351
|
Lewis RC, Meeker JD, Peterson KE, Lee JM, Pace GG, Cantoral A, Téllez-Rojo MM. Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children. CHEMOSPHERE 2013; 93:2390-8. [PMID: 24041567 PMCID: PMC3818401 DOI: 10.1016/j.chemosphere.2013.08.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/05/2013] [Accepted: 08/10/2013] [Indexed: 05/18/2023]
Abstract
Exposure to endocrine disrupting chemicals such as bisphenol A (BPA) and phthalates is prevalent among children and adolescents, but little is known regarding important sources of exposure at these sensitive life stages. In this study, we measured urinary concentrations of BPA and nine phthalate metabolites in 108 Mexican children aged 8-13 years. Associations of age, time of day, and questionnaire items on external environment, water use, and food container use with specific gravity-corrected urinary concentrations were assessed, as were questionnaire items concerning the use of 17 personal care products in the past 48-h. As a secondary aim, third trimester urinary concentrations were measured in 99 mothers of these children, and the relationship between specific gravity-corrected urinary concentrations at these two time points was explored. After adjusting for potential confounding by other personal care product use in the past 48-h, there were statistically significant (p<0.05) positive associations in boys for cologne/perfume use and monoethyl phthalate (MEP), mono(3-carboxypropyl) phthalate (MCPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and in girls for colored cosmetics use and mono-n-butyl phthalate (MBP), mono(2-ethylhexyl) phthalate (MEHP), MEHHP, MEOHP, and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), conditioner use and MEP, deodorant use and MEP, and other hair products use and MBP. There was a statistically significant positive trend for the number of personal care products used in the past 48-h and log-MEP in girls. However, there were no statistically significant associations between the analytes and the other questionnaire items and there were no strong correlations between the analytes measured during the third trimester and at 8-13 years of age. We demonstrated that personal care product use is associated with exposure to multiple phthalates in children. Due to rapid development, children may be susceptible to impacts from exposure to endocrine disrupting chemicals; thus, reduced or delayed use of certain personal care products among children may be warranted.
Collapse
Affiliation(s)
- Ryan C. Lewis
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, USA
| | - John D. Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, USA
- Corresponding author: John D. Meeker, Sc.D., University of Michigan School of Public Health, Department of Environmental Health Sciences, M6017 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109, , telephone: 1.734.764.7184, fax: 1.734.936.7283
| | - Karen E. Peterson
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, USA
- University of Michigan, Center for Human Growth and Development, Ann Arbor, MI, USA
- Harvard School of Public Health, Department of Nutrition, Boston, MA, USA
| | - Joyce M. Lee
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, USA
- University of Michigan, Pediatric Endocrinology, Child Health Evaluation and Research Unit (CHEAR), Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
352
|
In vitro endocrine disruption and TCDD-like effects of three novel brominated flame retardants: TBPH, TBB, & TBCO. Toxicol Lett 2013; 223:252-9. [DOI: 10.1016/j.toxlet.2013.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022]
|
353
|
Fromme H, Lahrz T, Kraft M, Fembacher L, Dietrich S, Sievering S, Burghardt R, Schuster R, Bolte G, Völkel W. Phthalates in German daycare centers: occurrence in air and dust and the excretion of their metabolites by children (LUPE 3). ENVIRONMENT INTERNATIONAL 2013; 61:64-72. [PMID: 24103347 DOI: 10.1016/j.envint.2013.09.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Phthalates have been used for decades in large quantities, leading to the ubiquitous exposure of the population. In an investigation of 63 German daycare centers, indoor air and dust samples were analyzed for the presence of 10 phthalate diesters. Moreover, 10 primary and secondary phthalate metabolites were quantified in urine samples from 663 children attending these facilities. In addition, the urine specimens of 150 children were collected after the weekend and before they went to daycare centers. Di-isobutyl phthalate (DiBP), dibutyl phthalate (DnBP), and di-2-ethylhexyl phthalate (DEHP) were found in the indoor air, with median values of 468, 227, and 194ng/m(3), respectively. In the dust, median values of 888mg/kg for DEHP and 302mg/kg for di-isononyl phthalate (DiNP) were observed. DnBP and DiBP were together responsible for 55% of the total phthalate concentration in the indoor air, whereas DEHP and DiNP were responsible for 70% and 24% of the total phthalate concentration in the dust. Median concentrations in the urine specimens were 44.7μg/l for the DiBP monoester, 32.4μg/l for the DnBP monoester, and 16.5μg/l and 17.9μg/l for the two secondary DEHP metabolites. For some phthalates, we observed significant correlations between their concentrations in the indoor air and dust and their corresponding metabolites in the urine specimens using bivariate analyses. In multivariate analyses, the concentrations in dust were not associated with urinary metabolite excretion after controlling for the concentrations in the indoor air. The total daily "high" intake levels based on the 95th percentiles calculated from the biomonitoring data were 14.1μg/kg b.w. for DiNP and 11.9μg/kg b.w. for DEHP. Compared with tolerable daily intake (TDI) values, our "high" intake was 62% of the TDI value for DiBP, 49% for DnBP, 24% for DEHP, and 9% for DiNP. For DiBP, the total daily intake exceeded the TDI value for 2.4% of the individuals. Using a cumulative risk-assessment approach for the sum of DEHP, DnBP, and DiBP, 20% of the children had concentrations exceeding the hazard index of one. Therefore, a further reduction of the phthalate exposure of children is needed.
Collapse
Affiliation(s)
- H Fromme
- Bavarian Health and Food Safety Authority, Department of Chemical Safety and Toxicology, D-80538 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
354
|
Lorber M, Koch HM. Development and application of simple pharmacokinetic models to study human exposure to di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP). ENVIRONMENT INTERNATIONAL 2013; 59:469-77. [PMID: 23955327 DOI: 10.1016/j.envint.2013.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 05/05/2023]
Abstract
In a published controlled dosing experiment, a single individual consumed 5mg each of labeled di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) on separate occasions and tracked metabolites in his blood and urine over 48h. Data from this study were used to structure and calibrate simple pharmacokinetic (PK) models for these two phthalates, which predict urine and blood metabolite concentrations with a given phthalate intake scenario (times and quantities). The calibrated models were applied to a second published experiment in which 5 individuals fasted over the course of a 48-h weekend (bottled water only), and their full urine voids were captured and measured for DnBP and DiBP metabolites. One goal of this model application was to confirm the validity of the calibrated models - their validity would be demonstrated if a profile of intakes could be found which adequately duplicated the metabolite concentrations measured in the urine. A second goal was to study patterns of exposure for this group. It was found that all metabolites could be duplicated very well with individual-specific "best-fit" intake scenarios, with one exception. It appears that the model predicted much lower concentrations of the metabolite, 3carboxy-mono-propylphthalate (MCPP), than were observed in all individuals. Modeled as a metabolite of DnBP, this suggests that DnBP was not the major source of MCPP in the urine. For all 5 individuals, the reconstructed dose profiles of the two phthalates were similar: about 6 small bolus doses per day and an intake of about 0.5μg/kg-day. The intakes did not appear to be associated with diary-reported activities (personal hygiene and medication) of the participants. The modeled frequent intakes suggested one (or both) of two possibilities: ongoing exposures such as an inhalation exposure, or no exposure but rather an ongoing release of body stores of the phthalate metabolites from past exposures.
Collapse
Affiliation(s)
- Matthew Lorber
- Office of Research and Development, United States Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Washington, DC 20460, United States.
| | | |
Collapse
|
355
|
Martinez-Arguelles DB, Campioli E, Culty M, Zirkin BR, Papadopoulos V. Fetal origin of endocrine dysfunction in the adult: the phthalate model. J Steroid Biochem Mol Biol 2013; 137:5-17. [PMID: 23333934 DOI: 10.1016/j.jsbmb.2013.01.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/27/2012] [Accepted: 01/07/2013] [Indexed: 11/16/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer with endocrine disrupting properties that is found ubiquitously in the environment as well as in human amniotic fluid, umbilical cord blood, human milk, semen, and saliva. It is used in the industry to add flexibility to polyvinyl chloride-derived plastics and its wide spread use and presence has resulted in constant human exposure through fetal development and postnatal life. Epidemiological studies have suggested an association between phthalate exposures and human reproductive effects in infant and adult populations. The effects of fetal exposure to phthalates on the male reproductive system were unequivocally shown on animal models, principally rodents, in which short term deleterious reproductive effects are well established. By contrast, information on the long term effects of DEHP in utero exposure on gonadal function are scarce, while its potential effects on other organs are just starting to emerge. The present review focuses on these novel findings, which suggest that DEHP exerts more complex and broader disruptive effects on the endocrine system and metabolism than previously thought. This article is part of a Special Issue entitled "CSR 2013".
