351
|
Tagawa M, Ochiai S, Nakamura Y, Sato A, Chinushi M. Secondly ECG recordings in the emergency room revealed Garenoxacin-induced abnormal QT interval prolongation in a patient with multiple syncopal attacks. Heart Vessels 2016; 31:1200-5. [DOI: 10.1007/s00380-015-0693-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/22/2015] [Indexed: 11/30/2022]
|
352
|
Ortiz-Bonnin B, Rinné S, Moss R, Streit AK, Scharf M, Richter K, Stöber A, Pfeufer A, Seemann G, Kääb S, Beckmann BM, Decher N. Electrophysiological characterization of a large set of novel variants in the SCN5A-gene: identification of novel LQTS3 and BrS mutations. Pflugers Arch 2016; 468:1375-87. [PMID: 27287068 DOI: 10.1007/s00424-016-1844-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/16/2016] [Accepted: 05/29/2016] [Indexed: 01/08/2023]
Abstract
SCN5A encodes for the α-subunit of the cardiac voltage-gated sodium channel Nav1.5. Gain-of-function mutations in SCN5A are related to congenital long QT syndrome (LQTS3) characterized by delayed cardiac repolarization, leading to a prolonged QT interval in the ECG. Loss-of-function mutations in SCN5A are related to Brugada syndrome (BrS), characterized by an ST-segment elevation in the right precordial leads (V1-V3). The aim of this study was the characterization of a large set of novel SCN5A variants found in patients with different cardiac phenotypes, mainly LQTS and BrS. SCN5A variants of 13 families were functionally characterized in Xenopus laevis oocytes using the two-electrode voltage-clamp technique. We found in most of the cases, but not all, that the electrophysiology of the variants correlated with the clinically diagnosed phenotype. A susceptibility to develop LQTS can be suggested in patients carrying the variants S216L, K480N, A572D, F816Y, and G983D. However, taking the phenotype into account, the presence of the variants in genomic data bases, the mutational segregation, combined with our in vitro and in silico experiments, the variants S216L, S262G, K480N, A572D, F816Y, G983D, and T1526P remain as variants of unknown significance. However, the SCN5A variants R568H and A993T can be classified as pathogenic LQTS3 causing mutations, while R222stop and R2012H are novel BrS causing mutations.
Collapse
Affiliation(s)
- Beatriz Ortiz-Bonnin
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne K Streit
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Michael Scharf
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Katrin Richter
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Anika Stöber
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany
| | - Arne Pfeufer
- Helmholtz Zentrum München GmbH, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institut für Humangenetik, Oberschleißheim, Germany
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Kääb
- Department of Medicine, University Hospital of the Ludwig Maximilians University-Campus Innenstadt and Großhadern, Munich, Germany
| | - Britt-Maria Beckmann
- Department of Medicine, University Hospital of the Ludwig Maximilians University-Campus Innenstadt and Großhadern, Munich, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstraße 1-2, 35037, Marburg, Germany.
| |
Collapse
|
353
|
Burgos M, Arenas A, Cabrera R. Semiconductor Whole Exome Sequencing for the Identification of Genetic Variants in Colombian Patients Clinically Diagnosed with Long QT Syndrome. Mol Diagn Ther 2016; 20:353-62. [PMID: 27251404 DOI: 10.1007/s40291-016-0207-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Inherited long QT syndrome (LQTS) is a cardiac channelopathy characterized by a prolongation of QT interval and the risk of syncope, cardiac arrest, and sudden cardiac death. Genetic diagnosis of LQTS is critical in medical practice as results can guide adequate management of patients and distinguish phenocopies such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, extensive screening of large genomic regions is required in order to reliably identify genetic causes. Semiconductor whole exome sequencing (WES) is a promising approach for the identification of variants in the coding regions of most human genes. METHODS DNA samples from 21 Colombian patients clinically diagnosed with LQTS were enriched for coding regions using multiplex polymerase chain reaction (PCR) and subjected to WES using a semiconductor sequencer. RESULTS Semiconductor WES showed mean coverage of 93.6 % for all coding regions relevant to LQTS at >10× depth with high intra- and inter-assay depth heterogeneity. Fifteen variants were detected in 12 patients in genes associated with LQTS. Three variants were identified in three patients in genes associated with CPVT. Co-segregation analysis was performed when possible. All variants were analyzed with two pathogenicity prediction algorithms. The overall prevalence of LQTS and CPVT variants in our cohort was 71.4 %. All LQTS variants previously identified through commercial genetic testing were identified. CONCLUSION Standardized WES assays can be easily implemented, often at a lower cost than sequencing panels. Our results show that WES can identify LQTS-causing mutations and permits differential diagnosis of related conditions in a real-world clinical setting. However, high heterogeneity in sequencing depth and low coverage in the most relevant genes is expected to be associated with reduced analytical sensitivity.
Collapse
Affiliation(s)
- Mariana Burgos
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia
| | - Alvaro Arenas
- Centro de Cardiopatías Congénitas, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Fundación Cardioinfantil - Instituto de Cardiología, Calle 163ª #13b -60 Torre A Piso 1, Bogotá, Colombia.
| |
Collapse
|
354
|
Minton TB, Rosing J, Spar DS, Strawn JR, Garcia-Delgar B, Coffey BJ. Psychopharmacologic Management of Anxiety in an Adolescent with Congenital Long QT Syndrome. J Child Adolesc Psychopharmacol 2016; 26:485-9. [PMID: 27285068 PMCID: PMC6448365 DOI: 10.1089/cap.2016.29109.bjc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Joanna Rosing
- Department of Anesthesiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David S. Spar
- Division of Pediatric Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jeffrey R. Strawn
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Blanca Garcia-Delgar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara J. Coffey
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
355
|
Tomson T, Surges R, Delamont R, Haywood S, Hesdorffer DC. Who to target in sudden unexpected death in epilepsy prevention and how? Risk factors, biomarkers, and intervention study designs. Epilepsia 2016; 57 Suppl 1:4-16. [PMID: 26749012 DOI: 10.1111/epi.13234] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 11/28/2022]
Abstract
The risk of dying suddenly and unexpectedly is increased 24- to 28-fold among young people with epilepsy compared to the general population, but the incidence of sudden unexpected death in epilepsy (SUDEP) varies markedly depending on the epilepsy population. This article first reviews risk factors and biomarkers for SUDEP with the overall aim of enabling identification of epilepsy populations with different risk levels as a background for a discussion of possible intervention strategies. The by far most important clinical risk factor is frequency of generalized tonic-clonic seizures (GTCS), but nocturnal seizures, early age at onset, and long duration of epilepsy have been identified as additional risk factors. Lack of antiepileptic drug (AED) treatment or, in the context of clinical trials, adjunctive placebo versus active treatment is associated with increased risks. Despite considerable research, reliable electrophysiologic (electrocardiography [ECG] or electroencephalography [EEG]) biomarkers of SUDEP risk remain to be established. This is an important limitation for prevention strategies and intervention studies. There is a lack of biomarkers for SUDEP, and until validated biomarkers are found, the endpoint of interventions to prevent SUDEP must be SUDEP itself. These interventions, be they pharmacologic, seizure-detection devices, or nocturnal supervision, require large numbers. Possible methods for assessing prevention measures include public health community interventions, self-management, and more traditional (and much more expensive) randomized clinical trials.
Collapse
Affiliation(s)
- Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Robert Delamont
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | | | - Dale C Hesdorffer
- GH Sergievsky Center and Department of Epidemiology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
356
|
Szepesváry E, Kaski JP. Genetic testing for inheritable cardiac channelopathies. Br J Hosp Med (Lond) 2016; 77:294-302. [DOI: 10.12968/hmed.2016.77.5.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac channelopathies are linked to an increased risk of ventricular arrhythmia and sudden death. This article reviews the clinical characteristics and genetic basis of common cardiac ion-channel diseases, highlights some genotype–phenotype correlations, and summarizes genetic testing for inheritable cardiac channelopathies.
