351
|
Friedman WE, Moore RC, Purugganan MD. The evolution of plant development. AMERICAN JOURNAL OF BOTANY 2004; 91:1726-1741. [PMID: 21652320 DOI: 10.3732/ajb.91.10.1726] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.
Collapse
Affiliation(s)
- William E Friedman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | | | |
Collapse
|
352
|
Ingram GC. Between the sheets: inter-cell-layer communication in plant development. Philos Trans R Soc Lond B Biol Sci 2004; 359:891-906. [PMID: 15306405 PMCID: PMC1693377 DOI: 10.1098/rstb.2003.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
353
|
Barrero LS, Tanksley SD. Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:669-679. [PMID: 15292992 DOI: 10.1007/s00122-004-1676-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/19/2004] [Indexed: 05/24/2023]
Abstract
Lycopersicon esculentum accessions bearing fasciated (multiloculed) fruit were characterized based on their flower organ and locule number phenotypes. Greenhouse and field evaluations indicate that increases in locule number are associated with increases in the number of other floral organs (e.g., sepals, petals, stamens) in all stocks. F1 complementation, F2 segregation analysis, and genetic mapping indicate that at least four loci account for increases in the number of carpels/locules in these stocks. The most significant of these map to the bottoms of chromosomes 2 and 11 and correspond to the locule number and fasciated loci. All stocks tested were fixed for mutations at the fasciated locus, which maps to the 0.5-cM interval between the markers T302 and cLET24J2A and occurs in at least three allelic forms (wild type and two mutants). One of the fasciated mutant alleles is associated with nonfused carpels and repressed recombination and may be due to a small inversion or deletion. The other two loci controlling locule number correspond to the lcn1.1 and lcn2.2 loci located on chromosomes 1 and 2, respectively.
Collapse
Affiliation(s)
- L S Barrero
- Department of Plant Breeding, Cornell University, 245 Emerson Hall, Ithaca, NY 14853-1902, USA
| | | |
Collapse
|
354
|
Tang W, Kelley D, Ezcurra I, Cotter R, McCormick S. LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:343-53. [PMID: 15255864 DOI: 10.1111/j.1365-313x.2004.02139.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As pollen tubes grow through the pistil they are thought to perceive and respond to diverse signals. The tomato pollen-specific receptor kinases LePRK1 and LePRK2 might participate in signaling during pollen tube growth. We previously showed that the extracellular domain of LePRK2 interacts with a pollen protein, LAT52, before but not after pollen germination. To determine whether LePRK2 might have different binding partner(s) after pollen germination, we characterized two more proteins that, like LAT52, were identified in yeast two-hybrid screens using the extracellular domains of LePRK1 and LePRK2 as baits. We show that LeSHY, a leucine-rich repeat protein from pollen, and LeSTIG1, a small cysteine-rich protein from pistil, can bind the extracellular domains of both LePRK1 and LePRK2 in vitro. In vitro binding assays with the extracellular domain of LePRK2 suggested that LeSTIG1 could displace binding of LAT52, consistent with the idea that LePRK1 and LePRK2 might interact with different ligands at different stages of pollen tube growth. Exogenous LeSTIG1 promotes pollen tube growth in vitro. The interaction of these pollen kinases with LeSTIG1 supports the notion that LePRK1 and LePRK2 are involved in mediating pollen-pistil interactions.
Collapse
Affiliation(s)
- Weihua Tang
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | |
Collapse
|
355
|
Byrne ME, Kidner CA, Martienssen RA. Plant stem cells: divergent pathways and common themes in shoots and roots. Curr Opin Genet Dev 2004; 13:551-7. [PMID: 14550423 DOI: 10.1016/j.gde.2003.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stem cells in plant shoot and root meristems are maintained throughout the life of the plant and produce somatic daughter cells that make up the body of the plant. Plant stem cells can also be derived from somatic cells in vivo and in vitro. Recent findings are refining our knowledge of signaling pathways that define stem cell fate and specify either shoot or root stem cell function. New evidence also highlights a role for epigenetic mechanisms in controlling stem cell fate.
Collapse
Affiliation(s)
- Mary E Byrne
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
356
|
Tör M, Brown D, Cooper A, Woods-Tör A, Sjölander K, Jones JDG, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. PLANT PHYSIOLOGY 2004; 135:1100-12. [PMID: 15155873 PMCID: PMC514143 DOI: 10.1104/pp.103.037770] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/06/2004] [Accepted: 02/11/2004] [Indexed: 05/18/2023]
Abstract
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR amplified from Ler-0 and transformed into mutant Col-rpp7.1 plants. Homozygous transgenic lines conferred resistance to Hiks1 and at least four Ler-0 avirulent/Columbia-0 (Col-0) virulent isolates of downy mildew pathogen. A full-length RPP27 cDNA was isolated, and analysis of the deduced amino acid sequences showed that the gene encodes a receptor-like protein (RLP) with a distinct domain structure, composed of a signal peptide followed by extracellular Leu-rich repeats, a membrane spanning region, and a short cytoplasmic carboxyl domain. RPP27 is the first RLP-encoding gene to be implicated in disease resistance in Arabidopsis, enabling the deployment of Arabidopsis techniques to investigate the mechanisms of RLP function. Homology searches of the Arabidopsis genome, using the RPP27, Cf-9, and Cf-2 protein sequences as a starting point, identify 59 RLPs, including the already known CLAVATA2 and TOO MANY MOUTHS genes. A combination of sequence and phylogenetic analysis of these predicted RLPs reveals conserved structural features of the family.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Complementation Test
- Immunity, Innate/genetics
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Peronospora/growth & development
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Mahmut Tör
- Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
357
|
Tör M, Brown D, Cooper A, Woods-Tör A, Sjölander K, Jones JDG, Holub EB. Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. PLANT PHYSIOLOGY 2004; 135:1100-1112. [PMID: 15155873 DOI: 10.2307/4281828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Arabidopsis Ler-RPP27 gene confers AtSgt1b-independent resistance to downy mildew (Peronospora parasitica) isolate Hiks1. The RPP27 locus was mapped to a four-bacterial artificial chromosome interval on chromosome 1 from genetic analysis of a cross between the enhanced susceptibility mutant Col-edm1 (Col-sgt1) and Landsberg erecta (Ler-0). A Cf-like candidate gene in this interval was PCR amplified from Ler-0 and transformed into mutant Col-rpp7.1 plants. Homozygous transgenic lines conferred resistance to Hiks1 and at least four Ler-0 avirulent/Columbia-0 (Col-0) virulent isolates of downy mildew pathogen. A full-length RPP27 cDNA was isolated, and analysis of the deduced amino acid sequences showed that the gene encodes a receptor-like protein (RLP) with a distinct domain structure, composed of a signal peptide followed by extracellular Leu-rich repeats, a membrane spanning region, and a short cytoplasmic carboxyl domain. RPP27 is the first RLP-encoding gene to be implicated in disease resistance in Arabidopsis, enabling the deployment of Arabidopsis techniques to investigate the mechanisms of RLP function. Homology searches of the Arabidopsis genome, using the RPP27, Cf-9, and Cf-2 protein sequences as a starting point, identify 59 RLPs, including the already known CLAVATA2 and TOO MANY MOUTHS genes. A combination of sequence and phylogenetic analysis of these predicted RLPs reveals conserved structural features of the family.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genetic Complementation Test
