351
|
Spatial specificity of auxin responses coordinates wood formation. Nat Commun 2018; 9:875. [PMID: 29491423 PMCID: PMC5830446 DOI: 10.1038/s41467-018-03256-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Spatial organization of signalling events of the phytohormone auxin is fundamental for maintaining a dynamic transition from plant stem cells to differentiated descendants. The cambium, the stem cell niche mediating wood formation, fundamentally depends on auxin signalling but its exact role and spatial organization is obscure. Here we show that, while auxin signalling levels increase in differentiating cambium descendants, a moderate level of signalling in cambial stem cells is essential for cambium activity. We identify the auxin-dependent transcription factor ARF5/MONOPTEROS to cell-autonomously restrict the number of stem cells by directly attenuating the activity of the stem cell-promoting WOX4 gene. In contrast, ARF3 and ARF4 function as cambium activators in a redundant fashion from outside of WOX4-expressing cells. Our results reveal an influence of auxin signalling on distinct cambium features by specific signalling components and allow the conceptual integration of plant stem cell systems with distinct anatomies. Auxin activity controls plant stem cell function. Here the authors show that in the cambium, moderate auxin activity restricts cambial stem cell number via ARF5-dependent repression of the stem‐cell‐promoting factor WOX4, while ARF3 and ARF4 promote cambial activity outside of the WOX4‐expression domain.
Collapse
|
352
|
Zhang K, Wang R, Zi H, Li Y, Cao X, Li D, Guo L, Tong J, Pan Y, Jiao Y, Liu R, Xiao L, Liu X. AUXIN RESPONSE FACTOR3 Regulates Floral Meristem Determinacy by Repressing Cytokinin Biosynthesis and Signaling. THE PLANT CELL 2018; 30:324-346. [PMID: 29371438 PMCID: PMC5868698 DOI: 10.1105/tpc.17.00705] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 05/03/2023]
Abstract
Successful floral meristem (FM) determinacy is critical for subsequent reproductive development and the plant life cycle. Although the phytohormones cytokinin and auxin interact to coregulate many aspects of plant development, whether and how cytokinin and auxin function in FM determinacy remain unclear. Here, we show that in Arabidopsis thaliana, cytokinin homeostasis is critical for FM determinacy. In this developmental context, auxin promotes the expression of AUXIN RESPONSE FACTOR3 (ARF3) to repress cytokinin activity. ARF3 directly represses the expression of ISOPENTENYLTRANSFERASE (IPT) family genes and indirectly represses LONELY GUY (LOG) family genes, both of which encode enzymes required for cytokinin biosynthesis. ARF3 also directly inhibits the expression of ARABIDOPSIS HISTIDINE KINASE4, a cytokinin receptor gene, resulting in reduced cytokinin activity. Consequently, ARF3 controls cell division by regulating cell cycle gene expression through cytokinin. In flowers, we show that AGAMOUS (AG) dynamically regulates the expression of ARF3 and IPTs, resulting in coordinated regulation of FM maintenance and termination through cell division. Moreover, genome-wide transcriptional profiling revealed both repressive and active roles for ARF3 in early flower development. Our findings establish a molecular link between AG and auxin/cytokinin and shed light on the mechanisms of stem cell maintenance and termination in the FM.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128 Changsha, China
| | - Hailing Zi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yongpeng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Xiuwei Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Dongming Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Lin Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128 Changsha, China
| | - Yanyun Pan
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, 410128 Changsha, China
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang 050024, China
| |
Collapse
|
353
|
Stoeckle D, Thellmann M, Vermeer JE. Breakout-lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:67-72. [PMID: 28968512 DOI: 10.1016/j.pbi.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
Lateral roots are determinants of plant root system architecture. Besides providing anchorage, they are a plant's means to explore the soil environment for water and nutrients. Lateral roots form post-embryonically and initiate deep within the root. On its way to the surface, the newly formed organ needs to grow through three overlying cell layers; the endodermis, cortex and epidermis. A picture is emerging that a tight integration of chemical and mechanical signalling between the lateral root and the surrounding tissue is essential for proper organogenesis. Here we review the latest progress made towards our understanding of the fascinating biology underlying lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Dorothee Stoeckle
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Joop Em Vermeer
- Department of Plant and Microbial Biology, University of Zurich, Switzerland; Cell Biology and Developmental Biology, Wageningen University, The Netherlands.
| |
Collapse
|
354
|
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet 2018; 14:e1007177. [PMID: 29377885 PMCID: PMC5805370 DOI: 10.1371/journal.pgen.1007177] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/08/2018] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development. The plant hormone auxin belongs to the major plant-specific developmental regulators. It mediates or modifies almost all aspects of plant life. One of the fascinating features of the auxin action is its directional movement between cells, whose direction can be regulated by auxin signaling itself. This plant-specific feedback regulation has been proposed decades ago and allows for the self-organizing formation of distinct auxin channels shown to be crucial for processes, such as the regular pattern formation of leaf venation, organ formation, and regeneration of plant tissues. Despite the prominent importance of this so called auxin canalization process, the insight into the underlying molecular mechanism is very limited. Here, we identified a number of genes that are transcriptionally regulated and act downstream of the auxin signaling to mediate the auxin feedback on the polarized auxin transport. One of them is the WRKY23 transcription factor that has previously been unsuspected to play a role in this process. Our work provides the first insights into the transcriptional regulation of the auxin canalization and opens multiple avenues to further study this crucial process.
Collapse
|
355
|
Niu J, Bi Q, Deng S, Chen H, Yu H, Wang L, Lin S. Identification of AUXIN RESPONSE FACTOR gene family from Prunus sibirica and its expression analysis during mesocarp and kernel development. BMC PLANT BIOLOGY 2018; 18:21. [PMID: 29368590 PMCID: PMC5784662 DOI: 10.1186/s12870-017-1220-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/20/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. RESULTS In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. CONCLUSIONS In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.
Collapse
Affiliation(s)
- Jun Niu
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shuya Deng
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Huiping Chen
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228 China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 China
| | - Shanzhi Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083 China
| |
Collapse
|
356
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
357
|
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:155-167. [PMID: 28992266 DOI: 10.1093/jxb/erx223] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Root systems can display variable architectures that contribute to survival strategies of plants. The model plant Arabidopsis thaliana possesses a tap root system, in which the primary root and lateral roots (LRs) are major architectural determinants. The phytohormone auxin fulfils multiple roles throughout LR development. In this review, we summarize recent advances in our understanding of four aspects of LR formation: (i) LR positioning, which determines the spatial distribution of lateral root primordia (LRP) and LRs along primary roots; (ii) LR initiation, encompassing the activation of nuclear migration in specified lateral root founder cells (LRFCs) up to the first asymmetric cell division; (iii) LR outgrowth, the 'primordium-intrinsic' patterning of de novo organ tissues and a meristem; and (iv) LR emergence, an interaction between LRP and overlaying tissues to allow passage through cell layers. We discuss how auxin signaling, embedded in a changing developmental context, plays important roles in all four phases. In addition, we discuss how rapid progress in gene network identification and analysis, modeling, and four-dimensional imaging techniques have led to an increasingly detailed understanding of the dynamic regulatory networks that control LR development.