Collapse
Affiliation(s)
- D B Martinez-Arguelles
- The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
356
|
Wang X, Yang Y, Zhang L, Ma Y, Han J, Yang L, Zhou B. Endocrine disruption by di-(2-ethylhexyl)-phthalate in Chinese rare minnow (Gobiocypris rarus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1846-1854. [PMID: 23625782 DOI: 10.1002/etc.2261] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Great concern has been raised over the potential impact of environmental contaminants on fish populations that inhabit the Three Gorge Reservoir. The present study investigated the endocrine-disrupting effects of di-(2-ethylhexyl)-phthalate (DEHP) on the Chinese rare minnow (Gobiocypris rarus), an endemic fish distributed in upstream waters in the Yangtze River. Adult rare minnow were exposed to environmentally relevant concentrations of DEHP (0 µg/L, 3.6 µg/L, 12.8 µg/L, 39.4 µg/L, and 117.6 µg/L) for a 21-d period. Then, concentrations of sex hormones in the plasma and relative transcription of various associated genes were measured in the hypothalamic-pituitary-gonadal (HPG) axis and liver of the fish. Exposure to DEHP resulted in greater circulating concentrations of testosterone (T) and lower concentrations of estradiol (E2), which were accompanied by upregulation of Cyp17 mRNA and downregulation of Cyp19a mRNA in the gonads of females. In males, increases of T and E2 levels were consistent with upregulation of Cyp17 and Cyp19a in the gonads. Furthermore, the T/E2 ratio was increased in females but reduced in males. A significant increase in the levels of hepatic vitellogenin (VTG) gene transcription was observed in both females and males. The present study showed that waterborne exposure to DEHP altered plasma sex hormone levels and modulated gene transcription profiles of associated genes in the HPG axis and liver, occurring mostly at higher concentrations (>39.4 µg/L), which suggests that environmental concentration of DEHP (5.4 µg/L) alone might not disturb the endocrine system of the rare minnow in the TGR.
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
357
|
Hu Y, Dong C, Chen M, Lu J, Han X, Qiu L, Chen Y, Qin J, Li X, Gu A, Xia Y, Sun H, Li Z, Wang Y. Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells. Reprod Biol Endocrinol 2013; 11:72. [PMID: 23889939 PMCID: PMC3734203 DOI: 10.1186/1477-7827-11-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ubiquitous use of dibutyl phthalate (DBP), one of the most widely used plasticizers, results in extensive exposure to humans and the environment. DBP and its major metabolite, monobutyl phthalate (MBP), may alter steroid biosynthesis and their exposure may lead to damage to male reproductive function. Low-doses of DBP/MBP may result in increased steroidogenesis in vitro and in vivo. However, the mechanisms of possible effects of low-dose MBP on steroidogenesis remain unclear. The aim of present study was to elaborate the role of transcription factors and steroidogenic acute regulatory protein in low-dose MBP-induced distruption of steroidogenesis in mouse Leydig tumor cells (MLTC-1 cells). METHODS In the present study, MLTC-1 cells were cultured in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate. Progesterone level was examined by I125-pregesterone Coat-A-Count radioimmunoassay (RIA) kits. mRNA and protein levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. DNA-binding of several transcription factors was examined by electrophoretic mobility shift assay (EMSA). RESULTS In this study, various doses of MBP (0, 10(-9), 10(-8), 10(-7), or 10(-6) M) were added to the medium followed by stimulation of MLTC-1 cells with human chorionic gonadotrophin (hCG). The results showed that MBP increased progesterone production and steroidogenic acute regulatory protein (StAR) mRNA and protein levels. However, the protein levels of cytochrome P450scc and 3 beta-hydroxy-steroid dehydrogenase (3 beta-HSD) were unchanged after MBP treatment. EMSA assay showed that DNA-binding of steroidogenic factors 1(SF-1), GATA-4 and CCAAT/enhancer binding protein-beta (C/EBP-beta) was increased in a dose-dependent manner after MBP exposure. Western blot tests were next employed and confirmed that the protein levels of SF-1, GATA-4 and C/EBP-beta were also increased. Additionally, western blot tests confirmed the expression of DAX-1, negative factor of SF-1, was dose-dependently down regulated after MBP exposure, which further confirmed the role of SF-1 in MBP-stimulated steroid biosynthesis. CONCLUSIONS In conclusion, we firstly delineated the regulation of StAR by transcription factors including SF-1, GATA-4 and C/EBP-beta maybe critical mechanism involved in low-dose MBP-stimulated steroidogenesis.
Collapse
Affiliation(s)
- Yanhui Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lianglin Qiu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaocheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
358
|
Peng B, Li G, Li D, Dodson S, Zhang Q, Zhang J, Lee YH, Demir HV, Ling XY, Xiong Q. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS NANO 2013; 7:5993-6000. [PMID: 23790104 DOI: 10.1021/nn401685p] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Public attention to the food scandals raises an urgent need to develop effective and reliable methods to detect food contaminants. The current prevailing detections are primarily based upon liquid chromatography, mass spectroscopy, or colorimetric methods, which usually require sophisticated and time-consuming steps or sample preparation. Herein, we develop a facile strategy to assemble the vertically aligned monolayer of Au nanorods with a nominal 0.8 nm gap distance and demonstrate their applications in the rapid detection of plasticizers and melamine contamination at femtomolar level by surface-enhanced Raman scattering spectroscopy (SERS). The SERS signals of plasticizers are sensitive down to 0.9 fM concentrations in orange juices. It is the lowest detection limit reported to date, which is 7 orders of magnitude lower than the standard of United States (6 ppb). The highly organized vertical arrays generate the reproducible "SERS-active sites" and can be achieved on arbitrary substrates, ranging from silicon, gallium nitride, glass to flexible poly(ethylene naphthalate) substrates.
Collapse
Affiliation(s)
- Bo Peng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | | | | | | | | | | | | | | | | | | |
Collapse
|
359
|
Xu H, Shao X, Zhang Z, Zou Y, Wu X, Yang L. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 93:39-44. [PMID: 23676468 DOI: 10.1016/j.ecoenv.2013.03.038] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
In the present study, we analyzed the oxidative stress related indices and immune related gene expression of zebrafish embryos after a short-term exposure to various concentrations of di-n-butyl phthalate (DBP), diethyl phthalate (DEP) and their mixture (DBP-DEP) from 4h post-fertilization (hpf) to 96hpf. Exposure to the chemicals was found to enhance the production of reactive oxygen species (ROS) and lipid peroxidation (LPO) in a concentration-dependent manner. Simultaneously, adaptive responses to DBP/DEP-induced oxidative stress were observed. The activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were all increased in a concentration-dependent manner. The transcription of innate immune related genes including interferon γ (IFNγ), interleukin-1β (IL1β), Myxovirus resistance (Mx), tumor necrosis factor α (TNFα), CC-chemokine, CXCL-clc, lysozyme (Lyz) and complement factor C3B (C3) were up-regulated upon DBP, DEP and their mixture exposure, suggesting the induction of immune response. In addition, co-exposure to DBP-DEP also induced antioxidant defense and immune response in zebrafish embryo. The results demonstrat that DBP/DEP exposure could induce the antioxidant and immune responses in zebrafish embryos.
Collapse
Affiliation(s)
- Hai Xu
- School of the Environment, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
360
|
Yang J, Hauser R, Goldman RH. Taiwan food scandal: the illegal use of phthalates as a clouding agent and their contribution to maternal exposure. Food Chem Toxicol 2013; 58:362-8. [PMID: 23684997 DOI: 10.1016/j.fct.2013.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 12/16/2022]
Abstract
In 2011 the Taiwan Food and Drug Administration reported that plasticizers di(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DiNP), endocrine disruptors, were illegally added to clouding agents used in foods and beverages. 965 products were found contaminated, of which 206 were exported to 22 countries. This study's purpose was to obtain English names for 28 contaminated products for which DEHP levels were reported, calculate estimated average daily intake (mg/kg/day) for a 50 kg woman consuming one portion, and compare to U.S. and E.U. guidelines for daily intake. We found that drinking just one bottle (500 ml) of sports drinks would result in an average DEHP intake of 0.14 mg/kg bw/day (range 0.091-0.341), which exceeds by several fold government guidelines (0.02-0.06 mg/kg bw/day). One (2 g) serving from 4/14 samples of contaminated dietary supplements exceeds the guideline of 0.02 mg/kg bw/day. In conclusion, consuming even one portion of tainted drinks and some powders would lead to daily intake of DEHP that greatly exceeds established safety guidelines, raising concerns about potential adverse effects, particularly reproductive tract development in the male fetus. Global distribution of DEHP-contaminated and other adulterated products should prompt governments to become proactive in food safety regulations and chemical testing.
Collapse
Affiliation(s)
- Justin Yang
- Department of Environmental Health, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
361
|
Fromme H, Gruber L, Schuster R, Schlummer M, Kiranoglu M, Bolte G, Völkel W. Phthalate and di-(2-ethylhexyl) adipate (DEHA) intake by German infants based on the results of a duplicate diet study and biomonitoring data (INES 2). Food Chem Toxicol 2013; 53:272-80. [DOI: 10.1016/j.fct.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
|
362
|
Herreros MA, Gonzalez-Bulnes A, Iñigo-Nuñez S, Contreras-Solis I, Ros JM, Encinas T. Toxicokinetics of di(2-ethylhexyl) phthalate (DEHP) and its effects on luteal function in sheep. Reprod Biol 2013; 13:66-74. [DOI: 10.1016/j.repbio.2013.01.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 10/27/2022]
|
363
|
Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 2013; 8:e55387. [PMID: 23359474 PMCID: PMC3554682 DOI: 10.1371/journal.pone.0055387] [Citation(s) in RCA: 568] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/28/2012] [Indexed: 12/26/2022] Open
Abstract
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1–F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the “plastics” or “lower dose plastics” mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures.