- Immunity, Innate/genetics
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Multigene Family
- Peronospora/growth & development
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Mahmut Tör
- Horticulture Research International, Wellesbourne, Warwick CV35 9EF, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
358
|
Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S. Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci U S A 2004; 101:7815-20. [PMID: 15128936 PMCID: PMC419689 DOI: 10.1073/pnas.0402385101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Indexed: 11/18/2022] Open
Abstract
Meristems require a myriad of intercellular signaling pathways for coordination of cell division within and between functional zones and clonal cell layers. This control of cell division ensures a constant availability of stem cells throughout the life span of the meristem while limiting overproliferation of meristematic cells and maintaining the meristem structure. We have undertaken a genetic screen to identify additional components of meristem signaling pathways. We identified pluripetala (plp) mutants based on their dramatically larger meristems and increased floral organ number. PLURIPETALA encodes the alpha-subunit shared between protein farnesyltransferase and protein geranylgeranyltransferase-I. plp mutants also have altered abscisic acid responses and overall much slower growth rate. plp is epistatic to mutations in the beta-subunit of farnesyltransferase and shows a synergistic interaction with clavata3 mutants. plp mutants lead to insights into the mechanism of meristem homeostasis and provide a unique in vivo system for studying the functional role of prenylation in eukaryotes.
Collapse
Affiliation(s)
- Mark P Running
- U.S. Department of Agriculture-Agricultural Research Service Plant Gene Expression Center, Albany, CA 94710, USA
| | | | | | | | | | | | | | | |
Collapse
|
359
|
Abstract
Despite the presence of more than 400 genes that encode receptor-like kinases (RLKs) in the Arabidopsis thaliana genome, very little is known about the range of biological processes that they control, or the mechanisms by which they function. This review focuses on the most recent findings from studies of several leucine-rich-repeat (LRR) class RLKs in A. thaliana, and their implications for our understanding of plant receptor function and signaling. We compare the biological functions of plant and animal LRR-containing receptors, and the potential commonalities in the signaling mechanisms employed.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
360
|
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 2004; 101:1775-80. [PMID: 14736918 PMCID: PMC341852 DOI: 10.1073/pnas.0307842100] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Indexed: 11/18/2022] Open
Abstract
The switch from vegetative to reproductive development in plants necessitates a switch in the developmental program of the descendents of the stem cells in the shoot apical meristem. Genetic and molecular investigations have demonstrated that the plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this developmental transition by inducing expression of a second transcription factor, APETALA1, and by regulating the expression of additional, as yet unknown, genes. Here we show that the additional LFY targets include the APETALA1-related factor, CAULIFLOWER, as well as three transcription factors and two putative signal transduction pathway components. These genes are up-regulated by LFY even when protein synthesis is inhibited and, hence, appear to be direct targets of LFY. Supporting this conclusion, cis-regulatory regions upstream of these genes are bound by LFY in vivo. The newly identified LFY targets likely initiate the transcriptional changes that are required for the switch from vegetative to reproductive development in Arabidopsis.
Collapse
Affiliation(s)
- Dilusha A William
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
361
|
Abstract
Recent plant genome analyses have revealed a large family of plant receptor kinases with very divergent extracellular domains. While a large proportion of this family remains uncharacterized, emerging functions for several plant receptor kinases reveal roles in a variety of biological processes including growth, development, hormone perception, and plantmicrobe interactions. Significant progress has also been made in the understanding of four plant receptor kinase systems including their respective ligands and signalling pathways. Interestingly, a wide range of signalling proteins have been identified as functioning with these receptor kinases. In this review, an overview of plant receptor kinases, their biological functions, and their signalling pathways is presented.Key words: plants, Arabidopsis, receptor kinase, signal transduction.
Collapse
|
362
|
Torii KU. Leucine-Rich Repeat Receptor Kinases in Plants: Structure, Function, and Signal Transduction Pathways. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:1-46. [PMID: 15066372 DOI: 10.1016/s0074-7696(04)34001-5] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Leucine-rich repeat receptor kinases (LRR-RKs) comprise the largest subfamily of transmembrane receptor-like kinases in plants, with over 200 members in Arabidopsis. LRR-RKs regulate a wide variety of developmental and defense-related processes including cell proliferation, stem cell maintenance, hormone perception, host-specific as well as non-host-specific defense response, wounding response, and symbiosis. Several studies indicate that LRR-RKs act as dimers, and some may form a receptor complex with leucine-rich repeat receptor-like proteins (LRR-RPs) that lack a cytoplasmic kinase domain. Despite the fact that structural features of LRR-RKs are fairy similar, five available ligand molecules for LRR-RKs are structurally diverse, from steroids (brassinolides) to peptides (phytosulfokine and systemin) and secreted proteins (CLV3). Precise ligand-binding sites of LRR-RKs are not understood. However, the extracellular "island" domain that intercepts the LRR domain in some LRR-RKs may play an important role in ligand binding. Advances in unveiling components of three LRR-RK signaling pathways, namely BRI1 in steroid signaling, CLV1 in meristem maintenance, and FLS2 in bacterial elicitor perception, revealed an intriguing link between plant LRR-RK and animal receptor signaling pathways. Finally, rapid progress made in LRR-RK research beyond the model system Arabidopsis has provided exciting, novel insights into the evolution of the LRR-RK signaling system in plants, such as BRI1 utilized in the wound-responsive signaling pathway in Solanaceae plants and recruitment of CLV1 in nodule development in leguminous plants.
