351
|
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci 2020; 77:2771-2794. [PMID: 31965214 PMCID: PMC7223321 DOI: 10.1007/s00018-020-03454-6] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been extensively investigated for the treatment of various diseases. The therapeutic potential of MSCs is attributed to complex cellular and molecular mechanisms of action including differentiation into multiple cell lineages and regulation of immune responses via immunomodulation. The plasticity of MSCs in immunomodulation allow these cells to exert different immune effects depending on different diseases. Understanding the biology of MSCs and their role in treatment is critical to determine their potential for various therapeutic applications and for the development of MSC-based regenerative medicine. This review summarizes the recent progress of particular mechanisms underlying the tissue regenerative properties and immunomodulatory effects of MSCs. We focused on discussing the functional roles of paracrine activities, direct cell-cell contact, mitochondrial transfer, and extracellular vesicles related to MSC-mediated effects on immune cell responses, cell survival, and regeneration. This will provide an overview of the current research on the rapid development of MSC-based therapies.
Collapse
Affiliation(s)
- Xing-Liang Fan
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Yuelin Zhang
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Xin Li
- Department of Emergency, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road II, Guangzhou, 510080, People's Republic of China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, 510080, People's Republic of China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
352
|
Cheung TS, Bertolino GM, Giacomini C, Bornhäuser M, Dazzi F, Galleu A. Mesenchymal Stromal Cells for Graft Versus Host Disease: Mechanism-Based Biomarkers. Front Immunol 2020; 11:1338. [PMID: 32670295 PMCID: PMC7330053 DOI: 10.3389/fimmu.2020.01338] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The immunosuppressive activity of mesenchymal stromal cells (MSCs) in graft versus host disease (GvHD) is well-documented, but their therapeutic benefit is rather unpredictable. Prospective randomized clinical trials remain the only means to address MSC clinical efficacy. However, the imperfect understanding of MSC biological mechanisms has undermined patients' stratification and the successful design of clinical studies. Furthermore, although MSC efficacy seems to be dependent on patient-associated factors, the role of patients' signature to predict and/or monitor clinical outcomes remains poorly elucidated. The analysis of GvHD patient serum has identified a set of molecules that are associated with high mortality. However, despite their importance in defining GvHD severity, their role in predicting or monitoring response to MSCs has not been confirmed. A new perspective on the use of MSCs for GvHD has been prompted by the recent findings that MSCs are actively induced to undergo apoptosis by recipient cytotoxic cells and that this process is essential to initiate MSC-induced immunosuppression. This discovery has not only reconciled the conundrum between MSC efficacy and their lack of engraftment, but also highlighted the determinant role of the patient in promoting and delivering MSC immunosuppression. In this review we will revisit the extensive use of MSCs for the treatment of GvHD and will elaborate on the need that future clinical trials must depend on mechanistic approaches that facilitate the development of robust and consistent assays to stratify patients and monitor clinical outcomes.
Collapse
Affiliation(s)
- Tik Shing Cheung
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Giuliana Minani Bertolino
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Chiara Giacomini
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | | | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Antonio Galleu
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| |
Collapse
|
353
|
Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3 β and β-Catenin. Stem Cells Int 2020; 2020:2365814. [PMID: 32565825 PMCID: PMC7271209 DOI: 10.1155/2020/2365814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives To demonstrate the effect of Ginsenoside Rg1 on the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Subsequently, a rational mechanism for the detection of Rg1 which affects mesenchymal stem cell differentiation was explored. Methods Flow cytometry is used for cell identification. The differentiation ability of hBM-MSCs was studied by differentiation culture. SA-β-gal staining is used to detect cell senescence levels. Western blot and immunofluorescence were used to determine protein expression levels. RT-qPCR is used to detect mRNA expression levels. Results Rg1 regulates the differentiation of hBM-MSCs. Differentiation culture analysis showed that Rg1 promoted cells to osteogenesis and chondrogenesis. Western blot results showed that Rg1 regulated the overactivation of the β-catenin signaling pathway and significantly adjusted the phosphorylation of GSK-3β. GSK-3β inhibitor (Licl) significantly increased Rg1-induced phosphorylation of GSK-3β, which in turn reduced Rg1-induced differentiation of hBM-MSCs. Conclusion Ginsenoside Rg1 can reduce the excessive activation of the Wnt pathway in senescent cells by inhibiting the phosphorylation of GSK-3β and regulate the mesenchymal stem cell differentiation ability.
Collapse
|
354
|
Immortalizing Mesenchymal Stromal Cells from Aged Donors While Keeping Their Essential Features. Stem Cells Int 2020; 2020:5726947. [PMID: 32612662 PMCID: PMC7315279 DOI: 10.1155/2020/5726947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) obtained from aged patients are prone to senesce and diminish their differentiation potential, therefore limiting their usefulness for osteochondral regenerative medicine approaches or to study age-related diseases, such as osteoarthiritis (OA). MSCs can be transduced with immortalizing genes to overcome this limitation, but transduction of primary slow-dividing cells has proven to be challenging. Methods for enhancing transduction efficiency (such as spinoculation, chemical adjuvants, or transgene expression inductors) can be used, but several parameters must be adapted for each transduction system. In order to develop a transduction method suitable for the immortalization of MSCs from aged donors, we used a spinoculation method. Incubation parameters of packaging cells, speed and time of centrifugation, and valproic acid concentration to induce transgene expression have been adjusted. In this way, four immortalized MSC lines (iMSC#6, iMSC#8, iMSC#9, and iMSC#10) were generated. These immortalized MSCs (iMSCs) were capable of bypassing senescence and proliferating at a higher rate than primary MSCs. Characterization of iMSCs showed that these cells kept the expression of mesenchymal surface markers and were able to differentiate towards osteoblasts, adipocytes, and chondrocytes. Nevertheless, alterations in the CD105 expression and a switch of cell fate-commitment towards the osteogenic lineage have been noticed. In conclusion, the developed transduction method is suitable for the immortalization of MSCs derived from aged donors. The generated iMSC lines maintain essential mesenchymal features and are expected to be useful tools for the bone and cartilage regenerative medicine research.
Collapse
|
355
|
Lee J, Cha H, Park TH, Park JH. Enhanced osteogenic differentiation of human mesenchymal stem cells by direct delivery of Cbfβ protein. Biotechnol Bioeng 2020; 117:2897-2910. [PMID: 32510167 DOI: 10.1002/bit.27453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Core binding factor β (Cbfβ) is a non-DNA binding cofactor of Runx2 that potentiates DNA binding. Previously, it has been reported that Cbfβ plays an essential role in osteogenic differentiation and skeletal development by inhibition adipogenesis. Here, we delivered the recombinant Cbfβ protein into human mesenchymal stem cells (MSCs) and triggered osteogenic lineage commitment. The efficient delivery of Cbfβ was achieved by fusing 30Kc19 protein, which is a cell-penetrating protein derived from the silkworm. After the production of the recombinant Cbfβ-30Kc19 protein in the Escherichia coli expression system, and confirmation of its intracellular delivery, MSCs were treated with the Cbfβ-30Kc19 once or twice up to 300 µg/ml. By investigating the upregulation of osteoblast-specific genes and phenotypical changes, such as calcium mineralization, we demonstrated that Cbfβ-30Kc19 efficiently induced osteogenic differentiation in MSCs. At the same time, Cbfβ-30Kc19 suppressed adipocyte formation and downregulated the expression of adipocyte-specific genes. Our results demonstrate that the intracellularly delivered Cbfβ-30Kc19 enhances osteogenesis in MSCs, whereas it suppresses adipogenesis by altering the transcriptional regulatory network involved in osteoblast-adipocyte lineage commitment. Cbfβ-30Kc19 holds great potential for the treatment of bone-related diseases, such as osteoporosis, by allowing transcriptional regulation in MSCs, and overcoming the limitations of current therapies.
