351
|
Abstract
Metaplasia is the replacement of one differentiated somatic cell type with another differentiated somatic cell type in the same tissue. Typically, metaplasia is triggered by environmental stimuli, which may act in concert with the deleterious effects of microorganisms and inflammation. The cell of origin for intestinal metaplasia in the oesophagus and stomach and for pancreatic acinar-ductal metaplasia has been posited through genetic mouse models and lineage tracing but has not been identified in other types of metaplasia, such as squamous metaplasia. A hallmark of metaplasia is a change in cellular identity, and this process can be regulated by transcription factors that initiate and/or maintain cellular identity, perhaps in concert with epigenetic reprogramming. Universally, metaplasia is a precursor to low-grade dysplasia, which can culminate in high-grade dysplasia and carcinoma. Improved clinical screening for and surveillance of metaplasia might lead to better prevention or early detection of dysplasia and cancer.
Collapse
Affiliation(s)
- Veronique Giroux
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, 951 BRB, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
352
|
Quirin KA, Kwon JJ, Alioufi A, Factora T, Temm CJ, Jacobsen M, Sandusky GE, Shontz K, Chicoine LG, Clark KR, Mendell JT, Korc M, Kota J. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:8-20. [PMID: 29349096 PMCID: PMC5675991 DOI: 10.1016/j.omtm.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg). Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Collapse
Affiliation(s)
- Kayla A Quirin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Arafat Alioufi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Tricia Factora
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | | | - Max Jacobsen
- Department of Pathology, IUSM, Indianapolis, IN 46202, USA
| | | | - Kim Shontz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Louis G Chicoine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - K Reed Clark
- Dimension Therapeutics, Cambridge, MA 02139, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN 43202, USA.,Department of Medicine, IUSM, Indianapolis, IN 43202, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
353
|
Challenging cancer targets for aptamer delivery. Biochimie 2017; 145:45-52. [PMID: 28962871 DOI: 10.1016/j.biochi.2017.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
The extraordinary boost in the understanding of the genetic and epigenetic mechanisms underlying the development and progression of different types of cancer, is offering an unprecedented hope for the development of precise therapeutics able to interfere or replace the expression of target genes. In the last decade, the design of stable, safe and effective RNA-based therapeutics has been significantly improved increasing the number of molecules now in preclinical or in clinical trials for cancer gene therapy. However, with few exclusions as liver and hematological malignancies which are easy accessible to drugs, the development of effective systemic approaches for the delivery of RNA therapeutics to target cells is still unmet. To be effective, targeting carriers must be able to overcome both functional and physical barriers to safely carry and accumulate the therapeutic through the organism selectively to the tumor site, penetrate the target cancer mass, promote the uptake and localization in the appropriate intracellular compartment ultimately leading to the effective modulation of gene expression. Nucleic acid aptamers are folded single stranded oligonucleotides that bind at high affinity and high specificity their targets (proteins, lipids, small molecules etc), coupling the advantages of binding specificity proper of antibodies to the chemical nature of nucleic acids, sometimes also termed "nucleic acid antibodies". In several cases, aptamers targeting cell surface receptors are recycled into the cell together with the bound receptor enabling to drive conjugated therapeutics to cancer cells in a receptor-dependent manner. Therefore, besides other in vivo delivery strategies, the use of aptamers as precise and effective targeting moieties for anticancer RNA-based therapeutics has rapidly emerged and has been successfully addressed by several laboratories. In this Review, we will focus on the most recent and challenging progresses in the field that highlights the precision and flexibility of aptamer-based chimeras paving the way to the development of safe and effective carriers for cancer gene therapeutics.
Collapse
|
354
|
Huang C, Xiang Y, Chen S, Yu H, Wen Z, Ye T, Sun H, Kong H, Li D, Yu D, Chen B, Zhou M. Dermokine contributes to epithelial-mesenchymal transition through increased activation of signal transducer and activator of transcription 3 in pancreatic cancer. Cancer Sci 2017; 108:2130-2141. [PMID: 28795470 PMCID: PMC5665845 DOI: 10.1111/cas.13347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
Dermokine (DMKN) was first identified in relation to skin lesion healing and skin carcinoma. Recently, its expression was associated with pancreatic cancer tumorigenesis, although its involvement remains poorly understood. Herein, we showed that DMKN loss of function in Patu‐8988 and PANC‐1 pancreatic cancer cell lines resulted in reduced phosphorylation of signal transducer and activator of transcription 3, and increased activation of ERK1/2 and AKT serine/threonine kinase. This decreased the proliferation ability of pancreatic ductal adenocarcinoma (PDAC) cells. In addition, DMKN knockdown decreased the invasion and migration of PDAC cells, partially reversed the epithelial–mesenchymal transition, retarded tumor growth in a xenograft animal model by decreasing the density of microvessels, and attenuated the distant metastasis of human PDAC in a mouse model. Taken together, these data suggested that DMKN could be a potential prognostic biomarker and therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Chaohao Huang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yukai Xiang
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengchuan Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huajun Yu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengde Wen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Ye
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongru Kong
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dapei Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Dinglai Yu
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, China
| | - Mengtao Zhou
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
355
|
Rajeshkumar NV, Yabuuchi S, Pai SG, De Oliveira E, Kamphorst JJ, Rabinowitz JD, Tejero H, Al-Shahrour F, Hidalgo M, Maitra A, Dang CV. Treatment of Pancreatic Cancer Patient-Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clin Cancer Res 2017; 23:5639-5647. [PMID: 28611197 PMCID: PMC6540110 DOI: 10.1158/1078-0432.ccr-17-1115] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Purpose: To identify effective metabolic inhibitors to suppress the aggressive growth of pancreatic ductal adenocarcinoma (PDAC), we explored the in vivo antitumor efficacy of metabolic inhibitors, as single agents, in a panel of patient-derived PDAC xenograft models (PDX) and investigated whether genomic alterations of tumors correlate with the sensitivity to metabolic inhibitors.Experimental Design: Mice with established PDAC tumors from 6 to 13 individual PDXs were randomized and treated, once daily for 4 weeks, with either sterile PBS (vehicle) or the glutaminase inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), transaminase inhibitor aminooxyacetate (AOA), pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA), autophagy inhibitor chloroquine (CQ), and mitochondrial complex I inhibitor phenformin/metformin.Results: Among the agents tested, phenformin showed significant tumor growth inhibition (>30% compared with vehicle) in 5 of 12 individual PDXs. Metformin, at a fivefold higher dose, displayed significant tumor growth inhibition in 3 of 12 PDXs similar to BPTES (2/8 PDXs) and DCA (2/6 PDXs). AOA and CQ had the lowest response rates. Gene set enrichment analysis conducted using the baseline gene expression profile of pancreatic tumors identified a gene expression signature that inversely correlated with phenformin sensitivity, which is in agreement with the phenformin gene expression signature of NIH Library of Integrated Network-based Cellular Signatures (LINCS). The PDXs that were more sensitive to phenformin showed a baseline reduction in amino acids and elevation in oxidized glutathione. There was no correlation between phenformin response and genetic alterations in KRAS, TP53, SMAD4, or PTENConclusions: Phenformin treatment showed relatively higher antitumor efficacy against established PDAC tumors, compared with the efficacy of other metabolic inhibitors and metformin. Phenformin treatment significantly diminished PDAC tumor progression and prolonged tumor doubling time. Overall, our results serve as a foundation for further evaluation of phenformin as a therapeutic agent in pancreatic cancer. Clin Cancer Res; 23(18); 5639-47. ©2017 AACR.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shinichi Yabuuchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shweta G Pai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth De Oliveira
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, New Jersey
| | - Héctor Tejero
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Manuel Hidalgo
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematology-Oncology, Rosenberg Clinical Cancer Center, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts
| | - Anirban Maitra
- Department of Pathology and Translational Molecular Pathology, Sheikh Ahmad Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi V Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
356
|
Basso D, Gnatta E, Padoan A, Fogar P, Furlanello S, Aita A, Bozzato D, Zambon CF, Arrigoni G, Frasson C, Franchin C, Moz S, Brefort T, Laufer T, Navaglia F, Pedrazzoli S, Basso G, Plebani M. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis. Oncotarget 2017; 8:84928-84944. [PMID: 29156694 PMCID: PMC5689584 DOI: 10.18632/oncotarget.20863] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins.