Collapse
Affiliation(s)
- Keiko U Torii
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
363
|
Hiscock SJ, McInnis SM. Pollen recognition and rejection during the sporophytic self-incompatibility response: Brassica and beyond. TRENDS IN PLANT SCIENCE 2003; 8:606-613. [PMID: 14659710 DOI: 10.1016/j.tplants.2003.10.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many hermaphrodite flowering plants avoid self-fertilization through genetic systems of self-incompatibility (SI). SI allows a plant to recognize and to reject self or self-related pollen, thereby preserving its ovules for outcrossing. Genes situated at the S-locus encode the 'male' (pollen) and 'female' (pistil) recognition determinants of SI. In sporophytic SI (SSI) the male determinant is expressed in the diploid anther, therefore haploid pollen grains behave with a diploid S phenotype. In Brassica, the male and the female determinants of SSI have been identified as a peptide ligand and its cognate receptor, respectively, and recent studies have identified downstream signalling molecules involved in pollen rejection. It now needs to be established whether the Brassica mechanism is universal in species with SSI, or unique to the Brassicaceae.
Collapse
Affiliation(s)
- Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, UK BS8 1U.
| | | |
Collapse
|
364
|
Verica JA, Chae L, Tong H, Ingmire P, He ZH. Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1732-46. [PMID: 14576286 PMCID: PMC300728 DOI: 10.1104/pp.103.028530] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups. Here, we describe the characterization of group 2 members that are composed of a cluster of seven tandemly arrayed WAKL genes. The predicted WAKL proteins are highly similar in their cytoplasmic region but are more divergent in their predicted extracellular ligand-binding region. WAKL7 encodes a truncated WAKL isoform that is predicted to be secreted from the cytoplasm. Ratios of nonsynonymous to synonymous substitutions suggest that the extracellular region is subject to diversifying selection. Comparison of the WAKL and WAK gene clusters suggests that they arose independently. Protein gel-blot and immunolocalization analyses suggest that WAKL6 is associated with the cell wall. Histochemical analyses of WAKL promoters fused with the beta-glucuronidase reporter gene have shown that the expressions of WAKL members are developmentally regulated and tissue specific. Unlike WAK members whose expressions were found predominately in green tissues, WAKL genes are highly expressed in roots and flowers. The expression of WAKL5 and WAKL7 can be induced by wounding stress and by the salicylic acid analog 2,6-dichloroisonicotinic acid in an nonexpressor of pathogenesis-related gene 1-dependent manner, suggesting that they, like some WAK members, are wound inducible and can be defined as pathogenesis-related genes.
Collapse
Affiliation(s)
- Joseph A Verica
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA
| | | | | | | | | |
Collapse
|
365
|
Abstract
During postembryonic development, all organs of a plant are ultimately derived from a few pluripotent stem cells found in specialized structures called apical meristems. Here we discuss our current knowledge about the regulation of plant stem cells and their environments with main emphasis on the shoot apical meristem of Arabidopsis thaliana. Recent studies suggest that stem cells are localized in specialized niches where signals from surrounding cells maintain their undifferentiated state. In the shoot meristem, initiation of stem cells during embryogenesis, regulation of stem-cell homeostasis and termination of stem-cell maintenance during flower development appear to primarily involve regulation of the stem-cell niche.
Collapse
Affiliation(s)
- Isabel Bäurle
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
366
|
Diévart A, Clark SE. Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:507-16. [PMID: 12972053 DOI: 10.1016/s1369-5266(03)00089-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The leucine-rich-repeat class of receptor-like kinase (RLK)-encoding genes represents the largest class of putative receptor-encoding genes in the Arabidopsis genome. The biological functions of several of these genes have been determined through genetic analysis. With dozens of mutant alleles described for various RLKs in Arabidopsis and other plants, comparisons of the mutations found in different receptors, as well as of structural features that are conserved between receptors, can provide insights into the common and/or divergent regulation and functions of these receptors.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
367
|
Abstract
Extensive studies on plant signaling molecules over the past decade indicate that plant cell-to-cell communication, as is the case with animal systems, makes use of small peptide signals and specific receptors. To date, four peptide-ligand-receptor pairs have been identified and shown to be involved in a variety of processes. Systemin and phytosulfokine (PSK), the first and second signaling peptides identified in plants, were isolated by biochemical purification based on their biological activities. Furthermore, their receptors have been biochemically purified from plasma membranes on the basis of specific ligand-receptor interactions. By contrast, the two other peptide signals, CLAVATA3 (CLV3) and the pollen S determinant SCR/SP11, were genetically identified during searches for specific ligands for receptors that had already been cloned. Systemin functions in the plant wound response, whereas PSK appears to cooperate with auxin and cytokinin to regulate cellular dedifferentiation and redifferentiation. CLV3 is important for meristem organization, binding to a heterodimeric receptor comprising the CLV1 and CLV2 proteins. SCR/SP11 instead plays a role in self-incompatibility, where it activates a signalling cascade that leads to rejection of pollen with the same S haplotype. These ligands all seem to bind to receptors that possess intrinsic kinase activity, and al least two of them are generated by proteolytic processing of larger precursor proteins.