Collapse
Affiliation(s)
- Jaeyoung Lee
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hyeonjin Cha
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
356
|
Mallis P, Alevrogianni V, Sarri P, Velentzas AD, Stavropoulos-Giokas C, Michalopoulos E. Effect of Cord Blood Platelet Gel on wound healing capacity of human Mesenchymal Stromal Cells. Transfus Apher Sci 2020; 59:102734. [PMID: 32005441 DOI: 10.1016/j.transci.2020.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/02/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wound healing is a dynamic process, involving the recruitment of growth factors, cytokines, chemokines and cellular populations. Recently, the Cord Blood Platelet Gel (CBPG) has been applied successfully in wound closure and tissue regeneration. Moreover, its proper combination with stem cell populations such as Mesenchymal Stromal Cells (MSCs) may positively improve the wound healing process. Based on the above data, this study aimed to the evaluation of wound healing capacity of MSCs combined with CBPG under in vitro conditions. METHODS Initially, CBPG was developed from Cord Blood Units (CBUs). The determination of wound healing ability of MSCs was performed using the scratch wound assay. In addition, the morphological features, immunophenotypical characteristics and differentiation capacity of MSCs were evaluated. RESULTS Scratch wound assay results showed, that CBPG could positively stimulate the MSCs migration. Moreover, MSCs cultured in presence of CBPG were characterized by elongated shape and improved stemness properties as it was indicated by flow cytometric analysis and differentiation process. CONCLUSION These results clearly showed the beneficial effect of CBPG in combination with MSCs in wound healing. The proper combination of CBPG with stem cells strategy may enhance the healing process in patients with skin erosions.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece.
| | - Vivian Alevrogianni
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Phaedra Sarri
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, Greece
| | - Athanassios D Velentzas
- Department of Biology, Section of Cell Biology and Biophysics, School of Science, National and Kapodistrian University of Athens, Greece
| | | | | |
Collapse
|
357
|
Semba JA, Mieloch AA, Rybka JD. Introduction to the state-of-the-art 3D bioprinting methods, design, and applications in orthopedics. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00070] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
358
|
Avery SJ, Ayre WN, Sloan AJ, Waddington RJ. Interrogating the Osteogenic Potential of Implant SurfacesIn Vitro: A Review of Current Assays. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:217-229. [DOI: 10.1089/ten.teb.2019.0312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Steven James Avery
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Wayne Nishio Ayre
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Alastair James Sloan
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Rachel Jane Waddington
- Department of Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff Institute for Tissue Engineering and Repair, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
359
|
Fu X, Xu B, Jiang J, Du X, Yu X, Yan Y, Li S, Inglis BM, Ma H, Wang H, Pei X, Si W. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17:15. [PMID: 32489333 PMCID: PMC7247169 DOI: 10.1186/s12014-020-09279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated. METHODS Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry. RESULTS The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways. CONCLUSION This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Jiang Jiang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Kunming, 650032 China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Hongyan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
360
|
Demerdash Z, El Baz H, Ali N, Mahmoud F, Mohamed S, Khalifa R, Hassan M, Shawky S. Cloning of human cord blood-mesenchymal stem cells for isolation of enriched cell population of higher proliferation and differentiation potential. Mol Biol Rep 2020; 47:3963-3972. [PMID: 32394306 DOI: 10.1007/s11033-020-05489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Heterogeneity of Mesenchymal stem cells (MSCs) imposes limitations for their in vitro expansion and accounts for the lack of reproducibility in some clinical studies. So, this study was designed to isolate and enrich clones of multipotent and self-renewing MSCs from cord blood (CB). Enriched clones with higher proliferation and differentiation potential provide regenerative cells suitable for various clinical demands. MSCA and MSCB original (progenitor) cells were isolated from CB samples, and single cells were cloned by limiting dilution method, in mouse embryonic fibroblast conditioned media. Original MSCs and their single-cell derived clones were characterized by identifying their proliferation rate, immunophenotyping of surface antigens, expression of pluripotency and proliferation genes (Oct4, Sox2, Nanog, KLF4, c-Myc, and PDGFRA), and differentiation potential into multiple lineages (osteogenic, adipogenic, and chondrogenic). Some single-cell clones of MSCA showed a higher proliferation rate and greater differentiation potential than their original cells. However, original MSCB cells were of greater proliferation and differentiation potential than their derived single-cell clones, except for one clone which had comparable results. Cloning of MSCs was attainable when cultured in mouse embryonic fibroblast conditioned media. Single clones with higher proliferation and differentiation potential than their original progenitor cells were obtained by cloning of poorly functioning MSCs progenitor cells, enabling the selection of more therapeutically efficacious MSCs with better performance in clinical applications. Moreover, this study draws attention to the importance of CD105 as a possible MSCs biomarker associated with the multilineage commitment of MSCs.
Collapse
Affiliation(s)
- Zeinab Demerdash
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt
| | - Hanan El Baz
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt
| | - Noha Ali
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt
| | - Faten Mahmoud
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt
| | - Salwa Mohamed
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt
| | - Rania Khalifa
- Clinical and Chemical Pathology Department, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Warrak El-Hadar, Giza, postal code: 12411, Egypt.
| | - Shereen Shawky
- Clinical and Chemical Pathology Department, Kasr Al-Ainy, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
361
|
Soltanyzadeh M, Ghollasi M, Halabian R, Shams M. A comparative study of hBM-MSCs' differentiation toward osteogenic lineage in the presence of progesterone and estrogen hormones separately and concurrently in vitro. Cell Biol Int 2020; 44:1701-1713. [PMID: 32339349 DOI: 10.1002/cbin.11364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/12/2020] [Accepted: 04/25/2020] [Indexed: 11/09/2022]
Abstract
Promising cell sources for tissue engineering comprise bone marrow derived-mesenchymal stem cells (BM-MSCs) that have multiple differentiation potentials. Also, sex hormones act as important elements in bone development and maintenance, and the roles of two female sex steroid hormones known as estrogen (17-β estradiol) and progesterone in osteogenic differentiation of human BM-MSCs (hBM-MSCs) are studied. For this purpose, hBM-MSCs were treated with a 1 × 10-6 M concentration of 17-β estradiol and progesterone separately and simultaneously while the optimum concentrations were obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Osteogenic differentiation tests including measurement of alkaline phosphatase (ALP) enzyme activity, the content of total mineral calcium, mineralized matrix staining by Alizarin Red and Von Kossa solutions, real-time reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence staining were carried out on Days 7 and 14 of differentiation. To exhibit the morphology of the cells, the BM-MSCs were stained with acridine orange (AO) solution. In this study, the results of ALP activity assay, calcium content and real-time RT-PCR assay and also all tests of differentiation staining have shown that 17-β estradiol has been recognized as an enhancing factor of osteogenic differentiation. Furthermore, MTT assay and AO staining revealed progesterone as a factor that seriously improved the proliferation of hBM-MSCs. Generally, the 17-β estradiol individually or in the presence of progesterone has more effects on BM-MSCs' osteogenic differentiation compared to progesterone alone. In this study, it is indicated that the effect of the 17-β estradiol and progesterone concurrently was the same as individual 17-β estradiol on the differentiation of hBM-MSCs.