Collapse
Affiliation(s)
- Eszter Szepesváry
- Clinical Fellow in the Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital, London
| | - Juan Pablo Kaski
- Consultant Paediatric Cardiologist in the Inherited Cardiovascular Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH
| |
Collapse
|
357
|
Guevara MR, Shrier A, Orlowski J, Glass L. George Ralph Mines (1886-1914): the dawn of cardiac nonlinear dynamics. J Physiol 2016; 594:2361-71. [PMID: 27126414 DOI: 10.1113/jp270891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Michael R Guevara
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Leon Glass
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
358
|
E.Z. G, O.I. G, R.A. S, N.I. B, L.A. B. Monogenec Arrhythmic Syndromes: From Molecular and Genetic Aspects to Bedside. Acta Naturae 2016; 8:62-74. [PMID: 27437140 PMCID: PMC4947989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Indexed: 11/09/2022] Open
Abstract
The abrupt cessation of effective cardiac function that is generally due to heart rhythm disorders can cause sudden and unexpected death at any age and is referred to as a syndrome called "sudden cardiac death" (SCD). Annually, about 400,000 cases of SCD occur in the United States alone. Less than 5% of the resuscitation techniques are effective. The prevalence of SCD in a population rises with age according to the prevalence of coronary artery disease, which is the most common cause of sudden cardiac arrest. However, there is a peak in SCD incidence for the age below 5 years, which is equal to 17 cases per 100,000 of the population. This peak is due to congenital monogenic arrhythmic canalopathies. Despite their relative rarity, these cases are obviously the most tragic. The immediate causes, or mechanisms, of SCD are comprehensive. Generally, it is arrhythmic death due to ventricular tachyarrythmias - sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). Bradyarrhythmias and pulseless electrical activity account for no more than 40% of all registered cardiac arrests, and they are more often the outcome of the abovementioned arrhythmias. Our current understanding of the mechanisms responsible for SCD has emerged from decades of basic science investigation into the normal electrophysiology of the heart, the molecular physiology of cardiac ion channels, the fundamental cellular and tissue events associated with cardiac arrhythmias, and the molecular genetics of monogenic disorders of the heart rhythm (for example, the long QT syndrome). This review presents an overview of the molecular and genetic basis of SCD in the long QT syndrome, Brugada syndrome, short QT syndrome, catecholaminergic polymorphic ventricular tachycardia and idiopathic ventricular fibrillation, and arrhythmogenic right ventricular dysplasia, and sudden cardiac death prevention strategies by modern techniques (including implantable cardioverter-defibrillator).
Collapse
Affiliation(s)
- Golukhova E.Z.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Gromova O.I.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Shomahov R.A.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Bulaeva N.I.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| | - Bockeria L.A.
- Bakoulev Centre for Cardiovascular Surgery, Rublevskoye sh. 135, 121552, Moscow, Russia
| |
Collapse
|
359
|
Zhou H, Lai W, Zhu W, Xie J, Liu X, Shen Y, Yuan P, Liu Y, Cao Q, He W, Hong K. Genotype-based clinical manifestation and treatment of Chinese long QT syndrome patients with KCNQ1 mutations - R380S and W305L. Cardiol Young 2016; 26:754-763. [PMID: 26344792 DOI: 10.1017/s1047951115001304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
UNLABELLED Aim Most long QT syndrome patients are associated with genetic mutations. We aimed to investigate the clinical and biochemical characteristics and look for genotype-based preventive implications in Chinese long QT syndrome patients. Methods and results We identified two missense mutations of the KCNQ1 gene in two independent Chinese families, including a previously reported mutation R380S in the C-terminus and a novel mutation W305L in the P-loop domain of the Kv7.1 channel, respectively. The proband with R380S was an 11-year-old girl who suffered a prolonged corrected QT interval of 660 ms, recurrent syncope, and sudden cardiac death, whose father was an asymptomatic carrier. The mutation W305L was detected in a 36-year-old woman with long QT syndrome and her immediate family members including the proband's younger sister with an unexplained syncope, her son, and her elder daughter without symptoms. Metoprolol appeared to be effective in preventing arrhythmias and syncope in long QT syndrome patients with mutation W305L. Both R380S and W305L mutations led to "loss-of-function" of the Kv7.1 channel accounting for the clinical phenotypes. CONCLUSIONS We first show two missense KCNQ1 mutations - R380S and W305L - in Chinese long QT syndrome patients, resulting in the loss of protein function. Mutation W305L in the P-loop domain of the Kv7.1 may derive a pronounced benefit from β-blocker therapy in symptomatic long QT syndrome patients, whereas mutation R380S located in the C-terminus may be associated with a high risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hui Zhou
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Wei Lai
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Wengen Zhu
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Jinyan Xie
- 2The Key Laboratory of Molecular Medicine,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Xin Liu
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Yang Shen
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Ping Yuan
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Ying Liu
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Qin Cao
- 2The Key Laboratory of Molecular Medicine,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Wenfeng He
- 2The Key Laboratory of Molecular Medicine,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| | - Kui Hong
- 1Cardiovascular Department,The Second Affiliated Hospital of Nanchang University,Nanchang,China
| |
Collapse
|
360
|
Vettor G, Zorzi A, Basso C, Thiene G, Corrado D. Syncope as a Warning Symptom of Sudden Cardiac Death in Athletes. Cardiol Clin 2016; 33:423-32. [PMID: 26115828 DOI: 10.1016/j.ccl.2015.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clinical evaluation of syncope in the athlete remains a challenge. Although benign mechanisms predominate, syncope may be arrhythmic and precede SCD. Exercise-induced syncope should be regarded as an important alarming symptom of an underlying cardiac disease predisposing to arrhythmic cardiac arrest. All athletes with syncope require a focused and detailed workup for underlying cardiac causes, either structural or electrical. Major aim is to identify athletes at risk and to protect them from SCD. Athletes with potentially life-threatening etiologies of syncope should be restricted from competitive sports.
Collapse
Affiliation(s)
- Giulia Vettor
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Via Giustiniani, 2, Padova 35121, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Via Giustiniani, 2, Padova 35121, Italy
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Via A. Gabelli 61, Padova 35121, Italy
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Via A. Gabelli 61, Padova 35121, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Via Giustiniani, 2, Padova 35121, Italy; Arrhythmogenic Inherited Cardiomyopathy Unit, Department of Cardiac, Thoracic and Vascular Sciences, University of Padova Medical School, Via Giustiniani, 2, Padova 35121, Italy.
| |
Collapse
|
361
|
Abstract
The QT interval is an important component of the electrocardiogram, which when prolonged can predict the risk of developing the potentially fatal cardiac arrhythmia, torsades de pointes. There is growing understanding of the genetics associated with cardiac arrhythmias and an increasing number of drugs that can prolong the QT interval. Consequently, assessment of the effect of drugs on the QT interval has become a significant aspect of drug development, regulatory assessment and clinical care. Here, we review the QT interval and the risks associated with drug-induced prolongation of the QT interval.
Collapse
|
362
|
Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell 2016; 18:541-53. [PMID: 26971820 DOI: 10.1016/j.stem.2016.01.022] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/21/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022]
Abstract
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.
Collapse
Affiliation(s)
- Mohammad A Mandegar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | - Nathaniel Huebsch
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ekaterina B Frolov
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Edward Shin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Annie Truong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Michael P Olvera
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Amanda H Chan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yuichiro Miyaoka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Kristin Holmes
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Luke M Judge
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Jacqueline E Villalta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Søren P Sheikh
- Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Po-Lin So
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
363
|
Guillen Sacoto MJ, Chapman KA, Heath D, Seprish MB, Zand DJ. An uncommon clinical presentation of relapsing dilated cardiomyopathy with identification of sequence variations in MYNPC3, KCNH2 and mitochondrial tRNA cysteine. Mol Genet Metab Rep 2016; 3:47-54. [PMID: 26937396 PMCID: PMC4750614 DOI: 10.1016/j.ymgmr.2015.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022] Open
Abstract
We describe a young girl with dilated cardiomyopathy, long QT syndrome, and possible energy deficiency. Two major sequence changes were identified by whole exome sequencing (WES) and mitochondrial DNA analysis that were interpreted as potentially causative. Changes were identified in the KCNH2 gene and mitochondrial tRNA for cysteine. A variation was also seen in MYPBC3. Since the launch of WES as a clinically available technology in 2010, there has been concern regarding the identification of variants unrelated to the patient's phenotype. However, in cases where targeted sequencing fails to explain the clinical presentation, the underlying etiology could be more complex than anticipated. In this situation, the extensive reach of this tool helped explain both her phenotype and family history.