Collapse
Affiliation(s)
- Yoshikatsu Matsubayashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
368
|
Sharma VK, Carles C, Fletcher JC. Maintenance of stem cell populations in plants. Proc Natl Acad Sci U S A 2003; 100 Suppl 1:11823-9. [PMID: 12930889 PMCID: PMC304093 DOI: 10.1073/pnas.1834206100] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flowering plants have the unique ability to produce new organs continuously, for hundreds of years in some species, from stem cell populations maintained at their actively growing tips. The shoot tip is called the shoot apical meristem, and it acts as a self-renewing source of undifferentiated, pluripotent stem cells whose descendents become incorporated into organ and tissue primordia and acquire different fates. Stem cell maintenance is an active process, requiring constant communication between different regions of the shoot apical meristem to coordinate loss of stem cells from the meristem through differentiation with their replacement through cell division. Stem cell research in model plant systems is facilitated by the fact that mutants with altered meristem cell identity or accumulation are viable, allowing dissection of stem cell behavior by using genetic, molecular, and biochemical methods. Such studies have determined that in the model plant Arabidopsis thaliana stem cell maintenance information flows via a signal transduction pathway that is established during embryogenesis and maintained throughout the life cycle. Signaling through this pathway results in the generation of a spatial feedback loop, involving both positive and negative interactions, that maintains stem cell homeostasis. Stem cell activity during reproductive development is terminated by a temporal feedback loop involving both stem cell maintenance genes and a phase-specific flower patterning gene. Our current investigations provide additional insights into the molecular mechanisms that regulate stem cell activity in higher plants.
Collapse
Affiliation(s)
- Vijay K Sharma
- U.S. Department of Agriculture Plant Gene Expression Center, University of California at Berkeley, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | |
Collapse
|
369
|
Abstract
Biochemical and genetic studies have identified peptides that play crucial roles in plant defense, growth, and development. The number of known, functionally active, peptides is currently small, but genome sequencing has revealed many potential peptide-encoding genus. A major challenge of the post-genomic era is to determine the function of these molecules.
Collapse
Affiliation(s)
- Paul Chilley
- Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
370
|
Carles CC, Fletcher JC. Shoot apical meristem maintenance: the art of a dynamic balance. TRENDS IN PLANT SCIENCE 2003; 8:394-401. [PMID: 12927973 DOI: 10.1016/s1360-1385(03)00164-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aerial structure of higher plants derives from cells at the tip of the stem, in the shoot apical meristem (SAM). Throughout the life of a plant, the SAM produces stem tissues and lateral organs, and also regenerates itself. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent stem cells offsets the output of differentiating cells. This flow depends on extracellular signaling within the SAM, governed by a spatial regulatory feedback loop that maintains a reservoir of stem cells, and on factors that prevent meristem cells from differentiating prematurely. The terminating floral meristem incorporates the spatial regulation scheme into a temporal regulation pathway involving flower patterning factors.
Collapse
Affiliation(s)
- Cristel C Carles
- USDA/UC Berkeley, Plant Gene Expression Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | |
Collapse
|
371
|
Van Der Hoorn RAL, Rivas S, Wulff BBH, Jones JDG, Joosten MHAJ. Rapid migration in gel filtration of the Cf-4 and Cf-9 resistance proteins is an intrinsic property of Cf proteins and not because of their association with high-molecular-weight proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:305-15. [PMID: 12887582 DOI: 10.1046/j.1365-313x.2003.01803.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gel filtration is frequently used to study the behaviour and composition of protein complexes. In previous studies, gel filtration analysis of solubilised membranes containing the tomato Cf-4 and Cf-9 resistance proteins indicated that these Cf proteins are present in an approximately 400- and 420-kDa protein complex, respectively, which contains only one Cf molecule per complex, does not contain Rho-related proteins, and does not alter in size upon elicitation. Here, we show that inactive Cf-4 and Cf-9 mutant proteins have a similar large apparent size upon gel filtration analysis. The size remains unaltered after pre-treating the samples under harsh conditions, such as boiling with SDS and incubation in 6 m urea. A similar large apparent size was found for Cf-4 and Cf-9 isolated from SDS gel and for Cf-9 expressed by insect cells. Therefore, the large apparent size observed in our studies appears to be an intrinsic property of the Cf proteins, rather than being caused by association with high-molecular-weight protein(s). Taken together, these results suggest that caution should be taken when interpreting data obtained from gel filtration of LRR-containing proteins.
Collapse
Affiliation(s)
- Renier A L Van Der Hoorn
- Wageningen University, Laboratory of Phytopathology, Binnenhaven 5, 6709 PD, Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
372
|
Abstract
In this review we describe how concepts of shoot apical meristem function have developed over time. The role of the scientist is emphasized, as proposer, receiver and evaluator of ideas about the shoot apical meristem. Models have become increasingly popular over the last 250 years, and we consider their role. They provide valuable grounding for the development of hypotheses, but in addition they have a strong human element and their uptake relies on various degrees of persuasion. The most influential models are probably those that most data support, consolidating them as an insight into reality; but they also work by altering how we see meristems, re-directing us to influence the data we collect and the questions we consider meaningful. Contents Summary 37 I. Introduction 37 II. How things began 38 III. Cytology 39 IV. Morphology 41 V. Developmental genetics 44 VI. Conclusions 49 Acknowledgements 50 References 50.
Collapse
Affiliation(s)
- Fiona Tooke
- Department of Plant Sciences, Cambridge University, Cambridge, CB2 3EA, UK; School of Plant Sciences, The University of Reading, Whiteknights, Reading, RG6 6AS, UK
| | - Nick Battey
- Department of Plant Sciences, Cambridge University, Cambridge, CB2 3EA, UK; School of Plant Sciences, The University of Reading, Whiteknights, Reading, RG6 6AS, UK
| |
Collapse
|
373
|
Fujita H, Takemura M, Tani E, Nemoto K, Yokota A, Kohchi T. An Arabidopsis MADS-box protein, AGL24, is specifically bound to and phosphorylated by meristematic receptor-like kinase (MRLK). PLANT & CELL PHYSIOLOGY 2003; 44:735-742. [PMID: 12881501 DOI: 10.1093/pcp/pcg092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Intercellular signaling mediated by receptor-like kinases (RLKs) is important for diverse processes in plant development, although downstream intracellular signaling pathways remain poorly understood. Proteins interacting directly with RLK were screened for by yeast two-hybrid assay with the kinase domain as bait. A MADS-box protein, AGL24 was identified as a candidate substrate of MRLK (Meristematic Receptor-Like Kinase), which was named for its spatial expression in shoot and root apical meristems in Arabidopsis: The AGL24 protein specifically interacted with, and was phosphorylated by, the MRLK kinase domain in in vitro assays. The simultaneous expression of AGL24 and MRLK in shoot apices during floral transition suggested that the interaction occurs in plants. Using plants constitutively expressing a fusion protein of AGL24 and green fluorescent protein, the subcellular localization of AGL24 protein was observed exclusively in the nucleus in apical tissues where MRLK was expressed, while AGL24 was localized in both the cytoplasm and the nucleus in tissues where no MRLK expression was detectable. These results suggest that MRLK signaling promotes translocation of AGL24 from the cytoplasm to the nucleus. We propose that the RLK signaling pathway involves phosphorylation of a MADS-box transcription factor.
