351
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
352
|
The role of A-kinase anchoring proteins in cardiac oxidative stress. Biochem Soc Trans 2020; 47:1341-1353. [PMID: 31671182 PMCID: PMC6824835 DOI: 10.1042/bst20190228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Cardiac stress initiates a pathological remodeling process that is associated with cardiomyocyte loss and fibrosis that ultimately leads to heart failure. In the injured heart, a pathologically elevated synthesis of reactive oxygen species (ROS) is the main driver of oxidative stress and consequent cardiomyocyte dysfunction and death. In this context, the cAMP-dependent protein kinase (PKA) plays a central role in regulating signaling pathways that protect the heart against ROS-induced cardiac damage. In cardiac cells, spatiotemporal regulation of PKA activity is controlled by A-kinase anchoring proteins (AKAPs). This family of scaffolding proteins tether PKA and other transduction enzymes at subcellular microdomains where they can co-ordinate cellular responses regulating oxidative stress. In this review, we will discuss recent literature illustrating the role of PKA and AKAPs in modulating the detrimental impact of ROS production on cardiac function.
Collapse
|
353
|
Lorenzo-Almorós A, Cepeda-Rodrigo JM, Lorenzo Ó. Diabetic cardiomyopathy. Rev Clin Esp 2020; 222:S0014-2565(20)30025-4. [PMID: 35115137 DOI: 10.1016/j.rce.2019.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
The relationship between diabetes and heart failure is complex and bidirectional. Nevertheless, the existence of a cardiomyopathy attributable exclusively to diabetes has been and is still the subject of controversy, due, among other reasons, to a lack of a consensus definition. There is also no unanimous agreement in terms of the physiopathogenic findings that need to be present in the definition of diabetic cardiomyopathy or on its classification, which, added to the lack of diagnostic methods and treatments specific for this disease, limits its general understanding. Studies conducted on diabetic cardiomyopathy, however, suggest a unique physiopathogenesis different from that of other diseases. Similarly, new treatments have been shown to play a potential role in this disease. The following review provides an update on diabetic cardiomyopathy.
Collapse
Affiliation(s)
- A Lorenzo-Almorós
- Servicio de Medicina Interna, Fundación Jiménez Díaz. Madrid, España.
| | - J M Cepeda-Rodrigo
- Servicio de Medicina Interna, Hospital Vega Baja, Orihuela, Alicante, España
| | - Ó Lorenzo
- Laboratorio de Renal, Vascular y Diabetes, IIS Fundación Jiménez-Díaz, Universidad Autónoma de Madrid, Madrid, España
| |
Collapse
|
354
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
355
|
Zhang Y, Zhang W, Zeng K, Ao Y, Wang M, Yu Z, Qi F, Yu W, Mao H, Tao L, Zhang C, Tan TTY, Yang X, Pu K, Gao S. Upconversion Nanoparticles-Based Multiplex Protein Activation to Neuron Ablation for Locomotion Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906797. [PMID: 32003923 DOI: 10.1002/smll.201906797] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)-based multiplex proteins activation tool to ablate deep-tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300-fold enhancement of blue (450-470 nm) and red (590-610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light-induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep-tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single- and multiple-cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wanmei Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanghua Zeng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanxiao Ao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengdie Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Fukang Qi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Weiwei Yu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Heng Mao
- LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, P. R. China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing, 100871, P. R. China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Timothy Thatt Yang Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
356
|
Cardiac monoamine oxidases: at the heart of mitochondrial dysfunction. Cell Death Dis 2020; 11:54. [PMID: 31974382 PMCID: PMC6978367 DOI: 10.1038/s41419-020-2251-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
357
|
Qiu Y, Cheng R, Liang C, Yao Y, Zhang W, Zhang J, Zhang M, Li B, Xu C, Zhang R. MicroRNA-20b Promotes Cardiac Hypertrophy by the Inhibition of Mitofusin 2-Mediated Inter-organelle Ca 2+ Cross-Talk. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1343-1356. [PMID: 32160705 PMCID: PMC7036712 DOI: 10.1016/j.omtn.2020.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) and mitofusin-2 (Mfn2) are important in the development of cardiac hypertrophy, but the target relationship and mechanism associated with Ca2+ handling between SR and mitochondria under hypertrophic condition is not established. Mfn2 expression, Mfn2-mediated interorganelle Ca2+ cross-talk, and target regulation by miRNA-20b (miR-20b) were evaluated using animal/cellular hypertrophic models with state-of-the-art techniques. The results demonstrated that Mfn2 was downregulated and miR-20b was upregulated upon the target binding profile under hypertrophic condition. Our data showed that miR-20b induced cardiac hypertrophy that was reversed by recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-20b or miR-20b antisense inhibitor (AMO-20b). The deleterious action of miR-20b on Mfn2 expression/function and mitochondrial ATP synthesis was observed and reversed by rAAV9-anti-miR-20b or AMO-20b. The targeted regulation of miR-20b on Mfn2 was confirmed by luciferase reporter and miRNA-masking. Importantly, the facts that mitochondrial calcium uniporter (MCU) activation by Spermine increased the cytosolic Ca2+ into mitochondria, manifested as enhanced histamine-mediated Ca2+ release from mitochondrial, suggesting that Ca2+ reuptake/buffering capability of mitochondria to cytosolic Ca2+ is injured by miR-20b-mediated Mfn2 signaling, by which leads cytosolic Ca2+ overload and cardiac hypertrophy through Ca2+ signaling pathway. In conclusion, pro-hypertonic miR-20b plays crucial roles in cardiac hypertrophy through downregulation of Mfn2 and cytosolic Ca2+ overload by weakening the buffering capability of mitochondria.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rongchao Cheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Yao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wenhao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Baiyan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
358
|
McDonough CE, Bernhardt ML, Williams CJ. Mouse strain-dependent egg factors regulate calcium signals at fertilization. Mol Reprod Dev 2020; 87:284-292. [PMID: 31944466 DOI: 10.1002/mrd.23316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/12/2019] [Indexed: 01/29/2023]
Abstract
Calcium (Ca2+ ) signals triggered at fertilization initiate resumption of the cell cycle and initial steps of embryonic development. In mammals, the sperm factor phospholipase Cζ triggers the release of Ca2+ from the endoplasmic reticulum (ER), initiating an oscillatory pattern of Ca2+ transients that is modulated by egg factors including Ca2+ influx channels, Ca2+ transporters, and phosphoinositide-regulating enzymes. Here we compared characteristics of Ca2+ oscillations following in vitro fertilization (IVF) and ER Ca2+ stores among nine common laboratory mouse strains: CF1, C57BL6, SJL, CD1, DBA, FVB, 129X1, BALBc, 129S1, and the F1 hybrid B6129SF1. Sperm from B6SJLF1/J males was used for all IVF experiments. There were significant differences among the strains with respect to duration and maximum amplitude of the first Ca2+ transient, frequency of oscillations, and ER Ca2+ stores. With male strain held constant, the differences in Ca2+ oscillation patterns observed result from variation in egg factors across different mouse strains. Our results support the importance of egg-intrinsic properties in determining Ca2+ oscillation patterns and have important implications for the interpretation and comparison of studies on Ca2+ dynamics at fertilization.
Collapse
Affiliation(s)
- Caitlin E McDonough
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Miranda L Bernhardt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
359
|
Lin X, Dai Y, Tong X, Xu W, Huang Q, Jin X, Li C, Zhou F, Zhou H, Lin X, Huang D, Zhang S. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol 2020; 30:101431. [PMID: 31972508 PMCID: PMC6974790 DOI: 10.1016/j.redox.2020.101431] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Endometriosis an important cause of female infertility and seriously impact physical and psychological health of patients. Endometriosis is now considered to be a public health problem that deserves in-depth investigation, especially the etiopathogenesis of endometriosis-associated infertility. We aimed to illuminate the etiopathogenesis of endometriosis-associated infertility that involve excessive oxidative stress (OS) induced pathological changes of ovary cumulus granulosa cell (GCs). Senescence-associated β-galactosidase (SA β-gal) activity in GCs from endometriosis patients, soluble isoform of advanced glycation end products receptor (sRAGE) expression in follicular fluid from endometriosis patients and differentially expressed senescence-associated secretory phenotype factors (IL-1β, MMP-9, KGF and FGF basic protein) are all useful indexes to evaluate oocyte retrieval number and mature oocyte number. RNA-sequencing and bioinformatics analysis indicated senescent phenotype of endometriosis GCs and aggravated endoplasmic reticulum (ER) stress in endometriosis GCs. Targeting ER stress significantly alleviated OS-induced GCs senescence as well as mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) reduction in GCs. Moreover, melatonin administration rescued OS-enhanced ER stress, cellular senescence, and MMP and ATP abnormities of endometriosis GCs in vitro and in vivo. In conclusion, our results indicated excessive reactive oxygen species induces senescence of endometriosis GCs via arouse ER stress, which finally contributes to endometriosis-associated infertility, and melatonin may represent a novel adjuvant therapy strategy for endometriosis-associated infertility. Endometriosis patients ovary cumulus granulosa cells (GCs) show senescence phenotype. Excessive oxidative stress in GCs drives cellular senescence via activating ER stress. Melatonin alleviates ER stress and GCs senescence in vitro and in vivo.