Collapse
Affiliation(s)
- Maria J Guillen Sacoto
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717 Room 1B207, Bethesda, MD 20892-3717, USA
| | - Kimberly A Chapman
- Division of Genetics and Metabolism, Children's National Medical Center, 111 Michigan Avenue, N.W., Washington D.C. 20010, USA
| | - Deneen Heath
- Department of Cardiology, Children's National Medical Center, 111 Michigan Avenue, N.W., Washington D.C. 20010, USA
| | - Mary Beth Seprish
- Division of Genetics and Metabolism, Children's National Medical Center, 111 Michigan Avenue, N.W., Washington D.C. 20010, USA
| | - Dina J Zand
- Division of Genetics and Metabolism, Children's National Medical Center, 111 Michigan Avenue, N.W., Washington D.C. 20010, USA
| |
Collapse
|
364
|
Spoonamore KG, Ware SM. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias. Heart Rhythm 2016; 13:789-97. [DOI: 10.1016/j.hrthm.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Indexed: 12/16/2022]
|
365
|
Hammond-Haley M, Patel RS, Providência R, Lambiase PD. Exercise restrictions for patients with inherited cardiac conditions: Current guidelines, challenges and limitations. Int J Cardiol 2016; 209:234-41. [PMID: 26897076 DOI: 10.1016/j.ijcard.2016.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/07/2016] [Accepted: 02/01/2016] [Indexed: 01/02/2023]
Abstract
Inherited primary arrhythmia syndromes are a clinically heterogeneous group of relatively uncommon but important inherited cardiac conditions that are associated with an increased risk of sudden cardiac death (SCD) in the setting of a structurally normal heart. These include long-QT syndrome (LQTS), Short-QT syndrome (SQTS), Brugada syndrome (BrS) and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The cardiomyopathies represent the other major group of inherited cardiac conditions associated with SCD, of which hypertrophic cardiomyopathy (HCM) is the most common. Exercise is a known trigger of ventricular arrhythmias in many of these conditions, however marked genetic and clinical heterogeneity within individual diseases means that certain patients are at a much greater risk of lethal ventricular arrhythmias during exercise than others. For instance, LQTS type 1 (LQT1) and CPVT patients are at particular risk during exertion, whilst in patients with other genetic variants of LQTS, BrS and SQTS, alternative triggers are more significant precipitants. Many channelopathy (principally Brugada, CPVT) & cardiomyopathy (mainly HCM) patients receive primary or secondary prevention therapy with an implantable cardiac defibrillator (ICD). Exercising with an ICD in situ carries a range of additional risks including inappropriate shocks and lead complications. This review will focus on the risk of exercise-induced SCD in patients with inherited cardiac conditions, the current clinical guidelines in this area and the special consideration of patients with an ICD.
Collapse
Affiliation(s)
| | - Riyaz S Patel
- Institute of Cardiovascular Science, University College London, UK; Bart's Heart Centre, Bart's Health NHS Trust, London, UK
| | | | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, UK; Bart's Heart Centre, Bart's Health NHS Trust, London, UK.
| |
Collapse
|
366
|
Human iPS cell model of type 3 long QT syndrome recapitulates drug-based phenotype correction. Basic Res Cardiol 2016; 111:14. [PMID: 26803770 PMCID: PMC4724360 DOI: 10.1007/s00395-016-0530-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022]
Abstract
Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Nav1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.
Collapse
|
367
|
Funasako M, Aiba T, Ishibashi K, Nakajima I, Miyamoto K, Inoue Y, Okamura H, Noda T, Kamakura S, Anzai T, Noguchi T, Yasuda S, Miyamoto Y, Fukushima Kusano K, Ogawa H, Shimizu W. Pronounced Shortening of QT Interval With Mexiletine Infusion Test in Patients With Type 3 Congenital Long QT Syndrome. Circ J 2016; 80:340-5. [DOI: 10.1253/circj.cj-15-0984] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Moritoshi Funasako
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Ikutaro Nakajima
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Koji Miyamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Yuko Inoue
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hideo Okamura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shiro Kamakura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Yoshihiro Miyamoto
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center
| | - Kengo Fukushima Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Hisao Ogawa
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Advanced Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| |
Collapse
|
368
|
Eijsvogels TMH, Fernandez AB, Thompson PD. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise? Physiol Rev 2016; 96:99-125. [PMID: 26607287 PMCID: PMC4698394 DOI: 10.1152/physrev.00029.2014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including "myocardial" creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination.
Collapse
Affiliation(s)
- Thijs M H Eijsvogels
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonio B Fernandez
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul D Thompson
- Department of Cardiology, Hartford Hospital, Hartford, Connecticut; and Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
369
|
Ramakrishna H, O’Hare M, Mookadam F, Gutsche JT, Shah R, Augoustides JG. Sudden Cardiac Death and Disorders of the QT Interval: Anesthetic Implications and Focus on Perioperative Management. J Cardiothorac Vasc Anesth 2015; 29:1723-33. [DOI: 10.1053/j.jvca.2015.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/19/2022]
|
370
|
Abstract
Ion channels in the myocardial cellular membrane are responsible for allowing the cardiac action potential. Genetic abnormalities in these channels can predispose to life-threatening arrhythmias. We discuss the basic science of the cardiac action potential; outline the different clinical entities, including information regarding overlapping diagnoses, touching upon relevant genetics, new innovations in screening, diagnosis, risk stratification, and management. The special considerations of sudden unexplained death and sudden infant death syndrome are discussed. Scientists and clinicians continue to reconcile the rapidly growing body of knowledge regarding the molecular mechanisms and genetics while continuing to improve our understanding of the various clinical entities and their diagnosis and management in clinical setting. Two separate searches were run on the National Center for Biotechnology Information's website. The first using the term cardiac channelopathies was run on the PubMed database using filters for time (published in past 5 years) and age (birth-18 years), yielding 47 results. The second search using the medical subject headings (MeSH) database with the search terms “Long QT Syndrome” (MeSH) and “Short QT Syndrome” (MeSH) and “Brugada Syndrome” (MeSH) and “Catecholaminergic Polymorphic Ventricular Tachycardia” (MeSH), applying the same filters yielded 467 results. The abstracts of these articles were studied, and the articles were categorized and organized. Articles of relevance were read in full. As and where applicable, relevant references and citations from the primary articles where further explored and read in full.
Collapse
Affiliation(s)
- Shashank P Behere
- Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Steven N Weindling
- Department of Pediatric Cardiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
371
|
Ventricular Tachycardia or not? An Unexpected Reason of Wide QRS Complex Tachycardia in a Young Healthy Man: Sodium Bicarbonate. Cardiovasc Toxicol 2015; 16:406-8. [PMID: 26467842 DOI: 10.1007/s12012-015-9346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ventricular tachycardia (VT) is life-threatening subgroup of wide QRS complex tachycardia (WCT). VT is usually associated with structural heart diseases, but it can occur in the absence of any cardiovascular diseases. Adverse cardiac effect of sodium bicarbonate in healthy subjects is not well described. A 30-year-old healthy man with excessive intake of sodium bicarbonate-related VT is presented. He was using sodium bicarbonate during last 2 months to lose weight. He has no risk factors and any cardiovascular or systemic diseases. After intravenous administration of amiodarone, tachycardia ended and his rhythm converted to sinus rhythm with normal electrocardiogram. Patient is asymptomatic, and no VT was observed without any medications at 1 year of follow-up.