Collapse
|
364
|
Li M, Qiu L, Zhang Y, Hua Y, Tu S, He Y, Wen S, Wang Q, Wei G. Dose-related effect by maternal exposure to di-(2-ethylhexyl) phthalate plasticizer on inducing hypospadiac male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:55-60. [PMID: 23228707 DOI: 10.1016/j.etap.2012.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/25/2012] [Accepted: 10/28/2012] [Indexed: 05/04/2023]
Abstract
The aim of this study was to evaluate dose-related effects on external genitalia of adult male offspring rats by maternal exposure to di-(2-ethylhexyl) phthalate (DEHP) plasticizer. Timed-pregnant rats were given DEHP by gastric intubation at doses of 0, 500, 750 or 1000mg/kg body weight/day from gestation day 12-19 to establish a hypospadiac rat model. The hypospadias was observed and the incidence in three DEHP dosage levels was 10.7%, 30.6% and 37.0%, respectively. With exposed dose increased, mild, moderate and severe hypospadiac rats were distinguished and an increased incidence of severe hypospadias was observed. The other reproductive lesions like reduced penile length and anogenital distance/body weight were observed. The results indicated the dose-related external genitalia teratogenic toxicity, and graded hypospadias on male offspring was resulted from high dosage DEHP maternal exposure.
Collapse
Affiliation(s)
- Mingyong Li
- Department of Pediatric Urology Surgery, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Wang W, Craig ZR, Basavarajappa MS, Hafner KS, Flaws JA. Mono-(2-ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. Biol Reprod 2012; 87:152. [PMID: 23077170 DOI: 10.1095/biolreprod.112.102467] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mono-(2-ethylhexyl) phthalate (MEHP) is the active metabolite of the most commonly used plasticizer, di-(2-ethylhexyl) phthalate, and is considered to be a reproductive toxicant. However, little is known about the effects of MEHP on ovarian antral follicles. Thus, the present study tested the hypothesis that MEHP inhibits follicle growth via oxidative stress pathways. The data indicate that MEHP increases reactive oxygen species (ROS) levels and inhibits follicle growth in antral follicles, whereas N-acetylcysteine (NAC; an antioxidant) restores ROS levels to control levels and rescues follicles from MEHP-induced inhibition of follicle growth. To further analyze the mechanism by which MEHP induces oxidative stress and inhibits follicle growth, the expression and activities of various key antioxidant enzymes (copper/zinc superoxide dismutase [SOD1], glutathione peroxidase [GPX], and catalase [CAT]) and the expression of key cell-cycle regulators (Ccnd2, Ccne1, and Cdk4) and apoptotic regulators (Bcl-2 and Bax) were compared in control and MEHP-treated follicles. The data indicate that MEHP inhibits the expression and activities of SOD1 and GPX; does not inhibit Cat expression; inhibits the expression of Ccnd2, Ccne1, Cdk4, and Bcl-2; but increases the expression of Bax compared to controls. Furthermore, NAC blocks these toxic effects of MEHP. Collectively, these data suggest that MEHP induces oxidative stress by disrupting the activities of antioxidant enzymes. This may lead to decreased expression of cell-cycle regulators and antiapoptotic regulators and increased expression of proapoptotic factors, which then may lead to inhibition of follicle growth.
Collapse
Affiliation(s)
- Wei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
366
|
Tranfo G, Papaleo B, Caporossi L, Capanna S, De Rosa M, Pigini D, Corsetti F, Paci E. Urinary metabolite concentrations of phthalate metabolites in Central Italy healthy volunteers determined by a validated HPLC/MS/MS analytical method. Int J Hyg Environ Health 2012; 216:481-5. [PMID: 23270838 DOI: 10.1016/j.ijheh.2012.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 09/14/2012] [Accepted: 11/16/2012] [Indexed: 01/09/2023]
Abstract
The main objective of this study was to determine the average concentrations for the metabolites of the four more common phthalates, industrial chemicals widely used in commercial products and potential endocrine disruptors, in the urine of a control population living in Central Italy. The study population consisted of 157 healthy subjects, not occupationally exposed to phthalates (74 males and 83 females). Urinary levels of the analytes were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) with isotopic dilution. The reference values (geometric mean) for males and females were estimated for each metabolite:. Females: for MEP was 72.94μg/g creatinine (CI 95% 3.63-149.51), for MEHP was 3.37μg/g creatinine (CI 95% 1.85-4.89), for MEHHP was 12.74μg/g creatinine (CI 95% 9.45-22.19), for MnBP was 20.26μg/g creatinine (CI 95% 8.17-28.43) and for MBzP was 14.74 (CI 95% 2.94-17.68). Males: for MEP was 56.35μg/g creatinine (CI 95% 2.32-110.39), for MEHP was 2.80μg/g creatinine (CI 95% 1.08-4.52), for MEHHP was 10.77μg/g creatinine (CI 95% 6.18-16.95), for MnBP was 17.59μg/g creatinine (CI 95% 5.72-29.45) and for MBzP was 16.44 (CI 95% 7.90-29.45). To obtain reference values for these chemicals is without doubt an important topic for evaluate the exposure of population and their possible health effects. Information from different geographical areas are important to understand the real different background concentrations.
Collapse
Affiliation(s)
- Giovanna Tranfo
- INAIL-Research, Certification, Verification Area, Department of Occupational Medicine, Research Center of Monteporzio Catone, Via di Fontana Candida 1, 00040 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
367
|
Braslau R, Schäffner F, Earla A. Polymeric phthalates: Potential nonmigratory macromolecular plasticizers. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
368
|
Usage patterns of personal care products: important factors for exposure assessment. Food Chem Toxicol 2012; 55:8-17. [PMID: 23174517 DOI: 10.1016/j.fct.2012.11.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 12/25/2022]
Abstract
Complete information regarding the use of personal care products (PCPs) by consumers is limited, but such information is crucial for realistic consumer exposure assessment. To fill this gap, a database was created with person-oriented information regarding usage patterns and circumstances of use for 32 different PCPs. Out of 2700 potential participants from the Netherlands, 516 men and women completed a digital questionnaire. The prevalence of use varied by gender, age, level of education and skin type. A high frequency of use was observed for some products (e.g. lip care products), while toothpaste, deodorant and day cream were generally used once or twice a day. The frequency of use for other PCPs varied over a wide range. The amounts of use varied largely between and within different product groups. Body lotion, sunscreen and after sun lotion were often applied on adjacent body parts. The majority of PCPs were applied in the morning, but some products, such as night cream and after sun, were predominantly applied in the evening or night. As expected, the participants used several PCPs simultaneously. The database yields important personalized exposure factors which can be used in aggregate consumer exposure assessment for substances that are components of PCPs.
Collapse
|
369
|
Bell SF, Morris NG, Rao A, Wilkes AR, Goodwin N. A randomised crossover trial comparing a single-use polyvinyl chloride laryngeal mask airway with a single-use silicone laryngeal mask airway. Anaesthesia 2012; 67:1337-42. [DOI: 10.1111/anae.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
370
|
Grossman D, Kalo D, Gendelman M, Roth Z. Effect of di-(2-ethylhexyl) phthalate and mono-(2-ethylhexyl) phthalate on in vitro developmental competence of bovine oocytes. Cell Biol Toxicol 2012; 28:383-96. [PMID: 22956148 DOI: 10.1007/s10565-012-9230-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
In the last decade, potential exposure of humans and animals to industrial chemicals and pesticides has been a growing concern. In the present study, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) were used to model the effects of endocrine-disrupting compounds and their risk in relation to early embryonic losses. Exposure of cumulus oocyte complexes during maturation to 50 μM MEHP reduced the proportion of oocytes that underwent nuclear maturation (p < 0.05) and increased the proportion of apoptotic oocytes (p < 0.05). Furthermore, phthalates reduced cleavage rate in the MEHP-treated group (p < 0.05) and the proportion of embryos developing to the blastocyst stage in both DEHP- and MEHP-treated groups (p < 0.05). The total cell count for blastocysts developing from MEHP-treated oocytes was lower than in controls (p < 0.05). Exposure of oocytes to MEHP during maturation reduced (p < 0.05) the expression of ASAH1 (an anti-apoptotic factor), CCNA2 (involved in cell cycle control), and POU5F1 (responsible for pluripotency) in matured oocytes. Furthermore, the reduced mRNA expression of POU5F1 and ASAH1 lasted into two-cell stage embryos (p < 0.05). Phthalate-induced alterations in POU5F1, ASAH1, and CCNA2 expression might explain in part the reduced developmental competence of MEHP-treated oocytes.