Collapse
Affiliation(s)
- Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Wenzhi Xu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Qianmeng Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaoying Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Hanjin Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Dong Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
360
|
Maejima Y. SGLT2 Inhibitors Play a Salutary Role in Heart Failure via Modulation of the Mitochondrial Function. Front Cardiovasc Med 2020; 6:186. [PMID: 31970162 PMCID: PMC6960132 DOI: 10.3389/fcvm.2019.00186] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
Three cardiovascular outcome trials of sodium glucose cotransporter 2 (SGLT2) inhibitors, including the EMPA-REG OUTCOME trial, CANVAS Program, and DECLARE TIMI 58 trial, revealed that SGLT2 inhibitors were superior to a matching placebo in reducing cardiovascular events, including mortality and hospitalization for heart failure, in patients with type 2 diabetes. However, the detailed mechanism underlying the beneficial effects that SGLT2 inhibitors exert on cardiovascular diseases remains to be elucidated. We herein review the latest findings of the salutary mechanisms of SGLT2 inhibitors in cardiomyocytes, especially focusing on their mitochondrial function-mediated beneficial effects. The administration of SGLT2 inhibitors leads to the elevation of plasma levels of ketone bodies, which are an efficient energy source in the failing heart, by promoting oxidation of the mitochondrial coenzyme Q couple and enhancing the free energy of cytosolic ATP hydrolysis. SGLT2 inhibitors also promote sodium metabolism-mediated cardioprotective effects. These compounds could reduce the intracellular sodium overload to improve mitochondrial energetics and oxidative defense in the heart through binding with NHE and/or SMIT1. Furthermore, SGLT2 inhibitors could modulate mitochondrial dynamics by regulating the fusion and fission of mitochondria. Together with ongoing large-scale clinical trials to evaluate the efficacy of SGLT2 inhibitors in patients with heart failure, intensive investigations regarding the mechanism through which SGLT2 inhibitors promote the restoration in cases of heart failure would lead to the establishment of these drugs as potent anti-heart failure drugs.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
361
|
Pathak T, Gueguinou M, Walter V, Delierneux C, Johnson MT, Zhang X, Xin P, Yoast RE, Emrich SM, Yochum GS, Sekler I, Koltun WA, Gill DL, Hempel N, Trebak M. Dichotomous role of the human mitochondrial Na +/Ca2 +/Li + exchanger NCLX in colorectal cancer growth and metastasis. eLife 2020; 9:59686. [PMID: 32914752 PMCID: PMC7529464 DOI: 10.7554/elife.59686] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/07/2020] [Indexed: 12/28/2022] Open
Abstract
Despite the established role of mitochondria in cancer, the mechanisms by which mitochondrial Ca2+ (mtCa2+) regulates tumorigenesis remain incompletely understood. The crucial role of mtCa2+ in tumorigenesis is highlighted by altered expression of proteins mediating mtCa2+ uptake and extrusion in cancer. Here, we demonstrate decreased expression of the mitochondrial Na+/Ca2+/Li+ exchanger NCLX (SLC8B1) in human colorectal tumors and its association with advanced-stage disease in patients. Downregulation of NCLX causes mtCa2+ overload, mitochondrial depolarization, decreased expression of cell-cycle genes and reduced tumor size in xenograft and spontaneous colorectal cancer mouse models. Concomitantly, NCLX downregulation drives metastatic spread, chemoresistance, and expression of epithelial-to-mesenchymal, hypoxia, and stem cell pathways. Mechanistically, mtCa2+ overload leads to increased mitochondrial reactive oxygen species, which activate HIF1α signaling supporting metastasis of NCLX-null tumor cells. Thus, loss of NCLX is a novel driver of metastasis, indicating that regulation of mtCa2+ is a novel therapeutic approach in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Maxime Gueguinou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Vonn Walter
- Department of Public Health Sciences, The Pennsylvania State University College of MedicineHersheyUnited States,Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHersheyUnited States,Penn State Cancer Institute. The Pennsylvania State University College of MedicineHersheyUnited States
| | - Celine Delierneux
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Gregory S Yochum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHersheyUnited States,Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Walter A Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Nadine Hempel
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States,Penn State Cancer Institute. The Pennsylvania State University College of MedicineHersheyUnited States,Department of Pharmacology, The Pennsylvania State University College of MedicineHersheyUnited States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of MedicineHersheyUnited States
| |
Collapse
|
362
|
|
363
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
364
|
van Opbergen CJM, den Braven L, Delmar M, van Veen TAB. Mitochondrial Dysfunction as Substrate for Arrhythmogenic Cardiomyopathy: A Search for New Disease Mechanisms. Front Physiol 2019; 10:1496. [PMID: 31920701 PMCID: PMC6914828 DOI: 10.3389/fphys.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a familial heart disease, associated with ventricular arrhythmias, fibrofatty replacement of the myocardial mass and an increased risk of sudden cardiac death (SCD). Malignant ventricular arrhythmias and SCD largely occur in the pre-clinical phase of the disease, before overt structural changes occur. To prevent or interfere with ACM disease progression, more insight in mechanisms related to electrical instability are needed. Currently, numerous studies are focused on the link between cardiac arrhythmias and metabolic disease. In line with that, a potential role of mitochondrial dysfunction in ACM pathology is unclear and mitochondrial biology in the ACM heart remains understudied. In this review, we explore mitochondrial dysfunction in relation to arrhythmogenesis, and postulate a link to typical hallmarks of ACM. Mitochondrial dysfunction depletes adenosine triphosphate (ATP) production and increases levels of reactive oxygen species in the heart. Both metabolic changes affect cardiac ion channel gating, electrical conduction, intracellular calcium handling, and fibrosis formation; all well-known aspects of ACM pathophysiology. ATP-mediated structural remodeling, apoptosis, and mitochondria-related alterations have already been shown in models of PKP2 dysfunction. Yet, the limited amount of experimental evidence in ACM models makes it difficult to determine whether mitochondrial dysfunction indeed precedes and/or accompanies ACM pathogenesis. Nevertheless, current experimental ACM models can be very useful in unraveling ACM-related mitochondrial biology and in testing potential therapeutic interventions.
Collapse
Affiliation(s)
- Chantal J M van Opbergen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lyanne den Braven
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY, United States
| | - Toon A B van Veen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
365
|
Santin Y, Fazal L, Sainte-Marie Y, Sicard P, Maggiorani D, Tortosa F, Yücel YY, Teyssedre L, Rouquette J, Marcellin M, Vindis C, Shih JC, Lairez O, Burlet-Schiltz O, Parini A, Lezoualc'h F, Mialet-Perez J. Mitochondrial 4-HNE derived from MAO-A promotes mitoCa 2+ overload in chronic postischemic cardiac remodeling. Cell Death Differ 2019; 27:1907-1923. [PMID: 31819159 DOI: 10.1038/s41418-019-0470-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/01/2023] Open
Abstract
Chronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa2+ mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Loubina Fazal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Pierre Sicard
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.,INSERM, CNRS, Université de Montpellier, PHYMEDEXP, Montpellier, France
| | - Damien Maggiorani
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Florence Tortosa
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Yasemin Yücel Yücel
- Department of Biochemistry, School of Pharmacy, Altinbas University, Istanbul, Turkey
| | | | | | - Marlene Marcellin
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Cécile Vindis
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jean C Shih
- University of Southern California, Los Angeles, CA, USA
| | - Olivier Lairez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Université de Toulouse, UPS, Toulouse, France
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| | - Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM, Université de Toulouse, Toulouse, France.