Collapse
Affiliation(s)
- Daniela Basso
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Gnatta
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Andrea Padoan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Paola Fogar
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Sara Furlanello
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Dania Bozzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomic Center, University of Padova, Padova, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomic Center, University of Padova, Padova, Italy
| | - Stefania Moz
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Thomas Brefort
- Eurofins Medigenomix GmbH, Ebersberg, Germany.,Comprehensive Biomarker Center GmbH (Recently re-named to Hummingbird Diagnostics GmbH), Heidelberg, Germany
| | - Thomas Laufer
- Comprehensive Biomarker Center GmbH (Recently re-named to Hummingbird Diagnostics GmbH), Heidelberg, Germany
| | - Filippo Navaglia
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | | | - Giuseppe Basso
- Department of Woman and Child Health, Oncohematology Laboratory, University of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
357
|
EMT and Treatment Resistance in Pancreatic Cancer. Cancers (Basel) 2017; 9:cancers9090122. [PMID: 28895920 PMCID: PMC5615337 DOI: 10.3390/cancers9090122] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is the third leading cause of adult cancer mortality in the United States. The poor prognosis for patients with PC is mainly due to its aggressive course, the limited efficacy of active systemic treatments, and a metastatic behavior, demonstrated throughout the evolution of the disease. On average, 80% of patients with PC are diagnosed with metastatic disease, and the half of those who undergo surgery and adjuvant therapy develop liver metastasis within two years. Metastatic dissemination is an early event in PC and is mainly attributed to an evolutionary biological process called epithelial-to-mesenchymal transition (EMT). This innate mechanism could have a dual role during embryonic growth and organ differentiation, and in cancer progression, cancer stem cell intravasation, and metastasis settlement. Many of the molecular pathways decisive in EMT progression have been already unraveled, but little is known about the causes behind the induction of this mechanism. EMT is one of the most distinctive and critical features of PC, occurring even in the very first stages of tumor development. This is known as pancreatic intraepithelial neoplasia (PanIN) and leads to early dissemination, drug resistance, and unfavorable prognosis and survival. The intention of this review is to shed new light on the critical role assumed by EMT during PC progression, with a particular focus on its role in PC resistance.
Collapse
|
358
|
Tu Q, Hao J, Zhou X, Yan L, Dai H, Sun B, Yang D, An S, Lv L, Jiao B, Chen C, Lai R, Shi P, Zhao X. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene 2017; 37:128-138. [PMID: 28892048 PMCID: PMC5759028 DOI: 10.1038/onc.2017.316] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/07/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer is among the deadliest malignancies; however, the genetic events that lead to pancreatic carcinogenesis in adults remain unclear. In vivo models in which these genetic alterations occur in adult animals may more accurately reflect the features of human cancer. In this study, we demonstrate that inactivation of Cdkn2b (p15ink4b) is necessary for induction of pancreatic cancer by oncogenic KRASG12D expression and inactivation of Tp53 and Cdkn2a in adult mouse pancreatic ductal cells (P60 or older). KRASG12D overexpression in these cells activated transforming growth factor-β signaling and expression of CDKN2B, which, along with CDKN2A, led to cellular senescence and protected cells from KRAS-mediated transformation via inhibition of retinoblastoma phosphorylation. These results show a critical role of CDKN2B inactivation in pancreatic carcinogenesis, and provide a useful adult animal model by genetic engineering via lentiviral delivery.
Collapse
Affiliation(s)
- Q Tu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - J Hao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - X Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - L Yan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China
| | - H Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - B Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - D Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - S An
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - L Lv
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China
| | - B Jiao
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - C Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - R Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - P Shi
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - X Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming Primate Research Center, Chinese Academy of Sciences, Kunming, China.,KIZ-SU Joint Laboratory of Animal Model and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
359
|
Tewari M, Swain JR, Dixit VK, Shukla HS. Molecular Aberrations in Periampullary Carcinoma. Indian J Surg Oncol 2017; 8:348-356. [DOI: 10.1007/s13193-017-0645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 03/15/2017] [Indexed: 11/29/2022] Open
|
360
|
Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA. ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 2017; 7:10060. [PMID: 28855593 PMCID: PMC5577248 DOI: 10.1038/s41598-017-09946-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFβ to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFβ/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.
Collapse
Affiliation(s)
- Armen Gharibi
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Sa La Kim
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Justin Molnar
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Daniel Brambilla
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Yvess Adamian
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Malachia Hoover
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Julie Hong
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Joy Lin
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Laurelin Wolfenden
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA
| | - Jonathan A Kelber
- Department of Biology, California State Univeristy Northridge, Northridge, California, USA.
| |
Collapse
|
361
|
Pergolini I, Morales-Oyarvide V, Mino-Kenudson M, Honselmann KC, Rosenbaum MW, Nahar S, Kem M, Ferrone CR, Lillemoe KD, Bardeesy N, Ryan DP, Thayer SP, Warshaw AL, Fernández-del Castillo C, Liss AS. Tumor engraftment in patient-derived xenografts of pancreatic ductal adenocarcinoma is associated with adverse clinicopathological features and poor survival. PLoS One 2017; 12:e0182855. [PMID: 28854237 PMCID: PMC5576681 DOI: 10.1371/journal.pone.0182855] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Patient-derived xenograft (PDX) tumors are powerful tools to study cancer biology. However, the ability of PDX tumors to model the biological and histological diversity of pancreatic ductal adenocarcinoma (PDAC) is not well known. In this study, we subcutaneously implanted 133 primary and metastatic PDAC tumors into immunodeficient mice. Fifty-seven tumors were successfully engrafted and even after extensive passaging, the histology of poorly-, moderately-, and well-differentiated tumors was maintained in the PDX models. Moreover, the fibroblast and collagen contents in the stroma of patient tumors were recapitulated in the corresponding PDX models. Analysis of the clinicopathological features of patients revealed xenograft tumor engraftment was associated with lymphovascular invasion (P = 0.001) and worse recurrence-free (median, 7 vs. 16 months, log-rank P = 0.047) and overall survival (median, 13 vs. 21 months, log-rank P = 0.038). Among successful engraftments, median time of growth required for reimplantation into new mice was 151 days. Reflective of the inherent biological diversity between PDX tumors with rapid (<151 days) and slow growth, differences in their growth were maintained during extensive passaging. Rapid growth was additionally associated with lymph node metastasis (P = 0.022). The association of lymphovascular invasion and lymph node metastasis with PDX formation and rapid growth may reflect an underlying biological mechanism that allows these tumors to adapt and grow in a new environment. While the ability of PDX tumors to mimic the cellular and non-cellular features of the parental tumor stroma provides a valuable model to study the interaction of PDAC cells with the tumor microenvironment, the association of successful engraftment with adverse clinicopathological features suggests PDX models over represent more aggressive forms of this disease.
Collapse
Affiliation(s)
- Ilaria Pergolini
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Universita’ Politecnica delle Marche, Ancona, Italy
| | - Vicente Morales-Oyarvide
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kim C. Honselmann
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew W. Rosenbaum
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabikun Nahar
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Kem
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cristina R. Ferrone
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keith D. Lillemoe
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David P. Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah P. Thayer
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew L. Warshaw
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos Fernández-del Castillo
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew S. Liss
- Department of Surgery and the Andrew L. Warshaw, MD Institute for Pancreatic Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
362
|
Yin X, Wang M, Wang H, Deng H, He T, Tan Y, Zhu Z, Wu Z, Hu S, Li Z. Evaluation of neurotensin receptor 1 as a potential imaging target in pancreatic ductal adenocarcinoma. Amino Acids 2017; 49:1325-1335. [PMID: 28536844 PMCID: PMC5524142 DOI: 10.1007/s00726-017-2430-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the deadliest human malignancies and lack of effective diagnostic and therapeutic methods. Accumulating evidence suggests that the neurotensin (NT) and neurotensin receptors (NTRs) play key roles in pancreatic adenocarcinoma growth and survival. In this study, we not only evaluate the NTR1 expression in pancreatic cancer patient samples, but also explore the PET and fluorescence imaging of NTR1 expression in pancreatic cancer animal models. The NTR1 expression was evaluated by immunohistochemistry staining in clinical patient tissue samples with pancreatic ductal adenocarcinoma, insulinoma, and pancreatitis. The results showed 79.4% positive rate of NRT1 expression in pancreatic ductal adenocarcinoma, compared with 33.3 and 22.7% in insulinoma and pancreatitis samples, respectively. High NTR1 gene expression was also found in Panc-1 cells and confirmed by cell immunofluorescence. 64Cu-AmBaSar-NT and IRDye800-NT were synthesized as imaging probes and maintained the majority of NTR1-binding affinity. In vivo imaging demonstrated that 64Cu-AmBaSar-NT has prominent tumor uptake (3.76 ± 1.45 and 2.29 ± 0.10%ID/g at 1 and 4 h post-injection). NIR fluorescent imaging with IRDye800-NT demonstrated good tumor-to-background contrast (8.09 ± 0.38 × 108 and 6.67 ± 0.43 × 108 (p/s/cm2/sr)/(μW/cm2) at 30 and 60 min post-injection). Fluorescence guided surgery was also performed as a proof of principle experiment. In summary, our results indicated that NTR1 is a promising target for pancreatic ductal adenocarcinoma imaging and therapy. The imaging probes reported here may not only be considered for improved diagnosis of pancreatic ductal adenocarcinoma, but also has the potential to be fully integrated into patient screening and treatment monitoring of future NTR1 targeted therapies.