Collapse
Affiliation(s)
- Yujuan Du
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| | - Ben Scheres
- Plant Developmental Biology Group, Wageningen University Research, the Netherlands
| |
Collapse
|
358
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
359
|
Kato H, Nishihama R, Weijers D, Kohchi T. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:291-301. [PMID: 28992186 DOI: 10.1093/jxb/erx267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Auxin plays critical roles in growth and development through the regulation of cell differentiation, cell expansion, and pattern formation. The auxin signal is mainly conveyed through a so-called nuclear auxin pathway involving the receptor TIR1/AFB, the transcriptional co-repressor AUX/IAA, and the transcription factor ARF with direct DNA-binding ability. Recent progress in sequence information and molecular genetics in basal plants has provided many insights into the evolutionary origin of the nuclear auxin pathway and its pleiotropic roles in land plant development. In this review, we summarize the latest knowledge of the nuclear auxin pathway gained from studies using basal plants, including charophycean green algae and two major model bryophytes, Marchantia polymorpha and Physcomitrella patens. In addition, we discuss the functional implication of the increase in genetic complexity of the nuclear auxin pathway during land plant evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
360
|
Cherenkov P, Novikova D, Omelyanchuk N, Levitsky V, Grosse I, Weijers D, Mironova V. Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:329-339. [PMID: 28992117 PMCID: PMC5853796 DOI: 10.1093/jxb/erx254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin regulates virtually every developmental process in land plants. This regulation is mediated via de-repression of DNA-binding auxin response factors (ARFs). ARFs bind TGTC-containing auxin response cis-elements (AuxREs), but there is growing evidence that additional cis-elements occur in auxin-responsive regulatory regions. The repertoire of auxin-related cis-elements and their involvement in different modes of auxin response are not yet known. Here we analyze the enrichment of nucleotide hexamers in upstream regions of auxin-responsive genes associated with auxin up- or down-regulation, with early or late response, ARF-binding domains, and with different chromatin states. Intriguingly, hexamers potentially bound by basic helix-loop-helix (bHLH) and basic leucine zipper (bZIP) factors as well as a family of A/T-rich hexamers are more highly enriched in auxin-responsive regions than canonical TGTC-containing AuxREs. We classify and annotate the whole spectrum of enriched hexamers and discuss their patterns of enrichment related to different modes of auxin response.
Collapse
Affiliation(s)
| | - Daria Novikova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
| | - Nadya Omelyanchuk
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Victor Levitsky
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Ivo Grosse
- Novosibirsk State University, Russian Federation
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Dolf Weijers
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
- Correspondence: or
| | - Victoria Mironova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Correspondence: or
| |
Collapse
|
361
|
Wu L, Tian Z, Zhang J. Functional Dissection of Auxin Response Factors in Regulating Tomato Leaf Shape Development. FRONTIERS IN PLANT SCIENCE 2018; 9:957. [PMID: 30022995 PMCID: PMC6040142 DOI: 10.3389/fpls.2018.00957] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/14/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin is involved in many aspects of plant growth and developmental processes. The tomato Aux/IAA transcription factor SlIAA9/ENTIRE/E plays an important role in leaf morphogenesis and fruit development, and the E gene encodes a protein from the Aux/IAA family of auxin response repressors. Both SlIAA9-RNAi transgenic and entire (e) mutant plants reduce the leaf complexity in tomato, but the underlying mechanism is not yet completely resolved. Auxin signaling is known to regulate target genes expression via Aux/IAA and ARFs (auxin response factors) transcriptional regulators. ARFs mediate a wide range of developmental processes. Through an Y2H (yeast two-hybrid) assay coupled with expression profiling of the SlARF genes family, we identified a group of ARFs: SlARF6A, SlARF8A, SlARF8B, and SlARF24. Pull-down and BiFC (Bimolecular Fluorescence Complementation) results demonstrated that these SlARFs interact with SlIAA9 in vitro and in vivo, and the e mutation altered the expression patterns of multiple SlARFs. The simple leaves of the e mutant were partially converted to wild-type compound leaves by VIGS (virus-induced gene silencing) of these four SlARFs. Furthermore, IAA content in these samples was significantly increased compared to the e mutant. In addition, SlARF6A and SlARF24 bound to the SlPIN1 promoter and act as transcriptional activators to regulate genes expression involved in leaflet initiation. It may also suggest that SlARFs regulate leaf morphology through direct binding to auxin-responsive genes in the absence of SlIAA9, providing an insight for the role of SlARFs in leaf shape development.
Collapse
|
362
|
Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M. Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. PLANT PHYSIOLOGY 2018; 176:378-391. [PMID: 29084900 PMCID: PMC5761770 DOI: 10.1104/pp.17.00713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 05/25/2023]
Abstract
Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Andrea R Claes
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Tobias Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Rebecca Hermkes
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Corrado Viotti
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Yoshihisa Ikeda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| |
Collapse
|
363
|
Choi HS, Seo M, Cho HT. Two TPL-Binding Motifs of ARF2 Are Involved in Repression of Auxin Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:372. [PMID: 29619039 PMCID: PMC5871684 DOI: 10.3389/fpls.2018.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/06/2018] [Indexed: 05/20/2023]
Abstract
Auxin signaling is finalized by activator auxin response factors (aARFs) that are released from Auxin/Indole-3-Acetic Acid (Aux/IAA) repressors and directly activate auxin-responsive genes. However, it remains to be answered how repressor ARFs (rARFs) exert their repression function. In this study, we assessed the molecular and biological functions of two putative co-repressor-binding motifs (EAR and RLFGI) of ARF2 (a rARF) in Arabidopsis thaliana. In the yeast two-hybrid assay, the EAR mutation moderately and the RLFGI mutation, or both motifs, almost completely disrupted the interaction between the co-repressor TOPLESS (TPL) and the repressive motifs-containing middle domain (MD) of ARF2. The ARF2-MD interacted not only with TPL but also with TPL homologs (TPRs). Root hair-specific overexpression of rARFs (ARF1-4, 9-11, and 16) considerably inhibited root hair growth, suggesting that rARFs generally function as repressors in the auxin-responsive root hair single cell. Individual mutation of the ARF2 EAR or RLFGI motif slightly and both mutations greatly compromised ARF2-mediated inhibition of root hair growth and auxin-responsive gene expression. In addition, flowering time and seed size, two representative arf2 mutant phenotypes, were examined to assess the function of the repressive motifs in mutant-complementation experiments. ARF2-mediated inhibition of flowering and seed growth was suppressed considerably by the individual mutation of EAR or RLFGI and almost completely by both mutations. These results suggest that EAR and RLFGI work together as major repressive motifs for ARF2 to recruit TPL/TPR co-repressors and to exhibit its repressive biological functions.
