)-α+ T cells in patients with RA. Conversely, unlike MDM differentiated with or without MP, MP-IC enhanced the proliferation and increased the frequencies of IFN-γ+CD4+ T, TNF-α+CD4+ T, and IFN-γ+CD8+ T cells in patients with SLE. The co-culture of B cells with MDM obtained from patients with RA and SLE and differentiated with MP-IC increased the expression of B-cell activation markers and prevented B lymphocyte death. Strikingly, only for patients with SLE, these responses seemed to be associated with a significant increase in B-cell activating factor levels, high plasmablast frequency and immunoglobulin production. These results showed that MP-IC from patients with systemic autoimmune diseases favored the polarization of MDM into a proinflammatory profile that promotes T-cell activation, and additionally induced B-cell activation and survival. Therefore, the effect of MP-IC in mononuclear phagocytes may be an important factor for modulating adaptive responses in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Villar-Vesga
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Carlos Muñoz-Vahos
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellin, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
391
|
Das M, Deb M, Laha D, Joseph M, Kanji S, Aggarwal R, Iwenofu OH, Pompili VJ, Jarjour W, Das H. Myeloid Krüppel-Like Factor 2 Critically Regulates K/BxN Serum-Induced Arthritis. Cells 2019; 8:cells8080908. [PMID: 31426355 PMCID: PMC6721677 DOI: 10.3390/cells8080908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease, and Krüppel-like factor 2 (KLF2) regulates immune cell activation and function. Herein, we show that in our experiments 50% global deficiency of KLF2 significantly elevated arthritic inflammation and pathogenesis, osteoclastic differentiation, matrix metalloproteinases (MMPs), and inflammatory cytokines in K/BxN serum-induced mice. The severities of RA pathogenesis, as well as the causative and resultant cellular and molecular factors, were further confirmed in monocyte-specific KLF2 deficient mice. In addition, induction of RA resulted in a decreased level of KLF2 in monocytes isolated from both mice and humans along with higher migration of activated monocytes to the RA sites in humans. Mechanistically, overexpression of KLF2 decreased the level of MMP9; conversely, knockdown of KLF2 increased MMP9 in monocytes along with enrichment of active histone marks and histone acetyltransferases on the MMP9 promoter region. These findings define the critical regulatory role of myeloid KLF2 in RA pathogenesis.
Collapse
Affiliation(s)
- Manjusri Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Moonmoon Deb
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dipranjan Laha
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Matthew Joseph
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Suman Kanji
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Reeva Aggarwal
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - O Hans Iwenofu
- Department of Pathology, College of Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Vincent J Pompili
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Wael Jarjour
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
392
|
Rizzuto MA, Salvioni L, Rotem R, Colombo M, Zanoni I, Granucci F, Prosperi D. Are nanotechnological approaches the future of treating inflammatory diseases? Nanomedicine (Lond) 2019; 14:2379-2390. [PMID: 31414616 DOI: 10.2217/nnm-2019-0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The current treatments for chronic inflammatory diseases cause severe side effects due to nonspecific drug accumulation. Nanotechnology opens the way to new therapeutic strategies that exploit the ability of immune cells, and especially of phagocytes, to internalize nanoparticles. The cellular uptake of nanoparticles requires specific interactions and is affected by the chemical and physical properties of the carriers. Therefore, optimizing these properties is crucial for designing nanodrugs for immunotherapy. In perspective, we discuss the nanoparticle-based approaches that have been proposed to induce tolerance in autoimmune disorders and lessen the symptoms of inflammatory diseases.