Collapse
|
372
|
The role of hereditary KCNQ1 mutations in water-related death. Int J Legal Med 2015; 130:361-3. [DOI: 10.1007/s00414-015-1259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 01/13/2023]
|
373
|
Hertz CL, Christiansen SL, Larsen MK, Dahl M, Ferrero-Miliani L, Weeke PE, Pedersen O, Hansen T, Grarup N, Ottesen GL, Frank-Hansen R, Banner J, Morling N. Genetic investigations of sudden unexpected deaths in infancy using next-generation sequencing of 100 genes associated with cardiac diseases. Eur J Hum Genet 2015; 24:817-22. [PMID: 26350513 DOI: 10.1038/ejhg.2015.198] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Sudden infant death syndrome (SIDS) is the most frequent manner of post-perinatal death among infants. One of the suggested causes of the syndrome is inherited cardiac diseases, mainly channelopathies, that can trigger arrhythmias and sudden death. The purpose of this study was to investigate cases of sudden unexpected death in infancy (SUDI) for potential causative variants in 100 cardiac-associated genes. We investigated 47 SUDI cases of which 38 had previously been screened for variants in RYR2, KCNQ1, KCNH2 and SCN5A. Using the Haloplex Target Enrichment System (Agilent) and next-generation sequencing (NGS), the coding regions of 100 genes associated with inherited channelopathies and cardiomyopathies were captured and sequenced on the Illumina MiSeq platform. Sixteen (34%) of the SUDI cases had variants with likely functional effects, based on conservation, computational prediction and allele frequency, in one or more of the genes screened. The possible effects of the variants were not verified with family or functional studies. Eight (17%) of the SUDI cases had variants in genes affecting ion channel functions. The remaining eight cases had variants in genes associated with cardiomyopathies. In total, one third of the SUDI victims in a forensic setting had variants with likely functional effect that presumably contributed to the cause of death. The results support the assumption that channelopathies are important causes of SUDI. Thus, analysis of genes associated with cardiac diseases in SUDI victims is important in the forensic setting and a valuable supplement to the clinical investigation in all cases of sudden death.
Collapse
Affiliation(s)
- Christin Loeth Hertz
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Lindgren Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Kudahl Larsen
- Department of Forensic Medicine, Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Morten Dahl
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Biochemistry, Køge, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Ferrero-Miliani
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Ejvin Weeke
- Department of Cardiology, Laboratory of Molecular Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gyda Lolk Ottesen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Frank-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
374
|
Ruwald MH, Xu Parks X, Moss AJ, Zareba W, Baman J, McNitt S, Kanters JK, Shimizu W, Wilde AA, Jons C, Lopes CM. Stop-codon and C-terminal nonsense mutations are associated with a lower risk of cardiac events in patients with long QT syndrome type 1. Heart Rhythm 2015; 13:122-31. [PMID: 26318259 DOI: 10.1016/j.hrthm.2015.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND In long QT syndrome type 1 (LQT1), the location and type of mutations have been shown to affect the clinical outcome. Although haploinsufficiency, including stop-codon and frameshift mutations, has been associated with a lower risk of cardiac events in patients with LQT1, nonsense mutations have been presumed functionally equivalent. OBJECTIVE The purpose of this study was to evaluate clinical differences between patients with nonsense mutations. METHODS The study sample comprised 1090 patients with genetically confirmed mutations. Patients were categorized into 5 groups, depending on mutation type and location: missense not located in the high-risk cytoplasmic loop (c-loop) (n = 698), which is used as reference; missense c-loop (n = 192); stop-codon (n = 67); frameshift (n = 39); and others (n = 94). The primary outcome was a composite end point of syncope, aborted cardiac arrest, and long QT syndrome-related death (cardiac events). Outcomes were evaluated using the multivariate Cox proportional hazards regression analysis. Standard patch clamp techniques were used. RESULTS Compared to patients with missense non-c-loop mutations, the risk of cardiac events was reduced significantly in patients with stop-codon mutations (hazard ratio [HR] 0.57; 95% confidence interval [CI] 0.34-0.96; P = .035), but not in patients with frameshift mutations (HR 1.01; 95% CI 0.58-1.77; P = .97). Our data suggest that currents of the most common stop-codon mutant channel (Q530X) were larger than those of haploinsufficient channels (wild type: 42 ± 6 pA/pF, n = 20; Q530X+wild type: 79 ± 14 pA/pF, n = 20; P < .05) and voltage dependence of activation was altered. CONCLUSION Stop-codon mutations are associated with a lower risk of cardiac events in patients with LQT1, while frameshift mutations are associated with the same risk as the majority of the missense mutations. Our data indicate functional differences between these previously considered equivalent mutation subtypes.
Collapse
Affiliation(s)
- Martin H Ruwald
- Heart Research Follow-up Program, Division of Cardiology, University of Rochester Medical Center, Rochester, New York; Department of Cardiology, Gentofte Hospital, Hellerup, Denmark
| | - Xiaorong Xu Parks
- Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York
| | - Arthur J Moss
- Heart Research Follow-up Program, Division of Cardiology, University of Rochester Medical Center, Rochester, New York
| | - Wojciech Zareba
- Heart Research Follow-up Program, Division of Cardiology, University of Rochester Medical Center, Rochester, New York
| | - Jayson Baman
- Heart Research Follow-up Program, Division of Cardiology, University of Rochester Medical Center, Rochester, New York
| | - Scott McNitt
- Heart Research Follow-up Program, Division of Cardiology, University of Rochester Medical Center, Rochester, New York
| | - Jorgen K Kanters
- Department of Cardiology, Gentofte Hospital, Hellerup, Denmark; Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - Arthur A Wilde
- AMC Heart Centre, Department of Clinical and Experimental Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Christian Jons
- Department of Cardiology, Gentofte Hospital, Hellerup, Denmark
| | - Coeli M Lopes
- Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York.
| |
Collapse
|
375
|
Abstract
The Brugada syndrome is characterized by unique 'coved-type' ST-segment elevation in the right precordial leads of electrocardiogram and ventricular fibrillation, and is responsible for 4 to 12% of sudden cardiac death in the general population. The frequency is higher in Southeast Asia including Japan compared with Western countries. Brugada syndrome is an inherited disease usually transmitted in an autosomal-dominant manner, and incomplete penetrance is frequently seen within affected families. To date, 20 genes have been associated with Brugada syndrome, but pathogenic mutations in the genes are identified in only about 30% of patients. The genetic background includes mutations in genes encoding sodium channel, calcium channels and potassium channels, as well as proteins affecting ion channels. Mutations in SCN5A, encoding the cardiac predominant sodium channel α-subunit, account for 20 to 30% of patients with Brugada syndrome and mutations in other genes only account for about 5% of patients. Furthermore, a recent genome-wide association study has identified new loci associated with the susceptibility of Brugada syndrome.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Cardiovascular Biology and Medicine, Division of Cardiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Division of Cardiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
376
|
Baskar S, Aziz PF. Genotype-phenotype correlation in long QT syndrome. Glob Cardiol Sci Pract 2015; 2015:26. [PMID: 26779509 PMCID: PMC4614326 DOI: 10.5339/gcsp.2015.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/30/2015] [Indexed: 01/04/2023] Open
Abstract
Congenital long QT syndrome, caused by a cardiac channelopathy, is a leading cause of sudden cardiac death in the young population. In total, 16 genes have been implicated in this condition, with three genes being the most commonly affected. Long QT syndrome is one of the earliest conditions for which a genotype specific treatment was designed. This genotype-phenotype correlation extends to involve the clinical presentation, electrocardiographic manifestation and treatment strategies. It is necessary for the clinician treating these patients to be cognizant of the important role played by the genotype in order to best provide counseling and treatment options to this unique population.