Collapse
Affiliation(s)
- D Grossman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
371
|
Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, Woodruff TJ, Vom Saal FS. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology 2012; 153:4097-110. [PMID: 22733974 PMCID: PMC3423612 DOI: 10.1210/en.2012-1422] [Citation(s) in RCA: 741] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive "safe" dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures.
Collapse
Affiliation(s)
- R Thomas Zoeller
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | | | | | |
Collapse
|
372
|
Buckley JP, Palmieri RT, Matuszewski JM, Herring AH, Baird DD, Hartmann KE, Hoppin JA. Consumer product exposures associated with urinary phthalate levels in pregnant women. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:468-75. [PMID: 22760436 PMCID: PMC3439834 DOI: 10.1038/jes.2012.33] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/24/2012] [Indexed: 05/20/2023]
Abstract
Human phthalate exposure is ubiquitous, but little is known regarding predictors of urinary phthalate levels. To explore this, 50 pregnant women aged 18-38 years completed two questionnaires on potential phthalate exposures and provided a first morning void. Urine samples were analyzed for 12 phthalate metabolites. Associations with questionnaire items were evaluated via Wilcoxon tests and t-tests, and r-squared values were calculated in multiple linear regression models. Few measured factors were statistically significantly associated with phthalate levels. Individuals who used nail polish had higher levels of mono-butyl phthalate (P=0.048) than non-users. Mono-benzyl phthalate levels were higher among women who used eye makeup (P=0.034) or used makeup on a regular basis (P=0.004). Women who used cologne or perfume had higher levels of di-(2-ethylhexyl) phthalate metabolites. Household products, home flooring or paneling, and other personal care products were also associated with urinary phthalates. The proportion of variance in metabolite concentrations explained by questionnaire items ranged between 0.31 for mono-ethyl phthalate and 0.42 for mono-n-methyl phthalate. Although personal care product use may be an important predictor of urinary phthalate levels, most of the variability in phthalate exposure was not captured by our relatively comprehensive set of questionnaire items.
Collapse
Affiliation(s)
- Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – Chapel Hill, North Carolina, USA
| | - Rachel T. Palmieri
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – Chapel Hill, North Carolina, USA
| | - Jeanine M. Matuszewski
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina – Chapel Hill, North Carolina, USA
| | - Amy H. Herring
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina – Chapel Hill, North Carolina, USA
- Carolina Population Center, Chapel Hill, NC
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Katherine E. Hartmann
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – Chapel Hill, North Carolina, USA
- Institute for Medicine and Public Health, Vanderbilt University, Nashville, TN
| | - Jane A. Hoppin
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
373
|
Zimmermann S, Gruber L, Schlummer M, Smolic S, Fromme H. Determination of phthalic acid diesters in human milk at low ppb levels. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29:1780-90. [PMID: 22845555 DOI: 10.1080/19440049.2012.704529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Phthalic acid diesters (PAE) are omnipresent in the human environment and food is a major contributor to the overall human exposure towards these chemicals. Due to developmental effects, PAE infants' exposure via human milk has been subjected to a number of analytical studies. These previous studies, however, revealed that normal laboratory blank values are in the range of or even higher than human milk levels due to the presence of PAE in laboratory environments. In order to provide more reliable data on PAE exposure via human milk, the aim of this study was to develop and validate a robust and sensitive analytical method. This should be capable of removing matrix components efficiently and guarantee limits of quantification in the low ppb range. The method development took into account liquid-liquid extraction and selective pressurised fluid extraction (sPFE) as well as chromatography-based clean-up steps. The final method consisted of a liquid-liquid extraction followed by an automated chromatographic clean-up by an sPFE device. After volume reduction the cleaned extracts were analysed by quadrupole GC/MS. Quantification was based on internal standards. An extensive quality assurance and method test programme demonstrated conservatively determined limits of detection and quantification from 0.3 to 10 ng g⁻¹ in human milk, with recoveries of internal standards from 50% to 101%. Thus, the method allowed the quality-assured detection of di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DBP), di-2-ethylhexyl phthalate (DEHP), di-allyl phthalate (DAP), benzylbutyl phthalate (BBP) and di-cyclohexyl phthalate (DcHP) in 30 human milk samples provided by 30 volunteers from southern Germany. DiBP, DBP and DEHP were the most commonly detected PAE, with median levels of 1.0, 0.6 and 2.3 ng g⁻¹, respectively.
Collapse
Affiliation(s)
- Simone Zimmermann
- Fraunhofer-Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, D-85354 Freising, Germany
| | | | | | | | | |
Collapse
|
374
|
Di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP) metabolism in a human volunteer after single oral doses. Arch Toxicol 2012; 86:1829-39. [DOI: 10.1007/s00204-012-0908-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/05/2012] [Indexed: 10/28/2022]
|
375
|
Dose response analysis of monophthalates in the murine embryonic stem cell test assessed by cardiomyocyte differentiation and gene expression. Reprod Toxicol 2012; 35:81-8. [PMID: 22813628 DOI: 10.1016/j.reprotox.2012.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/12/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022]
Abstract
The embryonic stem cell test (EST) is based on compound-induced inhibition of cardiomyocyte differentiation of pluripotent stem cells. We examined the use of transcriptomics to assess concentration-effect relationships and performed potency ranking within a chemical class. Three embryotoxic phthalate monoesters, monobutyl phthalate (MBuP), monobenzyl phthalate (MBzP) and mono-(2-ethylhexyl) phthalate (MEHP) and the non-embryotoxic monomethyl phthalate (MMP) were studied for their effects on gene expression. Effects on gene expression were observed at concentrations that did not inhibit cardiomyocyte differentiation or induce cytotoxicity. The embryotoxic phthalate monoesters altered the expression of 668 commonly expressed genes in a concentration-dependent fashion. The same potency ranking was observed for morphology and gene expression (MEHP>MBzP>MBuP>MMP). These results indicate that integrating transcriptomics provides a sensitive method to measure the dose-dependent effects of phthalate monoester exposure and enables potency ranking based on a common mode of action within a class of compounds. Transcriptomic approaches may improve the applicability of the EST, in terms of sensitivity and specificity.
Collapse
|
376
|
Meeker JD, Calafat AM, Hauser R. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:376-85. [PMID: 22354176 PMCID: PMC3412392 DOI: 10.1038/jes.2012.7] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/07/2011] [Indexed: 05/18/2023]
Abstract
Most epidemiology studies investigating the potential adverse health effects in relation to phthalates measure the urinary concentration of the free plus glucuronidated species of phthalate metabolites (i.e., total concentration) to estimate exposure. However, the free species may represent the biologically relevant dose. In this study, we collected 943 urine samples from 112 men and 157 women and assessed the between- and within-person variability and predictors of (1) the free and total urinary concentrations of phthalate metabolites, and (2) the percentage of free phthalate metabolites (a potential phenotypic indicator of individual susceptibility). We also explored the proportion of urinary di-(2-ethylhexyl) phthalate (DEHP) metabolites contributed to by the bioactive mono-2-ethylhexyl phthalate (MEHP), considered a possible indicator of susceptibility to phthalate exposure. The percentage of phthalate metabolites present in the free form was less stable over time than the total metabolite concentration, and, therefore, it is not likely a useful indicator of metabolic susceptibility. Thus, the added costs and effort involved in the measurement of free in addition to total metabolite concentrations in large-scale studies may not be justified. Conversely, the proportion of DEHP metabolites contributed to by MEHP was more stable within individuals over time and may be a promising indicator of susceptibility if time of day of sample collection is carefully considered.
Collapse
Affiliation(s)
- John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
377
|
Zimmer KE, Gutleb AC, Ravnum S, Krayer von Krauss M, Murk AJ, Ropstad E, Skaare JU, Eriksen GS, Lyche JL, Koppe JG, Magnanti BL, Yang A, Bartonova A, Keune H. Policy relevant results from an expert elicitation on the health risks of phthalates. Environ Health 2012; 11 Suppl 1:S6. [PMID: 22759506 PMCID: PMC3388473 DOI: 10.1186/1476-069x-11-s1-s6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND The EU 6th Framework Program (FP)-funded Health and Environment Network (HENVINET) aimed to support informed policy making by facilitating the availability of relevant knowledge on different environmental health issues. An approach was developed by which scientific agreement, disagreement, and knowledge gaps could be efficiently identified, and expert advice prepared in a way that is usable for policy makers. There were two aims of the project: 1) to apply the tool to a relevant issue; the potential health impacts of the widely used plasticizers, phthalates, and 2) to evaluate the method and the tool by asking both scientific experts and the target audience, namely policy makers and stakeholders, for their opinions. METHODS The tool consisted of an expert consultation in several steps on the issue of phthalates in environmental health. A diagram depicting the cause-effect chain, from the production and use of phthalates to potential health impacts, was prepared based on existing reviews. This was used as a basis for an online questionnaire, through which experts in the field were consulted. The results of this first round of consultation laid the foundation for a new questionnaire answered by an expert panel that, subsequently, also discussed approaches and results in a workshop. One major task of the expert panel was to pinpoint priorities from the cause-effect chain according to their impact on the extent of potential health risks and their relevance for reducing uncertainty. The results were condensed into a policy brief that was sent to policy makers and stakeholders for their evaluation. RESULTS The experts agreed about the substantial knowledge gaps within the field of phthalates. The top three priorities for further research and policy action were: 1) intrauterine exposure, 2) reproductive toxicology, and 3) exposure from medical devices. Although not all relevant information from the cause-effect chain is known for phthalates, most experts thought that there are enough indications to justify a precautionary approach and to restrict their general use. Although some of the experts expressed some scepticism about such a tool, most felt that important issues were highlighted. CONCLUSIONS The approach used was an efficient way at summarising priority knowledge gaps as a starting point for health risk assessment of compounds, based on their relevance for the risk assessment outcome. We conclude that this approach is useful for supporting policy makers with state-of-the-art scientific knowledge weighed by experts. The method can assist future evidence-based policy making.