Collapse
Affiliation(s)
- Maria Antonietta Rizzuto
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Lucia Salvioni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Rany Rotem
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Miriam Colombo
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Ivan Zanoni
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Granucci
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Davide Prosperi
- Department of Biotechnology & Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.,Nanomedicine Laboratory, Surgery Department, ICS Maugeri, via S. Maugeri 10, 27100 Pavia, Italy
| |
Collapse
|
393
|
Riani M, Muller C, Bour C, Bernard P, Antonicelli F, Le Jan S. Blister Fluid Induces MMP-9-Associated M2-Type Macrophages in Bullous Pemphigoid. Front Immunol 2019; 10:1858. [PMID: 31440247 PMCID: PMC6692716 DOI: 10.3389/fimmu.2019.01858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Bullous pemphigoid (BP) is a cutaneous autoimmune disease, characterized by an inflammatory cascade leading to blister formation. Although macrophages were shown to participate in BP pathophysiology, their role in the blister formation process still needs to be investigated. We here addressed the influence of serum and blister fluid (BF) from patients with BP on the polarization status of macrophages with regards to the metalloproteinase-9 (MMP-9) expression. We demonstrated that several markers related to the alternatively activated macrophage phenotype (M2) including IL-10, TARC, arginase, TNFα, and IL-1RA were meaningfully increased in BF of patients with BP. We further showed that BF, but not serum from patients with BP, significantly induced the expression of CD163, CD206, and IL-10 in BP monocyte-derived macrophages (MDMs). Notably IL-10 was the only cytokine to be correlated to the reference clinical score, BP disease activity index (BPDAI), especially to the inflammatory BPDAI subscore evaluating urticarial and erythematous skin lesions (r = 0.57, p = 0.0004). We also found elevated levels of MMP-9 to M2-type macrophages ex vivo and highlighted the presence of CD163+ MMP-9+ macrophages histologically, at skin lesional site. Finally, we showed that methylprednisolone reduced MMP-9 levels in MDMs without modifying the other M2 markers. All together these results strongly support the presence of M2-phenotype macrophages with pro-inflammatory properties susceptible to favor blister formation in BP.
Collapse
Affiliation(s)
- Meriem Riani
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Céline Muller
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Camille Bour
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| | - Philippe Bernard
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - Frank Antonicelli
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France.,Department of Dermatology, University Hospital, University of Reims-Champagne-Ardenne, Reims, France.,Department of Biological Sciences, Immunology, UFR Odontology, University of Reims-Champagne-Ardenne, Reims, France
| | - Sébastien Le Jan
- Laboratory of Dermatology, EA7509 IRMAIC, University of Reims-Champagne-Ardenne, Reims, France
| |
Collapse
|
394
|
Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 2019; 572:670-675. [PMID: 31391580 DOI: 10.1038/s41586-019-1471-1] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
Macrophages are considered to contribute to chronic inflammatory diseases such as rheumatoid arthritis1. However, both the exact origin and the role of macrophages in inflammatory joint disease remain unclear. Here we use fate-mapping approaches in conjunction with three-dimensional light-sheet fluorescence microscopy and single-cell RNA sequencing to perform a comprehensive spatiotemporal analysis of the composition, origin and differentiation of subsets of macrophages within healthy and inflamed joints, and study the roles of these macrophages during arthritis. We find that dynamic membrane-like structures, consisting of a distinct population of CX3CR1+ tissue-resident macrophages, form an internal immunological barrier at the synovial lining and physically seclude the joint. These barrier-forming macrophages display features that are otherwise typical of epithelial cells, and maintain their numbers through a pool of locally proliferating CX3CR1- mononuclear cells that are embedded into the synovial tissue. Unlike recruited monocyte-derived macrophages, which actively contribute to joint inflammation, these epithelial-like CX3CR1+ lining macrophages restrict the inflammatory reaction by providing a tight-junction-mediated shield for intra-articular structures. Our data reveal an unexpected functional diversification among synovial macrophages and have important implications for the general role of macrophages in health and disease.
Collapse
|
395
|
|
396
|
Hao F, Lee RJ, Zhong L, Dong S, Yang C, Teng L, Meng Q, Lu J, Xie J, Teng L. Hybrid micelles containing methotrexate-conjugated polymer and co-loaded with microRNA-124 for rheumatoid arthritis therapy. Theranostics 2019; 9:5282-5297. [PMID: 31410215 PMCID: PMC6691571 DOI: 10.7150/thno.32268] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: Methotrexate (MTX) is a first-line drug for rheumatoid arthritis (RA)therapy. However, MTX monotherapy often results in irreversible joint damage due to its slow onset of action and long duration. microRNA-124 (miR-124) has shown direct bone protection activity against RA. A co-delivery system for MTX and microRNA combination may provide therapeutic synergy. Methods: Methotrexate-conjugated polymer hybrid micelles (M-PHMs) were prepared by self-assembly of two functional amphiphilic polymers (MTX-PEI-LA and mPEG-LA) at an optimized weight ratio. Incorporation of microRNA was achieved through electrostatic interactions between microRNA and cationic polymer MTX-PEI-LA. Cellular uptake, endosome escape, biodistribution, and therapeutic efficacy of M-PHMs/miR-124 complexes were investigated and evaluated in RAW264.7 cells and a rat adjuvant-induced arthritis (AIA) model. Results: M-PHMs/miR-124 complexes exhibited folate receptor-mediated uptake in activated RAW264.7 cells. miR-124 was able to escape from the endosome and down-regulate nuclear factor of activated T cells cytoplasmic1 (NFATc1). M-PHMs/miR-124 complexes accumulated in inflamed joints of AIA rats and showed superior therapeutic efficacy through both anti-inflammatory effect and direct bone protective effect. Combination of miR-124 and MTX in these micelles induced disease remission. Conclusions: M-PHMs/miR-124 was highly effective against RA through therapeutic synergy. Additional studies are warranted to further investigate its therapeutic potential and delineate its mechanisms of action.