Collapse
|
364
|
van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, Pierik R. Far-Red Light Detection in the Shoot Regulates Lateral Root Development through the HY5 Transcription Factor. THE PLANT CELL 2018; 30:101-116. [PMID: 29321188 PMCID: PMC5810572 DOI: 10.1105/tpc.17.00771] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/06/2018] [Accepted: 01/06/2018] [Indexed: 05/20/2023]
Abstract
Plants in dense vegetation compete for resources and detect competitors through reflection of far-red (FR) light from surrounding plants. This reflection causes a reduced red (R):FR ratio, which is sensed through phytochromes. Low R:FR induces shade avoidance responses of the shoot and also changes the root system architecture, although this has received little attention so far. Here, we investigate the molecular mechanisms through which light detection in the shoot regulates root development in Arabidopsis thaliana We do so using a combination of microscopy, gene expression, and mutant study approaches in a setup that allows root imaging without exposing the roots to light treatment. We show that low R:FR perception in the shoot decreases the lateral root (LR) density by inhibiting LR emergence. This decrease in LR emergence upon shoot FR enrichment is regulated by phytochrome-dependent accumulation of the transcription factor ELONGATED HYPOCOTYL5 (HY5) in the LR primordia. HY5 regulates LR emergence by decreasing the plasma membrane abundance of PIN-FORMED3 and LIKE-AUX1 3 auxin transporters. Accordingly, FR enrichment reduces the auxin signal in the overlaying cortex cells, and this reduces LR outgrowth. This shoot-to-root communication can help plants coordinate resource partitioning under competition for light in high density fields.
Collapse
Affiliation(s)
- Kasper van Gelderen
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chiakai Kang
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Richard Paalman
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Diederik Keuskamp
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Scott Hayes
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
365
|
Zheng Y, Zhang K, Guo L, Liu X, Zhang Z. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. PLANT SIGNALING & BEHAVIOR 2018; 13:e1467690. [PMID: 29944444 PMCID: PMC6103290 DOI: 10.1080/15592324.2018.1467690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
AUXIN RESPONSE FACTOR3 (ARF3), one of the auxin response factors family of transcription factors, is well characterized by its functions in polarity identification and organ patterning. We recently demonstrated that ARF3 plays important roles in floral meristem (FM) maintenance and termination by regulating cytokinin biosynthesis and signaling. However, the relationship of its multiple roles in differently developmental stage is still unclear. Here, we present data that ARF3 plays distinct roles during early flower development that are different from its roles in organ polarity determination and pattering. Thus, our findings shed light on the functional diversity of one specific transcription factor in plant development.
Collapse
Affiliation(s)
- Y. Zheng
- National Marine Data and Information Service, Tianjin, China
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - K. Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - L. Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - X. Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- CONTACT Xigang Liu ; Zhengbin Zhang Center for Agricultural Resources Research, 286 Huaizhong Rd, Shijiazhuang 050021, China
| | - Z. Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
366
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
367
|
Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V, Yu X. ARF2-ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:179-189. [PMID: 29145642 DOI: 10.1093/pcp/pcx174] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/07/2017] [Indexed: 05/14/2023]
Abstract
The plant hormone auxin plays critical roles in plant growth and development. Auxin response factors (ARFs) are a class of transcription factors which regulate auxin-mediated gene expression. While the functions of ARFs in sporophytic development have been well characterized, their functions specific to gametophytic development have not been studied extensively. In this study, Arabidopsis ARF genes were selectively down-regulated in gametophytes by misexpression of targeted microRNAs (amiRARF234, amiRARFMP and MIR167a) to silence AtARF2-AtAEF4, AtARF5, AtARF6 and AtARF8. Embryo sacs in amiRARF234- and amiRARFMP-expressing plants exhibited identity defects in cells at the micropylar pole, such as formation of two cells with egg cell-like morphology, concomitant with loss of synergid marker expression and seed abortion. The pollen grains of the transgenic plants were morphologically aberrant and unviable, and the inclusions and nuclei were lost in the abnormal pollen grains. However, plants misexpressing MIR167a showed no obvious abnormal phenotypes in the embryo sacs and pollen grains. Overall, these results provide evidence that AtARF2-AtARF4 and AtARF5 play significant roles in regulating both female and male gametophyte development in Arabidopsis.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Base Sequence
- DNA-Binding Proteins/genetics
- Down-Regulation
- Gametogenesis, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Germ Cells, Plant/growth & development
- Germ Cells, Plant/metabolism
- Germ Cells, Plant/ultrastructure
- Microscopy, Electron, Transmission
- Nuclear Proteins/genetics
- Plants, Genetically Modified
- Repressor Proteins/genetics
- Seeds/genetics
- Seeds/growth & development
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Zhenning Liu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Liming Miao
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Ruxue Huo
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong 276000, China
| | - Xiaoya Song
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Cameron Johnson
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Lijun Kong
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
368
|
|
369
|
van Mourik H, van Dijk ADJ, Stortenbeker N, Angenent GC, Bemer M. Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC PLANT BIOLOGY 2017; 17:245. [PMID: 29258424 PMCID: PMC5735953 DOI: 10.1186/s12870-017-1210-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/08/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we focus on the regulatory regions of Arabidopsis SAUR genes, to predict the processes in which they play a role, and understand the dynamics of plant growth. RESULTS In this study, we characterized in detail the entire SAUR10-clade: SAUR8, SAUR9, SAUR10, SAUR12, SAUR16, SAUR50, SAUR51 and SAUR54. Overexpression analysis revealed that the different proteins fulfil similar functions, while the SAUR expression patterns were highly diverse, showing expression throughout plant development in a variety of tissues. In addition, the response to application of different hormones largely varied between the different genes. These tissue-specific and hormone-specific responses could be linked to transcription factor binding sites using in silico analyses. These analyses also supported the existence of two groups of SAURs in Arabidopsis: Class I genes can be induced by combinatorial action of ARF-BZR-PIF transcription factors, while Class II genes are not regulated by auxin. CONCLUSIONS SAUR10-clade genes generally induce cell-elongation, but exhibit diverse expression patterns and responses to hormones. Our experimental and in silico analyses suggest that transcription factors involved in plant development determine the tissue specific expression of the different SAUR genes, whereas the amplitude of this expression can often be controlled by hormone response transcription factors. This allows the plant to fine tune growth in a variety of tissues in response to internal and external signals.
Collapse
Affiliation(s)
- Hilda van Mourik
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Aalt D. J. van Dijk
- Bioinformatics group, Biometris, and Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Niek Stortenbeker
- Microbial Physiology Group, MPI for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany
| | - Gerco C. Angenent
- Laboratory of Molecular Biology and Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
370
|
Comparative Analysis of Cotton Small RNAs and Their Target Genes in Response to Salt Stress. Genes (Basel) 2017; 8:genes8120369. [PMID: 29206160 PMCID: PMC5748687 DOI: 10.3390/genes8120369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Small RNAs play an important role in regulating plant responses to abiotic stress. Depending on the method of salt application, whether sudden or gradual, plants may experience either salt shock or salt stress, respectively. In this study, small RNA expression in response to salt shock and long-term salt stress in parallel experiments was described. Cotton small RNA libraries were constructed and sequenced under normal conditions, as well as sudden and gradual salt application. A total of 225 cotton microRNAs (miRNAs) were identified and of these 24 were novel miRNAs. There were 88 and 75 miRNAs with differential expression under the salt shock and long-term salt stress, respectively. Thirty one transcripts were found to be targets of 20 miRNA families. Eight targets showed a negative correlation in expression with their corresponding miRNAs. We also identified two TAS3s with two near-identical 21-nt trans-acting small interfering RNA (tasiRNA)-Auxin Response Factors (ARFs) that coaligned with the phases D7(+) and D8(+) in three Gossypium species. The miR390/tasiRNA-ARFs/ARF4 pathway was identified and showed altered expression under salt stress. The identification of these small RNAs as well as elucidating their functional significance broadens our understanding of post-transcriptional gene regulation in response to salt stress.