Collapse
Affiliation(s)
- Maryam Soltanyzadeh
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Shams
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
362
|
|
363
|
Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications. Pharmaceutics 2020; 12:pharmaceutics12050411. [PMID: 32365861 PMCID: PMC7284468 DOI: 10.3390/pharmaceutics12050411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 01/20/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) prepared as advanced therapies medicinal products (ATMPs) have been widely used for the treatment of different diseases. The latest developments concern the possibility to use MSCs as carrier of molecules, including chemotherapeutic drugs. Taking advantage of their intrinsic homing feature, MSCs may improve drugs localization in the disease area. However, for cell therapy applications, a significant number of MSCs loaded with the drug is required. We here investigate the possibility to produce a large amount of Good Manufacturing Practice (GMP)-compliant MSCs loaded with the chemotherapeutic drug Paclitaxel (MSCs-PTX), using a closed bioreactor system. Cells were obtained starting from 13 adipose tissue lipoaspirates. All samples were characterized in terms of number/viability, morphology, growth kinetics, and immunophenotype. The ability of MSCs to internalize PTX as well as the antiproliferative activity of the MSCs-PTX in vitro was also assessed. The results demonstrate that our approach allows a large scale expansion of cells within a week; the MSCs-PTX, despite a different morphology from MSCs, displayed the typical features of MSCs in terms of viability, adhesion capacity, and phenotype. In addition, MSCs showed the ability to internalize PTX and finally to kill cancer cells, inhibiting the proliferation of tumor lines in vitro. In summary our results demonstrate for the first time that it is possible to obtain, in a short time, large amounts of MSCs loaded with PTX to be used in clinical trials for the treatment of patients with oncological diseases.
Collapse
|
364
|
Bovine tongue epithelium-derived cells: A new source of bovine mesenchymal stem cells. Biosci Rep 2020; 40:222523. [PMID: 32232387 PMCID: PMC7167252 DOI: 10.1042/bsr20181829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to differentiate into multiple cell lineages, and thus, confer great potential for use in regenerative medicine and biotechnology. In the present study, we attempted to isolate and characterize bovine tongue tissue epithelium-derived MSCs (boT-MSCs) and investigate the culture conditions required for long-term culturing of boT-MSCs. boT-MSCs were successfully isolated by the collagenase digestion method and their proliferative capacity was maintained for up to 20 or more passages. We observed a significant increase in the proliferation of boT-MSCs during the 20 consecutive passages under low-glucose Dulbecco’s modified Eagle’s medium culture condition among the three culture conditions. These boT-MSCs presented pluripotency markers (octamer-binding transcription factor 3/4 (Oct3/4) and sex determining region Y-box2 (Sox2)) and cell surface markers, which included CD13, CD29, CD44, CD73, CD90, CD105, CD166, and major histocompatibility complex (MHC) class I (MHC-I) but not CD11b, CD14, CD31, CD34, CD45, CD80, CD86, CD106, CD117, and MHC-II at third passage. Moreover, these boT-MSCs could differentiate into mesodermal (adipocyte, osteocyte, and chondrocyte) cell lineages. Thus, the present study suggests that the tongue of bovines could be used as a source of bovine MSCs.
Collapse
|
365
|
Villard O, Armanet M, Couderc G, Bony C, Moreaux J, Noël D, De Vos J, Klein B, Veyrune JL, Wojtusciszyn A. Characterization of immortalized human islet stromal cells reveals a MSC-like profile with pancreatic features. Stem Cell Res Ther 2020; 11:158. [PMID: 32303252 PMCID: PMC7165390 DOI: 10.1186/s13287-020-01649-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) represent an interesting tool to improve pancreatic islet transplantation. They have immunomodulatory properties and secrete supportive proteins. However, the functional properties of MSCs vary according to many factors such as donor characteristics, tissue origin, or isolation methods. To counteract this heterogeneity, we aimed to immortalize and characterize adherent cells derived from human pancreatic islets (hISCs), using phenotypic, transcriptomic, and functional analysis. METHODS Adherent cells derived from human islets in culture were infected with a hTERT retrovirus vector and then characterized by microarray hybridization, flow cytometry analysis, and immunofluorescence assays. Osteogenic, adipogenic, and chondrogenic differentiation as well as PBMC proliferation suppression assays were used to compare the functional abilities of hISCs and MSCs. Extracellular matrix (ECM) gene expression profile analysis was performed using the SAM (Significance Analysis of Microarrays) software, and protein expression was confirmed by western blotting. RESULTS hISCs kept an unlimited proliferative potential. They exhibited several properties of MSCs such as CD73, CD90, and CD105 expression and differentiation capacity. From a functional point of view, hISCs inhibited the proliferation of activated peripheral blood mononuclear cells. The transcriptomic profile of hISCs highly clusterized with bone marrow (BM)-MSCs and revealed a differential enrichment of genes involved in the organization of the ECM. Indeed, the expression and secretion profiles of ECM proteins including collagens I, IV, and VI, fibronectin, and laminins, known to be expressed in abundance around and within the islets, were different between hISCs and BM-MSCs. CONCLUSION We generated a new human cell line from pancreatic islets, with MSCs properties and retaining some pancreatic specificities related to the production of ECM proteins. hISCs appear as a very promising tool in islet transplantation by their availability (as a source of inexhaustible source of cells) and ability to secrete a supportive "pancreatic" microenvironment.
Collapse
Affiliation(s)
- Orianne Villard
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Mathieu Armanet
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Cell Therapy Unit, Hospital Saint- Louis, AP-HP, Paris, France
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland
| | - Guilhem Couderc
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Claire Bony
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Jerome Moreaux
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IGH, Univ Montpellier, CNRS, Montpellier, France
| | - Daniele Noël
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - John De Vos
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
- IRMB, INSERM U 1183, Univ Montpellier, INSERM, Montpellier, France
| | - Bernard Klein
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Department of Biological Haematology, Univ. Montpellier, CHU Montpellier, Montpellier, France
- Department of Cell and Tissue Engineering, Univ. Montpellier, CHU Montpellier, Montpellier, France
| | - Anne Wojtusciszyn
- Laboratory of Cell Therapy for Diabetes, Institute of Regenerative Medicine and Biotherapy, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetes, and Nutrition, Univ. Montpellier, CHU Montpellier, Montpellier, France.