Collapse
Affiliation(s)
- Fei Hao
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Robert J Lee
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12th Ave, Columbus, OH 43210, USA
| | - Lihuang Zhong
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Chunmiao Yang
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Lirong Teng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Qingfan Meng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Jing Xie
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, No.2699, Qianjin Street, Changchun130012, P.R. China
| |
Collapse
|
397
|
NIRF-Molecular Imaging with Synovial Macrophages-Targeting Vsig4 Nanobody for Disease Monitoring in a Mouse Model of Arthritis. Int J Mol Sci 2019; 20:ijms20133347. [PMID: 31288389 PMCID: PMC6651725 DOI: 10.3390/ijms20133347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/21/2023] Open
Abstract
Nanobody against V-set and Ig domain-containing 4 (Vsig4) on tissue macrophages, such as synovial macrophages, could visualize joint inflammation in multiple experimental arthritis models via single-photon emission computed tomography imaging. Here, we further addressed the specificity and assessed the potential for arthritis monitoring using near-infrared fluorescence (NIRF) Cy7-labeled Vsig4 nanobody (Cy7-Nb119). In vivo NIRF-imaging of collagen-induced arthritis (CIA) was performed using Cy7-Nb119. Signals obtained with Cy7-Nb119 or isotope control Cy7-NbBCII10 were compared in joints of naive mice versus CIA mice. In addition, pathological microscopy and fluorescence microscopy were used to validate the arthritis development in CIA. Cy7-Nb119 accumulated in inflamed joints of CIA mice, but not the naive mice. Development of symptoms in CIA was reflected in increased joint accumulation of Cy7-Nb119, which correlated with the conventional measurements of disease. Vsig4 is co-expressed with F4/80, indicating targeting of the increasing number of synovial macrophages associated with the severity of inflammation by the Vsig4 nanobody. NIRF imaging with Cy7-Nb119 allows specific assessment of inflammation in experimental arthritis and provides complementary information to clinical scoring for quantitative, non-invasive and economical monitoring of the pathological process. Nanobody labelled with fluorescence can also be used for ex vivo validation experiments using flow cytometry and fluorescence microscopy.
Collapse
|
398
|
Treatment of obesity-related inflammation with a novel synthetic pentacyclic oleanane triterpenoids via modulation of macrophage polarization. EBioMedicine 2019; 45:473-486. [PMID: 31285187 PMCID: PMC6642413 DOI: 10.1016/j.ebiom.2019.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/03/2023] Open
Abstract
Background Obesity leads to the chronic inflammation in the whole body and triggers the macrophage polarization to the pro-inflammatory phenotype. Targeting macrophage polarization provides a promising therapeutic strategy for obesity-related metabolic disorders and inflammation. Here, we show that SO1989, a derivative of natural occurring compound oleanolic acid, restores the balance between M1-polarized and M2-polarized macrophages in high fat diets (HFD)-induced obese mice resulting in the improvement of adipose inflammation and the metabolic dysfunctions. Methods Histological analysis, magnetic cell sorting and FACS, in vitro cell model of adipose inflammation, Western blotting, HFD mice model. Findings SO1989 exhibits similar or even stronger activity in inhibiting inflammation and M1 polarization of macrophages both in vitro and in vivo compared to its analogue CDDO-Me, previously known as a powerful anti-inflammation chemical small molecule. In addition, SO1989 can significantly increase the level of fatty acid oxidation in macrophages which can efficiently facilitate M2 polarization of macrophages. Unlike CDDO-Me, SO1989 shows less adverse effects on obese mice. Interpretation Taken all together, our findings identify SO1989 as a modulator in macrophage polarization and a safer potential leading compound for pro-resolution of inflammation treatment in metabolic disorders. Fund Supported by grants from the National Key Research and Development Plan (2017YFA0506000, 2017YFA0205400) and National Natural Science Foundation of China (81673439) and Natural Science Fund project in Jiangsu Province (BK20161408).