Collapse
|
371
|
Jeon E, Young Kang N, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:2190-2201. [PMID: 29040694 DOI: 10.1093/pcp/pcx153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family members play key roles in diverse aspects of plant development. Previous studies have shown that LBD16, 18, 29 and 33 are critical for integrating the plant hormone auxin to control lateral root development in Arabidopsis thaliana. In the present study, we show that LBD14 is expressed exclusively in the root where it promotes lateral root (LR) emergence. Repression of LBD14 expression by ABA correlates with the inhibitory effects of ABA on LR emergence. Transient gene expression assays with Arabidopsis protoplasts demonstrated that LBD14 is a nuclear-localized transcriptional activator. The knock-down of LBD14 expression by RNA interference (RNAi) resulted in reduced LR formation by delaying both LR primordium development and LR emergence, whereas overexpression of LBD14 in Arabidopsis enhances LR formation. We show that ABA (but not other plant hormones such as auxin, brassinosteroids and cytokinin) specifically down-regulated β-glucuronidase (GUS) expression under the control of the LBD14 promoter in transgenic Arabidopsis during LR development from initiation to emergence and endogenous LBD14 transcript levels in the root. Moreover, RNAi of LBD14 enhanced the LR suppression in response to ABA, whereas LBD14 overexpression did not alter the ABA-mediated suppression of LR formation. Taken together, these results suggest that LBD14 promoting LR formation is one of the critical factors regulated by ABA to inhibit LR growth, contributing to the regulation of the Arabidopsis root system architecture in response to ABA.
Collapse
Affiliation(s)
- Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
372
|
Genome-wide identification and expression analysis of transcription factors in Solanum lycopersicum. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
373
|
Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics 2017; 18:870. [PMID: 29132316 PMCID: PMC5683460 DOI: 10.1186/s12864-017-4250-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Auxin is essential for plant growth and development. Although substantial progress has been made in understanding auxin pathways in model plants such as Arabidopsis and rice, little is known in moso bamboo which is famous for its fast growth resulting from the rapid cell elongation and division. Results Here we showed that exogenous auxin has strong effects on crown and primary roots. Genes involved in auxin action, including 13 YUCCA (YUC) genes involved in auxin synthesis, 14 PIN-FORMED/PIN-like (PIN/PILS) and 7 AUXIN1/LIKE-AUX1 (AUX1/LAX) members involved in auxin transport, 10 auxin receptors (AFB) involved in auxin perception, 43 auxin/indole-3-aceticacid (AUX/IAA) genes, and 41 auxin response factors (ARF) involved in auxin signaling were identified through genome-wide analysis. Phylogenetic analysis of these genes from Arabidopsis, Oryza sativa and bamboo revealed that auxin biosynthesis, transport, and signaling pathways are conserved in these species. A comprehensive study of auxin-responsive genes using RNA sequencing technology was performed, and the results also supported that moso bamboo shared a conserved regulatory mechanism for the expression of auxin pathway genes; meanwhile it harbors its own specific properties. Conclusions In summary, we generated an overview of the auxin pathway in bamboo, which provides information for uncovering the precise roles of auxin pathway in this important species in the future. Electronic supplementary material The online version of this article (10.1186/s12864-017-4250-0) contains supplementary material, which is available to authorized users.
Collapse
|
374
|
PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. Proc Natl Acad Sci U S A 2017; 114:11709-11714. [PMID: 29078398 PMCID: PMC5676933 DOI: 10.1073/pnas.1714410114] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Root architecture is an important trait that is shaped by the formation of primary roots, lateral roots, and adventitious roots. Here, we show that three PLETHORA (PLT) transcription factors are the key molecular triggers for the de novo organ patterning during Arabidopsis lateral root formation. PLT3, PLT5, and PLT7 redundantly regulate the correct initiation of formative cell divisions in incipient lateral root primordia and the proper establishment of gene expression programs that lead to the formation of a new growth axis. Plant development is characterized by repeated initiation of meristems, regions of dividing cells that give rise to new organs. During lateral root (LR) formation, new LR meristems are specified to support the outgrowth of LRs along a new axis. The determination of the sequential events required to form this new growth axis has been hampered by redundant activities of key transcription factors. Here, we characterize the effects of three PLETHORA (PLT) transcription factors, PLT3, PLT5, and PLT7, during LR outgrowth. In plt3plt5plt7 triple mutants, the morphology of lateral root primordia (LRP), the auxin response gradient, and the expression of meristem/tissue identity markers are impaired from the “symmetry-breaking” periclinal cell divisions during the transition between stage I and stage II, wherein cells first acquire different identities in the proximodistal and radial axes. Particularly, PLT1, PLT2, and PLT4 genes that are typically expressed later than PLT3, PLT5, and PLT7 during LR outgrowth are not induced in the mutant primordia, rendering “PLT-null” LRP. Reintroduction of any PLT clade member in the mutant primordia completely restores layer identities at stage II and rescues mutant defects in meristem and tissue establishment. Therefore, all PLT genes can activate the formative cell divisions that lead to de novo meristem establishment and tissue patterning associated with a new growth axis.
Collapse
|
375
|
Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T. The Roles of the Sole Activator-Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2017; 58:1642-1651. [PMID: 29016901 DOI: 10.1093/pcp/pcx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
Cell division patterning is important to determine body shape in plants. Nuclear auxin signaling mediated by AUXIN RESPONSE FACTOR (ARF) transcription factors affects plant growth and development through regulation of cell division, elongation and differentiation. The evolutionary origin of the ARF-mediated pathway dates back to at least the common ancestor of bryophytes and other land plants. The liverwort Marchantia polymorpha has three phylogenetically distinct ARFs: MpARF1, the sole 'activator' ARF; and MpARF2 and MpARF3, two 'repressor' ARFs. Genetic screens for auxin-resistant mutants revealed that loss of MpARF1 function conferred auxin insensitivity. Mparf1 mutants showed reduced auxin-inducible gene expression and various developmental defects, including thallus twisting and gemma malformation. We further investigated the role of MpARF1 in gemma development, which is traceable at the cellular level. In wild-type plants, a gemma initial first undergoes several transverse divisions to generate a single-celled stalk and a gemma proper, followed by rather synchronous longitudinal divisions in the latter. Mparf1 mutants often contained multicelled stalks and showed defects in the execution and timing of the longitudinal divisions. While wild-type gemmae finally generate two meristem notches, Mparf1 gemmae displayed various numbers of ectopic meristems. These results suggest that MpARF1 regulates formative cell divisions and axis formation through auxin responses. The mechanism for activator ARF regulation of pattern formation may be shared in land plants and therefore important for the general acquisition of three-dimensional body plans.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Kouno
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mayuko Takeda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
376
|
Xu D, Miao J, Yumoto E, Yokota T, Asahina M, Watahiki M. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. PLANT & CELL PHYSIOLOGY 2017; 58:1710-1723. [PMID: 29016906 PMCID: PMC5921505 DOI: 10.1093/pcp/pcx107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 05/21/2023]
Abstract
Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number.