Collapse
Affiliation(s)
- Shankar Baskar
- Department of Pediatrics, Cleveland Clinic, Cleveland, OH
| | - Peter F Aziz
- Department of Pediatric Cardiology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
377
|
Verstraelen TE, Ter Bekke RMA, Volders PGA, Masclee AAM, Kruimel JW. The role of the SCN5A-encoded channelopathy in irritable bowel syndrome and other gastrointestinal disorders. Neurogastroenterol Motil 2015; 27:906-13. [PMID: 25898860 DOI: 10.1111/nmo.12569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gastrointestinal functional and motility disorders, like irritable bowel syndrome (IBS), have a high prevalence in the Western population and cause significant morbidity and loss of quality of life leading to considerable costs for health care. A decade ago, it has been demonstrated that interstitial cells of Cajal and intestinal smooth muscle cells, cells important for gastrointestinal motility, express the sodium channel alpha subunit Nav 1.5. In the heart, aberrant variants in this sodium channel, encoded by SCN5A, are linked to inherited arrhythmia syndromes, like the long-QT syndrome type 3 and Brugada syndrome. Mounting data show a possible contribution of SCN5A mutants to gastrointestinal functional and motility disorders. Two percent of IBS patients harbor SCN5A mutations with electrophysiological evidence of loss- and gain-of-function. In addition, gastrointestinal symptoms are more prevalent in cardiac SCN5A-mutation positive patients. PURPOSE This review firstly describes the Nav 1.5 channel and its physiological role in ventricular cardiomyocytes and gastrointestinal cells, then we focus on the involvement of mutant Nav 1.5 in gastrointestinal functional and motility disorders. Future research might uncover novel mutation-specific treatment strategies for SCN5A-encoded gastrointestinal channelopathies.
Collapse
Affiliation(s)
- T E Verstraelen
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - R M A Ter Bekke
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - P G A Volders
- Department of Cardiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - J W Kruimel
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
378
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
379
|
Shamsuzzaman AS, Somers VK, Knilans TK, Ackerman MJ, Wang Y, Amin RS. Obstructive Sleep Apnea in Patients with Congenital Long QT Syndrome: Implications for Increased Risk of Sudden Cardiac Death. Sleep 2015; 38:1113-9. [PMID: 26118557 PMCID: PMC4481019 DOI: 10.5665/sleep.4824] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/09/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Congenital long QT syndrome (LQTS) is a familial arrhythmogenic cardiac channelopathy characterized by prolonged ventricular repolarization and increased risk of torsades de pointes-mediated syncope, seizures, and sudden cardiac death (SCD). QT prolongation corrected for heart rate (QTc) is an important diagnostic and prognostic feature in LQTS. Obstructive sleep apnea (OSA) has been increasingly implicated in the pathogenesis of cardiovascular disease, including arrhythmias and SCD. We tested the hypothesis that the presence of concomitant OSA in patients with LQTS is associated with increased QT intervals, both during sleep and while awake. METHODS AND RESULTS Polysomnography with simultaneous overnight 12-lead electrocardiography (ECG) was recorded in 54 patients with congenital LQTS and 67 control subjects. OSA was diagnosed as apnea-hypopnea index (AHI) ≥ 5 events/h for adults and AHI > 1 event/h for children. RR and QT intervals were measured from the 12-lead surface ECG. QTc was determined by the Bazett formula. Respiratory disturbance index, AHI, and arousal index were significantly increased in patients with LQTS and with OSA compared to those without OSA and control subjects. QTc during different sleep stages and while awake was also significantly increased in patients with LQTS and OSA compared to those without OSA. Severity of OSA in patients with LQTS was directly associated with the degree of QTc. CONCLUSIONS The presence and severity of obstructive sleep apnea (OSA) in patients with congenital long QT syndrome (LQTS) is associated with increased QT prolongation corrected for heart rate, which is an important biomarker of sudden cardiac death (SCD). Treatment of OSA in LQTS patients may reduce QT prolongation, thus reducing the risk of LQT-triggered SCD.
Collapse
Affiliation(s)
- Abu S. Shamsuzzaman
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Virend K. Somers
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - Michael J. Ackerman
- Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
- Departments of Pediatrics and Molecular Pharmacology and Experimental Therapeutics; Division of Pediatric Cardiology; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Yu Wang
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Raouf S. Amin
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
380
|
Munroe PB, Tinker A. Genome-wide association studies and contribution to cardiovascular physiology. Physiol Genomics 2015; 47:365-75. [PMID: 26106147 DOI: 10.1152/physiolgenomics.00004.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
The study of family pedigrees with rare monogenic cardiovascular disorders has revealed new molecular players in physiological processes. Genome-wide association studies of complex traits with a heritable component may afford a similar and potentially intellectually richer opportunity. In this review we focus on the interpretation of genetic associations and the issue of causality in relation to known and potentially new physiology. We mainly discuss cardiometabolic traits as it reflects our personal interests, but the issues pertain broadly in many other disciplines. We also describe some of the resources that are now available that may expedite follow up of genetic association signals into observations on causal mechanisms and pathophysiology.
Collapse
Affiliation(s)
- Patricia B Munroe
- Clinical Pharmacology and The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Andrew Tinker
- Clinical Pharmacology and The Heart Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
381
|
Stimers JR, Song L, Rusch NJ, Rhee SW. Overexpression of the Large-Conductance, Ca2+-Activated K+ (BK) Channel Shortens Action Potential Duration in HL-1 Cardiomyocytes. PLoS One 2015; 10:e0130588. [PMID: 26091273 PMCID: PMC4474436 DOI: 10.1371/journal.pone.0130588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.
Collapse
Affiliation(s)
- Joseph R. Stimers
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Li Song
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nancy J. Rusch
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sung W. Rhee
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
382
|
High incidence of functional ion-channel abnormalities in a consecutive Long QT cohort with novel missense genetic variants of unknown significance. Sci Rep 2015; 5:10009. [PMID: 26066609 PMCID: PMC4464365 DOI: 10.1038/srep10009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
The Long QT syndrome (LQTS) is a disorder characterized by a prolongation of the QT interval and a propensity to ventricular tachyarrhythmias, which may lead to syncope, cardiac arrest, or sudden death. Our objective was to (1) determine the incidence of variants with unknown significance (VUS) in a cohort of consecutive LQTS patients and (2) to determine the percentage of those with novel missense VUS that have demonstrable functional channel abnormalities from a single referral center. We performed genetic screening of candidate genes in 39 probands with a diagnosis of LQTS to identify mutations and variants. Seven variants of unknown significance were identified, six were missense variants and one was a splice site variant. We investigated the six novel missense VUS in five patients; three missense variants in KCNQ1 (L236R, W379R, Y522S) and three missense variants in KCNH2 (R35W, S620G, V491I). We employed two-electrode voltage-clamp experiments in Xenopus laevis oocytes and confocal imaging to characterize the novel missense mutations functionally. We revealed electrophysiological and trafficking loss-of-function phenotypes. This report emphasizes the frequency of adverse channel function in patients with LQTS and the importance of heterologous studies to define channel function.