Collapse
Affiliation(s)
- Hidetomo Fujita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan
| | | | | | | | | | | |
Collapse
|
374
|
Lenhard M, Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 2003; 130:3163-73. [PMID: 12783788 DOI: 10.1242/dev.00525] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem cell maintenance in the Arabidopsis shoot meristem is regulated by communication between the apical stem cells and the underlying organizing centre. Expression of the homeobox gene WUSCHEL in the organizing centre induces stem cell identity in the overlying neighbours, which then express the CLAVATA3 gene whose activity in turn restricts the size of the WUSCHEL expression domain. We have analyzed how the stem cells and the organizing centre communicate, by studying the mode of action of CLAVATA3 protein. We provide direct evidence that CLAVATA3 protein functions as a mobile intercellular signal in the shoot apical meristem that spreads laterally from the stem cells and acts both on their lateral neighbours and on the stem cells themselves to repress WUSCHEL transcription. We also show that the spread and range of action of CLAVATA3 can be limited by binding to its receptor CLAVATA1, which offers an explanation for how CLAVATA3 is prevented from entering the organizing centre and repressing WUSCHEL transcription there. This regulated spread of a secreted signalling molecule enables the shoot meristem to permit the onset of cell differentiation in the periphery, but at the same time to maintain a stable niche for its stem cells in the center.
Collapse
Affiliation(s)
- Michael Lenhard
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
375
|
Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. PLANT PHYSIOLOGY 2003. [PMID: 12805585 DOI: 10.1104/pp.103.021964.tochaud] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.
Collapse
Affiliation(s)
- Shin Han Shiu
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
376
|
Shiu SH, Bleecker AB. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:530-43. [PMID: 12805585 PMCID: PMC166995 DOI: 10.1104/pp.103.021964] [Citation(s) in RCA: 588] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.
Collapse
Affiliation(s)
- Shin Han Shiu
- Department of Ecology and Evolution, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
377
|
Abstract
The Arabidopsis genome sequence has revealed that plants contain a much larger complement of receptor kinase genes than other organisms. Early analysis of these genes revealed involvement in a diverse array of developmental and defense functions that included gametophyte development, pollen-pistil interactions, shoot apical meristem equilibrium, hormone perception, and cell morphogenesis. Amino acid sequence motifs and binding studies indicate that the ectodomains are capable of binding, either directly or indirectly, various classes of molecules including proteins, carbohydrates, and steroids. Genetic and biochemical approaches have begun to identify other components of several signal transduction pathways. Some receptor-like kinases (RLKs) appear to function with coreceptors lacking kinase domains, and genome analysis suggests this might be true for many RLKs. The KAPP protein phosphatase functions as a negative regulator of at least two RLK systems, and in vitro studies suggest it could be a common component of more. Whether plant signaling systems display a modularity similar to animal systems remains to be determined. Future efforts will reveal unknown functions of other RLKs and elucidate the relationships among their signaling networks.
Collapse
Affiliation(s)
- Philip W Becraft
- Zoology and Genetics and Agronomy Departments, Iowa State University, Ames 50011, USA.
| |
Collapse
|
378
|
Wengier D, Valsecchi I, Cabanas ML, Tang WH, McCormick S, Muschietti J. The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proc Natl Acad Sci U S A 2003; 100:6860-5. [PMID: 12748390 PMCID: PMC164537 DOI: 10.1073/pnas.0631728100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Indexed: 11/18/2022] Open
Abstract
After pollen grains germinate on the stigma, pollen tubes traverse the extracellular matrix of the style on their way to the ovules. We previously characterized two pollen-specific, receptor-like kinases, LePRK1 and LePRK2, from tomato (Lycopersicon esculentum). Their structure and immunolocalization pattern and the specific dephosphorylation of LePRK2 suggested that these kinases might interact with signaling molecules in the style extracellular matrix. Here, we show that LePRK1 and LePRK2 can be coimmunoprecipitated from pollen or when expressed together in yeast. In yeast, their association requires LePRK2 kinase activity. In pollen, LePRK1 and LePRK2 are found in an approximately 400-kDa protein complex that persists on pollen germination, but this complex is disrupted when pollen is germinated in vitro in the presence of style extract. In yeast, the addition of style extract also disrupts the interaction between LePRK1 and LePRK2. Fractionation of the style extract reveals that the disruption activity is enriched in the 3- to 10-kDa fraction. A component(s) in this fraction also is responsible for the specific dephosphorylation of LePRK2. The style component(s) that dephosphorylates LePRK2 is likely to be a heat-stable peptide that is present in exudate from the style. The generally accepted model of receptor kinase signaling involves binding of a ligand to extracellular domains of receptor kinases and subsequent activation of the signaling pathway by receptor autophosphorylation. In contrast to this typical scenario, we propose that a putative style ligand transduces the signal in pollen tubes by triggering the specific dephosphorylation of LePRK2, followed by dissociation of the LePRK complex.
Collapse
Affiliation(s)
- Diego Wengier
- Instituto de Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Departamento de Fisiología y Biología Molecular y Celular-Universidad de Buenos Aires, Obligado 2490, Argentina
| | | | | | | | | | | |
Collapse
|
379
|
Diévart A, Dalal M, Tax FE, Lacey AD, Huttly A, Li J, Clark SE. CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. THE PLANT CELL 2003; 15:1198-211. [PMID: 12724544 PMCID: PMC153726 DOI: 10.1105/tpc.010504] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Accepted: 02/25/2003] [Indexed: 05/18/2023]
Abstract
The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain.