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, 8 avenue de la Sallaz - 1011, Lausanne, Switzerland.
| |
Collapse
|
366
|
Seyed M. Hoseini, Kalantar SM, Bahrami AR, M. Matin M. Human Amniocytes: a Comprehensive Study on Morphology, Frequency and Growth Properties of Subpopulations from a Single Clone to the Senescence. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s1990519x20020042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
367
|
Inflammation Alters the Secretome and Immunomodulatory Properties of Human Skin-Derived Precursor Cells. Cells 2020; 9:cells9040914. [PMID: 32276503 PMCID: PMC7226778 DOI: 10.3390/cells9040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Human skin-derived precursors (SKP) represent a group of somatic stem/precursor cells that reside in dermal skin throughout life that harbor clinical potential. SKP have a high self-renewal capacity, the ability to differentiate into multiple cell types and low immunogenicity, rendering them key candidates for allogeneic cell-based, off-the-shelf therapy. However, potential clinical application of allogeneic SKP requires that these cells retain their therapeutic properties under all circumstances and, in particular, in the presence of an inflammation state. Therefore, in this study, we investigated the impact of pro-inflammatory stimulation on the secretome and immunosuppressive properties of SKP. We demonstrated that pro-inflammatory stimulation of SKP significantly changes their expression and the secretion profile of chemo/cytokines and growth factors. Most importantly, we observed that pro-inflammatory stimulated SKP were still able to suppress the graft-versus-host response when cotransplanted with human PBMC in severe-combined immune deficient (SCID) mice, albeit to a much lesser extent than unstimulated SKP. Altogether, this study demonstrates that an inflammatory microenvironment has a significant impact on the immunological properties of SKP. These alterations need to be taken into account when developing allogeneic SKP-based therapies.
Collapse
|
368
|
Cassidy FC, Shortiss C, Murphy CG, Kearns SR, Curtin W, De Buitléir C, O’Brien T, Coleman CM. Impact of Type 2 Diabetes Mellitus on Human Bone Marrow Stromal Cell Number and Phenotypic Characteristics. Int J Mol Sci 2020; 21:ijms21072476. [PMID: 32252490 PMCID: PMC7177361 DOI: 10.3390/ijms21072476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) have been investigated in numerous disease settings involving impaired regeneration because of the crucial role they play in tissue maintenance and repair. Considering the number of comorbidities associated with type 2 diabetes mellitus (T2DM), the hypothesis that MSCs mediate these comorbidities via a reduction in their native maintenance and repair activities is an intriguing line of inquiry. Here, it is demonstrated that the number of bone marrow-derived MSCs in people with T2DM was reduced compared to that of age-matched control (AMC) donors and that this was due to a specific decrease in the number of MSCs with osteogenic capacity. There were no differences in MSC cell surface phenotype or in MSC expansion, differentiation, or angiogenic or migratory capacity from donors living with T2DM as compared to AMCs. These findings elucidate the basic biology of MSCs and their potential as mediators of diabetic comorbidities, especially osteopathies, and provide insight into donor choice for MSC-based clinical trials. This study suggests that any role of bone marrow MSCs as a mediator of T2DM comorbidity is likely due to a reduction in the osteoprogenitor population size and not due to a permanent alteration to the MSCs' capacity to maintain tissue homeostasis through expansion and differentiation.
Collapse
Affiliation(s)
- Féaron C. Cassidy
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Correspondence:
| | - Ciara Shortiss
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| | - Colin G. Murphy
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Stephen R. Kearns
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - William Curtin
- Department of Trauma and Orthopaedics, Galway University Hospitals, H91 YR71 Galway, Ireland
| | - Ciara De Buitléir
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
| | - Timothy O’Brien
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
- Saolta University Healthcare Group, Galway University Hospital, H91 YR71 Galway, Ireland
- CÚRAM Centre for Research in Medical Devices, College of Medicine, Nursing and Health Sciences, School of Medicine, NUI Galway, H91 FD82 Galway, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), National University of Ireland Galway (NUI Galway), H91 FD82 Galway, Ireland
| |
Collapse
|
369
|
Buyl K, Merimi M, Rodrigues RM, Moussa Agha D, Melki R, Vanhaecke T, Bron D, Lewalle P, Meuleman N, Fahmi H, Rogiers V, Lagneaux L, De Kock J, Najar M. The Impact of Cell-Expansion and Inflammation on The Immune-Biology of Human Adipose Tissue-Derived Mesenchymal Stromal Cells. J Clin Med 2020; 9:696. [PMID: 32143473 PMCID: PMC7141238 DOI: 10.3390/jcm9030696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: As a cell-based therapeutic, AT-MSCs need to create an immuno-reparativeenvironment appropriate for tissue repair. In the presence of injury, MSCs may have to proliferate and face inflammation. Clinical application requires repeated administrations of a high number of cellswith a well-established immune profile. Methods: We have established an immuno-comparative screening by determining the expression of 28 molecules implicated in immune regulation. This screening was performed during cell-expansion and inflammatory priming of AT-MSCs. Results: Our study confirms that AT-MSCs are highly expandable and sensitive to inflammation. Both conditions have substantially modulated the expression of a panel of immunological marker. Specifically, CD34 expression was substantially decreased upon cell-passaging. HLA-ABC, CD40 CD54, CD106, CD274 and CD112 were significantly increased by inflammation. In vitro cell-expansion also significantly altered the expression profile of HLA-DR, CD40, CD62L, CD106, CD166, HLA-G, CD200, HO-1, CD155 and ULBP-3. Conclusion: This study points out the response and characteristics of MSCs following expansion and inflammatory priming. It will strength our knowledge about the molecular mechanisms that may improve or hamper the therapeutic potential of MSCs. These immunological changes need to be further characterized to guarantee a safe cellular product with consistent quality and high therapeutic efficacy.
Collapse
Affiliation(s)
- Karolien Buyl
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Makram Merimi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Robim M. Rodrigues
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Rahma Melki
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 121 Boulevard de Waterloo, 1000 Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium
| | - Joery De Kock
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Mehdi Najar
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), 900 Saint-Denis, R11.424, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
370
|
Yang M, Lin J, Tang J, Chen Z, Qian X, Gao WQ, Xu H. Decreased immunomodulatory and secretory capability of aging human umbilical cord mesenchymal stem cells in vitro. Biochem Biophys Res Commun 2020; 525:633-638. [PMID: 32122651 DOI: 10.1016/j.bbrc.2020.02.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell therapy has drawn much attention as a promising therapeutic option for the treatment of different diseases. Due to insufficient cell population derived from freshly isolated tissues, in vitro propagation is required prior to clinical use. However, reduced cell viability of aging mesenchymal stem cell (MSCs) with repeated propagations has yet not be fully investigated, especially for the biological characteristics of immunoregulatory ability and paracrine factors. In this study, we compared the biological properties of human umbilical cord-MSCs (hUC-MSCs) at different passages, especially for immunomodulatory ability and secretions. Our results showed that hUC-MSCs at early passage (P2) and late passage (P8) exhibited similar morphology and surface marker expression, but hUC-MSCs at P8 displayed reduced proliferation and differentiation potential, immunoregulatory and secretory ability. In particular, hUC-MSCs at P2 and P5 could significantly suppress the population of proinflammatory Th1 and Th17 cell subsets and upregulate Treg cells, but not with hUC-MSCs at P8. For paracrine mechanism, higher level of secretions such as growth factors, cell adhesions, anti-inflammatory factors of hUC-MSCs were observed at P2 and P5 compared to that at P8. Therefore, it is essential to verify and validate the biological characteristics of hUC-MSCs that possess a good vitality before they are released for clinical use. Altogether, this study provides a rationale and two important parameters for how to select appropriate passage and vitality of MSCs for cell therapy.