Collapse
|
383
|
Li G, Ma S, Sun C. RNA interference-based therapeutics for inherited long QT syndrome. Exp Ther Med 2015; 10:395-400. [PMID: 26622327 DOI: 10.3892/etm.2015.2573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/01/2015] [Indexed: 12/28/2022] Open
Abstract
Inherited long QT syndrome (LQTS) is an electrical heart disorder that manifests with syncope, seizures, and increased risk of torsades de pointes and sudden cardiac death. Dominant-negative current suppression is a mechanism by which pathogenic proteins disrupt the function of ion channels in inherited LQTS. However, current approaches for the management of inherited LQTS are inadequate. RNA interference (RNAi) is a powerful technique that is able to suppress or silence the expression of mutant genes. RNAi may be harnessed to knock out mRNAs that code for toxic proteins, and has been increasingly recognized as a potential therapeutic intervention for a range of conditions. The present study reviews the literature for RNAi-based therapeutics in the treatment of inherited LQTS. Furthermore, this review discusses the combined use of RNAi with the emerging technology of induced pluripotent stem cells for the treatment of inherited LQTS. In addition, key challenges that must be overcome prior to RNAi-based therapies becoming clinically applicable are addressed. In summary, RNAi-based therapy is potentially a powerful therapeutic intervention, although a number of difficulties remain unresolved.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Shuting Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Chaofeng Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
384
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front Cardiovasc Med 2015; 2:26. [PMID: 26798623 PMCID: PMC4712633 DOI: 10.3389/fcvm.2015.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023] Open
Abstract
The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| |
Collapse
|
385
|
Duncker D, König T, Hohmann S, Veltmann C. [Primary and secondary prophylactic ICD therapy in congenital electrical and structural cardiomyopathies]. Herzschrittmacherther Elektrophysiol 2015; 26:82-93. [PMID: 26001359 DOI: 10.1007/s00399-015-0372-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/30/2015] [Indexed: 01/23/2023]
Abstract
Congenital electrical and structural cardiomyopathies are rare and associated with an increased risk for syncope and sudden cardiac death in the young. Due to the young age of the patients and the limited data available, risk stratification and especially ICD therapy are challenging. In this young patient collective, ICD therapy is associated with a high complication rate, which does not justify unreserved primary prophylactic ICD implantation. The aim of this review is to elucidate risk stratification and ICD therapy of various electrical and structural cardiomyopathies.
Collapse
Affiliation(s)
- D Duncker
- Rhythmologie und Elektrophysiologie, Klinik für Kardiologie und Angiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | | | | | | |
Collapse
|
386
|
Porta A, Girardengo G, Bari V, George AL, Brink PA, Goosen A, Crotti L, Schwartz PJ. Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. J Am Coll Cardiol 2015; 65:367-374. [PMID: 25634836 DOI: 10.1016/j.jacc.2014.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/08/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND A puzzling feature of the long QT syndrome (LQTS) is that family members carrying the same mutation often have divergent symptoms and clinical outcomes. OBJECTIVES This study tested the hypothesis that vagal and sympathetic control, as assessed by spectral analysis of spontaneous beat-to-beat variability of RR and QT intervals from standard 24-h electrocardiogram Holter recordings, could modulate the severity of LQTS type 1 (LQT1) in 46 members of a South-African LQT1 founder population carrying the clinically severe KCNQ1 A341V mutation. METHODS Nonmutation carriers (NMCs) (n = 14) were compared with mutation carriers (MCs) (n = 32), 22 with and 10 without major symptoms. We assessed the effect of circadian rhythm and beta-blocker therapy over traditional time and frequency domain RR and QT variability indexes. RESULTS The asymptomatic MCs differed significantly from the symptomatic MCs and from NMCs in less vagal control of heart rate and more reactive sympathetic modulation of the QT interval, particularly during daytime when arrhythmia risk for patients with LQT1 is greatest. CONCLUSIONS The present data identified an additional factor contributing to the differential arrhythmic risk among patients with LQT1 carrying the same mutation. A healthy autonomic control confers a high risk, whereas patients with higher sympathetic control of the QT interval and reduced vagal control of heart rate are at lower risk. This differential "autonomic make-up," likely under genetic control, will allow refinement of risk stratification within families with LQTS, leading to more targeted management.
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; IRCCS Galeazzi Orthopedic Institute, Milan, Italy.
| | - Giulia Girardengo
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Departments of Medicine and Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Paul A Brink
- Department of Internal Medicine, University of Stellenbosch, Stellenbosch, South Africa
| | - Althea Goosen
- Department of Internal Medicine, University of Stellenbosch, Stellenbosch, South Africa
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
387
|
Abstract
Molecular genetic studies in the last 2 decades have revealed a link between several inherited cardiac arrhythmias and genes encoding for ion channels or other membrane components. Two recent international expert consensus statements endorsed by 3 continental electrophysiology societies have updated the clinical and genetic diagnoses and management in patients with inherited arrhythmia syndromes, including congenital long QT syndrome (LQTS) and Brugada syndrome. Thirteen genotypes have been identified in 50% to 80% of clinically affected patients with congenital LQTS. Therefore, genotype-phenotype correlations have been investigated, especially, in the 3 major genotypes--LQT1, LQT2 and LQT3 syndromes--enabling genotype-specific management and therapy. On the other hand, less than half of patients with Brugada syndrome can be genotyped, and mainly for the sodium channel gene, SCN5A. However, recent advances in molecular genetic testing include genome-wide association studies using gene arrays and targeted, whole-exome and whole-genome next-generation sequencing techniques. In this article, I will review the clinical and genetic diagnoses in congenital LQTS and Brugada syndrome.
Collapse
Affiliation(s)
- Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School
| |
Collapse
|
388
|
Saarel EV, Etheridge SP, Gamboa DG, Pilcher TA. Congenital long QT syndrome: A difficult journey for one young survivor. HeartRhythm Case Rep 2015; 1:389-393. [PMID: 28491593 PMCID: PMC5419717 DOI: 10.1016/j.hrcr.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Elizabeth V Saarel
- Division of Cardiology, Department of Pediatrics, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| | - Susan P Etheridge
- Division of Cardiology, Department of Pediatrics, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| | - David G Gamboa
- Division of Cardiology, Department of Pediatrics, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| | - Thomas A Pilcher
- Division of Cardiology, Department of Pediatrics, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| |
Collapse
|
389
|
Laksman Z, Momciu B, Seong YW, Burrows P, Conacher S, Manlucu J, Leong-Sit P, Gula LJ, Skanes AC, Yee R, Klein GJ, Krahn AD. A detailed description and assessment of outcomes of patients with hospital recorded QTc prolongation. Am J Cardiol 2015; 115:907-11. [PMID: 25665761 DOI: 10.1016/j.amjcard.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/05/2015] [Accepted: 01/05/2015] [Indexed: 11/24/2022]
Abstract
Corrected QT (QTc) interval prolongation has been shown to be an independent predictor of mortality in many clinical settings and is a common finding in hospitalized patients. The causes and outcomes of patients with extreme QTc interval prolongation during a hospital admission are poorly described. The aim of this study was to prospectively identify patients with automated readings of QTc intervals >550 ms at 1 academic tertiary hospital. One hundred seventy-two patients with dramatic QTc interval prolongation (574 ± 53 ms) were identified (mean age 67.6 ± 15.1 years, 48% women). Most patients had underlying heart disease (60%), predominantly ischemic cardiomyopathy (43%). At lease 1 credible and presumed reversible cause associated with QTc interval prolongation was identified in 98% of patients. The most common culprits were QTc interval-prolonging medications, which were deemed most responsible in 48% of patients, with 25% of these patients taking ≥2 offending drugs. Two patients were diagnosed with congenital long-QT syndrome. Patients with electrocardiograms available before and after hospital admission demonstrated significantly lower preadmission and postdischarge QTc intervals compared with the QTc intervals recorded in the hospital. In conclusion, in-hospital mortality was high in the study population (29%), with only 4% of patients experiencing arrhythmic deaths, all of which were attributed to secondary causes.
Collapse
|
390
|
Ramakrishna H, O'Hare M, Mookadam F. Ever-expanding clinical implications of QT interval prolongation. Future Cardiol 2015; 11:133-5. [DOI: 10.2217/fca.15.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Meabh O'Hare
- Division of Cardiovascular Diseases, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Farouk Mookadam
- Division of Cardiovascular Diseases, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
391
|
Abstract
Long QT syndrome (LQTS) is a potentially life-threatening cardiac arrhythmia characterized by delayed myocardial repolarization that produces QT prolongation and increased risk for torsades des pointes (TdP)-triggered syncope, seizures, and sudden cardiac death (SCD) in an otherwise healthy young individual with a structurally normal heart. Currently, there are three major LQTS genes (KCNQ1, KCNH2, and SCN5A) that account for approximately 75% of the disorder. For the major LQTS genotypes, genotype-phenotype correlations have yielded gene-specific arrhythmogenic triggers, electrocardiogram (ECG) patterns, response to therapies, and intragenic and increasingly mutation-specific risk stratification. The 10 minor LQTS-susceptibility genes collectively account for less than 5% of LQTS cases. In addition, three atypical LQTS or multisystem syndromic disorders that have been associated with QT prolongation have been described, including ankyrin-B syndrome, Anderson-Tawil syndrome (ATS), and Timothy syndrome (TS). Genetic testing for LQTS is recommended in patients with either a strong clinical index of suspicion or persistent QT prolongation despite their asymptomatic state. However, genetic test results must be interpreted carefully.