Collapse
Affiliation(s)
- Anne Diévart
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
380
|
Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T. Making inroads into plant receptor kinase signalling pathways. TRENDS IN PLANT SCIENCE 2003; 8:231-7. [PMID: 12758041 DOI: 10.1016/s1360-1385(03)00062-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cell-membrane-located receptor kinases play important roles in many plant signal-transduction pathways. Exciting progress has been made in recent years with the characterization of four ligand-receptor systems involved in physiological processes as diverse as self-pollen rejection, stem-cell maintenance and differentiation at the shoot meristem, the response to the brassinosteroid hormones and the innate response to bacterial pathogens. These new findings emphasize the remarkably high diversity of these signalling pathways, although some downstream components are shared. This observation supports the idea that the wide diversification of plant receptors is associated with a high degree of specialization, one receptor potentially regulating a single developmental process. However, the possibility that one receptor might have a dual recognition function cannot be ruled out.
Collapse
Affiliation(s)
- Gabrielle Tichtinsky
- Reproduction et Développement des Plantes, UMR 5667 CNRS-INRA-ENSL-UCBL, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
381
|
Abstract
A small group of pluripotent stem cells in the shoot meristem is the ultimate source for all aerial parts in higher plants: the shoot axis, side branches, leaves and flowers. The stem cells are maintained in an undifferentiated state by signals from an underlying cell group, the organizing center. Genetic and molecular analyses have shown that a feedback signaling loop between stem cells and the organizing center balances stem cell renewal versus differentiation, which allows the plant to maintain the organization of the shoot meristem despite a changing cellular context. Emerging common principles indicate that plant and animal stem cells are functionally equivalent.
Collapse
Affiliation(s)
- Rita Gross-Hardt
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
382
|
Shpak ED, Lakeman MB, Torii KU. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. THE PLANT CELL 2003; 15:1095-110. [PMID: 12724536 PMCID: PMC153719 DOI: 10.1105/tpc.010413] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 02/23/2003] [Indexed: 05/18/2023]
Abstract
Arabidopsis ERECTA, a Leu-rich repeat receptor-like Ser/Thr kinase (LRR-RLK), regulates organ shape and inflorescence architecture. Here, we show that a truncated ERECTA protein that lacks the cytoplasmic kinase domain (DeltaKinase) confers dominant-negative effects when expressed under the control of the native ERECTA promoter and terminator. Transgenic plants expressing DeltaKinase displayed phenotypes, including compact inflorescence and short, blunt siliques, that are characteristic of loss-of-function erecta mutant plants. The DeltaKinase fragment migrated as a stable approximately 400-kD protein complex in the complete absence of the endogenous ERECTA protein and significantly exaggerated the growth defects of the null erecta plants. A functional LRR domain of DeltaKinase was required for dominant-negative effects. Accumulation of DeltaKinase did not interfere with another LRR-RLK signaling pathway (CLAVATA1), which operates in the same cells as ERECTA but has a distinct biological function. Both the erecta mutation and DeltaKinase expression conferred a lesser number of large, disorganized, and expanded cortex cells, which are associated with an increased level of somatic endoploidy. These findings suggest that functionally redundant RLK signaling pathways, including ERECTA, are required to fine-tune the proliferation and growth of cells in the same tissue type during Arabidopsis organogenesis.
Collapse
Affiliation(s)
- Elena D Shpak
- Department of Biology, University of Washington, Seattle 98195-1800, USA
| | | | | |
Collapse
|
383
|
Abstract
Recent studies have provided significant new insights into the gene actions that specify and maintain stem cells in plant shoots and roots. New layers of genetic control and potential signalling pathways and effector mechanisms have emerged from these new studies and will be reviewed here. These new findings refine the current model in which stem cells in plant meristems are regulated by negative feedback loops and uncover a fundamental mechanism for stem cell maintenance that might be common to shoots and roots.
Collapse
Affiliation(s)
- Peter Doerner
- Institute for Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
384
|
Shepard KA, Purugganan MD. Molecular population genetics of the Arabidopsis CLAVATA2 region. The genomic scale of variation and selection in a selfing species. Genetics 2003; 163:1083-95. [PMID: 12663546 PMCID: PMC1462473 DOI: 10.1093/genetics/163.3.1083] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Arabidopsis thaliana CLAVATA2 (CLV2) gene encodes a leucine-rich repeat protein that regulates the development of the shoot meristem. The levels and patterns of nucleotide variation were assessed for CLV2 and 10 flanking genes that together span a 40-kb region of chromosome I. A total of 296 out of 7959 sequenced nucleotide sites were polymorphic. The mean levels of sequence diversity of the contiguous genes in this region are approximately twofold higher than those of other typical Arabidopsis nuclear loci. There is, however, wide variation in the levels and patterns of sequence variation among the 11 linked genes in this region, and adjacent genes appear to be subject to contrasting evolutionary forces. CLV2 has the highest levels of nucleotide variation in this region, a significant excess of intermediate frequency polymorphisms, and significant levels of intragenic linkage disequilibrium. Most alleles at CLV2 are found in one of three haplotype groups of moderate (>15%) frequency. These features suggest that CLV2 may harbor a balanced polymorphism.
Collapse
Affiliation(s)
- Kristen A Shepard
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
385
|
Para A, Sundås-Larsson A. The pleiotropic mutation dar1 affects plant architecture in Arabidopsis thaliana. Dev Biol 2003; 254:215-25. [PMID: 12591242 DOI: 10.1016/s0012-1606(02)00035-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life.