Collapse
Affiliation(s)
- Mengbo Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingzhi Tang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - ZhiMin Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xin Qian
- Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
371
|
Jabbehdari S, Yazdanpanah G, Kanu LN, Anwar KN, Shen X, Rabiee B, Putra I, Eslani M, Rosenblatt MI, Hematti P, Djalilian AR. Reproducible Derivation and Expansion of Corneal Mesenchymal Stromal Cells for Therapeutic Applications. Transl Vis Sci Technol 2020; 9:26. [PMID: 32742756 PMCID: PMC7354855 DOI: 10.1167/tvst.9.3.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose A reproducible protocol for the production of corneal mesenchymal stem/stromal cells (cMSCs) is necessary for potential clinical applications. We aimed to describe successful generation and expansion of cMSCs using an explant method. Methods Corneoscleral rims of human cadaveric eyes were divided into four pieces and used as explants to allow outgrowth of cMSCs (passage 0, or P0). The cells were subcultured at a 1:10 ratio until passage 5 (P5). The characteristics as well as therapeutic effects of expanded cMSCs were evaluated both in vitro, using a scratch assay, and in vivo using epithelial debridement and chemical injury mouse models. Results All explants demonstrated outgrowth of cells by 7 days. Although the initial outgrowth included mixed mesenchymal and epithelial cells, by P1 only cMSCs remained. By subculturing each flask at a ratio of 1:10, the potential yield from each cornea was approximately 12 to 16 × 1010 P5 cells. P5 cMSCs demonstrated the cell surface markers of MSCs. The secretome of P5 cMSCs induced faster closure of wounds in an in vitro scratch assay. Subconjunctival injection of P5 cMSCs in mouse models of mechanical corneal epithelial debridement or ethanol injury led to significantly faster wound healing and decreased inflammation, relative to control. Conclusions cMSCs can be reproducibly derived from human cadaveric corneas using an explant method and expanded with preservation of characteristics and corneal wound healing effects. Translational Relevance The results of our study showed that cMSCs produced using this scheme can be potentially used for clinical applications.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ghasem Yazdanpanah
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Levi N Kanu
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Khandaker N Anwar
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiang Shen
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Behnam Rabiee
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ilham Putra
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Medi Eslani
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Peiman Hematti
- Department of Medicine and University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ali R Djalilian
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
372
|
Kaneko Y, Coats AB, Tuazon JP, Jo M, Borlongan CV. Rhynchophylline promotes stem cell autonomous metabolic homeostasis. Cytotherapy 2020; 22:106-113. [PMID: 31983606 DOI: 10.1016/j.jcyt.2019.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Rhynchophylline (Rhy) effectively obstructs the expansive signaling pathways of degenerative diseases, including Alzheimer disease, Parkinson disease, epilepsy and amyotrophic lateral sclerosis, and stimulates neurogenesis. Maintenance of stemness and cell proliferation requires sophisticated intracellular environments to achieve pluripotency via specific expression of genes and proteins. We examined whether Rhy promotes this regulation in bone marrow human mesenchymal stromal cells (BM-hMSCs). Results revealed (i) Rhy modulated biological activity by regulating the mitochondria, N-methyl-D-aspartate receptor subunit, and levels of FGFβ (basic fibroblast growth factor), BDNF (brain-derived neurotrophic factor), OXTR (oxytocin receptor) and ATP (Adenosine triphosphate); (ii) Rhy altered expression level of BM-MSC proliferation/differentiation-related transcription genes; and (iii) interestingly, Rhy amplified the glycolytic flow ratio and lactate dehydrogenase activity while reducing pyruvate dehydrogenase activity, indicating a BM-hMSC metabolic shift of mitochondrial oxidative phosphorylation into aerobic glycolysis. Altogether, we demonstrated a novel mechanism of action for Rhy-induced BM-hMSC modification, which can enhance the cell transplantation approach by amplifying the metabolic activity of stem cells.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Alexandreya B Coats
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA
| | - Michiko Jo
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa Florida, USA.
| |
Collapse
|
373
|
Chu DT, Phuong TNT, Tien NLB, Tran DK, Thanh VV, Quang TL, Truong DT, Pham VH, Ngoc VTN, Chu-Dinh T, Kushekhar K. An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2020; 21:E708. [PMID: 31973182 PMCID: PMC7037097 DOI: 10.3390/ijms21030708] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs), which are known as multipotent cells, are widely used in the treatment of various diseases via their self-renewable, differentiation, and immunomodulatory properties. In-vitro and in-vivo studies have supported the understanding mechanisms, safety, and efficacy of BMSCs therapy in clinical applications. The number of clinical trials in phase I/II is accelerating; however, they are limited in the size of subjects, regulations, and standards for the preparation and transportation and administration of BMSCs, leading to inconsistency in the input and outcome of the therapy. Based on the International Society for Cellular Therapy guidelines, the characterization, isolation, cultivation, differentiation, and applications can be optimized and standardized, which are compliant with good manufacturing practice requirements to produce clinical-grade preparation of BMSCs. This review highlights and updates on the progress of production, as well as provides further challenges in the studies of BMSCs, for the approval of BMSCs widely in clinical application.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi 100000, Vietnam
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thuy Nguyen Thi Phuong
- Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Nguyen Le Bao Tien
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
| | - Dang Khoa Tran
- Department of Anatomy, University of Medicine Pham Ngoc Thach, Ho Chi Minh City 700000, Vietnam;
| | - Vo Van Thanh
- Institute of Orthopaedics and Trauma Surgery, Viet Duc Hospital, Hanoi 100000, Vietnam; (N.L.B.T.); (V.V.T.)