| |
Collapse
|
366
|
Ijomone OM, Aluko OM, Okoh COA, Martins AC, Aschner M. Role for calcium signaling in manganese neurotoxicity. J Trace Elem Med Biol 2019; 56:146-155. [PMID: 31470248 DOI: 10.1016/j.jtemb.2019.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium is an essential macronutrient that is involved in many cellular processes. Homeostatic control of intracellular levels of calcium ions [Ca2+] is vital to maintaining cellular structure and function. Several signaling molecules are involved in regulating Ca2+ levels in cells and perturbation of calcium signaling processes is implicated in several neurodegenerative and neurologic conditions. Manganese [Mn] is a metal which is essential for basic physiological functions. However, overexposure to Mn from environmental contamination and workplace hazards is a global concern. Mn overexposure leads to its accumulation in several human organs particularly the brain. Mn accumulation in the brain results in a manganism, a Parkinsonian-like syndrome. Additionally, Mn is a risk factor for several neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. Mn neurotoxicity also affects several neurotransmitter systems including dopaminergic, cholinergic and GABAergic. The mechanisms of Mn neurotoxicity are still being elucidated. AIM The review will highlight a potential role for calcium signaling molecules in the mechanisms of Mn neurotoxicity. CONCLUSION Ca2+ regulation influences the neurodegenerative process and there is possible role for perturbed calcium signaling in Mn neurotoxicity. Mechanisms implicated in Mn-induced neurodegeneration include oxidative stress, generation of free radicals, and apoptosis. These are influenced by mitochondrial integrity which can be dependent on intracellular Ca2+ homeostasis. Nevertheless, further elucidation of the direct effects of calcium signaling dysfunction and calcium-binding proteins activities in Mn neurotoxicity is required.
Collapse
Affiliation(s)
- Omamuyovwi M Ijomone
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria.
| | - Oritoke M Aluko
- Department of Physiology, Federal University of Technology Akure, Ondo, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, Department of Human Anatomy, Federal University of Technology Akure, Ondo, Nigeria
| | - Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
367
|
α-Hederin Induces Apoptosis of Esophageal Squamous Cell Carcinoma via an Oxidative and Mitochondrial-Dependent Pathway. Dig Dis Sci 2019; 64:3528-3538. [PMID: 31273592 DOI: 10.1007/s10620-019-05689-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND α-Hederin has been shown promising anti-tumor potential against various cancer cell lines. However, reports about effects of α-hederin on esophageal squamous cell carcinoma (ESCC) are still unavailable. AIM To investigate the inhibitory effects of α-hederin on ESCC and explore the underlying mechanism. METHODS Human esophageal carcinoma cell line (Eca-109) was used for the experiment. Cell Counting Kit-8, flow cytometry, Hoechst 33258 staining, enhanced ATP assay kit, 2',7'-dichlorofluorescin diacetate, JC-1 kit, and Western bolt were used to assess the cell viability, cycle, apoptosis, cellular ATP content, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. Xenografted tumor model was constructed to evaluate the in vivo anti-tumor effects of α-hederin. RESULTS Compared with control group, α-hederin significantly inhibited the proliferation, induced apoptosis of ESCC, and arrested the cell cycle in G1 phase (P < 0.05). α-Hederin induced the accumulation of ROS, decrement of ATP levels, and disruption of MMP (P < 0.05). The detection of mitochondrial and cytosol proteins showed that AIF, Apaf-1, and Cyt C were released and increased in cytoplasm, and then, caspase-3, caspase-9, and Bax were involved and increased, while Bcl-2 level was decreased (P < 0.05). Furthermore, the above changes were amplified in the group pretreated with L-buthionine sulfoximine, while N-acetyl-L-cysteine plays an opposite role (P < 0.05). Meanwhile, α-hederin significantly inhibited the growth of xenografted tumors with favorable safety. CONCLUSION α-Hederin could inhibit the proliferation and induce apoptosis of ESCC via dissipation of the MMP with simultaneous ROS generation and activation of the mitochondrial pathway.
Collapse
|
368
|
Wang J, Deng H, Zhang J, Wu D, Li J, Ma J, Dong W. α‐Hederin induces the apoptosis of gastric cancer cells accompanied by glutathione decrement and reactive oxygen species generation via activating mitochondrial dependent pathway. Phytother Res 2019; 34:601-611. [PMID: 31777126 DOI: 10.1002/ptr.6548] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 10/02/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jing Wang
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
- Department of Gastroenterology, Beijing Shijitan HospitalCapital Medical University Beijing PR China
| | - Huanying Deng
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| | - Jixiang Zhang
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| | - Dandan Wu
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| | - Jiao Li
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| | - Jingjing Ma
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| | - Weiguo Dong
- Department of GastroenterologyRenmin Hospital of Wuhan University Wuhan PR China
| |
Collapse
|
369
|
Boyman L, Karbowski M, Lederer WJ. Regulation of Mitochondrial ATP Production: Ca 2+ Signaling and Quality Control. Trends Mol Med 2019; 26:21-39. [PMID: 31767352 DOI: 10.1016/j.molmed.2019.10.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Cardiac ATP production primarily depends on oxidative phosphorylation in mitochondria and is dynamically regulated by Ca2+ levels in the mitochondrial matrix as well as by cytosolic ADP. We discuss mitochondrial Ca2+ signaling and its dysfunction which has recently been linked to cardiac pathologies including arrhythmia and heart failure. Similar dysfunction in other excitable and long-lived cells including neurons is associated with neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Central to this new understanding is crucial Ca2+ regulation of both mitochondrial quality control and ATP production. Mitochondria-associated membrane (MAM) signaling from the sarcoplasmic reticulum (SR) and the endoplasmic reticulum (ER) to mitochondria is discussed. We propose future research directions that emphasize a need to define quantitatively the physiological roles of MAMs, as well as mitochondrial quality control and ATP production.
Collapse
Affiliation(s)
- Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariusz Karbowski
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
370
|
Alves-Lopes R, Neves KB, Anagnostopoulou A, Rios FJ, Lacchini S, Montezano AC, Touyz RM. Crosstalk Between Vascular Redox and Calcium Signaling in Hypertension Involves TRPM2 (Transient Receptor Potential Melastatin 2) Cation Channel. Hypertension 2019; 75:139-149. [PMID: 31735084 DOI: 10.1161/hypertensionaha.119.13861] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Increased generation of reactive oxygen species (ROS) and altered Ca2+ handling cause vascular damage in hypertension. Mechanisms linking these systems are unclear, but TRPM2 (transient receptor potential melastatin 2) could be important because TRPM2 is a ROS sensor and a regulator of Ca2+ and Na+ transport. We hypothesized that TRPM2 is a point of cross-talk between redox and Ca2+ signaling in vascular smooth muscle cells (VSMC) and that in hypertension ROS mediated-TRPM2 activation increases [Ca2+]i through processes involving NCX (Na+/Ca2+ exchanger). VSMCs from hypertensive and normotensive individuals and isolated arteries from wild type and hypertensive mice (LinA3) were studied. Generation of superoxide anion and hydrogen peroxide (H2O2) was increased in hypertensive VSMCs, effects associated with activation of redox-sensitive PARP1 (poly [ADP-ribose] polymerase 1), a TRPM2 regulator. Ang II (angiotensin II) increased Ca2+ and Na+ influx with exaggerated responses in hypertension. These effects were attenuated by catalase-polyethylene glycol -catalase and TRPM2 inhibitors (2-APB, 8-Br-cADPR olaparib). TRPM2 siRNA decreased Ca2+ in hypertensive VSMCs. NCX inhibitors (Benzamil, KB-R7943, YM244769) normalized Ca2+ hyper-responsiveness and MLC20 phosphorylation in hypertensive VSMCs. In arteries from LinA3 mice, exaggerated agonist (U46619, Ang II, phenylephrine)-induced vasoconstriction was decreased by TRPM2 and NCX inhibitors. In conclusion, activation of ROS-dependent PARP1-regulated TRPM2 contributes to vascular Ca2+ and Na+ influx in part through NCX. We identify a novel pathway linking ROS to Ca2+ signaling through TRPM2/NCX in human VSMCs and suggest that oxidative stress-induced upregulation of this pathway may be a new player in hypertension-associated vascular dysfunction.