Collapse
Affiliation(s)
- Dongyang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Jiahang Miao
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Emi Yumoto
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masaaki Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Corresponding author: E-mail, ; Fax, +81-11-706-4473
| |
Collapse
|
377
|
Guan C, Wu B, Yu T, Wang Q, Krogan NT, Liu X, Jiao Y. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. Curr Biol 2017; 27:2940-2950.e4. [PMID: 28943086 DOI: 10.1016/j.cub.2017.08.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
The flattening of leaves to form broad blades is an important adaptation that maximizes photosynthesis. However, the molecular mechanism underlying this process remains unclear. The WUSCHEL-RELATED HOMEOBOX (WOX) genes WOX1 and PRS are expressed in the leaf marginal domain to enable leaf flattening, but the nature of WOX expression establishment remains elusive. Here, we report that adaxial-expressed MONOPTEROS (MP) and abaxial-enriched auxin together act as positional cues for patterning the WOX domain. MP directly binds to the WOX1 and PRS promoters and activates their expression. Furthermore, redundant abaxial-enriched ARF repressors suppress WOX1 and PRS expression, also through direct binding. In particular, we show that ARF2 is redundantly required with ARF3 and ARF4 to maintain the abaxial identity. Taken together, these findings explain how adaxial-abaxial polarity patterns the mediolateral axis and subsequent lateral expansion of leaves.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Binbin Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingqing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naden T Krogan
- Department of Biology, American University, Washington, DC 20016, USA
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
378
|
Ding Y, Ma Y, Liu N, Xu J, Hu Q, Li Y, Wu Y, Xie S, Zhu L, Min L, Zhang X. microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017. [PMID: 28635129 DOI: 10.1111/tpj.13620] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress.
Collapse
Affiliation(s)
- Yuanhao Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaoyao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sai Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
379
|
Baranwal VK, Negi N, Khurana P. Auxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses. Genes (Basel) 2017; 8:genes8090202. [PMID: 28841197 PMCID: PMC5615343 DOI: 10.3390/genes8090202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been identified from mulberry (Morus notabilis) which show a wide range of expression patterns. Of these 17 ARFs, 15 have strong acidic isoelectric point (pI) values and a molecular mass ranging from 52 kDa to 101 kDa. The putative promoters of these ARFs harbour cis motifs related to light-dependent responses, various stress responses and hormone regulations suggestive of their multifactorial regulation. The gene ontology terms for ARFs indicate their role in flower development, stress, root morphology and other such development and stress mitigation related activities. Conserved motif analysis showed the presence of all typical domains in all but four members that lack the PB1 domain and thus represent truncated ARFs. Expression analysis of these ARFs suggests their preferential expression in tissues ranging from leaf, root, winter bud, bark and male flowers. These ARFs showed differential expression in the leaf tissue of M. notabilis, Morus laevigata and Morus serrata. Insights gained from this analysis have implications in mulberry improvement programs.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
380
|
Cao A, Zheng Y, Yu Y, Wang X, Shao D, Sun J, Cui B. Comparative Transcriptome Analysis of SE initial dedifferentiation in cotton of different SE capability. Sci Rep 2017; 7:8583. [PMID: 28819177 PMCID: PMC5561258 DOI: 10.1038/s41598-017-08763-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
Somatic embryogenesis (SE) is a critical transition from vegetative to embryogenic growth in higher plants; however, few studies have investigated the mechanism that regulates SE initial differentiation. Most cotton varieties have not undergone regeneration by SE, so only a few varieties can be used in genetic engineering. Here, two varieties of cotton with different SE capabilities (HD, higher differentiation and LD, lower differentiation) were analyzed by high throughout RNA-Seq at the pre-induction stage (0h) and two induction stages (3h and 3d) under callus-induction medium (CIM). About 1150 million clean reads were obtained from 98.21% raw data. Transcriptomic analysis revealed that "protein kinase activity" and "oxidoreductase activity" were highly represented GO terms during the same and different treatment stages among HD and LD. Moreover, several stress-related transcription factors might play important roles in SE initiation. The SE-related regulation genes (SERKs) showed different expression patterns between HD and LD. Furthermore, the complex auxin and ethylene signaling pathway contributes to initiation of differentiation in SE. Thus, our RNA-sequencing of comparative transcriptome analysis will lay a foundation for future studies to better define early somatic formation in cotton with different SE capabilities.
Collapse
Affiliation(s)
- Aiping Cao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Yinying Zheng
- Colleges of Life Science, Shihezi University, Shihezi, China
| | - Yu Yu
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xuwen Wang
- Cotton research Institute, XinJiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Dongnan Shao
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi, China
| | - Baiming Cui
- Colleges of Life Science, Shihezi University, Shihezi, China.
| |
Collapse
|
381
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
382
|
Hu Y, Depaepe T, Smet D, Hoyerova K, Klíma P, Cuypers A, Cutler S, Buyst D, Morreel K, Boerjan W, Martins J, Petrášek J, Vandenbussche F, Van Der Straeten D. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4185-4203. [PMID: 28922768 PMCID: PMC5853866 DOI: 10.1093/jxb/erx242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/22/2017] [Indexed: 05/30/2023]
Abstract
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Klara Hoyerova
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Petr Klíma
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Sean Cutler
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Dieter Buyst
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - José Martins
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| |
Collapse
|
383
|
Wójcikowska B, Gaj MD. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. PLANT CELL REPORTS 2017; 36:843-858. [PMID: 28255787 PMCID: PMC5486788 DOI: 10.1007/s00299-017-2114-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/01/2017] [Indexed: 05/18/2023]
Abstract
Extensive modulation of numerous ARF transcripts in the embryogenic culture of Arabidopsis indicates a substantial role of auxin signaling in the mechanism of somatic embryogenesis induction. Somatic embryogenesis (SE) is induced by auxin in plants and auxin signaling is considered to play a key role in the molecular mechanism that controls the embryogenic transition of plant somatic cells. Accordingly, the expression of AUXIN RESPONSE FACTOR (ARF) genes in embryogenic culture of Arabidopsis was analyzed. The study revealed that 14 of the 22 ARFs were transcribed during SE in Arabidopsis. RT-qPCR analysis indicated that the expression of six ARFs (ARF5, ARF6, ARF8, ARF10, ARF16, and ARF17) was significantly up-regulated, whereas five other genes (ARF1, ARF2, ARF3, ARF11, and ARF18) were substantially down-regulated in the SE-induced explants. The activity of ARFs during SE was also monitored with GFP reporter lines and the ARFs that were expressed in areas of the explants engaged in SE induction were detected. A functional test of ARFs transcribed during SE was performed and the embryogenic potential of the arf mutants and overexpressor lines was evaluated. ARFs with a significantly modulated expression during SE coupled with an impaired embryogenic response of the relevant mutant and/or overexpressor line, including ARF1, ARF2, ARF3, ARF5, ARF6, ARF8, and ARF11 were indicated as possibly being involved in SE induction. The study provides evidence that embryogenic induction strongly depends on ARFs, which are key regulators of the auxin signaling. Some clues on the possible functions of the candidate ARFs, especially ARF5, in the mechanism of embryogenic transition are discussed. The results provide guidelines for further research on the auxin-related functional genomics of SE and the developmental plasticity of somatic cells.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, ul. Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
384
|
Gupta M, Bhaskar PB, Sriram S, Wang PH. Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. PLANT CELL REPORTS 2017; 36:637-652. [PMID: 27796489 DOI: 10.1007/s00299-016-2064-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/11/2016] [Indexed: 05/23/2023]
Abstract
Oilseed crops, especially soybean (Glycine max) and canola/rapeseed (Brassica napus), produce seeds that are rich in both proteins and oils and that are major sources of energy and nutrition worldwide. Most of the nutritional content in the seed is accumulated in the embryo during the seed filling stages of seed development. Understanding the metabolic pathways that are active during seed filling and how they are regulated are essential prerequisites to crop improvement. In this review, we summarize various omics studies of soybean and canola/rapeseed during seed filling, with emphasis on oil and protein traits, to gain a systems-level understanding of seed development. Currently, most (80-85%) of the soybean and rapeseed reference genomes have been sequenced (950 and 850 megabases, respectively). Parallel to these efforts, extensive omics datasets from different seed filling stages have become available. Transcriptome and proteome studies have detected preponderance of starch metabolism and glycolysis enzymes to be the possible cause of higher oil in B. napus compared to other crops. Small RNAome studies performed during the seed filling stages have revealed miRNA-mediated regulation of transcription factors, with the suggestion that this interaction could be responsible for transitioning the seeds from embryogenesis to maturation. In addition, progress made in dissecting the regulation of de novo fatty acid synthesis and protein storage pathways is described. Advances in high-throughput omics and comprehensive tissue-specific analyses make this an exciting time to attempt knowledge-driven investigation of complex regulatory pathways.