- Department of Surgery, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Thuy Luu Quang
- Center for Anesthesia and Surgical Intensive Care, Viet Duc Hospital, Hanoi 100000, Vietnam;
| | | | - Van Huy Pham
- AI Lab, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Vo Truong Nhu Ngoc
- School of Odonto Stomatology, Hanoi Medical University, Hanoi 100000, Vietnam;
| | - Thien Chu-Dinh
- Institute for Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Kushi Kushekhar
- Institute of Cancer Research, Oslo University Hospital, 0310 Oslo, Norway;
| |
Collapse
|
374
|
Gasiūnienė M, Valatkaitė E, Navakauskienė R. Long-term cultivation of human amniotic fluid stem cells: The impact on proliferative capacity and differentiation potential. J Cell Biochem 2020; 121:3491-3501. [PMID: 31898359 DOI: 10.1002/jcb.29623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
Human amniotic fluid mesenchymal stem cells (AF-MSCs) are a valuable, easily obtainable alternative source of SCs for regenerative medicine. Usually, amounts of cells required for the translational purposes are large thus the goal of this study was to assess the potency of AF-MSCs to proliferate and differentiate during long-term cultivation in vitro. AF-MSCs were isolated from amniotic fluid of healthy women in the second trimester of pregnancy and cultivated in vitro. AF-MSCs were cultivated up to 42 passages and they still maintained pluripotency genes, such as OCT4, SOX2, and NANOG, expression at a similar level as in the initial passages as determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Fluorescence-activated cell sorting analysis demonstrated that the cell surface markers CD34 (negative), CD44, and CD105 (positive) expression was also stable, only the expression of SCs marker CD90 decreased during the cultivation. The morphology of AF-MSCs changed over passage, acridine orange/ethidium bromide staining revealed that more cells entered into apoptosis and the first signs of aging were detected only at late passages (later than p33) using SA-β-gal assay. Concomitantly, the differentiation potential towards cardiomyogenic lineage, induced with DNA methyltransferases inhibitors decitabine, zebularine, and RG108, was impaired when comparing AF-MSCs at p31/33 with p6. The expression of cardiomyocytes genes MYH6, TNNT2, DES together with ion channels genes of the heart (sodium, calcium, and potassium) decreased in p31/33 induced AF-MSCs. AF-MSCs have a great proliferative capacity and maintain most of the characteristics up to 33 passages; however, the cardiomyogenic differentiation capacity decreases to a certain extent during the long-term cultivation. These results provide useful insights for the potential use of AF-MSCs for biobanking and broad applications requiring high yield of cells or repeated infusions. Hence, it is vital to take into account the passage number of AF-MSCs, cultivated in culture, when utilizing them in vivo or in clinical experiments.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elvina Valatkaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
375
|
Pirosa A, Clark KL, Tan J, Yu S, Yang Y, Tuan RS, Alexander PG. Modeling appendicular skeletal cartilage development with modified high-density micromass cultures of adult human bone marrow-derived mesenchymal progenitor cells. Stem Cell Res Ther 2019; 10:388. [PMID: 31842986 PMCID: PMC6916440 DOI: 10.1186/s13287-019-1505-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023] Open
Abstract
Background Animal cell-based systems have been critical tools in understanding tissue development and physiology, but they are less successful in more practical tasks, such as predicting human toxicity to pharmacological or environmental factors, in which the congruence between in vitro and clinical outcomes lies on average between 50 and 60%. Emblematic of this problem is the high-density micromass culture of embryonic limb bud mesenchymal cells, derived from chick, mouse, or rat. While estimated predictive value of this model system in toxicological studies is relatively high, important failures prevent its use by international regulatory agencies for toxicity testing and policy development. A likely underlying reason for the poor predictive capacity of animal-based culture models is the small but significant physiological differences between species. This deficiency has inspired investigators to develop more organotypic, 3-dimensional culture system using human cells to model normal tissue development and physiology and assess pharmacological and environmental toxicity. Methods We have developed a modified, miniaturized micromass culture model using adult human bone marrow-derived mesenchymal progenitor cells (hBM-MPCs) that is amenable to moderate throughput and high content analysis to study chondrogenesis. The number of cells per culture was reduced, and a methacrylated gelatin (gelMA) overlay was incorporated to normalize the morphology of the cultures. Results These modified human cell-based micromass cultures demonstrated robust chondrogenesis, indicated by increased Alcian blue staining and immunodetectable production of collagen type II and aggrecan, and stage-specific chondrogenic gene expression. In addition, in cultures of hBM-MPCs transduced with a lentiviral collagen type II promoter-driven GFP reporter construct, levels of GFP reporter activity correlated well with changes in endogenous collagen type II transcript levels, indicating the feasibility of non-invasive monitoring of chondrogenesis. Conclusions The modified hBM-MPC micromass culture system described here represents a reproducible and controlled model for analyzing mechanisms of human skeletal development that may later be applied to pharmacological and environmental toxicity studies.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Karen L Clark
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Jian Tan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Shuting Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Yuanheng Yang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
376
|
Immobilized Laminin-derived Peptide Can Enhance Expression of Stemness Markers in Mesenchymal Stem Cells. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0118-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
377
|
Esmaeili S, Bandarian F, Esmaeili B, Nasli-Esfahani E. Apelin and stem cells: the role played in the cardiovascular system and energy metabolism. Cell Biol Int 2019; 43:1332-1345. [PMID: 31166051 DOI: 10.1002/cbin.11191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/02/2019] [Indexed: 01/24/2023]
Abstract
Apelin, a member of the adipokine family, is widely distributed in the body and exerts cytoprotective effects on many organs. Apelin isoforms are involved in different physiological processes, including regulation of the cardiovascular system, cardiac contractility, angiogenesis, and energy metabolism. Several investigations have been performed to study the effect of apelin on stem cell therapy. This review aims to summarize the literature representing the effects of apelin on stem cell properties. Furthermore, this review discusses the therapeutic potential of apelin-treated stem cells for cardiovascular diseases and demonstrates the effect of stem cells overexpressing apelin on energy metabolism. Stem cells with their unique characteristics play a crucial role in the maintenance of tissue integrity. These cells participate in tissue regeneration via multiple mechanisms. Although preclinical and clinical studies have demonstrated the therapeutic potential of stem cells in various diseases, their application in regenerative medicine has not been efficient. A number of strategies such as genetic modification or treatment of stem cells with different factors have been used to improve the efficacy of cell therapy and to increase their survival after transplantation. This article reviews the effect of apelin treatment on the efficacy of cell therapy.
Collapse
Affiliation(s)
- Shahnaz Esmaeili
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Fatemeh Bandarian
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, 14194, Iran
| | - Ensieh Nasli-Esfahani
- Diabetic Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran
| |
Collapse
|
378
|
Oh SY, Choi DH, Jin YM, Yu Y, Kim HY, Kim G, Park YS, Jo I. Optimization of Microenvironments Inducing Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Endothelial Cell-Like Cells. Tissue Eng Regen Med 2019; 16:631-643. [PMID: 31824825 PMCID: PMC6879685 DOI: 10.1007/s13770-019-00221-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments. METHODS TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers. RESULTS Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells. CONCLUSION This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Da Hyeon Choi
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yoon Mi Jin
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yeonsil Yu
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Gyungah Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| | - Yoon Shin Park
- School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644 Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, 260 Gonghang-daero, Gangseo-gu Seoul, 07804 Republic of Korea
| |
Collapse
|
379
|
Madsen SD, Jones SH, Tucker HA, Giler MK, Muller DC, Discher CT, Russell KC, Dobek GL, Sammarco MC, Bunnell BA, O'Connor KC. Survival of aging CD264 + and CD264 - populations of human bone marrow mesenchymal stem cells is independent of colony-forming efficiency. Biotechnol Bioeng 2019; 117:223-237. [PMID: 31612990 DOI: 10.1002/bit.27195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
In vivo mesenchymal stem cell (MSC) survival is relevant to therapeutic applications requiring engraftment and potentially to nonengraftment applications as well. MSCs are a mixture of progenitors at different stages of cellular aging, but the contribution of this heterogeneity to the survival of MSC implants is unknown. Here, we employ a biomarker of cellular aging, the decoy TRAIL receptor CD264, to compare the survival kinetics of two cell populations in human bone marrow MSC (hBM-MSC) cultures. Sorted CD264+ hBM-MSCs from two age-matched donors have elevated β-galactosidase activity, decreased differentiation potential and form in vitro colonies inefficiently relative to CD264- hBM-MSCs. Counterintuitive to their aging phenotype, CD264+ hBM-MSCs exhibited comparable survival to matched CD264- hBM-MSCs from the same culture during in vitro colony formation and in vivo when implanted ectopically in immunodeficient NIH III mice. In vitro and in vivo survival of these two cell populations were independent of colony-forming efficiency. These findings have ramifications for the preparation of hBM-MSC therapies given the prevalence of aging CD264+ cells in hBM-MSC cultures and the popularity of colony-forming efficiency as a quality control metric in preclinical and clinical studies with MSCs.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Sean H Jones
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - H Alan Tucker
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Dyllan C Muller
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Carson T Discher
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Katie C Russell
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana
| | - Georgina L Dobek
- Department of Comparative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Mimi C Sammarco
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, Louisiana.,Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana.,Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
380
|
Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Krüger D, Streitz M, Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Krüger U, Zemojtel T, Jürchott K, Strunk D, Reinke P, Duda G, Moll G, Geissler S. Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol 2019; 10:2474. [PMID: 31781089 PMCID: PMC6857652 DOI: 10.3389/fimmu.2019.02474] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics.