Collapse
Affiliation(s)
- Xiaoqin Yin
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huaifu Deng
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tingting He
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Yue Tan
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zehua Zhu
- PET Center of Xiangya Hospital, Central South University, Changsha, China
| | - Zhanhong Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shuo Hu
- PET Center of Xiangya Hospital, Central South University, Changsha, China.
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
363
|
Biancur DE, Paulo JA, Małachowska B, Del Rey MQ, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 2017; 8:15965. [PMID: 28671190 PMCID: PMC5500878 DOI: 10.1038/ncomms15965] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/16/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is a notoriously difficult-to-treat cancer and patients are in need of novel therapies. We have shown previously that these tumours have altered metabolic requirements, making them highly reliant on a number of adaptations including a non-canonical glutamine (Gln) metabolic pathway and that inhibition of downstream components of Gln metabolism leads to a decrease in tumour growth. Here we test whether recently developed inhibitors of glutaminase (GLS), which mediates an early step in Gln metabolism, represent a viable therapeutic strategy. We show that despite marked early effects on in vitro proliferation caused by GLS inhibition, pancreatic cancer cells have adaptive metabolic networks that sustain proliferation in vitro and in vivo. We use an integrated metabolomic and proteomic platform to understand this adaptive response and thereby design rational combinatorial approaches. We demonstrate that pancreatic cancer metabolism is adaptive and that targeting Gln metabolism in combination with these adaptive responses may yield clinical benefits for patients.
Collapse
Affiliation(s)
- Douglas E. Biancur
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, New York 10016, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Maria Quiles Del Rey
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Cristovão M. Sousa
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Xiaoxu Wang
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Albert S. W. Sohn
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, New York 10016, USA
| | - Gerald C. Chu
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - J. Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wojciech Fendler
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
| | - Joseph D. Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Alec C. Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York, New York 10016, USA
| |
Collapse
|
364
|
Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546:498-503. [PMID: 28607485 PMCID: PMC5538883 DOI: 10.1038/nature22341] [Citation(s) in RCA: 1857] [Impact Index Per Article: 232.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023]
Abstract
The mutant form of the GTPase KRAS is a key driver of pancreatic cancer
but remains a challenging therapeutic target. Exosomes, extracellular vesicles
generated by all cells, are naturally present in the blood. Here we demonstrate
that enhanced retention of exosomes in circulation, compared to liposomes, is
due to CD47 mediated protection of exosomes from phagocytosis by monocytes and
macrophages. Exosomes derived from normal fibroblast-like mesenchymal cells were
engineered to carry siRNA or shRNA specific to oncogenic KRASG12D
(iExosomes), a common mutation in pancreatic cancer. Compared to liposomes,
iExosomes target oncogenic Kras with an enhanced efficacy that is dependent on
CD47, and is facilitated by macropinocytosis. iExosomes treatment suppressed
cancer in multiple mouse models of pancreatic cancer and significantly increased
their overall survival. Our results inform on a novel approach for direct and
specific targeting of oncogenic Kras in tumors using iExosomes.
Collapse
|
365
|
Wade SJ, Zuzic A, Foroughi J, Talebian S, Aghmesheh M, Moulton SE, Vine KL. Preparation and in vitro assessment of wet-spun gemcitabine-loaded polymeric fibers: Towards localized drug delivery for the treatment of pancreatic cancer. Pancreatology 2017; 17:795-804. [PMID: 28619283 DOI: 10.1016/j.pan.2017.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES There has been minimal improvement in the prognosis of pancreatic cancer cases in the past 3 decades highlighting the crucial need for more effective therapeutic approaches. A drug delivery system capable of locally delivering high concentrations of chemotherapeutics directly at the site of the tumor is clearly required. The aim of this study was to fabricate and characterize the biophysical properties of gemcitabine-eluting wet-spun polymeric fibers for localized drug delivery applications. METHODS/RESULTS Fibers spun from alginate or chitosan solutions with or without the anticancer drug gemcitabine had a uniform surface area, were internally homogeneous and ranged from 50-120 μm in diameter. Drug encapsulation ranged from 13-52%, depending on the type and concentration of polymer used. Gemcitabine displayed first-order release kinetics where 64-82% of the loaded drug was rapidly released within the first 10 h followed by a sustained release over the next 134 h. A time dependent inhibition of ex vivo tumor spheroid growth and cell viability was observed after incubation with gemcitabine-loaded fibers but not control fibers. CONCLUSION With further development these studies could lead to the manufacture of a safe and effective delivery system designed to combat non-resectable pancreatic cancer for which currently there is minimal chance of cure.
Collapse
Affiliation(s)
- Samantha J Wade
- School of Biological Sciences, Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW, Australia
| | - Amanda Zuzic
- ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW, Australia
| | - Javad Foroughi
- ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW, Australia
| | - Sepehr Talebian
- ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Cancer Care Centre, Illawarra Shoalhaven Local Area Health District, Wollongong Hospital, Wollongong, NSW, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, NSW, Australia; Biomedical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic, Australia.
| | - Kara L Vine
- School of Biological Sciences, Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, University of Wollongong, NSW, Australia.
| |
Collapse
|
366
|
Langdon CG, Platt JT, Means RE, Iyidogan P, Mamillapalli R, Klein M, Held MA, Lee JW, Koo JS, Hatzis C, Hochster HS, Stern DF. Combinatorial Screening of Pancreatic Adenocarcinoma Reveals Sensitivity to Drug Combinations Including Bromodomain Inhibitor Plus Neddylation Inhibitor. Mol Cancer Ther 2017; 16:1041-1053. [PMID: 28292938 PMCID: PMC5457712 DOI: 10.1158/1535-7163.mct-16-0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 12/12/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death in the United States. PDAC is difficult to manage effectively, with a five-year survival rate of only 5%. PDAC is largely driven by activating KRAS mutations, and as such, cannot be directly targeted with therapeutic agents that affect the activated protein. Instead, inhibition of downstream signaling and other targets will be necessary to effectively manage PDAC. Here, we describe a tiered single-agent and combination compound screen to identify targeted agents that impair growth of a panel of PDAC cell lines. Several of the combinations identified from the screen were further validated for efficacy and mechanism. Combination of the bromodomain inhibitor JQ1 and the neddylation inhibitor MLN4294 altered the production of reactive oxygen species in PDAC cells, ultimately leading to defects in the DNA damage response. Dual bromodomain/neddylation blockade inhibited in vivo growth of PDAC cell line xenografts. Overall, this work revealed novel combinatorial regimens, including JQ1 plus MLN4294, which show promise for the treatment of RAS-driven PDAC. Mol Cancer Ther; 16(6); 1041-53. ©2017 AACR.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - James T Platt
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Robert E Means
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Pinar Iyidogan
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Michael Klein
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Matthew A Held
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jong Woo Lee
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Ja Seok Koo
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Christos Hatzis
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Howard S Hochster
- Department of Internal Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - David F Stern
- Department of Pathology and Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
367
|
Ma L, Saiyin H. LSL-KrasG12D; LSL-Trp53R172H/+; Ink4flox/+; Ptf1/p48-Cre mice are an applicable model for locally invasive and metastatic pancreatic cancer. PLoS One 2017; 12:e0176844. [PMID: 28475592 PMCID: PMC5419507 DOI: 10.1371/journal.pone.0176844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/18/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer (PC) accumulates multiple genetic mutations, including activating KRAS mutations and inactivating TP53, SMAD4 and CDKN2A mutations, during progression. The combination of mutant KRAS with a single inactivating TP53, SMAD4 or CDKN2A mutation in genetically engineered mouse models (GEMMs) showed that these mutations exert different synergistic effects in PC. However, the effect of the combination of TP53, CDKN2A and KRAS mutations on the trajectory of PC progression is unknown. Here, we report a GEMM that harbors KRAS (KrasG12D), TP53 (Trp53R172H/+), CDKN2A (Ink4flox/+) and Ptf1/p48-Cre (KPIC) mutations. Histopathology showed that KPIC mice developed adenocarcinoma that strongly resembled the pathology of human PC, characterized by rich desmoplastic stroma and low microvascularity. The median survival of KPIC mice was longer than that of LSL-KrasG12D; Ink4flox/flox; Ptf1/p48-Cre mice (KIC) (89 vs 62 days) and shorter than that of KRAS (KrasG12D), TP53 (Trp53R172H/+) and Ptf1/p48-Cre (KPC) mice. Moreover, the neoplastic cells of KPIC mice were epithelial, highly proliferative tumor cells that exhibited ERK and MAPK pathway activation and high glucose uptake. Isolated neoplastic cells from spontaneous KPIC tumors showed all molecular profiles and cellular behaviors of spontaneous KPIC tumors, including epithelial-mesenchymal transition (EMT) under drug stress as well as tumorigenic, metastatic and invasive abilities in immunocompetent mice. Furthermore, orthotopic and metastatic tumors of KPIC cells almost recapitulated the pathology of spontaneous KPIC tumors. These data show that in addition to spontaneous KPIC tumors, KPIC cells are a valuable tool for preclinical studies of locally invasive and metastatic PC.