Collapse
Affiliation(s)
- Alessia Para
- Department of Physiological Botany, Villavägen 6, 752 36 Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
386
|
Yu LP, Miller AK, Clark SE. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol 2003; 13:179-88. [PMID: 12573213 DOI: 10.1016/s0960-9822(03)00042-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Receptor kinases are a large gene family in plants and have more than 600 members in Arabidopsis. Receptor kinases in plants regulate a broad range of developmental processes, including steroid hormone perception, organ elongation, self-incompatibility, and abscission. Intracellular signaling components for receptor kinases in plants are largely unknown. The CLAVATA 1 (CLV1) receptor kinase in Arabidopsis regulates stem cell identity and differentiation through its repression of WUSCHEL (WUS) expression. Mutations at the POLTERGEIST (POL) gene were previously described as phenotypic suppressors of mutations within the CLV1 gene. Genetic evidence placed POL as a downstream regulator of CLAVATA1 signaling. RESULTS We provide evidence that POL functions in both the CLV1-WUS pathway and a novel WUS-independent CLV1 pathway regulating stem cell identity. We demonstrate that POL encodes a protein phosphatase 2C (PP2C) with a predicted nuclear localization sequence, indicating that it has a role in signal transduction downstream of the CLV1 receptor. The N terminus of POL has a possible regulatory function, and the C terminus has PP2C-like phosphatase catalytic activity. Although the POL catalytic domain is conserved in other PP2Cs, the POL protein represents a unique subclass of plant PP2Cs. POL is broadly expressed throughout the plant. CONCLUSIONS POL represents a novel component of the CLV1 receptor kinase signaling pathway. The ubiquitous expression of POL and pol phenotypes outside the meristem suggest that POL may be a common regulator of many signaling pathways.
Collapse
Affiliation(s)
- Lita P Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
387
|
Larkin JC, Brown ML, Schiefelbein J. How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. ANNUAL REVIEW OF PLANT BIOLOGY 2003; 54:403-30. [PMID: 14502997 DOI: 10.1146/annurev.arplant.54.031902.134823] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Because the plant epidermis is readily accessible and consists of few cell types on most organs, the epidermis has become a well-studied model for cell differentiation and cell patterning in plants. Recent advances in our understanding of the development of three epidermal cell types, trichomes, root hairs, and stomata, allow a comparison of the underlying patterning mechanisms. In Arabidopsis, trichome development and root epidermal patterning use a common mechanism involving closely related cell fate transcription factors and a similar lateral inhibition signaling pathway. Yet the resulting patterns differ substantially, primarily due to the influence of a prepattern derived from subepidermal cortical cells in root epidermal patterning. Stomatal patterning uses a contrasting mechanism based primarily on control of the orientation of cell divisions that also involves an inhibitory signaling pathway. This review focuses on comparing and contrasting these patterning pathways to identify and illustrate general themes that may be broadly applicable to other systems. Where these pathways occur in the same tissue, interaction and competition between these pathways is also discussed.
Collapse
Affiliation(s)
- John C Larkin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
388
|
|
389
|
Schauer SE, Jacobsen SE, Meinke DW, Ray A. DICER-LIKE1: blind men and elephants in Arabidopsis development. TRENDS IN PLANT SCIENCE 2002; 7:487-91. [PMID: 12417148 DOI: 10.1016/s1360-1385(02)02355-5] [Citation(s) in RCA: 325] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic studies of embryo, ovule and flower development in Arabidopsis thaliana have led to the independent isolation of different mutant alleles of a single gene (SIN1/SUS1/CAF, now renamed DCL1) that encodes a complex RNA-processing enzyme. DCL1 shows similarity to the Dicer group of genes, which are required for RNA silencing in Drosophila and Caenorhabditis. These recent findings identify a novel but conserved mechanism of post-transcriptional gene regulation that is important for development in eukaryotes.
Collapse
|
390
|
Clay NK, Nelson T. VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. THE PLANT CELL 2002; 14:2707-22. [PMID: 12417696 PMCID: PMC152722 DOI: 10.1105/tpc.005884] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Accepted: 08/20/2002] [Indexed: 05/17/2023]
Abstract
The formation of the venation pattern in leaves is ideal for examining signaling pathways that recognize and respond to spatial and temporal information, because the pattern is two-dimensional and heritable and the resulting veins influence the three-dimensional spatial organization of the surrounding differentiating leaf cell types. We identified a provascular/procambial cell-specific gene that encodes a Leu-rich repeat receptor kinase, which we named VASCULAR HIGHWAY1 (VH1). A change in the expression domain and level of VH1 marks the transition from an uncommitted provascular state to a committed procambial state in early vascular development. The coding sequence, expression pattern, and transgenic phenotypes together suggest that VH1 transduces extracellular spatial and temporal signals into downstream cell differentiation responses in provascular/procambial cells.
Collapse
Affiliation(s)
- Nicole K Clay
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104, USA
| | | |
Collapse
|
391
|
Abstract
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.
Collapse
Affiliation(s)
- Kyoung Hee Nam
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
392
|
Lenhard M, Jürgens G, Laux T. TheWUSCHELandSHOOTMERISTEMLESSgenes fulfil complementary roles inArabidopsisshoot meristem regulation. Development 2002; 129:3195-206. [PMID: 12070094 DOI: 10.1242/dev.129.13.3195] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Continuous organ formation from the shoot apical meristem requires the integration of two functions: a set of undifferentiated, pluripotent stem cells is maintained at the very tip of the meristem, while their daughter cells in the periphery initiate organ primordia. The homeobox genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM) encode two major regulators of meristem formation and maintenance in Arabidopsis, yet their interaction in meristem regulation is presently unclear. Here, we have addressed this question using loss- and gain-of-function approaches. We show that stem cell specification by WUS does not require STM activity. Conversely, STM suppresses differentiation independently of WUS and is required and sufficient to promote cell division. Consistent with their independent and distinct phenotypic effects, ectopic WUS and STM activities induce the expression of different downstream target genes. Finally, the pathways regulated by WUS and STM appear to converge in the suppression of differentiation, since coexpression of both genes produced a synergistic effect, and increased WUS activity could partly compensate for loss of STM function. These results suggest that WUS and STM share labour in the shoot apical meristem: WUS specifies a subset of cells in the centre as stem cells, while STM is required to suppress differentiation throughout the meristem dome, thus allowing stem cell daughters to be amplified before they are incorporated into organs.