Collapse
|
392
|
Sun L, Sun S, Zeng S, Li Y, Pan W, Zhang Z. Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia. Mol Med Rep 2015; 11:4039-46. [PMID: 25625292 PMCID: PMC4394928 DOI: 10.3892/mmr.2015.3246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/22/2014] [Indexed: 11/27/2022] Open
Abstract
Paroxysmal or persistent tachycardia in pediatric patients is a common disease. Certain circulating microRNAs (miRNAs) have been associated with arrhythmia. The present study investigated miRNAs in the plasma of pediatric patients with tachycardia. Forty pediatric subjects were included retrospectively: 24 with recurrent sustained tachycardia [seven cases of ventricular tachycardia (VT) and 17 cases of supraventricular tachycardia (SVT)] and 16 healthy controls. Circulating miR-1 and miR-133 in the plasma were detected by fluorescent quantitative polymerase chain reaction. miR-1 levels were significantly decreased in the arrhythmia group compared with those in the controls (P=0.004) whilst miR-133 expression levels were not significantly different between the two groups (P=0.456). Both miR-1 and miR-133 levels showed significant differences between the SVT and VT groups (P=0.004 and P=0.046, respectively), and a significant decrease in miR-1 levels was observed in the SVT group as compared with the controls (P<0.001). No significant difference was observed in the expression levels of miR-133. By contrast, miR-133 levels were significantly increased in the VT group compared with those in the controls (P=0.024), whereas no statistically significant difference was observed in the expression levels of miR-1. Receiver operating characteristic curves showed that 1/miR-1 was significant for the evaluation of tachycardia. Additionally, miR-1 produced enhanced sensitivity and specificity for the evaluation of SVT compared with miR-133, whereas miR-133 was a better marker to assess VT. This study demonstrated that miRNAs may be appropriate markers for pediatric tachycardia; miR-1 levels were decreased in the arrhythmia group compared with those in the healthy controls. Furthermore, patients with SVT had lower miR-1 expression levels while those with VT had higher miR-133 expression levels.
Collapse
Affiliation(s)
- Ling Sun
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shuo Sun
- Department of Cardiology, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Shaoying Zeng
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Yufen Li
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Pan
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Zhiwei Zhang
- Department of Pediatrics, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
393
|
Campuzano O, Allegue C, Fernandez A, Iglesias A, Brugada R. Determining the pathogenicity of genetic variants associated with cardiac channelopathies. Sci Rep 2015; 5:7953. [PMID: 25608792 PMCID: PMC4302303 DOI: 10.1038/srep07953] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/22/2014] [Indexed: 01/08/2023] Open
Abstract
Advancements in genetic screening have generated massive amounts of data on genetic variation; however, a lack of clear pathogenic stratification has left most variants classified as being of unknown significance. This is a critical limitation for translating genetic data into clinical practice. Genetic screening is currently recommended in the guidelines for diagnosis and treatment of cardiac channelopathies, which are major contributors to sudden cardiac death in young people. We propose to characterize the pathogenicity of genetic variants associated with cardiac channelopathies using a stratified scoring system. The development of this system was considered by using all of the tools currently available to define pathogenicity. The use of this scoring system could help clinicians to understand the limitations of genetic associations with a disease, and help them better define the role that genetics can have in their clinical routine.
Collapse
Affiliation(s)
- Oscar Campuzano
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Anna Fernandez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Anna Iglesias
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona (IDIBGI) and Universitat de Girona (UdG), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiology Service, Hospital Josep Trueta, Girona, Spain
| |
Collapse
|
394
|
Kumar M, Baidya DK, Mohan VK, Mamta. Safe anesthesia management protocol of a child with congenital long QT syndrome and deafness (Jervell and lange-nielsen syndrome) for cochlear implant surgery. Saudi J Anaesth 2015; 9:98-9. [PMID: 25558210 PMCID: PMC4279362 DOI: 10.4103/1658-354x.146328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mayank Kumar
- Department of Anesthesia and Intensive Care, All India Institute of Medical Sciences, New Delhi, India
| | - Dalim Kumar Baidya
- Department of Anesthesia and Intensive Care, All India Institute of Medical Sciences, New Delhi, India
| | - Virender Kumar Mohan
- Department of Anesthesia and Intensive Care, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta
- Department of Anesthesia and Intensive Care, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
395
|
Illikova V, Hlivak P, Hatala R. Cardiac channelopathies in pediatric patients - 7-years single center experience. J Electrocardiol 2015; 48:150-6. [PMID: 25554238 DOI: 10.1016/j.jelectrocard.2014.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Channelopathies are associated with mutations of genes encoding proteins creating or interacting with the specialized ion channels in myocardial cell membranes, thus forming arrhythmogenic substrate predisposing the patient to sudden cardiac death. The study focuses the clinical and ECG presentation and management of children with channelopathies in Slovakia. SUBJECT AND METHODS Twenty-two children with suspected channelopathy were admitted to Children's Cardiac Center Bratislava in the years 2007-2014. Genetic testing was made in 19 patients. RESULTS Fourteen patients were symptomatic. Long QT syndrome was genetically proven in eight and catecholaminergic polymorphic ventricular tachycardia in five patients. Twenty children are treated with beta-blockers, five in combination with mexiletine or flecainide. Nine patients received implantable cardiac defibrillator and one underwent left cardiac sympathetic denervation. CONCLUSION Both clinical presentation and genetic testing must be considered in the diagnostic and therapeutic process of channelopathies. Early diagnosis allows for adequate treatment and lifestyle modification.
Collapse
Affiliation(s)
- V Illikova
- Departments of Arrhythmias and Pacing and ICU, Children's Cardiac Center, Comenius University School of Medicine and National Cardiovascular Institute, Slovak Medical University School of Medicine, Bratislava, Slovakia.
| | - P Hlivak
- Departments of Arrhythmias and Pacing and ICU, Children's Cardiac Center, Comenius University School of Medicine and National Cardiovascular Institute, Slovak Medical University School of Medicine, Bratislava, Slovakia
| | - R Hatala
- Departments of Arrhythmias and Pacing and ICU, Children's Cardiac Center, Comenius University School of Medicine and National Cardiovascular Institute, Slovak Medical University School of Medicine, Bratislava, Slovakia
| |
Collapse
|
396
|
Barsheshet A, Dotsenko O, Goldenberg I. Congenital long QT syndromes: prevalence, pathophysiology and management. Paediatr Drugs 2014; 16:447-56. [PMID: 25288402 DOI: 10.1007/s40272-014-0090-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long QT syndrome is a genetic disorder associated with life threatening ventricular arrhythmias and sudden death. This inherited arrhythmic disorder exhibits genetic heterogeneity, incomplete penetrance, and variable expressivity. During the past two decades there have been major advancements in understanding the genotype-phenotype correlations in LQTS. This genotype-phenotype relationship can lead to improved management of LQTS. However, development of genotype-specific or mutation-specific management strategies is very challenging. This review describes the pathophysiology of LQTS, genotype-phenotype correlations, and focuses on the management of LQTS. In general, the treatment of LQTS consists of lifestyle modifications, medical therapy with beta-blockers, device and surgical therapy. We further summarize current data on the efficacy of pharmacological treatment options for the three most prevalent LQTS variants including beta-blockers in LQT1, LQT2 and LQT3, sodium channel blockers and ranolazine for LQT3, potassium supplementation and spironolactone for LQT2, and possibly sex hormone-based therapy for LQT2.