Collapse
|
399
|
Schmidt T, Najm A, Mussawy H, Burghardt R, Oehler N, Krenn V, Rüther W, Niemeier A. General synovitis score and immunologic synovitis score reflect clinical disease activity in patients with advanced stage rheumatoid arthritis. Sci Rep 2019; 9:8448. [PMID: 31186464 PMCID: PMC6560084 DOI: 10.1038/s41598-019-44895-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/23/2019] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to investigate the relationship between clinical disease activity in patients with advanced stage rheumatoid arthritis (RA) on treatment with Disease Modifying Antirheumatic Drugs (DMARDs) and histopathological scores of synovial inflammation. To this end, synovial biopsies of 62 RA patients who underwent surgery for either synovectomy or total joint arthroplasty were assessed by a general synovitis score (GSS) and an immunologic synovitis score (IMSYC). The clinical disease activity index (CDAI) was significantly correlated with both the GSS and the IMSYC (r = 0.65, p = <0.001, r = 0.68, p = <0.001). Compared to patients with moderate and high disease activity, there was a significantly lower expression of T cell (CD3), B cell (CD20) and neutrophil (CD15) markers in synovial tissue of patients with low activity, but similar expression of the macrophage marker CD68. Subgroup analyses revealed no differences between small and large joints, seropositive and seronegative RA and patients with or without prednisolone treatment. However, we found a significantly stronger correlation of CDAI with IMSYC in patients undergoing arthroplasty (r = 0.82) than in patients undergoing synovectomy (r = 0.55). In addition, there was a stronger correlation of CDAI with GSS in patients treated with methotrexate (r = 0.86) than in patients with TNFα blockade (r = 0.55). In summary, the present study demonstrates that the histopathological scores GSS and IMSYC in general reflect clinical disease activity in patients with advanced stage rheumatoid arthritis, but that there is some heterogeneity between subgroups of patients within the cohort. In the future, molecular characterization of synovial inflammatory cell populations, including plasma cell infiltrates, will help to further defined clinically important subtypes of RA and treatment response.
Collapse
Affiliation(s)
- Tobias Schmidt
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany. .,Institute of Osteology and Biomechanics IOBM, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Aurélie Najm
- Rheumatology Unit, Nantes University Hospital, 44093, Nantes, France.,INSERM UMR1238, Nantes University, 44093, Nantes, France
| | - Haider Mussawy
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Rolf Burghardt
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nicola Oehler
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Veit Krenn
- Department of Pathology, Institute of Pathology, Max-Planck-Straße 18, 54296, Trier, Germany
| | - Wolfgang Rüther
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
400
|
Pentecost A, Kim MJ, Jeon S, Ko YJ, Kwon IC, Gogotsi Y, Kim K, Spiller KL. Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater 2019; 6:163-174. [PMID: 31198584 PMCID: PMC6547310 DOI: 10.1093/rb/rbz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that octadecylamine-functionalized nanodiamond (ND-ODA) and dexamethasone (Dex)-adsorbed ND-ODA (ND-ODA-Dex) promoted anti-inflammatory and pro-regenerative behavior in human macrophages in vitro. In this study, we performed a pilot study to investigate if these immunomodulatory effects translate when used as a treatment for rheumatoid arthritis in mice. Following local injection in limbs of mice with collagen type II-induced arthritis, microcomputed tomography showed that mice treated with a low dose of ND-ODA and ND-ODA-Dex did not experience bone loss to the levels observed in non-treated arthritic controls. A low dose of ND-ODA and ND-ODA-Dex also reduced macrophage infiltration and expression of pro-inflammatory mediators iNOS and tumor necrosis factor-α compared to the arthritic control, while a high dose of ND-ODA increased expression of these markers. Overall, these results suggest that ND-ODA may be useful as an inherently immunomodulatory platform, and support the need for an in-depth study, especially with respect to the effects of dose.
Collapse
Affiliation(s)
- Amanda Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Min Ju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sangmin Jeon
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Young Ji Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yury Gogotsi
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | - Kwangmeyung Kim
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|