Collapse
Affiliation(s)
- Lixiang Ma
- Department of Anatomy, Histology & Embryology, Shanghai Medical College, Shanghai, People’s Republic of China
| | - Hexige Saiyin
- School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
368
|
GRP78 haploinsufficiency suppresses acinar-to-ductal metaplasia, signaling, and mutant Kras-driven pancreatic tumorigenesis in mice. Proc Natl Acad Sci U S A 2017; 114:E4020-E4029. [PMID: 28461470 DOI: 10.1073/pnas.1616060114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a highly lethal disease in critical need of new therapeutic strategies. Here, we report that the stress-inducible 78-kDa glucose-regulated protein (GRP78/HSPA5), a key regulator of endoplasmic reticulum homeostasis and PI3K/AKT signaling, is overexpressed in the acini and PDAC of Pdx1-Cre;KrasG12D/+;p53f/+ (PKC) mice as early as 2 mo, suggesting that GRP78 could exert a protective effect on acinar cells under stress, as during PDAC development. The PKC pancreata bearing wild-type Grp78 showed detectable PDAC by 3 mo and rapid subsequent tumor growth. In contrast, the PKC pancreata bearing a Grp78f/+ allele (PKC78f/+ mice) expressing about 50% of GRP78 maintained normal sizes during the early months, with reduced proliferation and suppression of AKT, S6, ERK, and STAT3 activation. Acinar-to-ductal metaplasia (ADM) has been identified as a key tumor initiation mechanism of PDAC. Compared with PKC, the PKC78f/+ pancreata showed substantial reduction of ADM as well as pancreatic intraepithelial neoplasia-1 (PanIN-1), PanIN-2, and PanIN-3 and delayed onset of PDAC. ADM in response to transforming growth factor α was also suppressed in ex vivo cultures of acinar cell clusters isolated from mouse pancreas bearing targeted heterozygous knockout of Grp78 (c78f/+ ) and subjected to 3D culture in collagen. We further discovered that GRP78 haploinsufficiency in both the PKC78f/+ and c78f/+ pancreata leads to reduction of epidermal growth factor receptor, which is critical for ADM initiation. Collectively, our studies establish a role for GRP78 in ADM and PDAC development.
Collapse
|
369
|
Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK. GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 2017; 400:37-46. [PMID: 28455244 DOI: 10.1016/j.canlet.2017.04.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
The increased rate of glycolysis and reduced oxidative metabolism are the principal biochemical phenotypes observed in pancreatic ductal adenocarcinoma (PDAC) that lead to the development of an acidic tumor microenvironment. The pH of most epithelial cell-derived tumors is reported to be lower than that of plasma. However, little is known regarding the physiology and metabolism of cancer cells enduring chronic acidosis. Here, we cultured PDAC cells in chronic acidosis (pH 6.9-7.0) and observed that cells cultured in low pH had reduced clonogenic capacity. However, our physiological and metabolomics analysis showed that cells in low pH deviate from glycolytic metabolism and rely more on oxidative metabolism. The increased expression of the transaminase enzyme GOT1 fuels oxidative metabolism of cells cultured in low pH by enhancing the non-canonical glutamine metabolic pathway. Survival in low pH is reduced upon depletion of GOT1 due to increased intracellular ROS levels. Thus, GOT1 plays an important role in energy metabolism and ROS balance in chronic acidosis stress. Our studies suggest that targeting anaplerotic glutamine metabolism may serve as an important therapeutic target in PDAC.
Collapse
Affiliation(s)
- Jaime Abrego
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Enza Vernucci
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surendra K Shukla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ryan J King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gennifer Goode
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Divya Murthy
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
370
|
Pedersen SF, Novak I, Alves F, Schwab A, Pardo LA. Alternating pH landscapes shape epithelial cancer initiation and progression: Focus on pancreatic cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600253] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stine F. Pedersen
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Frauke Alves
- Max Planck Institute of Experimental Medicine; Göttingen Germany
- Institute for Diagnostic and Interventional Radiology; University Medical Center; Göttingen Germany
- Department of Hematology and Medical Oncology; University Medical Center; Göttingen Germany
| | - Albrecht Schwab
- Institute of Physiology II; University of Münster; Münster Germany
| | - Luis A. Pardo
- Max Planck Institute of Experimental Medicine; Göttingen Germany
| |
Collapse
|
371
|
Huang FT, Peng JF, Cheng WJ, Zhuang YY, Wang LY, Li CQ, Tang J, Chen WY, Li YH, Zhang SN. MiR-143 Targeting TAK1 Attenuates Pancreatic Ductal Adenocarcinoma Progression via MAPK and NF-κB Pathway In Vitro. Dig Dis Sci 2017; 62:944-957. [PMID: 28194669 DOI: 10.1007/s10620-017-4472-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is one of the major regulators of inflammation-induced cancer cell growth and progression. MiR-143 dysregulation is a common event in a variety of human diseases including pancreatic ductal adenocarcinoma (PDA). AIMS To identify the interaction between TAK1 and miR-143 in PDA. METHODS Data mining of TAK1 expression in PDA patient gene profiling was conducted. QRT-PCR and western blot were performed to detect the expression of TAK1 in PDA tissues and cell lines. Ectopic miR-143 and TAK1 were introduced to PDA cells. Cell growth, apoptosis and migration were examined. Xenograft models were used to examine the function of TAK1 in vivo. Western blot and luciferase assay were carried out to investigate the direct target of miR-143. RESULTS PDA patient gene profiling data (GSE15471 and GSE16515) showed that TAK1 mRNA was aberrantly up-regulated in PDA tissues. TAK1 protein levels were overexpressed in PDA tissues and cell lines. Overexpression of TAK1 was strongly associated with positive lymph node metastasis. Inhibition of TAK1 suppressed cell growth, migration, and induced cell apoptosis in vitro and in vivo. Further studies demonstrated that TAK1 was a direct target gene of miR-143. MiR-143 also inhibited PDA cells proliferation and migration, induced apoptosis and G1/S arrest. Moreover, TAK1 depletion inactivated MAPK and NF-κB pathway, mimicking the function of miR-143. CONCLUSIONS The study highlights that miR-143 acts as a tumor suppressor in PDA through directly targeting TAK1, and their functional regulation may provide potential therapeutic strategies in clinics.