Collapse
Affiliation(s)
- Manju Gupta
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA.
| | - Pudota B Bhaskar
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| | | | - Po-Hao Wang
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN, 46268, USA
| |
Collapse
|
385
|
Abstract
Root hair polar growth is endogenously controlled by auxin and sustained by oscillating levels of reactive oxygen species (ROS). These cells extend several hundred-fold their original size toward signals important for plant survival. Although their final cell size is of fundamental importance, the molecular mechanisms that control it remain largely unknown. Here we show that ROS production is controlled by the transcription factor RSL4, which in turn is transcriptionally regulated by auxin through several auxin response factors (ARFs). In this manner, auxin controls ROS-mediated polar growth by activating RSL4, which then up-regulates the expression of genes encoding NADPH oxidases (also known as RESPIRATORY BURST OXIDASE HOMOLOG proteins) and class III peroxidases, which catalyze ROS production. Chemical or genetic interference with ROS balance or peroxidase activity affects root hair final cell size. Overall, our findings establish a molecular link between auxin and ROS-mediated polar root hair growth.
Collapse
|
386
|
Carey NS, Krogan NT. The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems. PLANT SIGNALING & BEHAVIOR 2017; 12:e1307492. [PMID: 28340328 PMCID: PMC6322905 DOI: 10.1080/15592324.2017.1307492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 06/01/2023]
Abstract
Plants react to environmental cues by altering their growth and development, which can include organ tropic responses. These differential growth responses are triggered by the hormone auxin, and AUXIN RESPONSE FACTORs (ARFs) have been implicated in numerous organ tropisms in Arabidopsis thaliana. Surprisingly, despite being critical for light capture and overall plant morphology, inflorescence stem tropic responses remain relatively understudied, with presumed direct links to ARF function yet to be established. Here, we show that the expression patterns of ARF5/MONOPTEROS and ARF7/NONPHOTOTROPIC HYPOCOTYL4 are consistent with roles in inflorescence stem tropisms. Mutation of these factors does not alter inflorescence stem responses to gravity or unilateral auxin application, meaning their participation in these processes is presumably masked by functional redundancies. Future resolution of these redundancies will likely require higher order arf mutant combinations, guided by detailed expression analyses of ARFs in the inflorescence stem.
Collapse
Affiliation(s)
| | - Naden T. Krogan
- Department of Biology, American University, Washington DC, USA
| |
Collapse
|
387
|
García-Gómez ML, Azpeitia E, Álvarez-Buylla ER. A dynamic genetic-hormonal regulatory network model explains multiple cellular behaviors of the root apical meristem of Arabidopsis thaliana. PLoS Comput Biol 2017; 13:e1005488. [PMID: 28426669 PMCID: PMC5417714 DOI: 10.1371/journal.pcbi.1005488] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 05/04/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
The study of the concerted action of hormones and transcription factors is fundamental to understand cell differentiation and pattern formation during organ development. The root apical meristem of Arabidopsis thaliana is a useful model to address this. It has a stem cell niche near its tip conformed of a quiescent organizer and stem or initial cells around it, then a proliferation domain followed by a transition domain, where cells diminish division rate before transiting to the elongation zone; here, cells grow anisotropically prior to their final differentiation towards the plant base. A minimal model of the gene regulatory network that underlies cell-fate specification and patterning at the root stem cell niche was proposed before. In this study, we update and couple such network with both the auxin and cytokinin hormone signaling pathways to address how they collectively give rise to attractors that correspond to the genetic and hormonal activity profiles that are characteristic of different cell types along A. thaliana root apical meristem. We used a Boolean model of the genetic-hormonal regulatory network to integrate known and predicted regulatory interactions into alternative models. Our analyses show that, after adding some putative missing interactions, the model includes the necessary and sufficient components and regulatory interactions to recover attractors characteristic of the root cell types, including the auxin and cytokinin activity profiles that correlate with different cellular behaviors along the root apical meristem. Furthermore, the model predicts the existence of activity configurations that could correspond to the transition domain. The model also provides a possible explanation for apparently paradoxical cellular behaviors in the root meristem. For example, how auxin may induce and at the same time inhibit WOX5 expression. According to the model proposed here the hormonal regulation of WOX5 might depend on the cell type. Our results illustrate how non-linear multi-stable qualitative network models can aid at understanding how transcriptional regulators and hormonal signaling pathways are dynamically coupled and may underlie both the acquisition of cell fate and the emergence of hormonal activity profiles that arise during complex organ development.
Collapse
Affiliation(s)
- Mónica L. García-Gómez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Eugenio Azpeitia
- INRIA project-team Virtual Plants, joint with CIRAD and INRA, Montpellier, France
| | - Elena R. Álvarez-Buylla
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| |
Collapse
|
388
|
Abstract
In plants, the transcription factor families have been implicated in many important biological processes. These processes include morphogenesis, signal transduction and environmental stress responses. Proteins containing the lateral organ boundaries domain (LBD), which encodes a zinc finger-like domain are only found in plants. This finding indicates that this unique gene family regulates only plant-specific biological processes. LBD genes play crucial roles in the growth and development of plants such as Arabidopsis, Oryza sativa, Zea mays, poplar, apple and tomato. However, relatively little is known about the LBD genes in grape (Vitis vinifera). In this study, we identified 40 LBD genes in the grape genome. A complete overview of the chromosomal locations, phylogenetic relationships, structures and expression profiles of this gene family during development in grape is presented here. Phylogenetic analysis showed that the LBD genes could be divided into classes I and II, together with LBDs from Arabidopsis. We mapped the 40 LBD genes on the grape chromosomes (chr1-chr19) and found that 37 of the predicted grape LBD genes were distributed in different densities across 12 chromosomes. Grape LBDs were found to share a similar intron/exon structure and gene length within the same class. The expression profiles of grape LBD genes at different developmental stages were analysed using microarray data. Results showed that 21 grape LBD genes may be involved in grape developmental processes, including preveraison, veraison and ripening. Finally, we analysed the expression patterns of six LBD genes through quantitative real-time polymerase chain reation analysis. The six LBD genes showed differential expression patterns among the three representative grape tissues, and five of these genes were found to be involved in responses to mannitol, sodium chloride, heat stress and low temperature treatments. To our knowledge, this is the first study to analyse the LBD gene family in grape and provides valuable information for classification and functional investigation of this gene family.