Collapse
Affiliation(s)
- Karin Elisabeth Zimmer
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Department of Production Animal Clinical Science, P.O.Box 8146, 0033 Oslo, Norway
| | - Arno Christian Gutleb
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41 rue du Brill, 4422 Belveaux, Grand-Duchy of Luxembourg
| | - Solveig Ravnum
- NILU - Norwegian Institute for Air Research, P.O.Box 100, 2027 Kjeller, Norway
- Norwegian Veterinary Institute, P.O.Box 750, 0106 Oslo, Norway
| | | | - Albertinka J Murk
- Section of Toxicology, Wageningen University, P.O. Box 6700 EA, Wageningen, The Netherlands
- Wageningen-IMARES, 1976CP, IJmuiden, The Netherlands
| | - Erik Ropstad
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
| | | | | | - Jan Ludvig Lyche
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
| | - Janna G Koppe
- EcoBaby Foundation, Hollandstraat 6, 3634 AT Loenersloot, The Netherlands
| | - Brooke L Magnanti
- Biophysics group, University Hospital, St. Michael’s Hospital, Southwell Street, Bristol BS2, 8EJ, UK
| | - Aileen Yang
- NILU - Norwegian Institute for Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | - Alena Bartonova
- NILU - Norwegian Institute for Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | - Hans Keune
- Research Institute for Nature and Forest (INBO), Brussels; Centre of Expertise for Environment and Health, Faculty of Political and Social Sciences, University of Antwerp; naXys, Namur Center for Complex Systems, University of Namur, Belgium
| |
Collapse
|
378
|
Ravnum S, Zimmer KE, Keune H, Gutleb AC, Murk AJ, Koppe JG, Magnanti B, Lyche JL, Eriksen GS, Ropstad E, Skaare JU, Kobernus M, Yang A, Bartonova A, Krayer von Krauss M. Policy relevant results from an expert elicitation on the human health risks of decabromodiphenyl ether (decaBDE) and hexabromocyclododecane (HBCD). Environ Health 2012; 11 Suppl 1:S7. [PMID: 22759507 PMCID: PMC3388476 DOI: 10.1186/1476-069x-11-s1-s7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
AIM Apply a recently developed expert elicitation procedure to evaluate the state of the current knowledge of the two brominated flame retardants (BFRs) most commonly used today; decabromo-diphenyl ether (decaBDE) and hexabromocyclododecane (HBCD) and their potential impact on human health in order to support policy considerations. This expert elicitation was organized by the HENVINET (Health and Environment Network) Consortium. METHOD The HENVINET expert elicitation procedure that was used in the evaluations of decaBDE and HBCD is a rapid assessment tool aimed at highlighting areas of agreement and areas of disagreement on knowledge-related key issues for environment and health policy decision making. RESULTS The outcome of the expert consultation on BFRs was concrete expert advice for policy makers with specific priorities for further action made clear for both stakeholders and policy makers. The experts were not in agreement whether or not the knowledge currently available on decaBDE or HBCD is sufficient to justify policy actions, but most experts considered that enough data already exists to support a ban or restriction on the use of these compounds. All experts agreed on the necessity of more research on the compounds. Priority issues for further research were, among others:• more studies on the extent of human exposure to the compounds.• more studies on the fate and concentration in the human body of the compounds.
Collapse
Affiliation(s)
- Solveig Ravnum
- Norwegian Veterinary Institute, P.O.Box 750, 0106 Oslo, Norway
- NILU - Norwegian Institute of Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | - Karin E Zimmer
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Department of Production Animal Clinical Science, P.O.Box 8146, 0033 Oslo, Norway
| | - Hans Keune
- Research Institute for Nature and Forest (INBO), Brussels; Centre of Expertise for Environment and Health, Faculty of Political and Social Sciences, University of Antwerp; naXys, Namur Center for Complex Systems, University of Namur, Belgium
| | - Arno C Gutleb
- Department of Environment and Agro-biotechnologies (EVA), Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41 rue du Brill, 4422 Belveaux, Grand-Duchy of Luxembourg
| | - Albertinka J Murk
- Wageningen University, Section of Toxicology, P.O. Box 6700 EA, Wageningen, The Netherlands
- Wageningen-IMARES, 1976CP, IJmuiden, The Netherlands
| | - Janna G Koppe
- EcoBaby Foundation, Hollandstraat 6, 3634 AT Loenersloot, The Netherlands
| | - Brooke Magnanti
- University Hospital, Biophysics group, St. Michael’s Hospital, Southwell Street, Bristol BS2, 8EJ, UK
| | - Jan L Lyche
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
| | | | - Erik Ropstad
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, P.O.Box 8146, 0033 Oslo, Norway
| | | | - Michael Kobernus
- NILU - Norwegian Institute of Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | - Aileen Yang
- NILU - Norwegian Institute of Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | - Alena Bartonova
- NILU - Norwegian Institute of Air Research, P.O.Box 100, 2027 Kjeller, Norway
| | | |
Collapse
|
379
|
de Soysa TY, Ulrich A, Friedrich T, Pite D, Compton SL, Ok D, Bernardos RL, Downes GB, Hsieh S, Stein R, Lagdameo MC, Halvorsen K, Kesich LR, Barresi MJF. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol 2012; 10:40. [PMID: 22559716 PMCID: PMC3364156 DOI: 10.1186/1741-7007-10-40] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. Conclusions Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.
Collapse
|
380
|
Lozano ML, Rivera J, Vicente V. Concentrados de plaquetas procedentes de sangre total (buffy coat) u obtenidos por aféresis; ¿qué producto emplear? Med Clin (Barc) 2012; 138:528-33. [DOI: 10.1016/j.medcli.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 10/28/2022]
|
381
|
Rapid qualitative analysis of phthalates added to food and nutraceutical products by direct analysis in real time/orbitrap mass spectrometry. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
382
|
Erkekoglu P, Zeybek ND, Giray B, Asan E, Hincal F. The effects of di(2-ethylhexyl)phthalate exposure and selenium nutrition on sertoli cell vimentin structure and germ-cell apoptosis in rat testis. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:539-547. [PMID: 22002783 DOI: 10.1007/s00244-011-9712-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/22/2011] [Indexed: 05/31/2023]
Abstract
This study aimed to investigate the effects of di(2-ethylhexyl)phthalate (DEHP) on Sertoli-cell vimentin filaments and germ-cell apoptosis in testes of pubertal rats at different selenium (Se) status. Se deficiency was produced in 3-weeks old Sprague-Dawley rats by feeding them ≤ 0.05 Se mg/kg diet for 5 weeks, Se supplementation group was on 1 mg Se/kg diet, and DEHP was applied at 1000 mg/kg dose by gavage during the last 10 days of the feeding period. The diet with excess Se did not cause any appreciable alteration in vimentin staining and apoptosis of germ cells, but Se deficiency caused a mild decrease in the intensity of vimentin immunoreactivity and enhanced germ-cell apoptosis significantly (approximately 3-fold, p <0.0033). DEHP exposure caused disruption and collapse of vimentin filaments and significantly induced apoptotic death of germ cells (approximately 8-fold, p <0.0033). In DEHP-exposed Se-deficient animals, compared with the control, collapse of vimentin filaments was more prominent; there was serious damage to the seminiferous epithelium; and a high increment (approximately 25-fold, p <0.0033) in apoptotic germ cells was observed. Thus, Se deficiency exacerbated the toxicity of DEHP on Sertoli cells and spermatogenesis, whereas Se supplementation provided protection. These results put forward the critical role of Se in the modulation of redox status of testicular cells and emphasize the importance of Se status for reproductive health.