Collapse
Affiliation(s)
- Feng-Ting Huang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Juan-Fei Peng
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Wen-Jie Cheng
- Department of Ultrasound, the Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong Province, People's Republic of China
| | - Yan-Yan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Ling-Yun Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Chu-Qiang Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, No. 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong Province, People's Republic of China
| | - Wen-Ying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Yuan-Hua Li
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China
| | - Shi-Neng Zhang
- Department of Gastroenterology and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong Province, People's Republic of China.
| |
Collapse
|
372
|
Borazanci E, Dang CV, Robey RW, Bates SE, Chabot JA, Von Hoff DD. Pancreatic Cancer: “A Riddle Wrapped in a Mystery inside an Enigma”. Clin Cancer Res 2017; 23:1629-1637. [DOI: 10.1158/1078-0432.ccr-16-2070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/27/2022]
Abstract
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most difficult-to-treat cancers. With an increasing incidence and inability to make major progress, it represents the very definition of unmet medical need. Progress has been made in understanding the basic biology—systematic genomic sequencing has led to the recognition that PDAC is not typically a heavily mutated tumor, although there are exceptions. The most consistently mutated genes are KRAS, CDKN2A, TP53, and SMAD4/DPC4. Study of familial PDAC has led to the recognition that a variety of defects in DNA repair genes can be associated with the emergence of pancreatic cancer. Recent studies suggest that epigenetics may play a larger role than previously recognized. A major new understanding is the recognition that PDAC should be considered a composite of tumor cells, as well as pancreatic stellate cells, immune cells, and extracellular matrix. The individual components contribute to metabolic aberration, immune dysfunction, and chemotherapy resistance, and therapeutic innovations may be needed to address them individually. It has also been recognized that metastatic seeding from PDAC occurs very early in the disease course—in an estimated 73% of cases, once the tumor reaches 2 cm. The implication of this is that therapies directed toward micrometastatic disease and increasing fractional cell kill are most needed. Neoadjuvant approaches have been taken to increase resectability and improve outcome. So much work remains, and most critical is the need to understand how this tumor originates and develops. Clin Cancer Res; 23(7); 1629–37. ©2017 AACR.
See all articles in this CCR Focus section, “Pancreatic Cancer: Challenge and Inspiration.”
Collapse
Affiliation(s)
- Erkut Borazanci
- 1HonorHealth, Scottsdale, Arizona and TGen, Phoenix, Arizona
| | - Chi V. Dang
- 2Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Susan E. Bates
- 4Columbia University Medical Center, New York, New York
- 5James J. Peters Bronx VA Medical Center, Bronx, New York
| | | | | |
Collapse
|
373
|
Spira A, Yurgelun MB, Alexandrov L, Rao A, Bejar R, Polyak K, Giannakis M, Shilatifard A, Finn OJ, Dhodapkar M, Kay NE, Braggio E, Vilar E, Mazzilli SA, Rebbeck TR, Garber JE, Velculescu VE, Disis ML, Wallace DC, Lippman SM. Precancer Atlas to Drive Precision Prevention Trials. Cancer Res 2017; 77:1510-1541. [PMID: 28373404 PMCID: PMC6681830 DOI: 10.1158/0008-5472.can-16-2346] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
Cancer development is a complex process driven by inherited and acquired molecular and cellular alterations. Prevention is the holy grail of cancer elimination, but making this a reality will take a fundamental rethinking and deep understanding of premalignant biology. In this Perspective, we propose a national concerted effort to create a Precancer Atlas (PCA), integrating multi-omics and immunity - basic tenets of the neoplastic process. The biology of neoplasia caused by germline mutations has led to paradigm-changing precision prevention efforts, including: tumor testing for mismatch repair (MMR) deficiency in Lynch syndrome establishing a new paradigm, combinatorial chemoprevention efficacy in familial adenomatous polyposis (FAP), signal of benefit from imaging-based early detection research in high-germline risk for pancreatic neoplasia, elucidating early ontogeny in BRCA1-mutation carriers leading to an international breast cancer prevention trial, and insights into the intricate germline-somatic-immunity interaction landscape. Emerging genetic and pharmacologic (metformin) disruption of mitochondrial (mt) respiration increased autophagy to prevent cancer in a Li-Fraumeni mouse model (biology reproduced in clinical pilot) and revealed profound influences of subtle changes in mt DNA background variation on obesity, aging, and cancer risk. The elaborate communication between the immune system and neoplasia includes an increasingly complex cellular microenvironment and dynamic interactions between host genetics, environmental factors, and microbes in shaping the immune response. Cancer vaccines are in early murine and clinical precancer studies, building on the recent successes of immunotherapy and HPV vaccine immune prevention. Molecular monitoring in Barrett's esophagus to avoid overdiagnosis/treatment highlights an important PCA theme. Next generation sequencing (NGS) discovered age-related clonal hematopoiesis of indeterminate potential (CHIP). Ultra-deep NGS reports over the past year have redefined the premalignant landscape remarkably identifying tiny clones in the blood of up to 95% of women in their 50s, suggesting that potentially premalignant clones are ubiquitous. Similar data from eyelid skin and peritoneal and uterine lavage fluid provide unprecedented opportunities to dissect the earliest phases of stem/progenitor clonal (and microenvironment) evolution/diversity with new single-cell and liquid biopsy technologies. Cancer mutational signatures reflect exogenous or endogenous processes imprinted over time in precursors. Accelerating the prevention of cancer will require a large-scale, longitudinal effort, leveraging diverse disciplines (from genetics, biochemistry, and immunology to mathematics, computational biology, and engineering), initiatives, technologies, and models in developing an integrated multi-omics and immunity PCA - an immense national resource to interrogate, target, and intercept events that drive oncogenesis. Cancer Res; 77(7); 1510-41. ©2017 AACR.
Collapse
Affiliation(s)
- Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ludmil Alexandrov
- Theoretical Division, Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Rafael Bejar
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madhav Dhodapkar
- Department of Hematology and Immunology, Yale Cancer Center, New Haven, Connecticut
| | - Neil E Kay
- Department of Hematology, Mayo Clinic Hospital, Rochester, Minnesota
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic Hospital, Phoenix, Arizona
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah A Mazzilli
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pathology and Bioinformatics, Boston University School of Medicine, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Hematology and Oncology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Judy E Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor E Velculescu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Mary L Disis
- Department of Medicine, Center for Translational Medicine in Women's Health, University of Washington, Seattle, Washington
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott M Lippman
- Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California.
| |
Collapse
|
374
|
Hao F, Xu Q, Zhao Y, Stevens JV, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol Cancer Res 2017; 15:929-941. [PMID: 28360038 DOI: 10.1158/1541-7786.mcr-17-0023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
Abstract
We examined the impact of crosstalk between the insulin receptor and G protein-coupled receptor (GPCR) signaling pathways on the regulation of Yes-associated protein (YAP) localization, phosphorylation, and transcriptional activity in the context of human pancreatic ductal adenocarcinoma (PDAC). Stimulation of PANC-1 or MiaPaCa-2 cells with insulin and neurotensin, a potent mitogenic combination of agonists for these cells, promoted striking YAP nuclear localization and decreased YAP phosphorylation at Ser127 and Ser397 Challenging PDAC cells with either insulin or neurotensin alone modestly induced the expression of YAP/TEAD-regulated genes, including connective tissue growth factor (CTGF), cysteine-rich angiogenic inducer 61 (CYR61), and CXCL5, whereas the combination of neurotensin and insulin induced a marked increase in the level of expression of these genes. In addition, siRNA-mediated knockdown of YAP/TAZ prevented the increase in the expression of these genes. A small-molecule inhibitor (A66), selective for the p110α subunit of PI3K, abrogated the increase in phosphatidylinositol 3,4,5-trisphosphate production and the expression of CTGF, CYR61, and CXCL5 induced by neurotensin and insulin. Furthermore, treatment of PDAC cells with protein kinase D (PKD) family inhibitors (CRT0066101 or kb NB 142-70) or with siRNAs targeting the PKD family prevented the increase of CTGF, CYR61, and CXCL5 mRNA levels in response to insulin and neurotensin stimulation. Thus, PI3K and PKD mediate YAP activation in response to insulin and neurotensin in pancreatic cancer cells.Implications: Inhibitors of PI3K or PKD disrupt crosstalk between insulin receptor and GPCR signaling systems by blocking YAP/TEAD-regulated gene expression in pancreatic cancer cells. Mol Cancer Res; 15(7); 929-41. ©2017 AACR.