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Karla B Neves
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Aikaterini Anagnostopoulou
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Francisco J Rios
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo Medical School, Brazil (S.L.)
| | - Augusto C Montezano
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| | - Rhian M Touyz
- From the Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.A.-L., K.B.N., A.A., F.J.R., A.C.M., R.M.T.)
| |
Collapse
|
371
|
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padua (N.K.)
| | - Luca Scorrano
- Department of Biology, University of Padua, Italy (L.S.)
| |
Collapse
|
372
|
Integrated Analysis of miRNA-mRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1041583. [PMID: 31781320 PMCID: PMC6875397 DOI: 10.1155/2019/1041583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Oxidative stress (OS), a common intracellular phenomenon induced by excess reactive oxygen species (ROS) generation, has been shown to be associated with mammalian ovarian follicular development blockage and granulosa cell (GC) impairment. However, the mechanism involved in these effects remains unknown, and the effect of OS on the transcriptome profiles in porcine GCs has not been fully characterized. In this study, we found that hydrogen peroxide-mediated oxidative stress induced porcine GC apoptosis and impaired cell viability. Moreover, RNA-seq analysis showed that oxidative stress induced dramatic changes in gene expression in porcine GCs. A total of 2025 differentially expressed genes (DEGs) were identified, including 1940 DEmRNAs and 55 DEmiRNAs. Functional annotation showed that the DEGs were mainly associated with cell states and function regulation. In addition, multiple hub genes (FOXO1, SOD2, BMP2, DICER1, BCL2L11, FZD4, ssc-miR-424, and ssc-miR-27b) were identified by constructing protein-protein interaction and DEmiRNA-DEmRNA regulatory networks. Furthermore, a gene-pathway-function coregulatory network was established and demonstrated that these hub genes were enriched in FoxO, TGF-β, Wnt, PIK3-Akt, MAPK, and cAMP signaling pathways, which play important roles in regulating cell apoptosis, cell proliferation, stress responses, and hormone secretion. The current research provides a comprehensive perspective of the effects of oxidative stress on porcine GCs and also identifies potential therapeutic targets for oxidative stress-induced female infertility.
Collapse
|
373
|
ĽUPTÁK M, HROUDOVÁ J. Important Role of Mitochondria and the Effect of Mood Stabilizers on Mitochondrial Function. Physiol Res 2019; 68:S3-S15. [DOI: 10.33549/physiolres.934324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondria primarily serve as source of cellular energy through the Krebs cycle and β-oxidation to generate substrates for oxidative phosphorylation. Redox reactions are used to transfer electrons through a gradient to their final acceptor, oxygen, and to pump hydrogen protons into the intermembrane space. Then, ATP synthase uses the electrochemical gradient to generate adenosine triphosphate (ATP). During these processes, reactive oxygen species (ROS) are generated. ROS are highly reactive molecules with important physiological functions in cellular signaling. Mitochondria play a crucial role in intracellular calcium homeostasis and serve as transient calcium stores. High levels of both, ROS and free cytosolic calcium, can damage mitochondrial and cellular structures and trigger apoptosis. Impaired mitochondrial function has been described in many psychiatric diseases, including mood disorders, in terms of lowered mitochondrial membrane potential, suppressed ATP formation, imbalanced Ca2+ levels and increased ROS levels. In vitro models have indicated that mood stabilizers affect mitochondrial respiratory chain complexes, ROS production, ATP formation, Ca2+ buffering and the antioxidant system. Most studies support the hypothesis that mitochondrial dysfunction is a primary feature of mood disorders. The precise mechanism of action of mood stabilizers remains unknown, but new mitochondrial targets have been proposed for use as mood stabilizers and mitochondrial biomarkers in the evaluation of therapy effectiveness.
Collapse
Affiliation(s)
- M. ĽUPTÁK
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | |
Collapse
|
374
|
Wong HTC, Zhang Q, Beirl AJ, Petralia RS, Wang YX, Kindt K. Synaptic mitochondria regulate hair-cell synapse size and function. eLife 2019; 8:e48914. [PMID: 31609202 PMCID: PMC6879205 DOI: 10.7554/elife.48914] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory hair cells in the ear utilize specialized ribbon synapses. These synapses are defined by electron-dense presynaptic structures called ribbons, composed primarily of the structural protein Ribeye. Previous work has shown that voltage-gated influx of Ca2+ through CaV1.3 channels is critical for hair-cell synapse function and can impede ribbon formation. We show that in mature zebrafish hair cells, evoked presynaptic-Ca2+ influx through CaV1.3 channels initiates mitochondrial-Ca2+ (mito-Ca2+) uptake adjacent to ribbons. Block of mito-Ca2+ uptake in mature cells depresses presynaptic-Ca2+ influx and impacts synapse integrity. In developing zebrafish hair cells, mito-Ca2+ uptake coincides with spontaneous rises in presynaptic-Ca2+ influx. Spontaneous mito-Ca2+ loading lowers cellular NAD+/NADH redox and downregulates ribbon size. Direct application of NAD+ or NADH increases or decreases ribbon size respectively, possibly acting through the NAD(H)-binding domain on Ribeye. Our results present a mechanism where presynaptic- and mito-Ca2+ couple to confer proper presynaptic function and formation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Genetically Modified
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Cell Size
- Embryo, Nonmammalian
- Evoked Potentials, Auditory/physiology
- Eye Proteins/chemistry
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/metabolism
- Isradipine/pharmacology
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- NAD/metabolism
- Oxidation-Reduction
- Protein Binding
- Protein Interaction Domains and Motifs
- Ruthenium Compounds/pharmacology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission
- Zebrafish
- Zebrafish Proteins/agonists
- Zebrafish Proteins/antagonists & inhibitors
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Hiu-tung C Wong
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
- National Institutes of Health-Johns Hopkins University Graduate Partnership ProgramNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Qiuxiang Zhang
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ronald S Petralia
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Ya-Xian Wang
- Advanced Imaging CoreNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Katie Kindt
- Section on Sensory Cell Development and FunctionNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
375
|
Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, Bruce JE, Busija DW, Dikalov S, Dorn GW, Galis ZS, Gottlieb RA, Kelly DP, Kitsis RN, Kohr MJ, Levy D, Lewandowski ED, McClung JM, Mochly-Rosen D, O’Brien KD, O’Rourke B, Park JY, Ping P, Sack MN, Sheu SS, Shi Y, Shiva S, Wallace DC, Weiss RG, Vernon HJ, Wong R, Longacre LS. Unlocking the Secrets of Mitochondria in the Cardiovascular System: Path to a Cure in Heart Failure—A Report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 2019; 140:1205-1216. [PMID: 31769940 PMCID: PMC6880654 DOI: 10.1161/circulationaha.119.040551] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.
Collapse
Affiliation(s)
- Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine,, University of Washington, Seattle, WA
| | | | - Zoltan Arany
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Scott W. Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - David W. Busija
- Department of Pharmacology, Tulane University, New Orleans, LA
| | - Sergey Dikalov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University, St. Louis, MO
| | - Zorina S. Galis
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Daniel P. Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N. Kitsis
- Department of Medicine, Department of Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD
| | - Daniel Levy
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | | | - Brian O’Rourke
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Joon-Young Park
- Department of Kinesiology, Temple University, Philadelphia, PA
| | - Peipei Ping
- Department of Physiology and Department of Medicine, University of California, Los Angeles
| | - Michael N. Sack
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Yang Shi
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Robert G. Weiss
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Hilary J. Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Renee Wong
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | |
Collapse
|
376
|
Jiang WY, Huo JY, Chen C, Chen R, Ge TT, Chang Q, Hu JW, Geng J, Jiang ZX, Shan QJ. Renal denervation ameliorates post-infarction cardiac remodeling in rats through dual regulation of oxidative stress in the heart and brain. Biomed Pharmacother 2019; 118:109243. [DOI: 10.1016/j.biopha.2019.109243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 01/06/2023] Open
|
377
|
Tarasova NV, Vishnyakova PA, Logashina YA, Elchaninov AV. Mitochondrial Calcium Uniporter Structure and Function in Different Types of Muscle Tissues in Health and Disease. Int J Mol Sci 2019; 20:4823. [PMID: 31569359 PMCID: PMC6801532 DOI: 10.3390/ijms20194823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell. Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+ currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement into normal and pathological molecular pathways started from the moment of discovery of its molecular components. A crucial role of mtCU in the control of these pathways is now recognized in both health and disease. In particular, impairments of mtCU function have been demonstrated for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in health and disease.