Collapse
Affiliation(s)
- Anastazja Andrzejewska
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Rusan Catar
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Janosch Schoon
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Taimoor Hasan Qazi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Frauke Andrea Sass
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Dorit Jacobi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Antje Blankenstein
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - David Krüger
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sarina Richter
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Christien Beez
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Ulrike Krüger
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tomasz Zemojtel
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Dirk Strunk
- Berlin Center for Advanced Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Spinal Cord Injury and Tissue Regeneration Center, Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| |
Collapse
|
381
|
Human iPSC-derived iMSCs improve bone regeneration in mini-pigs. Bone Res 2019; 7:32. [PMID: 31667001 PMCID: PMC6813363 DOI: 10.1038/s41413-019-0069-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 06/04/2019] [Accepted: 07/22/2019] [Indexed: 01/15/2023] Open
Abstract
Autologous bone marrow concentrate (BMC) and mesenchymal stem cells (MSCs) have beneficial effects on the healing of bone defects. To address the shortcomings associated with the use of primary MSCs, induced pluripotent stem cell (iPSC)-derived MSCs (iMSCs) have been proposed as an alternative. The aim of this study was to investigate the bone regeneration potential of human iMSCs combined with calcium phosphate granules (CPG) in critical-size defects in the proximal tibias of mini-pigs in the early phase of bone healing compared to that of a previously reported autograft treatment and treatment with a composite made of either a combination of autologous BMC and CPG or CPG alone. iMSCs were derived from iPSCs originating from human fetal foreskin fibroblasts (HFFs). They were able to differentiate into osteoblasts in vitro, express a plethora of bone morphogenic proteins (BMPs) and secrete paracrine signaling-associated cytokines such as PDGF-AA and osteopontin. Radiologically and histomorphometrically, HFF-iMSC + CPG transplantation resulted in significantly better osseous consolidation than the transplantation of CPG alone and produced no significantly different outcomes compared to the transplantation of autologous BMC + CPG after 6 weeks. The results of this translational study imply that iMSCs represent a valuable future treatment option for load-bearing bone defects in humans.
Collapse
|
382
|
TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 2019; 20:ijms20205002. [PMID: 31658594 PMCID: PMC6834140 DOI: 10.3390/ijms20205002] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-β exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-β signaling and aging-associated disorders, including Alzheimer’s disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-β signaling in certain cell types and the upregulation of TGF-β ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-β depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-β signaling and cellular senescence, stem cell aging, and aging-related diseases.
Collapse
|
383
|
O'Connor KC. Molecular Profiles of Cell-to-Cell Variation in the Regenerative Potential of Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:5924878. [PMID: 31636675 PMCID: PMC6766122 DOI: 10.1155/2019/5924878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell variation in the regenerative potential of mesenchymal stromal cells (MSCs) impedes the translation of MSC therapies into clinical practice. Cellular heterogeneity is ubiquitous across MSC cultures from different species and tissues. This review highlights advances to elucidate molecular profiles that identify cell subsets with specific regenerative properties in heterogeneous MSC cultures. Cell surface markers and global signatures are presented for proliferation and differentiation potential, as well as immunomodulation and trophic properties. Key knowledge gaps are discussed as potential areas of future research. Molecular profiles of MSC heterogeneity have the potential to enable unprecedented control over the regenerative potential of MSC therapies through the discovery of new molecular targets and as quality attributes to develop robust and reproducible biomanufacturing processes. These advances would have a positive impact on the nascent field of MSC therapeutics by accelerating the development of therapies with more consistent and effective treatment outcomes.
Collapse
Affiliation(s)
- Kim C. O'Connor
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
384
|
Szydlak R, Majka M, Lekka M, Kot M, Laidler P. AFM-based Analysis of Wharton's Jelly Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:E4351. [PMID: 31491893 PMCID: PMC6769989 DOI: 10.3390/ijms20184351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are multipotent stem cells that can be used in regenerative medicine. However, to reach the high therapeutic efficacy of WJ-MSCs, it is necessary to obtain a large amount of MSCs, which requires their extensive in vitro culturing. Numerous studies have shown that in vitro expansion of MSCs can lead to changes in cell behavior; cells lose their ability to proliferate, differentiate and migrate. One of the important measures of cells' migration potential is their elasticity, determined by atomic force microscopy (AFM) and quantified by Young's modulus. This work describes the elasticity of WJ-MSCs during in vitro cultivation. To identify the properties that enable transmigration, the deformability of WJ-MSCs that were able to migrate across the endothelial monolayer or Matrigel was analyzed by AFM. We showed that WJ-MSCs displayed differences in deformability during in vitro cultivation. This phenomenon seems to be strongly correlated with the organization of F-actin and reflects the changes characteristic for stem cell maturation. Furthermore, the results confirm the relationship between the deformability of WJ-MSCs and their migration potential and suggest the use of Young's modulus as one of the measures of competency of MSCs with respect to their possible use in therapy.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| | - Marcin Majka
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland.
| | - Marta Kot
- Department of Transplantation, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Kraków, Poland.
| | - Piotr Laidler
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland.
| |
Collapse
|
385
|
The Role of Extracellular Matrix Expression, ERK1/2 Signaling and Cell Cohesiveness for Cartilage Yield from iPSCs. Int J Mol Sci 2019; 20:ijms20174295. [PMID: 31480758 PMCID: PMC6747490 DOI: 10.3390/ijms20174295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current therapies involving chondrocytes or mesenchymal stromal cells (MSCs) remain inefficient in restoring cartilage properties upon injury. The induced pluripotent stem-cell (iPSC)-derived mesenchymal progenitor cells (iMPCs) have been put forward as a promising alternative cell source due to their high proliferation and differentiation potential. However, the observed cell loss during in vitro chondrogenesis is currently a bottleneck in establishing articular chondrocyte generation from iPSCs. In a search for candidate mechanisms underlying the low iPSC-derived cartilage tissue yield, global transcriptomes were compared between iMPCs and MSCs and the cell properties were analyzed via a condensation assay. The iMPCs had a more juvenile mesenchymal gene signature than MSCs with less myofibroblast-like characteristics, including significantly lower ECM- and integrin-ligand-related as well as lower α-smooth-muscle-actin expression. This correlated with less substrate and more cell-cell adhesion, impaired aggregate formation and consequently inferior cohesive tissue properties of the iMPC-pellets. Along lower expression of pro-survival ECM molecules, like decorin, collagen VI, lumican and laminin, the iMPC populations had significantly less active ERK1/2 compared to MSCs. Overall, this study proposes that this ECM and integrin-ligand shortage, together with insufficient pro-survival ERK1/2-activity, explains the loss of a non-aggregating iMPC sub-fraction during pellet formation and reduced survival of cells in early pellets. Enhancing ECM production and related signaling in iMPCs may be a promising new means to enrich the instructive microenvironment with pro-survival cues allowing to improve the final cartilage tissue yield from iPSCs.