Collapse
Affiliation(s)
- Fang Hao
- Tianjin Medical University, Tianjin, China.,Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Qinhong Xu
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Xi'an Jiaotong University, Xi'an, China
| | - Yinglan Zhao
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,Sichuan University, Chengdu, China
| | - Jan V Stevens
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California
| | - Steven H Young
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - James Sinnett-Smith
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California.,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California
| | - Enrique Rozengurt
- Division of Digestive Disease, Department of Medicine, David Geffen School of Medicine, Los Angeles, California. .,CURE: Digestive Disease Research Center, Los Angeles, California.,VA Greater Los Angeles Health Care System, Los Angeles, California.,Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
375
|
Feigin ME, Tuveson DA. Challenges and Opportunities in Modeling Pancreatic Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:231-235. [PMID: 28289164 DOI: 10.1101/sqb.2016.81.031104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ability to faithfully model complex processes lies at the heart of experimental biology. Although a reductionist approach necessarily reduces this complexity, it is nevertheless required for untangling the contributions and interactions of the various system components. It has long been appreciated that cancer is a complex process that involves positive and negative interactions between tumor cells, normal host tissue, and the associated cells of the tumor microenvironment. However, accurate models for studying these complex interactions in vitro have remained elusive. We seek to generate models of mouse and human pancreatic cancer that are relevant to disease biology and useful for elucidating poorly understood facets of this deadly disease. The ability to model, manipulate, and predict the therapeutic response of an individual's disease outside their body represents the promise of precision medicine. Therefore, these models are patient-specific and allow the identification of new biomarkers and novel treatment modalities for rapid translation to the clinic. In this perspective we will discuss recent advances in modeling pancreatic cancer in vitro, the discoveries these models have enabled, and future challenges and opportunities awaiting further investigation.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York 11724
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York 11724.,Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
376
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Yu X, Xu J. ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett 2017; 388:303-311. [DOI: 10.1016/j.canlet.2016.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
|
377
|
Cai X, Ding H, Liu Y, Pan G, Li Q, Yang Z, Liu W. Expression of HMGB2 indicates worse survival of patients and is required for the maintenance of Warburg effect in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2017; 49:119-127. [PMID: 28069585 DOI: 10.1093/abbs/gmw124] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/05/2023] Open
Abstract
High mobility group proteins (HMGs) are the second most abundant chromatin proteins and exert global genomic functions in the establishment of active or inactive chromatin domains. Through interaction with nucleosomes, transcription factors, nucleosome-remodeling machines and histones, the HMGs family proteins contribute to the fine tuning of transcription in response to rapid environmental changes. Mammalian high mobility group Bs (HMGBs) are characterized by two tandem HMG box domains followed by a long acidic tail. Recent studies demonstrated that high expression of HMGBs has been found in many cancers, such as prostate, kidney, ovarian, and gastric cancers. However, their roles in pancreatic cancer have seldom been reported. In this study, we assessed the diagnostic and prognostic values of HMGBs proteins, including HMGB1, HMGB2, and HMGB3, in pancreatic cancer from the Cancer Genome Atlas (TCGA) dataset. Our results demonstrated that HMGB2 predicted poor prognosis in pancreatic cancer. In vitro studies demonstrated that silencing HMGB2 inhibited cell proliferation and viability. Mechanistically, our results demonstrated that silencing HMGB2 decreased hypoxia inducible factor 1α (HIF1α) protein level and inhibited HIF1α-mediated glycolysis process. Further analysis indicated that HIF1α-targeted glycolytic genes, including GLUT1, HK2, and LDHA, are all prognostic factors and positively correlated with HMGB2 expression. Taken together, we discovered new prognostic and predictive markers for pancreatic cancer, and shed light on the novel function of HMGB2 in glycolytic control in cancer.
Collapse
Affiliation(s)
- Xin Cai
- Department of Radiotherapy, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
| | - Hongjian Ding
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Yanxia Liu
- Department of Emergency, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Gaofeng Pan
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Yang
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| | - Weiyan Liu
- Department of General Surgery, Fudan University, Minhang Hospital, Shanghai 201199, China
| |
Collapse
|
378
|
|
379
|
Hardie RA, van Dam E, Cowley M, Han TL, Balaban S, Pajic M, Pinese M, Iconomou M, Shearer RF, McKenna J, Miller D, Waddell N, Pearson JV, Grimmond SM, Sazanov L, Biankin AV, Villas-Boas S, Hoy AJ, Turner N, Saunders DN. Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer Metab 2017; 5:2. [PMID: 28163917 PMCID: PMC5282905 DOI: 10.1186/s40170-017-0164-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer has a five-year survival rate of ~8%, with characteristic molecular heterogeneity and restricted treatment options. Targeting metabolism has emerged as a potentially effective therapeutic strategy for cancers such as pancreatic cancer, which are driven by genetic alterations that are not tractable drug targets. Although somatic mitochondrial genome (mtDNA) mutations have been observed in various tumors types, understanding of metabolic genotype-phenotype relationships is limited. METHODS We deployed an integrated approach combining genomics, metabolomics, and phenotypic analysis on a unique cohort of patient-derived pancreatic cancer cell lines (PDCLs). Genome analysis was performed via targeted sequencing of the mitochondrial genome (mtDNA) and nuclear genes encoding mitochondrial components and metabolic genes. Phenotypic characterization of PDCLs included measurement of cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using a Seahorse XF extracellular flux analyser, targeted metabolomics and pathway profiling, and radiolabelled glutamine tracing. RESULTS We identified 24 somatic mutations in the mtDNA of 12 patient-derived pancreatic cancer cell lines (PDCLs). A further 18 mutations were identified in a targeted study of ~1000 nuclear genes important for mitochondrial function and metabolism. Comparison with reference datasets indicated a strong selection bias for non-synonymous mutants with predicted functional effects. Phenotypic analysis showed metabolic changes consistent with mitochondrial dysfunction, including reduced oxygen consumption and increased glycolysis. Metabolomics and radiolabeled substrate tracing indicated the initiation of reductive glutamine metabolism and lipid synthesis in tumours. CONCLUSIONS The heterogeneous genomic landscape of pancreatic tumours may converge on a common metabolic phenotype, with individual tumours adapting to increased anabolic demands via different genetic mechanisms. Targeting resulting metabolic phenotypes may be a productive therapeutic strategy.
Collapse
Affiliation(s)
- Rae-Anne Hardie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Ellen van Dam
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Mark Cowley
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Ting-Li Han
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Seher Balaban
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006 Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Mark Pinese
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Mary Iconomou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Robert F. Shearer
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
| | - Jessie McKenna
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - David Miller
- Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Nicola Waddell
- Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| | - John V. Pearson
- Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Sean M. Grimmond
- Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
| | - Australian Pancreatic Cancer Genome Initiative
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW Australia
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006 Australia
- Centre for Medical Genomics, Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072 Australia
- Mitochondrial Biology Unit, Wellcome Trust, Cambridge, CB2 0XY UK
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW 2006 Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Leonid Sazanov
- Mitochondrial Biology Unit, Wellcome Trust, Cambridge, CB2 0XY UK
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Silas Villas-Boas
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Andrew J. Hoy
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006 Australia
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, University of Sydney, Sydney, NSW 2006 Australia
| | - Nigel Turner
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Darren N. Saunders
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
380
|
Yang S, Che SPY, Kurywchak P, Tavormina JL, Gansmo LB, Correa de Sampaio P, Tachezy M, Bockhorn M, Gebauer F, Haltom AR, Melo SA, LeBleu VS, Kalluri R. Detection of mutant KRAS and TP53 DNA in circulating exosomes from healthy individuals and patients with pancreatic cancer. Cancer Biol Ther 2017; 18:158-165. [PMID: 28121262 DOI: 10.1080/15384047.2017.1281499] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pancreatic cancer presents with a dismal mortality rate and is in urgent need of methods for early detection with potential for timely intervention. All living cells, including cancer cells, generate exosomes. We previously discovered double stranded genomic DNA in exosomes derived from the circulation of pancreatic cancer patients, which enabled the detection of prevalent mutations associated with the disease. Here, we report a proof-of-concept study that demonstrates the potential clinical utility of circulating exosomal DNA for identification of KRASG12D and TP53R273H mutations in patients with pancreas-associated pathologies, including pancreatic ductal adenocarcinoma (PDAC), chronic pancreatitis (CP) and intraductal papillary mucinous neoplasm (IPMN), and in healthy human subjects. In 48 clinically annotated serum samples from PDAC patients, digital PCR analyses of exosomal DNA identified KRASG12D mutation in 39.6% of cases, and TP53R273H mutation in 4.2% of cases. KRASG12D and TP53R273H mutations were also detected in exosomal DNA from IPMN patients (2 out of 7 with KRASG12D, one of which also co-presented with TP53R273H mutation). Circulating exosomal DNA in 5 out of 9 CP patients enabled the detection of KRASG12D mutation. In 114 healthy subject-derived circulating exosomal DNA, 2.6% presented with KRASG12D mutation and none with TP53R273H mutation. This study highlights the value of circulating exosomal DNA for a rapid, low-cost identification of cancer driving mutations. The identification of mutations in IPMN patients and healthy subjects suggests that liquid biopsies may allow potential assessment of cancer risk but with a cautionary note that detection of clinical cancer cannot be assumed.