Collapse
Affiliation(s)
- Nadezhda V Tarasova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Yulia A Logashina
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2, Moscow 119991, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russia.
| | - Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| |
Collapse
|
378
|
Chen Y, Beng H, Su H, Han F, Fan Z, Lv N, Jovanović A, Tan W. Isosteviol prevents the development of isoprenaline‑induced myocardial hypertrophy. Int J Mol Med 2019; 44:1932-1942. [PMID: 31545484 PMCID: PMC6777692 DOI: 10.3892/ijmm.2019.4342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 11/06/2022] Open
Abstract
Isosteviol sodium (STVNa), which is a derivate of the natural sweet-tasting glycoside stevioside, has recently been developed and it has been determined that this compound exhibits neuro- and cardio-protective properties. In the current study, whether STVNa interferes with the development of cardiac hypertrophy, which is induced by isoprenaline (Iso), was investigated in an experimental rat model. Rats were treated with a vehicle (0.9% NaCl; control), isoprenaline (Iso; 5 mg/kg) or Iso (5 mg/kg) with STVNa (4 mg/kg; Iso + STVNa). Cardiomyocytes were isolated using enzymatic dissociation and were treated with 5 µM Iso for 24 h and co-treated with 5 µM STVNa. Brain natriuretic peptide (BNP) mRNA expression was determined using PCR analysis. Cell surface area, intracellular reactive oxygen species (ROS), mitochondrial transmembrane potential (ΔΨm), cytoplasmic Ca2+ and Ca2+ and contractile function were examined using a laser scanning confocal microscope. The current study demonstrated that STVNa inhibited Iso-induced cardiac hypertrophy by inhibiting cardiomyocyte size. STVNa significantly reduced cell surface area and decreased BNP mRNA expression in ventricular cardiomyocyte Iso-induced hypertrophy. STVNa was also revealed to restore ΔΨm and reduce ROS generation and intracellular Ca2+ concentration when compared with the Iso-treated group. Additionally, STVNa preserved Ca2+ transients in hypertrophic cardiomyocytes. In conclusion, the present study demonstrated that STVNa protects against Iso-induced myocardial hypertrophy by reducing oxidative stress, restoring ΔΨm and maintaining Ca2+ homeostasis.
Collapse
Affiliation(s)
- Yaoxu Chen
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Huimin Beng
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Hao Su
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Fuping Han
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Zhuo Fan
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Nanying Lv
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY‑1700 Nicosia, Cyprus
| | - Wen Tan
- Department of Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510641, P.R. China
| |
Collapse
|
379
|
Fisher JJ, Bartho LA, Perkins AV, Holland OJ. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy. Clin Exp Pharmacol Physiol 2019; 47:176-184. [PMID: 31469913 DOI: 10.1111/1440-1681.13172] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are central to cell function. The placenta forms the interface between maternal and fetal systems, and placental mitochondria have critical roles in maintaining pregnancy. The placenta is unusual in having two adjacent cell layers (cytotrophoblasts and the syncytiotrophoblast) with vastly different mitochondria that have distinct functions in health and disease. Mitochondria both produce the majority of reactive oxygen species (ROS), and are sensitive to ROS. ROS are important in allowing cells to sense their environment through mitochondrial-centred signalling, and this signalling also helps cells/tissues adapt to changing environments. However, excessive ROS are damaging, and increased ROS levels are associated with pregnancy complications, including the important disorders preeclampsia and gestational diabetes mellitus. Here we review the function of placental mitochondria in healthy pregnancy, and also in pregnancy complications. Placental mitochondria are critical to cell function, and mitochondrial damage is a feature of pregnancy complications. However, the responsiveness of mitochondria to ROS signalling may be central to placental adaptations that mitigate damage, and placental mitochondria are an attractive target for the development of therapeutics to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Joshua J Fisher
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Lucy A Bartho
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
380
|
Filippini A, D'Amore A, D'Alessio A. Calcium Mobilization in Endothelial Cell Functions. Int J Mol Sci 2019; 20:ijms20184525. [PMID: 31547344 PMCID: PMC6769945 DOI: 10.3390/ijms20184525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer that lines all blood vessels from the larger arteries and veins to the smallest capillaries, including the lymphatic vessels. Despite the histological classification of endothelium of a simple epithelium and its homogeneous morphological appearance throughout the vascular system, ECs, instead, are extremely heterogeneous both structurally and functionally. The different arrangement of cell junctions between ECs and the local organization of the basal membrane generate different type of endothelium with different permeability features and functions. Continuous, fenestrated and discontinuous endothelia are distributed based on the specific function carried out by the organs. It is thought that a large number ECs functions and their responses to extracellular cues depend on changes in intracellular concentrations of calcium ion ([Ca2+]i). The extremely complex calcium machinery includes plasma membrane bound channels as well as intracellular receptors distributed in distinct cytosolic compartments that act jointly to maintain a physiological [Ca2+]i, which is crucial for triggering many cellular mechanisms. Here, we first survey the overall notions related to intracellular Ca2+ mobilization and later highlight the involvement of this second messenger in crucial ECs functions with the aim at stimulating further investigation that link Ca2+ mobilization to ECs in health and disease.
Collapse
Affiliation(s)
- Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Antonella D'Amore
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "Agostino Gemelli", IRCCS, 00168 Rome, Italy.
| |
Collapse
|
381
|
Pan S, Leng J, Deng X, Ruan H, Zhou L, Jamal M, Xiao R, Xiong J, Yin Q, Wu Y, Wang M, Yuan W, Shao L, Zhang Q. Nicotinamide increases the sensitivity of chronic myeloid leukemia cells to doxorubicin via the inhibition of SIRT1. J Cell Biochem 2019; 121:574-586. [PMID: 31407410 DOI: 10.1002/jcb.29303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
The NAD-dependent deacetylase Sirtuin 1 (SIRT1) plays a vital role in leukemogenesis. Nicotinamide (NAM) is the principal NAD+ precursor and a noncompetitive inhibitor of SIRT1. In our study, we showed that NAM enhanced the sensitivity of chronic myeloid leukemia (CML) to doxorubicin (DOX) via SIRT1. We found that SIRT1 high expression in CML patients was associated with disease progression and drug resistance. Exogenous NAM efficiently repressed the deacetylation activity of SIRT1 and induced the apoptosis of DOX-resistant K562 cells (K562R) in a dose-dependent manner. Notably, the combination of NAM and DOX significantly inhibited tumor cell proliferation and induced cell apoptosis. The knockdown of SIRT1 in K562R cells enhanced NAM+DOX-induced apoptosis. SIRT1 rescue in K562R reduced the NAM+DOX-induced apoptosis. Mechanistically, the combinatory treatment significantly increased the cleavage of caspase-3 and PARP in K562R in vitro and in vivo. These results suggest the potential role of NAM in increasing the sensitivity of CML to DOX via the inhibition of SIRT1.