Collapse
Affiliation(s)
- Pinar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Ankara, Turkey
| | | | | | | | | |
Collapse
|
383
|
Erkekoglu P, Giray BK, Kızilgün M, Rachidi W, Hininger-Favier I, Roussel AM, Favier A, Hincal F. Di(2-ethylhexyl)phthalate-induced renal oxidative stress in rats and protective effect of selenium. Toxicol Mech Methods 2012; 22:415-23. [DOI: 10.3109/15376516.2012.666652] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
384
|
Aoyama H, Hojo H, Takahashi KL, Shimizu-Endo N, Araki M, Takeuchi-Kashimoto Y, Saka M, Teramoto S. Two-generation reproduction toxicity study in rats with methoxychlor. Congenit Anom (Kyoto) 2012; 52:28-41. [PMID: 22348781 DOI: 10.1111/j.1741-4520.2011.00344.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A two-generation reproduction toxicity study was conducted in rats with a reference estrogenic pesticide, methoxychlor, to validate the sensitivity and competency of current guidelines recommended by the United States Environmental Protection Agency; Japanese Ministry of Agriculture, Forestry and Fisheries; and Organisation for Economic Co-operation and Development for predicting reproductive toxicity of the test compound based on estrogenic endocrine disrupting effects. Both sexes of SD rats were exposed to methoxychlor in the diet at concentrations of 0, 10, 500 and 1500 ppm for two successive generations. The present study has successfully detected estrogenic activities and reproductive toxicities of methoxychlor, as well as its systemic toxicity. Body weights, body weight gains and food consumption of both sexes of animals were suppressed significantly in the 500 and 1500 ppm groups. Typical reproductive toxicities observed in females of these groups included, but were not limited to, prolonged estrous cycle, reduced fertility, decreased numbers of implantation sites and newborns, decreased ovary weights and/or increased incidences of cystic ovary. Uterine weights of weanlings increased significantly in these groups, suggesting that the sensitivity of this parameter for predicting estrogenic ability of the test compound is comparable to that of the uterotrophic assay. Reproductive toxicities of methoxychlor seemed less potent in males than in females. Methoxychlor delayed preputial separation and significantly reduced sperm counts and reproductive organ weights of males of the 500 and/or 1500 ppm groups; however, most males that failed to impregnate females in the same group showed normal fertility when they were re-mated with untreated females. Neither systemic nor reproductive toxicities appeared in the 10 ppm group.
Collapse
Affiliation(s)
- Hiroaki Aoyama
- Laboratories of Reproductive Toxicology, Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
385
|
Schell LM, Gallo MV, Cook K. What's NOT to eat--food adulteration in the context of human biology. Am J Hum Biol 2012; 24:139-48. [PMID: 22262531 DOI: 10.1002/ajhb.22202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/03/2011] [Accepted: 10/29/2011] [Indexed: 11/07/2022] Open
Abstract
Food has nutritional and non-nutritional components. The latter are not well-studied despite the fact that food adulteration has been common. Food adulteration may have reached its peak in cities of Western Europe and the US in the 18th and 19th centuries when foods were often purposely contaminated with additives to increase bulk, attractiveness, disguise spoilage, and increase profit. Effective regulation of food began in the late 19th and 20th centuries. Nevertheless, today food recalls for bacterial contamination are common, while pesticides and compounds from manufacturing are detected in many foods. Foods with strong reputations for healthiness, such as salmon, may have sizable contaminant contents. The contaminant content of many foods varies by origin and season. Nearly all commercially raised salmon has higher contaminant levels than wild caught salmon. Opting out of the commercial food distribution system is an option, but the value depends on the habitat in which the food is obtained. Traditionally, the Akwesasne Mohawk Nation has depended on local fish and wildlife for their diet. Now pollution of local waterways has led to the contamination of many local foods, and levels of the contaminant polychlorinated biphenyls in the Akwesasne Mohawk people reflect current or past dietary patterns. Many other communities in nonurban settings are exposed to contaminants through long-trail distribution of contaminants in food, air, and/or water. Human biologists considering nutrition, disease, growth, reproduction, aging, to name a few areas, may consider the non-nutritional components of food as many have the ability to alter physiological functioning.
Collapse
Affiliation(s)
- Lawrence M Schell
- Center for the Elimination of Minority Health Disparities, University at Albany, A&S 237, Albany, New York 12222, USA.
| | | | | |
Collapse
|
386
|
Epigenetic control of endocrine disrupting chemicals on gynecological disease: Focused on phthalates. ACTA ACUST UNITED AC 2012. [DOI: 10.5468/kjog.2012.55.9.619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
387
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
388
|
Wang W, Craig ZR, Basavarajappa MS, Gupta RK, Flaws JA. Di (2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol Appl Pharmacol 2011; 258:288-95. [PMID: 22155089 DOI: 10.1016/j.taap.2011.11.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/24/2011] [Accepted: 11/10/2011] [Indexed: 01/12/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a plasticizer that has been shown to inhibit growth of mouse antral follicles, however, little is known about the mechanisms by which DEHP does so. Oxidative stress has been linked to follicle growth inhibition as well as phthalate-induced toxicity in non-ovarian tissues. Thus, we hypothesized that DEHP causes oxidative stress and that this leads to inhibition of the growth of antral follicles. To test this hypothesis, antral follicles isolated from CD-1 mice (age 31-35days) were cultured with vehicle control (dimethylsulfoxide [DMSO]) or DEHP (1-100μg/ml)±N-acetyl cysteine (NAC, an antioxidant at 0.25-1mM). During culture, follicles were measured daily. At the end of culture, follicles were collected and processed for in vitro reactive oxygen species (ROS) assays to measure the presence of free radicals or for measurement of the expression and activity of various key antioxidant enzymes: Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX) and catalase (CAT). The results indicate that DEHP inhibits the growth of follicles compared to DMSO control and that NAC (0.25-1mM) blocks the ability of DEHP to inhibit follicle growth. Furthermore, DEHP (10μg/ml) significantly increases ROS levels and reduces the expression and activity of SOD1 compared to DMSO controls, whereas NAC (0.5mM) rescues the effects of DEHP on ROS levels and SOD1. However, the expression and activity of GPX and CAT were not affected by DEHP treatment. Collectively, these data suggest that DEHP inhibits follicle growth by inducing production of ROS and by decreasing the expression and activity of SOD1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Comparative Biosciences, University of Illinois, 2001 S. Lincoln Ave, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|
389
|
Maddah F, Soeria-Atmadja D, Malm P, Gustafsson M, Hammerling U. Interrogating health-related public databases from a food toxicology perspective: Computational analysis of scoring data. Food Chem Toxicol 2011; 49:2830-40. [DOI: 10.1016/j.fct.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/22/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
|
390
|
Duong A, Steinmaus C, McHale CM, Vaughan CP, Zhang L. Reproductive and developmental toxicity of formaldehyde: a systematic review. Mutat Res 2011; 728:118-38. [PMID: 21787879 PMCID: PMC3203331 DOI: 10.1016/j.mrrev.2011.07.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/09/2011] [Accepted: 07/09/2011] [Indexed: 11/30/2022]
Abstract
Formaldehyde, the recently classified carcinogen and ubiquitous environmental contaminant, has long been suspected of causing adverse reproductive and developmental effects, but previous reviews were inconclusive, due in part, to limitations in the design of many of the human population studies. In the current review, we systematically evaluated evidence of an association between formaldehyde exposure and adverse reproductive and developmental effects, in human populations and in vivo animal studies, in the peer-reviewed literature. The mostly retrospective human studies provided evidence of an association of maternal exposure with adverse reproductive and developmental effects. Further assessment of this association by meta-analysis revealed an increased risk of spontaneous abortion (1.76, 95% CI 1.20-2.59, p=0.002) and of all adverse pregnancy outcomes combined (1.54, 95% CI 1.27-1.88, p<0.001), in formaldehyde-exposed women, although differential recall, selection bias, or confounding cannot be ruled out. Evaluation of the animal studies including all routes of exposure, doses and dosing regimens studied, suggested positive associations between formaldehyde exposure and reproductive toxicity, mostly in males. Potential mechanisms underlying formaldehyde-induced reproductive and developmental toxicities, including chromosome and DNA damage (genotoxicity), oxidative stress, altered level and/or function of enzymes, hormones and proteins, apoptosis, toxicogenomic and epigenomic effects (such as DNA methylation), were identified. To clarify these associations, well-designed molecular epidemiologic studies, that include quantitative exposure assessment and diminish confounding factors, should examine both reproductive and developmental outcomes associated with exposure in males and females. Together with mechanistic and animal studies, this will allow us to better understand the systemic effect of formaldehyde exposure.
Collapse
Affiliation(s)
- Anh Duong
- School of Public Health, University of California, Berkeley, CA 94720
| | - Craig Steinmaus
- School of Public Health, University of California, Berkeley, CA 94720
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency; Oakland, CA 94612
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, CA 94720
| | - Charles P. Vaughan
- Global Health Sciences, University of California, San Francisco, CA 94143
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, CA 94720
| |
Collapse
|
391
|
Zhou J, Zhu XS, Cai ZH. Influences of DMP on the fertilization process and subsequent embryogenesis of abalone (Haliotis diversicolor supertexta) by gametes exposure. PLoS One 2011; 6:e25951. [PMID: 22028799 PMCID: PMC3197592 DOI: 10.1371/journal.pone.0025951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022] Open
Abstract
Di-methyl phthalate (DMP), a typical endocrine disrupting chemical (EDC), is ubiquitously distributed in aquatic environments; yet studies regarding its impact on gametes and the resulting effects on embryogenesis in marine gastropods are relatively scarce. In this study, the influences of DMP on the gametes and subsequent developmental process of abalone (Haliotis diversicolor supertexta, a representative marine benthic gastropod) were assessed. Newborn abalone eggs and sperm were exposed separately to different DMP concentrations (1, 10 or 100 ppb) for 60 min. At the end-point of exposure, the DMP-treated eggs and sperm were collected for analysis of their ultra-structures, ATPase activities and total lipid levels, and the fertilized gametes (embryos) were collected to monitor related reproductive parameters (fertilization rate, abnormal development rate and hatching success rate). Treatment with DMP did not significantly alter the structure or total lipid content of eggs at any of the doses tested. Hatching failures and morphological abnormalities were only observed with the highest dose of DMP (100 ppb). However, DMP exposure did suppress sperm ATPase activities and affect the morphological character of their mitochondria. DMP-treated sperm exhibited dose-dependent decreases in fertilization efficiency, morphogenesis and hatchability. Relatively obvious toxicological effects were observed when both sperm and eggs were exposed to DMP. Furthermore, RT-PCR results indicate that treatment of gametes with DMP changed the expression patterns of physiologically-regulated genes (cyp3a, 17β-HSD-11 and 17β-HSD-12) in subsequent embryogenesis. Taken together, this study proofed that pre-fertilization exposure of abalone eggs, sperm or both to DMP adversely affects the fertilization process and subsequent embryogenesis.