Collapse
Affiliation(s)
- Sujuan Yang
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sara P Y Che
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Paul Kurywchak
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jena L Tavormina
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Liv B Gansmo
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Pedro Correa de Sampaio
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Michael Tachezy
- b Department of General , Visceral and Thoracic Surgery, University Medical Center of Hamburg-Eppendorf , Hamburg , Germany
| | - Maximilian Bockhorn
- b Department of General , Visceral and Thoracic Surgery, University Medical Center of Hamburg-Eppendorf , Hamburg , Germany
| | - Florian Gebauer
- b Department of General , Visceral and Thoracic Surgery, University Medical Center of Hamburg-Eppendorf , Hamburg , Germany
| | - Amanda R Haltom
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Sonia A Melo
- c Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal (I3S).,d Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP) , Porto , Portugal
| | - Valerie S LeBleu
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Raghu Kalluri
- a Department of Cancer Biology , Metastasis Research Center, University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
381
|
Dey P, Baddour J, Muller F, Wu CC, Wang H, Liao WT, Lan Z, Chen A, Gutschner T, Kang Y, Fleming J, Satani N, Zhao D, Achreja A, Yang L, Lee J, Chang E, Genovese G, Viale A, Ying H, Draetta G, Maitra A, Wang YA, Nagrath D, DePinho RA. Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer. Nature 2017; 542:119-123. [PMID: 28099419 DOI: 10.1038/nature21052] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Joelle Baddour
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chia Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Huamin Wang
- Department of Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen-Ting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zangdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Alina Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tony Gutschner
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yaan Kang
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jason Fleming
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Abhinav Achreja
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Lifeng Yang
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Jiyoon Lee
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Edward Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Giulio Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepak Nagrath
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
382
|
Abstract
A fibroinflammatory stromal reaction cooperates with oncogenic signaling to influence pancreatic ductal adenocarcinoma (PDAC) initiation, progression, and therapeutic outcome, yet the mechanistic underpinning of this crosstalk remains poorly understood. Here we show that stromal cues elicit an adaptive response in the cancer cell including the rapid mobilization of a transcriptional network implicated in accelerated growth, along with anabolic changes of an altered metabolome. The close overlap of stroma-induced changes in vitro with those previously shown to be regulated by oncogenic Kras in vivo suggests that oncogenic Kras signaling-a hallmark and key driver of PDAC-is contingent on stromal inputs. Mechanistically, stroma-activated cancer cells show widespread increases in histone acetylation at transcriptionally enhanced genes, implicating the PDAC epigenome as a presumptive point of convergence between these pathways and a potential therapeutic target. Notably, inhibition of the bromodomain and extraterminal (BET) family of epigenetic readers, and of Bromodomain-containing protein 2 (BRD2) in particular, blocks stroma-inducible transcriptional regulation in vitro and tumor progression in vivo. Our work suggests the existence of a molecular "AND-gate" such that tumor activation is the consequence of mutant Kras and stromal cues, providing insight into the role of the tumor microenvironment in the origin and treatment of Ras-driven tumors.
Collapse
|
383
|
Fang Y, Zhao L, Xiao H, Cook KM, Bai Q, Herrick EJ, Chen X, Qin C, Zhu Z, Wakefield MR, Nicholl MB. IL-33 acts as a foe to MIA PaCa-2 pancreatic cancer. Med Oncol 2017; 34:23. [PMID: 28058630 DOI: 10.1007/s12032-016-0880-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
IL-33 is a member of the IL-1 family of cytokines, and no study has been performed to address its direct anti-tumor effect. This study is designed to investigate whether IL-33 has any direct effect on pancreatic cancer. Clonogenic survival assay, immunohistochemistry, TUNEL staining, proliferation, caspase-3 activity kits and RT-PCR were used to evaluate the effects of IL-33 on cell survival, proliferation and apoptosis of a pancreatic cancer cell line, MIA PaCa-2. We found that the percentage of colonies of MIA PaCa-2 cells, PCNA+ cells and the OD value of cancer cells were all decreased in the presence of IL-33. TUNEL+ cells and the relative caspase-3 activity in cancer cells were increased in the presence of IL-33. We further found that its anti-proliferative effect on cancer cells correlated with downregulation of pro-proliferative molecules cdk2 and cdk4 and upregulation of anti-proliferative molecules p15, p21 and p53. Its pro-apoptotic effect correlated with downregulation of anti-apoptotic molecule FLIP and upregulation of pro-apoptotic molecule TRAIL. These results suggest that IL-33 presents significant anti-tumor effects by inhibition of proliferation and induction of apoptosis of MIA PaCa-2 pancreatic cancer cells. Thus, strength of IL-33/ST2 signal pathway might be a promising way to treat pancreatic cancer.
Collapse
Affiliation(s)
- Yujiang Fang
- Department of Microbiology, Immunology and Pathology, College of Osteopathic Medicine, Des Moines University, Des Moines, IA, 50312, USA. .,Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| | - Lei Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huaping Xiao
- Department of Microbiology, Immunology and Pathology, College of Osteopathic Medicine, Des Moines University, Des Moines, IA, 50312, USA.,The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Kathryn M Cook
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Elizabeth J Herrick
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Xuhui Chen
- Department of Microbiology, Immunology and Pathology, College of Osteopathic Medicine, Des Moines University, Des Moines, IA, 50312, USA.,Luohu Hospital, Shenzhen, China
| | - Chenglu Qin
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Luohu Hospital, Shenzhen, China
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Michael B Nicholl
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Department of Surgery, South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| |
Collapse
|
384
|
Abstract
OBJECTIVES Mass spectrometry-based proteomics enables near-comprehensive protein expression profiling. We aimed to compare quantitatively the relative expression levels of thousands of proteins across 5 pancreatic cell lines. METHODS Using tandem mass tags (TMT10-plex), we profiled the global proteomes of 5 cell lines in duplicate in a single multiplexed experiment. We selected cell lines commonly used in pancreatic research: CAPAN-1, HPAC, HPNE, PANC1, and PaSCs. In addition, we examined the effects of different proteases (Lys-C and Lys-C plus trypsin) on the dataset depth. RESULTS We quantified over 8000 proteins across the 5 cell lines. Analysis of variance testing of cell lines within each data set resulted in over 1400 statistically significant differences in protein expression levels. Comparing the data sets, 10% more proteins and 30% more peptides were identified in the Lys-C/trypsin data set than in the Lys-C-only data set. The correlation coefficient of quantified proteins common between the data sets was greater than 0.85. CONCLUSIONS We illustrate protein level differences across pancreatic cell lines. In addition, we highlight the advantages of Lys-C/trypsin over Lys-C-only digests for discovery proteomics. These data sets provide a valuable resource of cell line-dependent peptide and protein differences for future targeted analyses, including those investigating on- or off-target drug effects across cell lines.
Collapse
|
385
|
von Figura G, Fahrenkrog-Petersen L, Hidalgo-Sastre A, Hartmann D, Hüser N, Schmid RM, Hebrok M, Roy N, Esposito I. Atypical flat lesions derive from pancreatic acinar cells. Pancreatology 2017; 17:350-353. [PMID: 28473229 PMCID: PMC5770228 DOI: 10.1016/j.pan.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma (PDAC) is thought to derive from different precursor lesions including the recently identified atypical flat lesions (AFL). While all precursor lesions and PDAC share ductal characteristics, there is an ongoing debate about the cellular origin of the different PDAC precursor lesions. In particular, pancreatic acinar cells have previously been shown to display a remarkable plasticity being able to undergo ductal dedifferentiation in the context of oncogenic stimuli. METHODS Histological analyses were performed in a murine PDAC model that specifically expresses oncogenic Kras in adult pancreatic acinar cells. Occurrence, characterization, and lineage tracing of AFLs were investigated. RESULTS Upon expression of oncogenic Kras in adult pancreatic acinar cells, AFLs with typical morphology and expression profile arise. Lineage tracing confirmed that the AFLs were of acinar origin. CONCLUSIONS Using a murine PDAC model, this study identifies pancreatic acinar cells as a cellular source for AFLs.