Collapse
Affiliation(s)
- Alon Barsheshet
- Cardiology Department, Rabin Medical Center, Petach Tikva, Israel
| | | | | |
Collapse
|
397
|
Vijayakumar R, Silva JNA, Desouza KA, Abraham RL, Strom M, Sacher F, Van Hare GF, Haïssaguerre M, Roden DM, Rudy Y. Electrophysiologic substrate in congenital Long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI). Circulation 2014; 130:1936-1943. [PMID: 25294783 DOI: 10.1161/circulationaha.114.011359] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Congenital Long QT syndrome (LQTS) is an arrhythmogenic disorder that causes syncope and sudden death. Although its genetic basis has become well-understood, the mechanisms whereby mutations translate to arrhythmia susceptibility in the in situ human heart have not been fully defined. We used noninvasive ECG imaging to map the cardiac electrophysiological substrate and examine whether LQTS patients display regional heterogeneities in repolarization, a substrate that promotes arrhythmogenesis. METHODS AND RESULTS Twenty-five subjects (9 LQT1, 9 LQT2, 5 LQT3, and 2 LQT5) with genotype and phenotype positive LQTS underwent ECG imaging. Seven normal subjects provided control. Epicardial maps of activation, recovery times, activation-recovery intervals, and repolarization dispersion were constructed. Activation was normal in all patients. However, recovery times and activation-recovery intervals were prolonged relative to control, indicating delayed repolarization and abnormally long action potential duration (312±30 ms versus 235±21 ms in control). Activation-recovery interval prolongation was spatially heterogeneous, with repolarization gradients much steeper than control (119±19 ms/cm versus 2.0±2.0 ms/cm). There was variability in steepness and distribution of repolarization gradients between and within LQTS types. Repolarization gradients were steeper in symptomatic patients (130±27 ms/cm in 12 symptomatic patients versus 98±19 ms/cm in 13 asymptomatic patients; P<0.05). CONCLUSIONS LQTS patients display regions with steep repolarization dispersion caused by localized action potential duration prolongation. This defines a substrate for reentrant arrhythmias, not detectable by surface ECG. Steeper dispersion in symptomatic patients suggests a possible role for ECG imaging in risk stratification.
Collapse
Affiliation(s)
- Ramya Vijayakumar
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Saint Louis, MO.,Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
| | - Jennifer N A Silva
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Saint Louis, MO.,Division of Pediatric Cardiology, Washington University School of Medicine/St. Louis Children's Hospital, St. Louis, MO
| | - Kavit A Desouza
- Cardiovascular diseases, Mount Sinai St. Luke's Roosevelt, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert L Abraham
- Department of Medicine and the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC institute, Pessac, France
| | - George F Van Hare
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Saint Louis, MO.,Division of Pediatric Cardiology, Washington University School of Medicine/St. Louis Children's Hospital, St. Louis, MO
| | | | - Dan M Roden
- Department of Medicine and the Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Saint Louis, MO.,Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO.,Division of Pediatric Cardiology, Washington University School of Medicine/St. Louis Children's Hospital, St. Louis, MO.,Department of Medicine (Cardiology), Washington University School of Medicine/Barnes-Jewish Hospital, St. Louis, MO
| |
Collapse
|
398
|
Cellular mechanisms underlying the increased disease severity seen for patients with long QT syndrome caused by compound mutations in KCNQ1. Biochem J 2014; 462:133-42. [PMID: 24912595 DOI: 10.1042/bj20140425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) gene encodes the Kv7.1 potassium channel which forms a complex with KCNE1 (potassium voltage-gated channel Isk-related family member 1) in the human heart to produce the repolarizing IKs (slow delayed rectifier potassium current). Mutations in KCNQ1 can perturb IKs function and cause LQT1 (long QT syndrome type 1). In LQT1, compound mutations are relatively common and are associated with increased disease severity. LQT1 compound mutations have been shown to increase channel dysfunction, but whether other disease mechanisms, such as defective channel trafficking, contribute to the increase in arrhythmic risk has not been determined. Using an imaging-based assay we investigated the effects of four compound heterozygous mutations (V310I/R594Q, A341V/P127T, T391I/Q530X and A525T/R518X), one homozygous mutation (W248F) and one novel compound heterozygous mutation (A178T/K422fs39X) (where fs denotes frameshift) on channel trafficking. By analysing the effects in the equivalent of a homozygous, heterozygous and compound heterozygous condition, we identify three different types of behaviour. A341V/P127T and W248F/W248F had no effect, whereas V310I/R594Q had a moderate, but not compound, effect on channel trafficking. In contrast, T391I/Q530X, A525T/R518X and A178T/K422fs39X severely disrupted channel trafficking when expressed in compound form. In conclusion, we have characterized the disease mechanisms for six LQT1 compound mutations and report that, for four of these, defective channel trafficking underlies the severe clinical phenotype.
Collapse
|
399
|
Early repolarization is associated with symptoms in patients with type 1 and type 2 long QT syndrome. Heart Rhythm 2014; 11:1632-8. [DOI: 10.1016/j.hrthm.2014.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 11/22/2022]
|
400
|
de Villiers CP, van der Merwe L, Crotti L, Goosen A, George AL, Schwartz PJ, Brink PA, Moolman-Smook JC, Corfield VA. AKAP9 is a genetic modifier of congenital long-QT syndrome type 1. ACTA ACUST UNITED AC 2014; 7:599-606. [PMID: 25087618 DOI: 10.1161/circgenetics.113.000580] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Long-QT syndrome (LQTS), a cardiac arrhythmia disorder with variable phenotype, often results in devastating outcomes, including sudden cardiac death. Variable expression, independently from the primary disease-causing mutation, can partly be explained by genetic modifiers. This study investigates variants in a known LQTS-causative gene, AKAP9, for potential LQTS-type 1-modifying effects. METHODS AND RESULTS Members of a South African LQTS-type 1 founder population (181 noncarriers and 168 mutation carriers) carrying the identical-by-descent KCNQ1 p.Ala341Val (A341V) mutation were evaluated for modifying effects of AKAP9 variants on heart rate-corrected QT interval (QTc), cardiac events, and disease severity. Tag single nucleotide polymorphisms in AKAP9 rs11772585, rs7808587, rs2282972, and rs2961024 (order, 5'-3'positive strand) were genotyped. Associations between phenotypic traits and alleles, genotypes, and haplotypes were statistically assessed, adjusting for the degree of relatedness and confounding variables. The rs2961024 GG genotype, always represented by CGCG haplotype homozygotes, revealed an age-dependent heart rate-corrected QT interval increase (1% per additional 10 years) irrespective of A341V mutation status (P=0.006). The rs11772585 T allele, found uniquely in the TACT haplotype, more than doubled (218%) the risk of cardiac events (P=0.002) in the presence of A341V; additionally, it increased disease severity (P=0.025). The rs7808587 GG genotype was associated with a 74% increase in cardiac event risk (P=0.046), whereas the rs2282972 T allele, predominantly represented by the CATT haplotype, decreased risk by 53% (P=0.001). CONCLUSIONS AKAP9 has been identified as an LQTS-type 1-modifying gene. Variants investigated altered heart rate-corrected QT interval irrespective of mutation status, as well as cardiac event risk, and disease severity, in mutation carriers.
Collapse
Affiliation(s)
- Carin P de Villiers
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Lize van der Merwe
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Lia Crotti
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Althea Goosen
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Alfred L George
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Peter J Schwartz
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Paul A Brink
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Johanna C Moolman-Smook
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| | - Valerie A Corfield
- From the Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Medical Research Council (MRC) Centre for Molecular and Cellular Biology, (C.P.d.V., L.v.d.M., J.C.M.-S., V.A.C.), and Department of Internal Medicine (A.G., P.A.B.), Stellenbosch University, Stellenbosch, South Africa; Department of Statistics, University of Western Cape, Bellville, South Africa (L.v.d.M.); IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (L.C.); Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (L.C.); and Departments of Medicine and Pharmacology, and Institute for Integrative Genomics, Vanderbilt University, Nashville, TN (A.L.G.)
| |
Collapse
|