Collapse
Affiliation(s)
- Shan Pan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinzhou Deng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Honggang Ruan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhou
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ruijing Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jie Xiong
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yingjie Wu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meng Wang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wen Yuan
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
382
|
Zhao Q, Li H, Chang L, Wei C, Yin Y, Bei H, Wang Z, Liang J, Wu Y. Qiliqiangxin Attenuates Oxidative Stress-Induced Mitochondrion-Dependent Apoptosis in Cardiomyocytes via PI3K/AKT/GSK3β Signaling Pathway. Biol Pharm Bull 2019; 42:1310-1321. [DOI: 10.1248/bpb.b19-00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qifei Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
| | - Hongrong Li
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
| | - Liping Chang
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
| | - Cong Wei
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease)
| | - Yujie Yin
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| | - Hongying Bei
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| | - Zhixin Wang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease)
| | - Junqing Liang
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei Yiling Pharmaceutical Research Institute
- Key Laboratory of Hebei Province for Collateral Diseases
| | - Yiling Wu
- Department of Integrated Traditional Chinese and Western Medicine, Hebei Medical University
- Key Disciplines of State Administration of TCM for Collateral Disease, Affiliated Yiling Hospital of Hebei Medical University
| |
Collapse
|
383
|
Li J, Zheng X, Ma X, Xu X, Du Y, Lv Q, Li X, Wu Y, Sun H, Yu L, Zhang Z. Melatonin protects against chromium(VI)-induced cardiac injury via activating the AMPK/Nrf2 pathway. J Inorg Biochem 2019; 197:110698. [PMID: 31054488 DOI: 10.1016/j.jinorgbio.2019.110698] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) threatens health by causing oxidative stress. However, effective therapy for cardiac damage mediated by potassium dichromate (K2Cr2O7) still has not been defined. Melatonin (MT) possesses a number of biological activities. Our study was performed to explore the effect and mechanism of MT on Cr(VI)-induced cardiac damage by conducting both in vitro and in vivo studies. Twenty eight male Wistar rats were randomly assigned to four groups: control, MT (20 mg/kg subcutaneously), K2Cr2O7 (4 mg/kg intraperitoneally), and K2Cr2O7 + MT. We measured biomarkers of oxidative stress and cardiac function, and performed histopathological analysis, assay of terminal deoxynucleotidyl transferase-mediated deoxyuracil nucleoside triphosphate nick end labeling and protein levels, and the viability assay of cultured cardiomyocytes in vitro. Our results showed that MT ameliorated K2Cr2O7-induced oxidative stress, apoptosis, and the release of inflammatory mediators in the rat heart. MT also promoted adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, upregulated expression of proteins that nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1, and nicotinamide adenine dinucleotide phosphatase: quinone-acceptor 1, and inhibited nuclear factor kappa B in the heart of rats exposed to K2Cr2O7. Furthermore, MT increased B-cell lymphoma gene 2 (Bcl-2) and B-cell lymphoma extra large protein levels and decreased cleaved caspase 3, P53, and Bcl-2-associated X protein levels. Furthermore, the experiment in vitro showed that MT increased the cells viability and protein levels of Nrf2 and phosphorylated-AMPK in H9C2 cells treated with K2Cr2O7. Collectively, our results demonstrate that MT protects against Cr-induced cardiac damage via activating the AMPK/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xiangyu Ma
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xinyue Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yu Du
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Qingjie Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xuerui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Yuan Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Hongxing Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Lanjie Yu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
384
|
Zadorozhnyi I, Hlukhova H, Kutovyi Y, Handziuk V, Naumova N, Offenhaeusser A, Vitusevich S. Towards pharmacological treatment screening of cardiomyocyte cells using Si nanowire FETs. Biosens Bioelectron 2019; 137:229-235. [PMID: 31121460 DOI: 10.1016/j.bios.2019.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023]
Abstract
Silicon nanowires (Si NWs) are the most promising candidates for recording biological signals due to improved interfacing properties with cells and the possibility of high-speed transduction of biochemical signals into detectable electrical responses. The recording of extracellular action potentials (APs) from cardiac cells is important for fundamental studies of AP propagation features reflecting cell activity and the influence of pharmacological substances on the signal. We applied a novel approach of using fabricated Si NW field-effect transistors (FETs) in combination with fluorescent marker techniques to evaluate the functional activity of cardiac cells. Extracellular AP signal recording from HL-1 cardiomyocytes was demonstrated. This method was supplemented by studies of the pharmacological effects of stimulations using noradrenaline (NorA) as a modulator of functional activity on a cellular and subcellular levels, which were also tested using fluorescent marker techniques. The role of calcium alteration and membrane potential were revealed using Fluo-4 AM and tetramethylrhodamine, methyl ester, perchlorate (TMRM) fluorescent dyes. In addition, chemical treatment with sodium dodecyl sulfate (SDS) solutions was tested. The results obtained demonstrate positive prospects for AP monitoring in different treatments for studies related to a wide range of myocardial diseases using lab-on-chip technology.
Collapse
Affiliation(s)
- Ihor Zadorozhnyi
- Bioelectronics (ICS-8), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Hanna Hlukhova
- Bioelectronics (ICS-8), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Yurii Kutovyi
- Bioelectronics (ICS-8), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Volodymyr Handziuk
- Bioelectronics (ICS-8), Forschungszentrum Juelich, 52425, Juelich, Germany
| | - Nataliia Naumova
- Bioelectronics (ICS-8), Forschungszentrum Juelich, 52425, Juelich, Germany
| | | | | |
Collapse
|
385
|
Crosstalk between Calcium and ROS in Pathophysiological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9324018. [PMID: 31178978 PMCID: PMC6507098 DOI: 10.1155/2019/9324018] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Calcium ions are highly versatile intracellular signals that regulate many cellular processes. The key to achieving this pleiotropic role is the spatiotemporal control of calcium concentration evoked by an extensive molecular repertoire of signalling components. Among these, reactive oxygen species (ROS) signalling, together with calcium signalling, plays a crucial role in controlling several physiopathological events. Although initially considered detrimental by-products of aerobic metabolism, it is now widely accepted that ROS, in subtoxic levels, act as signalling molecules. However, dysfunctions in the mechanisms controlling the physiological ROS concentration affect cellular homeostasis, leading to the pathogenesis of various disorders.
Collapse
|
386
|
Trautsch I, Heta E, Soong PL, Levent E, Nikolaev VO, Bogeski I, Katschinski DM, Mayr M, Zimmermann WH. Optogenetic Monitoring of the Glutathione Redox State in Engineered Human Myocardium. Front Physiol 2019; 10:272. [PMID: 31024328 PMCID: PMC6460052 DOI: 10.3389/fphys.2019.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Redox signaling affects all aspects of cardiac function and homeostasis. With the development of genetically encoded fluorescent redox sensors, novel tools for the optogenetic investigation of redox signaling have emerged. Here, we sought to develop a human heart muscle model for in-tissue imaging of redox alterations. For this, we made use of (1) the genetically-encoded Grx1-roGFP2 sensor, which reports changes in cellular glutathione redox status (GSH/GSSG), (2) human embryonic stem cells (HES2), and (3) the engineered heart muscle (EHM) technology. We first generated HES2 lines expressing Grx1-roGFP2 in cytosol or mitochondria compartments by TALEN-guided genomic integration. Grx1-roGFP2 sensor localization and function was verified by fluorescence imaging. Grx1-roGFP2 HES2 were then subjected to directed differentiation to obtain high purity cardiomyocyte populations. Despite being able to report glutathione redox potential from cytosol and mitochondria, we observed dysfunctional sarcomerogenesis in Grx1-roGFP2 expressing cardiomyocytes. Conversely, lentiviral transduction of Grx1-roGFP2 in already differentiated HES2-cardiomyocytes and human foreskin fibroblast was possible, without compromising cell function as determined in EHM from defined Grx1-roGFP2-expressing cardiomyocyte and fibroblast populations. Finally, cell-type specific GSH/GSSG imaging was demonstrated in EHM. Collectively, our observations suggests a crucial role for redox signaling in cardiomyocyte differentiation and provide a solution as to how this apparent limitation can be overcome to enable cell-type specific GSH/GSSG imaging in a human heart muscle context.
Collapse
Affiliation(s)
- Irina Trautsch
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Eriona Heta
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Poh Loong Soong
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Elif Levent
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute for Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ivan Bogeski
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute for Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology & Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
387
|
Fiedler LR, Chapman K, Xie M, Maifoshie E, Jenkins M, Golforoush PA, Bellahcene M, Noseda M, Faust D, Jarvis A, Newton G, Paiva MA, Harada M, Stuckey DJ, Song W, Habib J, Narasimhan P, Aqil R, Sanmugalingam D, Yan R, Pavanello L, Sano M, Wang SC, Sampson RD, Kanayaganam S, Taffet GE, Michael LH, Entman ML, Tan TH, Harding SE, Low CMR, Tralau-Stewart C, Perrior T, Schneider MD. MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct Size In Vivo. Cell Stem Cell 2019; 24:579-591.e12. [PMID: 30853557 PMCID: PMC6458995 DOI: 10.1016/j.stem.2019.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Heart disease is a paramount cause of global death and disability. Although cardiomyocyte death plays a causal role and its suppression would be logical, no clinical counter-measures target the responsible intracellular pathways. Therapeutic progress has been hampered by lack of preclinical human validation. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is activated in failing human hearts and relevant rodent models. Using human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) and MAP4K4 gene silencing, we demonstrate that death induced by oxidative stress requires MAP4K4. Consequently, we devised a small-molecule inhibitor, DMX-5804, that rescues cell survival, mitochondrial function, and calcium cycling in hiPSC-CMs. As proof of principle that drug discovery in hiPSC-CMs may predict efficacy in vivo, DMX-5804 reduces ischemia-reperfusion injury in mice by more than 50%. We implicate MAP4K4 as a well-posed target toward suppressing human cardiac cell death and highlight the utility of hiPSC-CMs in drug discovery to enhance cardiomyocyte survival.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Kathryn Chapman
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK; Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Min Xie
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Micaela Jenkins
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Pelin Arabacilar Golforoush
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mohamed Bellahcene
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Dörte Faust
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ashley Jarvis
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Gary Newton
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mutsuo Harada
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Daniel J Stuckey
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Weihua Song
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Josef Habib
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Priyanka Narasimhan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Rehan Aqil
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Devika Sanmugalingam
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Robert Yan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Lorenzo Pavanello
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Motoaki Sano
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sam C Wang
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Sampson
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sunthar Kanayaganam
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - George E Taffet
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lloyd H Michael
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark L Entman
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sian E Harding
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Caroline M R Low
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Trevor Perrior
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
388
|
Meijles DN, Zoumpoulidou G, Markou T, Rostron KA, Patel R, Lay K, Handa BS, Wong B, Sugden PH, Clerk A. The cardiomyocyte "redox rheostat": Redox signalling via the AMPK-mTOR axis and regulation of gene and protein expression balancing survival and death. J Mol Cell Cardiol 2019; 129:118-129. [PMID: 30771309 PMCID: PMC6497135 DOI: 10.1016/j.yjmcc.2019.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/16/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play a key role in development of heart failure but, at a cellular level, their effects range from cytoprotection to induction of cell death. Understanding how this is regulated is crucial to develop novel strategies to ameliorate only the detrimental effects. Here, we revisited the fundamental hypothesis that the level of ROS per se is a key factor in the cellular response by applying different concentrations of H2O2 to cardiomyocytes. High concentrations rapidly reduced intracellular ATP and inhibited protein synthesis. This was associated with activation of AMPK which phosphorylated and inhibited Raptor, a crucial component of mTOR complex-1 that regulates protein synthesis. Inhibition of protein synthesis by high concentrations of H2O2 prevents synthesis of immediate early gene products required for downstream gene expression, and such mRNAs (many encoding proteins required to deal with oxidant stress) were only induced by lower concentrations. Lower concentrations of H2O2 promoted mTOR phosphorylation, associated with differential recruitment of some mRNAs to the polysomes for translation. Some of the upregulated genes induced by low H2O2 levels are cytoprotective. We identified p21Cip1/WAF1 as one such protein, and preventing its upregulation enhanced the rate of cardiomyocyte apoptosis. The data support the concept of a "redox rheostat" in which different degrees of ROS influence cell energetics and intracellular signalling pathways to regulate mRNA and protein expression. This sliding scale determines cell fate, modulating survival vs death.