Collapse
Affiliation(s)
- Jin Zhou
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiao-Shan Zhu
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
| | - Zhong-Hua Cai
- Ocean Science and Technology Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, People's Republic of China
- * E-mail:
| |
Collapse
|
392
|
Greiner TO, Volkmann AS, Hildenbrand S, Wodarz R, Perle N, Ziemer G, Rieger M, Wendel HP, Walker T. DEHP and its active metabolites: leaching from different tubing types, impact on proinflammatory cytokines and adhesion molecule expression. Is there a subsumable context? Perfusion 2011; 27:21-9. [DOI: 10.1177/0267659111419990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Di(2-ethylhexyl)phthalate (DEHP) is suspected to be toxic for several reasons. During contact with a lipophilic medium, DEHP leaks from polyvinylchloride (PVC), but its influence on inflammatory reactions remains unknown. We examined specific DEHP leaching out of different tubing types, the possibly modulated liberation of proinflammatory cytokines and the induction of adhesion molecule expression in primary endothelial cells. Materials and Methods: Blood samples were circulated in traditional PVC, nodioctyl phthalate (DOP) PVC and heparin-coated PVC tubing within a Chandler loop model. The blood was tested for the concentration of DEHP and its active metabolites as well as the liberation of the proinflammatory cytokines TNFα and IL1ß. Furthermore, we exposed human endothelial cells to circulated blood and analysed them for the expression of the adhesion molecules ICAM-1, VCAM-1 and E-selectin. Results: In contrast to the other tubing, PVC tubing showed significantly elevated DEHP levels, but no alteration was observed concerning a potential up-regulation of the cytokines or activation of the endothelial adhesion molecule receptors. Conclusions: Our data conclude that there is no correlation between DEHP leaching and the inflammatory response after ECC support, but this study showed that even DEHP-free material is leaching DEHP and its toxic metabolites.
Collapse
Affiliation(s)
- TO Greiner
- University Children’s Hospital, Div. Congenital & Paediatric Cardiac Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - AS Volkmann
- University Children’s Hospital, Div. Congenital & Paediatric Cardiac Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - S Hildenbrand
- Dept. of Occupational and Social Medicine, University Hospital Tübingen, Tübingen, Germany
| | - R Wodarz
- Dept. of Occupational and Social Medicine, University Hospital Tübingen, Tübingen, Germany
| | - N Perle
- University Children’s Hospital, Div. Congenital & Paediatric Cardiac Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - G Ziemer
- University Children’s Hospital, Div. Congenital & Paediatric Cardiac Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - M Rieger
- Dept. of Occupational and Social Medicine, University Hospital Tübingen, Tübingen, Germany
| | - HP Wendel
- University Children’s Hospital, Div. Congenital & Paediatric Cardiac Surgery, Clinical Research Laboratory, University Hospital Tübingen, Tübingen, Germany
| | - T Walker
- Dept. of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
393
|
Acute postnatal exposure to di(2-ethylhexyl) phthalate adversely impacts hippocampal development in the male rat. Neuroscience 2011; 193:100-8. [DOI: 10.1016/j.neuroscience.2011.06.082] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 06/10/2011] [Accepted: 06/30/2011] [Indexed: 11/24/2022]
|
394
|
Planelló R, Herrero O, Martínez-Guitarte JL, Morcillo G. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:62-70. [PMID: 21684242 DOI: 10.1016/j.aquatox.2011.05.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
In this work, the effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP), two of the most extensively used phthalates, were studied in Chironomus riparius under acute short-term treatments, to compare their relative toxicities and identify genes sensitive to exposure. The ecotoxicity of these phthalates was assessed by analysis of the alterations in gene expression profiles of selected inducible and constitutive genes related to the endocrine system, the cellular stress response and the ribosomal machinery. Fourth instar larvae, a model system in aquatic toxicology, were experimentally exposed to five increasing concentrations (0.01, 0.1, 1, 10, and 100mg/L) of DEHP and BBP for 24h. Gene expression was analysed by the changes in levels of transcripts, using RT-PCR techniques with specific gene probes. The exposures to DEHP or BBP were able to rapidly induce the hsp70 gene in a concentration-dependent manner, whereas the cognate form hsc70 was not altered by either of these chemicals. Transcription of ribosomal RNA as a measure of cell viability, quantified by the levels of ITS2, was not affected by DEHP, but was slightly, yet significantly, downregulated by BBP at the highest concentrations tested. Finally, as these phthalates are classified as endocrine disruptor chemicals (EDCs), their potential effect on the ecdysone endocrine system was studied by analysing the two genes, EcR and usp, of the heterodimeric ecdysone receptor complex. It was found that BBP provoked the overexpression of the EcR gene, with significant increases from exposures of 0.1mg/L and above, while DEHP significantly decreased the activity of this gene at the highest concentration. These data are relevant as they show for the first time the ability of phthalates to interfere with endocrine marker genes in invertebrates, demonstrating their potential capacity to alter the ecdysone signalling pathway. Overall, the study clearly shows a differential gene-toxin interaction for these two phthalates and adds novel genomic tools for biomonitoring environmental xenobiotics in insects.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
395
|
Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study. Int J Hyg Environ Health 2011; 215:36-45. [PMID: 21889907 DOI: 10.1016/j.ijheh.2011.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 01/27/2023]
Abstract
The exposure of the general population to phthalates is of increasing public health concern. Variations in the internal exposure of the population are likely, because the amounts, distribution and application characters of the phthalate use change over time. Estimating the chronological sequences of the phthalate exposure, we performed a retrospective human biomonitoring study by investigating the metabolites of the five most prominent phthalates in urine. Therefore, 24h-urine samples from the German Environmental Specimen Bank (ESB) collected from 240 subjects (predominantly students, age range 19-29 years, 120 females, 120 males) in the years 2002, 2004, 2006 and 2008 (60 individuals each), were analysed for the concentrations of mono-n-butyl phthalate (MnBP) as metabolite of di-n-butyl phthalate (DnBP), mono-iso-butyl phthalate (MiBP) as metabolite of di-iso-butyl phthalate (DiBP), mono-benzyl phthalate (MBzP) as metabolite of butylbenzyl phthalate (BBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and mono-(2-carboxymethyl hexyl) phthalate (2cx-MMHxP) as metabolites of di(2-ethylhexyl) phthalate (DEHP), monohydroxylated (OH-MiNP), monooxidated (oxo-MiNP) and monocarboxylated (cx-MiNP) mono-iso-nonylphthalates as metabolites of di-iso-nonyl phthalates (DiNP). Based on the urinary metabolite excretion, together with results of a previous study, which covered the years 1988-2003, we investigated the chronological sequences of the phthalate exposure over two decades. In more than 98% of the urine samples metabolites of all five phthalates were detectable indicating a ubiquitous exposure of people living in Germany to all five phthalates throughout the period investigated. The medians in samples from the different years investigated are 65.4 (2002), 38.5 (2004), 29.3 (2006) and 19.6 μg/l (2008) for MnBP, 31.4 (2002), 25.4 (2004), 31.8 (2006) and 25.5 μg/l (2008) for MiBP, 7.8 (2002), 6.3 (2004), 3.6 (2006) and 3.8 μg/l (2008) for MBzP, 7.0 (2002), 5.6 (2004), 4.1 (2006) and 3.3 μg/l (2008) for MEHP, 19.6 (2002), 16.2 (2004), 13.2 (2006) and 9.6 μg/l (2008) for 5OH-MEHP, 13.9 (2002), 11.8 (2004), 8.3 (2006) and 6.4 μg/l (2008) for 5oxo-MEHP, 18.7 (2002), 16.5 (2004), 13.8 (2006) and 10.2 μg/l (2008) for 5cx-MEPP, 7.2 (2002), 6.5 (2004), 5.1 (2006) and 4.6 μg/l (2008) for 2cx-MMHxP, 3.3 (2002), 2.8 (2004), 3.5 (2006) and 3.6 μg/l (2008) for OH-MiNP, 2.1 (2002), 2.1 (2004), 2.2 (2006) and 2.3 μg/l (2008) for oxo-MiNP and 4.1 (2002), 3.2 (2004), 4.1 (2006) and 3.6 μg/l (2008) for cx-MiNP. The investigation of the time series 1988-2008 indicates a decrease of the internal exposure to DnBP by the factor of 7-8 and to DEHP and BzBP by the factor of 2-3. In contrast, an increase of the internal exposure by the factor of 4 was observed for DiNP over the study period. The exposure to DiBP was found to be stable. In summary, we found decreases of the internal human exposure for legally restricted phthalates whereas the exposure to their substitutes increased. Future investigations should verify these trends. This is of increasing importance since the European Commission decided to require ban or authorization from 1.1.2015 for DEHP, DnBP, DiBP and BzBP according to REACh Annex XIV.