Collapse
Affiliation(s)
- Guido von Figura
- II Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany,Corresponding author. II Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany. (G. von Figura)
| | - Leonie Fahrenkrog-Petersen
- II Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Hidalgo-Sastre
- II Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Chirurgische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Chirurgische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland M. Schmid
- II Medizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nilotpal Roy
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Irene Esposito
- Institute of Pathology, University Clinic Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
386
|
Illiano M, Sapio L, Caiafa I, Chiosi E, Spina A, Naviglio S. Forskolin sensitizes pancreatic cancer cells to gemcitabine via Stat3 and Erk1/2 inhibition. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
387
|
He M, Qiao Z, Wang Y, Kuai Q, Li C, Wang Y, Jiang X, Wang X, Li W, He M, Ren S, Yu Q. Chidamide Inhibits Aerobic Metabolism to Induce Pancreatic Cancer Cell Growth Arrest by Promoting Mcl-1 Degradation. PLoS One 2016; 11:e0166896. [PMID: 27875574 PMCID: PMC5119787 DOI: 10.1371/journal.pone.0166896] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a fatal malignancy worldwide and urgently requires valid therapies. Previous research showed that the HDAC inhibitor chidamide is a promising anti-cancer agent in pancreatic cancer cell lines. In this study, we elucidate a probable underlying anti-cancer mechanism of chidamide involving the degradation of Mcl-1. Mcl-1 is frequently upregulated in human cancers, which has been demonstrated to participate in oxidative phosphorylation, in addition to its anti-apoptotic actions as a Bcl-2 family member. The pancreatic cancer cell lines BxPC-3 and PANC-1 were treated with chidamide, resulting in Mcl-1 degradation accompanied by induction of Mcl-1 ubiquitination. Treatment with MG132, a proteasome inhibitor reduced Mcl-1 degradation stimulated by chidamide. Chidamide decreased O2 consumption and ATP production to inhibit aerobic metabolism in both pancreatic cancer cell lines and primary cells, similar to knockdown of Mcl-1, while overexpression of Mcl-1 in pancreatic cancer cells could restore the aerobic metabolism inhibited by chidamide. Furthermore, chidamide treatment or Mcl-1 knockdown significantly induced cell growth arrest in pancreatic cancer cell lines and primary cells, and Mcl-1 overexpression could reduce this cell growth inhibition. In conclusion, our results suggest that chidamide promotes Mcl-1 degradation through the ubiquitin-proteasome pathway, suppressing the maintenance of mitochondrial aerobic respiration by Mcl-1, and resulting in inhibition of pancreatic cancer cell proliferation. Our work supports the claim that chidamide has therapeutic potential for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Mu He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
- Microbiology Laboratory, Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Zhixin Qiao
- Medical Research Centre, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yanbing Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Qiyuan Kuai
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Changlan Li
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xingwei Jiang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xuanlin Wang
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Weijing Li
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Min He
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Suping Ren
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
- * E-mail: (QY); (SR)
| | - Qun Yu
- Department of Blood Products and Substitutes, Beijing Institute of Transfusion Medicine, Beijing, China
- * E-mail: (QY); (SR)
| |
Collapse
|
388
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Liu L, Liu C, Luo G, Ni Q, Xu J, Yu X. Energy sources identify metabolic phenotypes in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:969-979. [PMID: 27649892 DOI: 10.1093/abbs/gmw097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming is one of the emerging hallmarks of cancers. As a highly malignant tumor, pancreatic ductal adenocarcinoma (PDA) is not only a metabolic disease but also a heterogeneous disease. Heterogeneity induces PDA dependence on distinct nutritive substrates, thereby inducing different metabolic phenotypes. We stratified PDA into four phenotypes with distinct types of energy metabolism, including a Warburg phenotype, a reverse Warburg phenotype, a glutaminolysis phenotype, and a lipid-dependent phenotype. The four phenotypes possess distinct metabolic features and reprogram their metabolic pathways to adapt to stress. The metabolic type present in PDA should prompt differential imaging and serologic metabolite detection for diagnosis and prognosis. The targeting of an individual metabolic phenotype with corresponding metabolic inhibitors is considered a promising therapeutic approach and, in combination with chemotherapy, is expected to be a novel strategy for PDA treatment.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jinfeng Xiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
389
|
Donahue TR, Dawson DW. Leveraging Mechanisms Governing Pancreatic Tumorigenesis To Reduce Pancreatic Cancer Mortality. Trends Endocrinol Metab 2016; 27:770-781. [PMID: 27461042 PMCID: PMC5075262 DOI: 10.1016/j.tem.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a devastating malignancy with limited and modest clinical treatments. High-throughput technologies and accurate disease models now provide a comprehensive picture of the diverse molecular signaling pathways and cellular processes governing PDA tumorigenesis. Central among these is oncogenic KRAS, a mediator of cellular plasticity, metabolic reprogramming, and inflammatory and paracrine signaling required for tumor development and maintenance. Biological aggressiveness is further conferred by a highly fibrotic and immunosuppressive PDA microenvironment that also acts as a barrier to effective drug delivery. The regulation of these mechanisms and their implications for early cancer detection, chemoprevention and therapy are discussed.
Collapse
Affiliation(s)
- Timothy R Donahue
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - David W Dawson
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
390
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Ni Q, Xu J, Yu X. Metabolic plasticity in heterogeneous pancreatic ductal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2016; 1866:177-188. [PMID: 27600832 DOI: 10.1016/j.bbcan.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignant neoplasms. The recognized hallmarks of PDA are regarded to be downstream events of metabolic reprogramming. Because PDA is a heterogeneous disease that is influenced by genetic polymorphisms and changes in the microenvironment, metabolic plasticity is a novel feature of PDA. As intrinsic factors for metabolic plasticity, K-ras activation and mutations in other tumor suppressor genes induce abnormal mitochondrial metabolism and enhance glycolysis, with alterations in glutamine and lipid metabolism. As extrinsic factors, the acidic and oxygen/nutrient-deprived microenvironment also induces cancer cells to reprogram their metabolic pathway and hijack stromal cells (mainly cancer-associated fibroblasts and immunocytes) to communicate, thereby adapting to metabolic stress. Therefore, a better understanding of the metabolic features of PDA will contribute to the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jinfeng Xiang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
391
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease with a high mortality rate. Genetic and biochemical studies have shown that RAS signaling mediated by KRAS plays a pivotal role in disease initiation, progression and drug resistance. RAS signaling affects several cellular processes in PDAC, including cellular proliferation, migration, cellular metabolism and autophagy. 90% of pancreatic cancer patients harbor somatic oncogenic point mutations in KRAS, which lead to constitutive activation of the molecule. Pancreatic cancers lacking KRAS mutations show activation of RAS via upstream signaling through receptor mediated tyrosine kinases, like EGFR, and in a small fraction of patients, oncogenic activation of the downstream B-RAF molecule is detected. RAS-stimulated signaling of RAF/MEK/ERK, PI3K/AKT/mTOR and RalA/B is active in human pancreatic cancers, cancer cell lines and mouse models of PDAC, although activation levels of each signaling arm appear to be variable across different tumors and perhaps within different subclones of single tumors. Recently, several targeted therapies directed towards MEK, ERK, PI3K and mTOR have been assayed in pancreatic cancer cell lines and in mouse models of the disease with promising results for their ability to impede cellular growth or delay tumor formation, and several inhibitors are currently in clinical trials. However, therapy-induced cross activation of RAS effector molecules has elucidated the complexities of targeting RAS signaling. Combinatorial therapies are now being explored as an approach to overcome RAS-induced therapeutic resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Juan
- Molecular Oncology Department, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
392
|
|
393
|
Abstract
The liver is the most common metastatic route of pancreatic cancer. Early recruitment of granulin-secreting inflammatory monocytes to the liver is now shown to reprogram hepatic stellate cells into myofibroblasts that modulate the liver microenvironment to support the growth of metastasizing tumour cells.
Collapse
Affiliation(s)
- Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|