Collapse
Affiliation(s)
- Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0RE, UK; School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK.
| | - Georgia Zoumpoulidou
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Kerry A Rostron
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK
| | - Rishi Patel
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Kenneth Lay
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Balvinder S Handa
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Bethany Wong
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK; National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Flowers Building, Imperial College, SW7 2AZ, UK and Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
389
|
Nickel AG, Kohlhaas M, Bertero E, Wilhelm D, Wagner M, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C. CaMKII does not control mitochondrial Ca 2+ uptake in cardiac myocytes. J Physiol 2019; 598:1361-1376. [PMID: 30770570 DOI: 10.1113/jp276766] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during β-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during β-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to β-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.
Collapse
Affiliation(s)
- Alexander G Nickel
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Daniel Wilhelm
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Wagner
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany.,Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael M Kreusser
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
390
|
Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, Ramu V, Bhogal S, Kumar G, Shanmugasundaram M, Paul TK. Diabetic cardiomyopathy - A comprehensive updated review. Prog Cardiovasc Dis 2019; 62:315-326. [PMID: 30922976 DOI: 10.1016/j.pcad.2019.03.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Diabetes causes cardiomyopathy and increases the risk of heart failure independent of hypertension and coronary heart disease. This condition called "Diabetic Cardiomyopathy" (DCM) is becoming a well- known clinical entity. Recently, there has been substantial research exploring its molecular mechanisms, structural and functional changes, and possible development of therapeutic approaches for the prevention and treatment of DCM. This review summarizes the recent advancements to better understand fundamental molecular abnormalities that promote this cardiomyopathy and novel therapies for future research. Additionally, different diagnostic modalities, up to date screening tests to guide clinicians with early diagnosis and available current treatment options has been outlined.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | | | - Muhammad Khalid
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic, New Orleans, LA, USA
| | - Hector Ventura
- Department of Cardiology, Ochsner Clinic, New Orleans, LA, USA
| | - Debabrata Mukherjee
- Division of Cardiology, Department of Internal Medicine, Texas Tech University, TX, USA
| | - Vijay Ramu
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Sukhdeep Bhogal
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA
| | - Gautam Kumar
- Emory University School of Medicine, Atlanta VA Medical Center, Atlanta, GA, USA
| | | | - Timir K Paul
- Department of Internal Medicine, Division of Cardiology, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
391
|
Cao JL, Adaniya SM, Cypress MW, Suzuki Y, Kusakari Y, Jhun BS, O-Uchi J. Role of mitochondrial Ca 2+ homeostasis in cardiac muscles. Arch Biochem Biophys 2019; 663:276-287. [PMID: 30684463 PMCID: PMC6469710 DOI: 10.1016/j.abb.2019.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Recent discoveries of the molecular identity of mitochondrial Ca2+ influx/efflux mechanisms have placed mitochondrial Ca2+ transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca2+. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca2+ handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart. Though mitochondrial Ca2+ has been proposed as one of the most crucial secondary messengers in controlling a cardiomyocyte's life and death, the detailed mechanisms of how mitochondrial Ca2+ regulates physiological mitochondrial and cellular functions in cardiac muscles, and how disorders of this mechanism lead to cardiac diseases remain unclear. In this review, we summarize the current controversies and discrepancies regarding cardiac mitochondrial Ca2+ signaling that remain in the field to provide a platform for future discussions and experiments to help close this gap.
Collapse
Affiliation(s)
- Jessica L Cao
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephanie M Adaniya
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI, USA; Department of Medicine, Division of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI, USA; Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Cypress
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yuta Suzuki
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Bong Sook Jhun
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA
| | - Jin O-Uchi
- Lillehei Heart Institute, Department of Medicine, Cardiovascular Division, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
392
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
393
|
Gibhardt CS, Vultur A, Bogeski I. Measuring Calcium and ROS by Genetically Encoded Protein Sensors and Fluorescent Dyes. Methods Mol Biol 2019; 1925:183-196. [PMID: 30674028 DOI: 10.1007/978-1-4939-9018-4_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative modifications of cellular building blocks such as proteins, lipids, and DNA have a major impact on cell behavior, fate, and clinical outcome. Reactive oxygen species (ROS) are important factors that influence these redox processes. Calcium ion (Ca2+) dynamics and signals are also essential regulators of key cellular processes. Therefore, the combined and precise monitoring of ROS and Ca2+ in single cells, with a high spatial and temporal resolution and in physiological environments, is essential to better understand their functional impact. Here, we describe protocols to detect one of the most prominent ROS (hydrogen peroxide, H2O2) using genetically encoded protein sensors and fluorescent dyes. We also provide guidelines on how to simultaneously detect Ca2+ and H2O2 and how to examine the influence of Ca2+ signals on cellular ROS production and vice versa.
Collapse
Affiliation(s)
- Christine S Gibhardt
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Adina Vultur
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
394
|
Veloso CD, Belew GD, Ferreira LL, Grilo LF, Jones JG, Portincasa P, Sardão VA, Oliveira PJ. A Mitochondrial Approach to Cardiovascular Risk and Disease. Curr Pharm Des 2019; 25:3175-3194. [PMID: 31470786 DOI: 10.2174/1389203720666190830163735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are a leading risk factor for mortality worldwide and the number of CVDs victims is predicted to rise through 2030. While several external parameters (genetic, behavioral, environmental and physiological) contribute to cardiovascular morbidity and mortality; intrinsic metabolic and functional determinants such as insulin resistance, hyperglycemia, inflammation, high blood pressure and dyslipidemia are considered to be dominant factors. METHODS Pubmed searches were performed using different keywords related with mitochondria and cardiovascular disease and risk. In vitro, animal and human results were extracted from the hits obtained. RESULTS High cardiac energy demand is sustained by mitochondrial ATP production, and abnormal mitochondrial function has been associated with several lifestyle- and aging-related pathologies in the developed world such as diabetes, non-alcoholic fatty liver disease (NAFLD) and kidney diseases, that in turn can lead to cardiac injury. In order to delay cardiac mitochondrial dysfunction in the context of cardiovascular risk, regular physical activity has been shown to improve mitochondrial parameters and myocardial tolerance to ischemia-reperfusion (IR). Furthermore, pharmacological interventions can prevent the risk of CVDs. Therapeutic agents that can target mitochondria, decreasing ROS production and improve its function have been intensively researched. One example is the mitochondria-targeted antioxidant MitoQ10, which already showed beneficial effects in hypertensive rat models. Carvedilol or antidiabetic drugs also showed protective effects by preventing cardiac mitochondrial oxidative damage. CONCLUSION This review highlights the role of mitochondrial dysfunction in CVDs, also show-casing several approaches that act by improving mitochondrial function in the heart, contributing to decrease some of the risk factors associated with CVDs.