Collapse
|
396
|
Xi W, Wan HT, Zhao YG, Wong MH, Giesy JP, Wong CKC. Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2515-27. [PMID: 22828881 DOI: 10.1007/s11356-012-0827-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 04/15/2023]
Abstract
PURPOSE In this study, we investigated the effects of maternal transfer of bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) during gestational and weaning periods on gonadal development of male offspring. METHODS Pregnant CD-1 mice were administered by gavages in corn oil with 0.1, 1, or 10 mg/kg/day of BPA and DEHP from gestational days (GD1-21) to the weaning period (postnatal days (PND) 1-21). RESULTS Our data indicated that the exposure significantly reduced the male-to-female sex ratio and the sizes of the gonads of male pups as recorded at PND15. The testes of the perinatally exposed male pups were developed less and the expression levels of testicular anti-mullerian hormone, androgen receptor, cyclin A, and StAR were significantly lesser than the control male pups. The less developed testes were accompanied with significant reductions in the expression levels of Gnrh and Fsh at the hypothalamic-pituitary levels. The negative effects were found to be persistent in the sexually mature pups at PND42. CONCLUSION Our data reveal that the maternal transfer of BPA and DEHP may impose negative influence on the development and functions of the reproductive system of male pups.
Collapse
Affiliation(s)
- Wei Xi
- Croucher Institute of Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
397
|
Erkekoglu P, Zeybek ND, Giray B, Asan E, Arnaud J, Hincal F. Reproductive toxicity of di(2-ethylhexyl) phthalate in selenium-supplemented and selenium-deficient rats. Drug Chem Toxicol 2011; 34:379-89. [DOI: 10.3109/01480545.2010.547499] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
398
|
Koniecki D, Wang R, Moody RP, Zhu J. Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. ENVIRONMENTAL RESEARCH 2011; 111:329-36. [PMID: 21315328 DOI: 10.1016/j.envres.2011.01.013] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 05/18/2023]
Abstract
Phthalates are multifunctional chemicals that are used in a variety of consumer products including cosmetic and personal care products. This study aims at determining phthalate levels in cosmetic and personal care products obtained from the Canadian market. Overall 252 products including 98 baby care products were collected at retail stores in several provinces across Canada in year 2007. These products included fragrances, hair care products (hair sprays, mousses, and gels), deodorants (including antiperspirants), nail polishes, lotions (body lotions and body creams), skin cleansers, and baby products (oils, lotions, shampoos and diaper creams). Samples were extracted with different organic solvents, depending on the types of the products, followed by gas chromatography-mass spectrometry (GC-MS) analysis. Of the 18 investigated phthalates, diethyl phthalate (DEP), dimethyl phthalate (DMP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) were detected. The detection frequencies were in the following order: DEP (103 out of 252 products)>DnBP (15/252)>DiBP (9/252)>DEHP (8/252)>DMP (1/252). DEP was detected in almost all types of surveyed products with the highest levels (25,542 μg/g, equal to 2.6%) found in fragrances. DnBP was largely present in nail polish products with the highest concentration of 24,304 μg/g (2.4%). DnBP was also found in other products such as hair sprays, hair mousses, skin cleansers and baby shampoos at much lower concentrations (36 μg/g and less). Levels of other detected phthalates were generally low in the products. Based on these values, daily dermal exposure dosage to five phthalates was estimated for three age groups, female adults (60 kg); toddlers (0.5-4 years) and infants (0-6 months), through the use of cosmetic and personal care products. The exposure estimation, however, was based on existing products use pattern data, instead of probabilistic model based population use distribution. For female adults, the maximal daily exposure of 78 μg/kg bw/d was determined for DEP. The maximal daily exposure was much lower for the other four phthalates (DEHP, 0.82 μg/kg bw/d; DnBP, 0.36 μg/kg bw/d; and DMP, 0.03 μg/kg bw/d). The exposure for DiBP was not calculated due to its very low levels (<10 μg/g) in products. Toddlers and infants in this case had a maximal daily exposure to DEP of 20 and 42 μg/kg bw/d, respectively.
Collapse
|
399
|
Hayashi Y, Ito Y, Yamagishi N, Yanagiba Y, Tamada H, Wang D, Ramdhan DH, Naito H, Harada Y, Kamijima M, Gonzales FJ, Nakajima T. Hepatic peroxisome proliferator-activated receptor α may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology 2011; 289:1-10. [PMID: 21354252 DOI: 10.1016/j.tox.2011.02.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/18/2011] [Accepted: 02/18/2011] [Indexed: 02/02/2023]
Abstract
Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) is associated with adverse effects on offspring, and the metabolites are agonists of peroxisome proliferator-activated receptor (PPAR) α, which exhibits species differences in expression and function. This study aimed to clarify the mechanism of DEHP-induced adverse effects on offspring in relation to maternal mouse and human PPARα. Male and female Sv/129 wild-type (mPPARα), Pparα-null and humanized PPARα (hPPARα) mice were treated with diets containing 0%, 0.01%, 0.05% (medium) or 0.1% (high) DEHP. After 4 weeks, males and females were mated. Dams were killed on gestational day 18 and postnatal day (PND) 2. High-dose DEHP decreased the number of total and live fetuses, and increased resorptions in mPPARα mice. In hPPARα mice, resorptions were increased above the medium dose, and the number of births was decreased at the high dose. The number of live pups on PND2 was decreased over the medium dose in mPPARα and at the high dose in hPPARα mice. No such findings were observed in Pparα-null mice. High-dose DEHP decreased plasma triglyceride in pregnant mPPARα mice, but not in Pparα-null and hPPARα ones. Above the medium dose in mPPARα mice significantly reduced hepatic microsomal triglyceride transfer protein (MTP) expression. Medium- and/or high-dose DEHP increased the levels of maternal PPARα target genes in mPPARα and hPPARα mice. Taken together, PPARα expression is required for the toxicity of DEHP in fetuses and pups and altered plasma triglyceride levels, through regulation of MTP may be important in mPPARα mice and not in hPPARα mice.
Collapse
Affiliation(s)
- Yumi Hayashi
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
400
|
Moral R, Santucci-Pereira J, Wang R, Russo IH, Lamartiniere CA, Russo J. In utero exposure to butyl benzyl phthalate induces modifications in the morphology and the gene expression profile of the mammary gland: an experimental study in rats. Environ Health 2011; 10:5. [PMID: 21241498 PMCID: PMC3033239 DOI: 10.1186/1476-069x-10-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 01/17/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND Environmental estrogens are exogenous estrogen-mimicking compounds that can interfere with endogenous endocrine systems. Several of these endocrine disruptors have been shown to alter normal development and influence tumorigenesis in experimental models. N-butyl benzyl phthalate (BBP), a widely used plasticizer, is a well-known endocrine disruptor. The aim of this study was to elucidate the effect of prenatal exposure to BBP on the morphology, proliferative index, and genomic signature of the rat mammary gland at different ages. METHODS In utero exposure was performed by gavage of pregnant Sprague Dawley CD rats with 120mg or 500mg BBP/kg/day from day 10 post-conception to delivery. Female litters were euthanized at 21, 35, 50 and 100 days. The morphology and proliferative index of the mammary gland were studied from whole mount preparations and BrdU incorporation, respectively. Gene expression profile was assessed by microarrays. Several genes found differentially expressed and related to different functional categories were further validated by real time RT-PCR. RESULTS Prenatal exposure of BBP induced delayed vaginal opening and changes in the post-natal mammary gland long after the end of the treatment, mainly by 35 days of age. Exposure to the high dose resulted in modifications in architecture and proliferative index of the mammary gland, mostly affecting the undifferentiated terminal end buds. Moreover, the expression profiles of this gland in the exposed rats were modified in a dose-dependent fashion. Analysis of functional categories showed that modified genes were related to immune function, cell signaling, proliferation and differentiation, or metabolism. CONCLUSIONS Our data suggest that in utero exposure to BBP induced a delayed pubertal onset and modified morphology of the mammary gland. These alterations were accompanied by modifications in gene expression previously associated with an increased susceptibility to carcinogenesis.
Collapse
Affiliation(s)
- Raquel Moral
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Cell Biology, Physiology and Immunology, Medicine School, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - Richard Wang
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Irma H Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Coral A Lamartiniere
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|