Collapse
|
389
|
Wehner N, Herfert J, Dröge-Laser W, Weiste C. High-Throughput Protoplast Trans-Activation (PTA) Screening to Define Transcription Factors in Auxin-Mediated Gene Regulation. Methods Mol Biol 2017; 1569:187-202. [PMID: 28265999 DOI: 10.1007/978-1-4939-6831-2_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Genome sequencing and annotation studies clearly highlight the impact of transcriptional regulation in plants. However, functional characterization of the majority of transcriptional regulators remains elusive. Hence, high-throughput techniques are required to facilitate their molecular analysis. Here, we provide a detailed protocol to conduct a high-throughput protoplast trans-activation (PTA) screening, which enables simultaneous analysis of up to 95 individual transcription factor activities on a customizable promoter:LUCIFERASE reporter. This system is well suited to decipher complex transcriptional networks such as that triggered by the phytohormone auxin.
Collapse
Affiliation(s)
- Nora Wehner
- Pharmazeutische Biologie, Julius-von-Sachs-Institut, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Jörn Herfert
- Pharmazeutische Biologie, Julius-von-Sachs-Institut, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Wolfgang Dröge-Laser
- Pharmazeutische Biologie, Julius-von-Sachs-Institut, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany.
| | - Christoph Weiste
- Pharmazeutische Biologie, Julius-von-Sachs-Institut, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| |
Collapse
|
390
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
391
|
Yang H, Shi G, Du H, Wang H, Zhang Z, Hu D, Wang J, Huang F, Yu D. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12. THE PLANT GENOME 2017; 10. [PMID: 28464070 DOI: 10.3835/plantgenome2016.07.0058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
Plant-specific () genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L.) Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II). The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11%) of them were detected in segmental duplicated regions. Furthermore, the exon-intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L.) Heynh resulted in increases in lateral root (LR) number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA), abscisic acid (ABA), and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.
Collapse
|
392
|
Gommers CMM, Keuskamp DH, Buti S, van Veen H, Koevoets IT, Reinen E, Voesenek LACJ, Pierik R. Molecular Profiles of Contrasting Shade Response Strategies in Wild Plants: Differential Control of Immunity and Shoot Elongation. THE PLANT CELL 2017; 29:331-344. [PMID: 28138015 PMCID: PMC5354195 DOI: 10.1105/tpc.16.00790] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/10/2017] [Accepted: 01/25/2017] [Indexed: 05/06/2023]
Abstract
Plants growing at high densities elongate their shoots to reach for light, a response known as the shade avoidance syndrome (SAS). Phytochrome-mediated detection of far-red light reflection from neighboring plants activates growth-promoting molecular pathways leading to SAS However, it is unknown how plants that complete their life cycle in the forest understory and are shade tolerant prevent SAS when exposed to shade. Here, we show how two wild Geranium species from different native light environments regulate contrasting responses to light quality cues. A comparative RNA sequencing approach unveiled the molecular underpinnings of their contrasting growth responses to far-red light enrichment. It also identified differential phytochrome control of plant immunity genes and confirmed that far-red enrichment indeed contrastingly affects resistance against Botrytis cinerea between the two species. Furthermore, we identify a number of candidate regulators of differential shade avoidance. Three of these, the receptor-like kinases FERONIA and THESEUS1 and the non-DNA binding bHLH protein KIDARI, are functionally validated in Arabidopsis thaliana through gene knockout and/or overexpression studies. We propose that these components may be associated with either showing or not showing shade avoidance responses.
Collapse
Affiliation(s)
- Charlotte M M Gommers
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Diederik H Keuskamp
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Sara Buti
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Iko T Koevoets
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Emilie Reinen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
393
|
Pfannebecker KC, Lange M, Rupp O, Becker A. An Evolutionary Framework for Carpel Developmental Control Genes. Mol Biol Evol 2017; 34:330-348. [PMID: 28049761 DOI: 10.1093/molbev/msw229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carpels are the female reproductive organs of flowering plants (angiosperms), enclose the ovules, and develop into fruits. The presence of carpels unites angiosperms, and they are suggested to be the most important autapomorphy of the angiosperms, e.g., they prevent inbreeding and allow efficient seed dispersal. Many transcriptional regulators and coregulators essential for carpel development are encoded by diverse gene families and well characterized in Arabidopsis thaliana. Among these regulators are AGAMOUS (AG), ETTIN (ETT), LEUNIG (LUG), SEUSS (SEU), SHORT INTERNODE/STYLISH (SHI/STY), and SEPALLATA1, 2, 3, 4 (SEP1, 2, 3, 4). However, the timing of the origin and their subsequent molecular evolution of these carpel developmental regulators are largely unknown. Here, we have sampled homologs of these carpel developmental regulators from the sequenced genomes of a wide taxonomic sampling of the land plants, such as Physcomitrella patens, Selaginella moellendorfii, Picea abies, and several angiosperms. Careful phylogenetic analyses were carried out that provide a phylogenetic background for the different gene families and provide minimal estimates for the ages of these developmental regulators. Our analyses and published work show that LUG-, SEU-, and SHI/STY-like genes were already present in the Most Recent Common Ancestor (MRCA) of all land plants, AG- and SEP-like genes were present in the MRCA of seed plants and their origin may coincide with the ξ Whole Genome Duplication. Our work shows that the carpel development regulatory network was, in part, recruited from preexisting network components that were present in the MRCA of angiosperms and modified to regulate gynoecium development.