Collapse
Affiliation(s)
- Caroline D Veloso
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Getachew D Belew
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luciana L Ferreira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| |
Collapse
|
395
|
Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca 2+ Content Regulates Sarcoplasmic Reticulum Ca 2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018; 9:1831. [PMID: 30622478 PMCID: PMC6308295 DOI: 10.3389/fphys.2018.01831] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Richard T. Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
| | - Jin O-Uchi
- Lillehei Heart Institute University of Minnesota, Cancer and Cardiovascular Research Building, Minneapolis, MN, United States
| | - György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| |
Collapse
|
396
|
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39:4243-4254. [PMID: 30295797 PMCID: PMC6302261 DOI: 10.1093/eurheartj/ehy596] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/21/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Heidelberg, Germany
| | - Frank R Heinzel
- Department of Cardiology, Charité—Universitätsmedizin, Berlin, Germany
| | - Jean-Sebastien Hulot
- Paris Cardiovascular Research Center PARCC, INSERM UMR970, CIC 1418, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Paris, France
- AP-HP, Hôpital Européen Georges-Pompidou, Paris, France
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Walter J Paulus
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Rossignol
- Inserm, Centre d’Investigations Cliniques—Plurithématique 14-33, Inserm U1116, CHRU Nancy, Université de Lorraine, and F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Heinrich Taegtmeyer
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Antoni Bayes-Genis
- Heart Failure Unit and Cardiology Service, Hospital Universitari Germans Trias i Pujol, CIBERCV, Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Heiko Bugger
- Cardiology and Angiology, Heart Center, University of Freiburg, Freiburg, Germany
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Francesco Cosentino
- Department of Medicine Solna, Cardiology Unit, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | | | - Alessandra Dei Cas
- Department of Medicine and Surgery, Endocrinology and Metabolism, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona and CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Martin Huelsmann
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Guido Iaccarino
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Ida Gjervold Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Cardiovascular Research Centre, Royal Brompton Hospital; National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Giuseppe Rosano
- Cardiovascular Clinical Academic Group, St George's Hospitals NHS Trust University of London, London, UK
- IRCCS San Raffaele Roma, Rome, Italy
| | - Bart Staels
- University of Lille—EGID, Lille, France
- Inserm, U1011, Lille, France
- Institut Pasteur de Lille, Lille, France
- University Hospital CHU Lille, Lille, France
| | - Linda W van Laake
- Department of Cardiology, Heart and Lungs Division, and Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Dimitrios Farmakis
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Zurich, Switzerland
| | - Petar Seferovic
- Department of Cardiology, Belgrade University Medical Centre, Belgrade, Serbia
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Belgium
| |
Collapse
|
397
|
Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic Biol Med 2018; 129:155-168. [PMID: 30227272 PMCID: PMC6309415 DOI: 10.1016/j.freeradbiomed.2018.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction characterized by impaired bioenergetics, oxidative stress and aldehydic load is a hallmark of heart failure. Recently, different research groups have provided evidence that selective activation of mitochondrial detoxifying systems that counteract excessive accumulation of ROS, RNS and reactive aldehydes is sufficient to stop cardiac degeneration upon chronic stress, such as heart failure. Therefore, pharmacological and non-pharmacological approaches targeting mitochondria detoxification may play a critical role in the prevention or treatment of heart failure. In this review we discuss the most recent findings on the central role of mitochondrial dysfunction, oxidative stress and aldehydic load in heart failure, highlighting the most recent preclinical and clinical studies using mitochondria-targeted molecules and exercise training as effective tools against heart failure.
Collapse
Affiliation(s)
- Ligia Akemi Kiyuna
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, USA
| | | |
Collapse
|
398
|
Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW, Coronel R, Weber NC, Zuurbier CJ. Direct Cardiac Actions of Sodium Glucose Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart Failure in Diabetic Patients. Front Physiol 2018; 9:1575. [PMID: 30519189 PMCID: PMC6259641 DOI: 10.3389/fphys.2018.01575] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2i) are the first antidiabetic compounds that effectively reduce heart failure hospitalization and cardiovascular death in type 2 diabetics. Being explicitly designed to inhibit SGLT2 in the kidney, SGLT2i have lately been investigated for their off-target cardiac actions. Here, we review the direct effects of SGLT2i Empagliflozin (Empa), Dapagliflozin (Dapa), and Canagliflozin (Cana) on various cardiac cell types and cardiac function, and how these may contribute to the cardiovascular benefits observed in large clinical trials. SGLT2i impaired the Na+/H+ exchanger 1 (NHE-1), reduced cytosolic [Ca2+] and [Na+] and increased mitochondrial [Ca2+] in healthy cardiomyocytes. Empa, one of the best studied SGLT2i, maintained cell viability and ATP content following hypoxia/reoxygenation in cardiomyocytes and endothelial cells. SGLT2i recovered vasoreactivity of hyperglycemic and TNF-α-stimulated aortic rings and of hyperglycemic endothelial cells. Anti-inflammatory actions of Cana in IL-1β-treated HUVEC and of Dapa in LPS-treated cardiofibroblast were mediated by AMPK activation. In isolated mouse hearts, Empa and Cana, but not Dapa, induced vasodilation. In ischemia-reperfusion studies of the isolated heart, Empa delayed contracture development during ischemia and increased mitochondrial respiration post-ischemia. Direct cardiac effects of SGLT2i target well-known drivers of diabetes and heart failure (elevated cardiac cytosolic [Ca2+] and [Na+], activated NHE-1, elevated inflammation, impaired vasorelaxation, and reduced AMPK activity). These cardiac effects may contribute to the large beneficial clinical effects of these antidiabetic drugs.
Collapse
Affiliation(s)
- Laween Uthman
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Antonius Baartscheer
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Cees A Schumacher
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Jan W T Fiolet
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Marius C Kuschma
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Ruben Coronel
- Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, Netherlands
| |
Collapse
|
399
|
Bertero E, Maack C, O'Rourke B. Mitochondrial transplantation in humans: "magical" cure or cause for concern? J Clin Invest 2018; 128:5191-5194. [PMID: 30371508 DOI: 10.1172/jci124944] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Edoardo Bertero
- Comprehensive Heart Failure Center, University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, University Clinic Würzburg, Germany
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
400
|
Guidarelli A, Fiorani M, Cerioni L, Cantoni O. Calcium signals between the ryanodine receptor- and mitochondria critically regulate the effects of arsenite on mitochondrial superoxide formation and on the ensuing survival vs apoptotic signaling. Redox Biol 2018; 20:285-295. [PMID: 30388683 PMCID: PMC6216081 DOI: 10.1016/j.redox.2018.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022] Open
Abstract
A low concentration of arsenite (6 h), selectively stimulating the intraluminal crosstalk between the inositol-1, 4, 5-triphosphate receptor and the ryanodine receptor (RyR), increased the mitochondrial transport of RyR-derived Ca2+ through the mitochondrial Ca2+ uniporter. This event was characterized in intact and permeabilized cells, and was shown to be critical for mitochondrial superoxide (mitoO2.-) formation. Inhibition of mitochondrial Ca2+ accumulation therefore prevented the effects of arsenite, in both the mitochondrial (e.g., cardiolipin oxidation) and extramitochondrial (e.g., DNA single- strand breakage) compartments, and suppressed the Nrf2/GSH survival signaling. The effects of arsenite on Ca2+ homeostasis and mitoO2.- formation were reversible, as determined after an additional 10 h incubation in fresh culture medium and by measuring long-term viability. A 16 h continuous exposure to arsenite instead produced a sustained increase in the cytosolic and mitochondrial Ca2+ concentrations, a further increased mitoO2.- formation and mitochondrial permeability transition. These events, followed by delayed apoptosis (48 h), were sensitive to treatments/manipulations preventing mitochondrial Ca2+ accumulation. Interestingly, cells remained viable under conditions in which the deregulated Ca2+ homeostasis was not accompanied by mitoO2.-formation. In conclusion, we report that the fraction of Ca2+ taken up by the mitochondria in response to arsenite derives from the RyR. Mitochondrial Ca2+ appears critical for mitoO2.- formation and for the triggering of both the cytoprotective and apoptotic signaling. The effects of arsenite were reversible, whereas its prolonged exposure caused a sustained increase in mitochondrial Ca2+ and mitoO2.- formation, and the prevalence of the apoptotic vs survival signaling.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Liana Cerioni
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, via Saffi 2, 61029 Urbino, PU, Italy.
| |
Collapse
|