Collapse
Affiliation(s)
- Michael Lenhard
- Institut für Biologie III, Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
393
|
Rivas S, Thomas CM. Recent advances in the study of tomato Cf resistance genes. MOLECULAR PLANT PATHOLOGY 2002; 3:277-282. [PMID: 20569335 DOI: 10.1046/j.1364-3703.2002.00116.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Susana Rivas
- The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
394
|
Von Groll U, Berger D, Altmann T. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. THE PLANT CELL 2002; 14:1527-39. [PMID: 12119372 PMCID: PMC150704 DOI: 10.1105/tpc.001016] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Accepted: 03/21/2002] [Indexed: 05/18/2023]
Abstract
Wild-type stomata are distributed nonrandomly, and their density is controlled by endogenous and exogenous factors. In the Arabidopsis mutant stomatal density and distribution1-1 (sdd1-1), the establishment of the stomatal pattern is disrupted, resulting in stomata clustering and twofold to fourfold increases in stomatal density. The SDD1 gene that encodes a subtilisin-like Ser protease is expressed strongly in stomatal precursor cells (meristemoids and guard mother cells), and the SDD1 promoter is controlled negatively by a feedback mechanism. The encoded protein is exported to the apoplast and probably is associated with the plasma membrane. SDD1 overexpression in the wild type leads to a phenotype opposite to that caused by the sdd1-1 mutation, with a twofold to threefold decrease in stomatal density and the formation of arrested stomata. While SDD1 overexpression was effective in the flp mutant, the tmm mutation acted epistatically. Thus, we propose that SDD1 generates an extracellular signal by meristemoids/guard mother cells and demonstrate that the function of SDD1 is dependent on TMM activity.
Collapse
Affiliation(s)
- Uritza Von Groll
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | |
Collapse
|
395
|
Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. PLANT PHYSIOLOGY 2002; 129:486-99. [PMID: 12068095 PMCID: PMC161667 DOI: 10.1104/pp.010884] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 11/08/2001] [Accepted: 01/07/2002] [Indexed: 05/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of beta-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
396
|
Abstract
There are surprising similarities between how animals and plants perceive pathogens. In animals, innate immunity is based on the recognition of pathogen-associated molecular patterns. This is mediated by the Toll-like receptor (TLR) family, which rapidly induce the innate immunity response, a first line of defence against infectious disease. Plants have highly sensitive perception systems for general elicitors and they respond to these stimuli with a defence response. One of these general elicitors is flagellin, the main component of the bacterial flagellum. Genetic analysis in Arabidopsis has shown that FLS2, which encodes a receptor-like kinase, is essential for flagellin perception. FLS2 shares homology with the TLR family, and TLR5 is responsible for flagellin perception in mammals.
Collapse
Affiliation(s)
- Lourdes Gómez-Gómez
- Sección de Biotecnología, IDR, Campus Universitario s/n, E-02071 Albacete, Spain.
| | | |
Collapse
|
397
|
Abstract
Stomata regulate gas exchange and are distributed across the leaf epidermis with characteristic spacing. Arabidopsis stomata are produced by asymmetric cell divisions. Mutations in the gene TOO MANY MOUTHS (TMM) disrupt patterning by randomizing the plane of formative asymmetric divisions and by permitting ectopic divisions. TMM encodes a leucine-rich repeat-containing receptor-like protein expressed in proliferative postprotodermal cells. TMM appears to function in a position-dependent signaling pathway that controls the plane of patterning divisions as well as the balance between stem cell renewal and differentiation in stomatal and epidermal development.
Collapse
Affiliation(s)
- Jeanette A Nadeau
- Department of Plant Biology, Ohio State University, 1735 Neil Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
398
|
Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. THE PLANT CELL 2002; 14:969-77. [PMID: 12034890 PMCID: PMC150600 DOI: 10.1105/tpc.002196] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2002] [Accepted: 02/11/2002] [Indexed: 05/17/2023]
Abstract
Plant growth and development depends on the activity of a continuously replenished pool of stem cells within the shoot apical meristem to supply cells for organogenesis. In Arabidopsis, the stem cell-specific protein CLAVATA3 (CLV3) acts cell nonautonomously to restrict the size of the stem cell population, but the hypothesis that CLV3 acts as an extracellular signaling molecule has not been tested. We used genetic and immunological assays to show that CLV3 localizes to the apoplast and that export to the extracellular space is required for its function in activating the CLV1/CLV2 receptor complex. Apoplastic localization allows CLV3 to signal from the stem cell population to the organizing center in the underlying cells.
Collapse
Affiliation(s)
- Enrique Rojo
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
399
|
Sharma VK, Fletcher JC. Maintenance of shoot and floral meristem cell proliferation and fate. PLANT PHYSIOLOGY 2002; 129:31-9. [PMID: 12011335 PMCID: PMC1540224 DOI: 10.1104/pp.010987] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Vijay K Sharma
- United States Department of Agriculture-Plant Gene Expression Center, Plant and Microbial Biology Department, University of California at Berkeley, 800 Buchanan Street, Albany, California 94710, USA
| | | |
Collapse
|
400
|
Cock JM, Vanoosthuyse V, Gaude T. Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Curr Opin Cell Biol 2002; 14:230-6. [PMID: 11891123 DOI: 10.1016/s0955-0674(02)00305-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plant genomes encode large numbers of receptor kinases that are structurally related to the tyrosine and serine/threonine families of receptor kinase found in animals. Here, we describe recent advances in the characterisation of several of these plant receptor kinases at the molecular level, including the identification of receptor complexes, small polypeptide ligands and cytosolic proteins involved in signal transduction and receptor downregulation. Phylogenetic analysis indicates that plant receptor kinases have evolved independently of the receptor kinase families found in animals. This hypothesis is supported by functional studies that have revealed differences between receptor kinase signalling in plants and animals, particularly concerning their interactions with cytosolic proteins. Despite these dissimilarities, however, plant and animal receptor kinases share many common features, such as their single membrane-pass structure, their inclusion in membrane-associated complexes, the involvement of dimerisation and trans autophosphorylation in receptor activation, and the existence of inhibitors and phosphatases that downregulate receptor activity. These points of convergence may represent features that are essential for a functional receptor-kinase signalling system.
Collapse
Affiliation(s)
- J Mark Cock
- Reproduction et Développement des Plantes, UMR 5667 CNRS-INRA-ENSL-UCBL, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | |
Collapse
|