Collapse
Affiliation(s)
- Kai C Pfannebecker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Matthias Lange
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| | - Oliver Rupp
- Department of Biology and Chemistry, Institute of Bioinformatics and Systems Biology, Justus-Liebig-University, Gießen, Germany
| | - Annette Becker
- Department of Biology and Chemistry, Institute of Botany, Justus-Liebig-University, Gießen, Germany
| |
Collapse
|
394
|
Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D. Genome-Wide Association Study of Major Agronomic Traits Related to Domestication in Peanut. FRONTIERS IN PLANT SCIENCE 2017; 8:1611. [PMID: 29018458 PMCID: PMC5623184 DOI: 10.3389/fpls.2017.01611] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/04/2017] [Indexed: 05/04/2023]
Abstract
Peanut (Arachis hypogaea) consists of two subspecies, hypogaea and fastigiata, and has been cultivated worldwide for hundreds of years. Here, 158 peanut accessions were selected to dissect the molecular footprint of agronomic traits related to domestication using specific-locus amplified fragment sequencing (SLAF-seq method). Then, a total of 17,338 high-quality single nucleotide polymorphisms (SNPs) in the whole peanut genome were revealed. Eleven agronomic traits in 158 peanut accessions were subsequently analyzed using genome-wide association studies (GWAS). Candidate genes responsible for corresponding traits were then analyzed in genomic regions surrounding the peak SNPs, and 1,429 genes were found within 200 kb windows centerd on GWAS-identified peak SNPs related to domestication. Highly differentiated genomic regions were observed between hypogaea and fastigiata accessions using FST values and sequence diversity (π) ratios. Among the 1,429 genes, 662 were located on chromosome A3, suggesting the presence of major selective sweeps caused by artificial selection during long domestication. These findings provide a promising insight into the complicated genetic architecture of domestication-related traits in peanut, and reveal whole-genome SNP markers of beneficial candidate genes for marker-assisted selection (MAS) in future breeding programs.
Collapse
|
395
|
Trenner J, Poeschl Y, Grau J, Gogol-Döring A, Quint M, Delker C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:539-552. [PMID: 28007950 DOI: 10.1093/jxb/erw457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| |
Collapse
|
396
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
397
|
Ma W, Wu F, Sheng P, Wang X, Zhang Z, Zhou K, Zhang H, Hu J, Lin Q, Cheng Z, Wang J, Zhu S, Zhang X, Guo X, Wang H, Wu C, Zhai H, Wan J. The LBD12-1 Transcription Factor Suppresses Apical Meristem Size by Repressing Argonaute 10 Expression. PLANT PHYSIOLOGY 2017; 173:801-811. [PMID: 27895202 PMCID: PMC5210715 DOI: 10.1104/pp.16.01699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/27/2016] [Indexed: 05/20/2023]
Abstract
The shoot apical meristem (SAM) consists of a population of multipotent cells that generates all aerial structures and regenerates itself. SAM maintenance and lateral organ development are regulated by several complex signaling pathways, in which the Argonaute gene-mediated pathway plays a key role. One Argonaute gene, AGO10, functions as a microRNA locker that attenuates miR165/166 activity and positively regulates shoot apical meristem development, but little is known about when and how AGO10 is regulated at the transcriptional level. In this work, we showed that transgenic rice plants overexpressing LBD12-1, an LBD family transcription factor, exhibited stunted growth, twisted leaves, abnormal anthers, and reduced SAM size. Further research revealed that LBD12-1 directly binds to the promoter region and represses the expression of AGO10. Overexpression of AGO10 in an LBD12-1 overexpression background rescued the growth defect phenotype of LBD12-1-overexpressing plants. The expression of LBD12-1 and its binding ability to the AGO10 promoter is induced by stress. lbd12-1 loss-of-function mutants showed similar phenotypes and SAM size to the wild type under normal conditions, but lbd12-1 had a larger SAM under salt stress. Our findings provide novel insights into the regulatory mechanism of AGO10 by which SAM size is controlled under stress conditions.
Collapse
Affiliation(s)
- Weiwei Ma
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Fuqing Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Peike Sheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xiaole Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Zhe Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Kunneng Zhou
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Huan Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jinlong Hu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Qibin Lin
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Zhijun Cheng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jiulin Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Shanshan Zhu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xin Zhang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Chuanyin Wu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Huqu Zhai
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| | - Jianmin Wan
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (W.M., F.W., P.S., X.W., Z.Z., Q.L., Z.C., J. Wang, S.Z., X.Z., X.G., H.W., C.W., H.Z., J. Wan); and
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China (K.Z., H.Z., J.H., J. Wan)
| |
Collapse
|
398
|
Mishra BS, Jamsheer K M, Singh D, Sharma M, Laxmi A. Genome-Wide Identification and Expression, Protein-Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific BIG GRAIN and BIG GRAIN LIKE Gene Family. FRONTIERS IN PLANT SCIENCE 2017; 8:1812. [PMID: 29118774 PMCID: PMC5660992 DOI: 10.3389/fpls.2017.01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
BIG GRAIN1 (BG1) is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that BG genes are probably originated in seed plants. We also identified that seed plants evolved a class of BIG GRAIN LIKE (BGL) genes which share conserved middle and C-terminal motifs with BG. The BG genes were present in all monocot and eudicot species analyzed; however, the BGL genes were absent in few monocot lineages. Both BG and BGL were found to be serine-rich proteins; however, differences in expansion and rates of retention after whole genome duplication events were observed. Promoters of BG and BGL genes were found to be enriched with auxin-responsive elements and the Arabidopsis thaliana BG and BGL genes were found to be auxin-regulated. The auxin-induced expression of AthBG2 was found to be dependent on the conserved ARF17/19 module. Protein-protein interaction analysis identified that AthBG2 interact with regulators of splicing, transcription and chromatin remodeling. Taken together, this study provides interesting insights about BG and BGL genes and incentivizes future work in this gene family which has the potential to be used for crop manipulation.
Collapse
|
399
|
Zhao S, Zhang ML, Ma TL, Wang Y. Phosphorylation of ARF2 Relieves Its Repression of Transcription of the K+ Transporter Gene HAK5 in Response to Low Potassium Stress. THE PLANT CELL 2016; 28:3005-3019. [PMID: 27895227 PMCID: PMC5240742 DOI: 10.1105/tpc.16.00684] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/01/2016] [Accepted: 11/28/2016] [Indexed: 05/19/2023]
Abstract
Potassium (K+) plays crucial roles in plant growth and development. In natural environments, K+ availability in soils is relatively low and fluctuating. Transcriptional regulation of K+ transporter genes is one of the most important mechanisms in the plant's response to K+ deficiency. In this study, we demonstrated that the transcription factor ARF2 (Auxin Response Factor 2) modulates the expression of the K+ transporter gene HAK5 (High Affinity K+ transporter 5) in Arabidopsis thaliana The arf2 mutant plants showed a tolerant phenotype similar to the HAK5-overexpressing lines on low-K+ medium, whose primary root lengths were longer than those of wild-type plants. High-affinity K+ uptake was significantly increased in these plants. ARF2-overexpressing lines and the hak5 mutant were both sensitive to low-K+ stress. Disruption of HAK5 in the arf2 mutant abolished the low-K+-tolerant phenotype of arf2 As a transcriptional repressor, ARF2 directly bound to the HAK5 promoter and repressed HAK5 expression under K+ sufficient conditions. ARF2 can be phosphorylated after low-K+ treatment, which abolished its DNA binding activity to the HAK5 promoter and relieved the inhibition on HAK5 transcription. Therefore, HAK5 transcript could be induced, and HAK5-mediated high-affinity K+ uptake was enhanced under K+ deficient conditions. The presented results demonstrate that ARF2 plays important roles in the response to external K+ supply in Arabidopsis and regulates HAK5 transcription accordingly.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mei-Ling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tian-Li Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
400
|
Malhotra N, Sood H, Chauhan RS. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall. 3 Biotech 2016; 6:152. [PMID: 28330224 PMCID: PMC4940232 DOI: 10.1007/s13205-016-0466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/28/2016] [Indexed: 10/31/2022] Open
Abstract
Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.
Collapse
|