Collapse
|
386
|
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13:1738-1755. [PMID: 31216380 DOI: 10.1002/term.2914] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Eryk Hakman
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Sophia Halassy
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - David Svinarich
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
- Ascension Providence Hospital, Southfield, MI, USA
| | - Robert Dodds
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| |
Collapse
|
387
|
Detecting the limits of the biological effects of far-infrared radiation on epithelial cells. Sci Rep 2019; 9:11586. [PMID: 31406226 PMCID: PMC6690987 DOI: 10.1038/s41598-019-48187-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Far-infrared radiation (FIR) exerts numerous beneficial effects on health and cell physiology. Recent studies revealed that the biological effects of FIR are independent of thermal effects. There is no proper method for measuring the parameters of the non-thermal biological effects of FIR, which limits its biomedical application. In this study, we established a cell detection platform using epithelial cell migration to measure the limits of the biological effects of FIR. FIR promoted the migration of rat renal tubular epithelial cells as revealed by our standardized detection method. We defined the ratio of the FIR-promoted migration area to the migration area of the control group as the FIR biological index (FBI). An increase of the FBI was highly associated with FIR-promoted mitochondrial function. Through FBI detection, we revealed the limits of the biological effects of FIR, including effective irradiation time, wavelengths, and temperature. FBI detection can be used to clarify important parameters of the biological effects of FIR in biomedical studies and health industry applications.
Collapse
|
388
|
The Analysis of In Vivo Aging in Human Bone Marrow Mesenchymal Stromal Cells Using Colony-Forming Unit-Fibroblast Assay and the CD45 lowCD271 + Phenotype. Stem Cells Int 2019; 2019:5197983. [PMID: 31467563 PMCID: PMC6701348 DOI: 10.1155/2019/5197983] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/28/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Uncultured mesenchymal stromal cells (MSCs) are increasingly used in therapies; however, the effects of donor age on their biological characteristics and gene expression remain unclear. The aim of this study was to investigate age-related changes in bone marrow (BM) MSCs following minimal or no culture manipulation. Iliac crest BM was aspirated from 67 healthy donors (19-89 years old) and directly used for the colony-forming unit-fibroblast (CFU-F) assay or CD45lowCD271+ cell enumeration. The colonies were analysed for colony area and integrated density (ID) when grown in standard MSC media or media supplemented with human serum from young (YS) or old (OS) donors. There was a notable age-related decline in the number of MSCs per millilitre of BM aspirate revealed by the CFU-F assay (r = −0.527, p < 0.0001) or flow cytometry (r = −0.307, p = 0.0116). Compared to young donors (19-40 years old), colony IDs were significantly lower in older donors (61-89 years old), particularly for smaller-sized colonies (42% lower, p < 0.01). When cultured in media supplemented with OS, young and old donor MSCs formed colonies with lower IDs, by 21%, p < 0.0001, and 27%, p < 0.05, respectively, indicating the formation of smaller sparser colonies. No significant differences in the expression of selected adipogenic, osteogenic, stromal, and bone remodelling genes as well as CD295, CD146, CD106, and connexin 43 surface molecules were found in sorted CD45lowCD271+ MSCs from young and old donors (n = 8 donors each). Altogether, these results show similar trends for age-related decline in BM MSC numbers measured by the CFU-F assay and flow cytometry and reveal age-related effects of human serum on MSC colony formation. No significant differences in selected gene expression in uncultured CD45lowCD271+ MSCs suggest that old donor MSCs may not be inferior in regard to their multipotential functions. Due to large donor-to-donor variation in all donor groups, our data indicate that an individual's chronological age is not a reliable predictor of their MSC number or potency.
Collapse
|
389
|
Ventre M, Coppola V, Natale CF, Netti PA. Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. J Biomed Mater Res A 2019; 107:2536-2546. [PMID: 31325203 DOI: 10.1002/jbm.a.36759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Biochemical and biophysical stimuli of stem cell niches finely regulate the self-renewal/differentiation equilibrium. Replicating this in vitro is technically challenging, making the control of stem cell functions difficult. Cell derived matrices capture certain aspect of niches that influence fate decisions. Here, aligned fibrous matrices synthesized by MC3T3 cells were produced and the role of matrix orientation and stiffness on the maintenance of stem cell characteristics and adipo- or osteo-genic differentiation of murine mesenchymal stem cells (mMSCs) was investigated. Decellularized matrices promoted mMSC proliferation. Fibrillar alignment and matrix stiffness work in concert in defining cell fate. Soft matrices preserve stemness, whereas stiff ones, in presence of biochemical supplements, promptly induce differentiation. Matrix alignment impacts the homogeneity of the cell population, that is, soft aligned matrices ameliorate the spontaneous adipogenic differentiation, whereas stiff aligned matrices reduce cross-differentiation. We infer that mechanical signaling is a dominant factor in mMSC fate decision and the matrix alignment contributes to produce a more homogeneous environment, which results in a uniform response of cells to biophysical environment. Matrix thus produced can be obtained in vitro in a facile and consistent manner and can be used for homogeneous stem cell amplification or for mechanotransduction-related studies.
Collapse
Affiliation(s)
- Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Valerio Coppola
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Carlo F Natale
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.,Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
390
|
Petrova VA, Chernyakov DD, Poshina DN, Gofman IV, Romanov DP, Mishanin AI, Golovkin AS, Skorik YA. Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2016. [PMID: 31238491 PMCID: PMC6631200 DOI: 10.3390/ma12122016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
A bilayer nonwoven material for tissue regeneration was prepared from chitosan (CS) and hyaluronic acid (HA) by needleless electrospinning wherein 10-15 wt% (with respect to polysaccharide) polyethylene oxide was added as spinning starter. A fiber morphology study confirmed the material's uniform defect-free structure. The roughness of the bilayer material was in the range of 1.5-3 μm, which is favorable for cell growth. Electrospinning resulted in the higher orientation of the polymer structure compared with that of corresponding films, and this finding may be related to the orientation of the polymer chains during the spinning process. These structural changes increased the intermolecular interactions. Thus, despite a high swelling degree of 1.4-2.8 g/g, the bilayer matrix maintained its shape due to the large quantity of polyelectrolyte contacts between the chains of oppositely charged polymers. The porosity of the bilayer CS-HA nonwoven material was twice lower, while the Young's modulus and break stress were twice higher than that of a CS monolayer scaffold. Therefore, during the electrospinning of the second layer, HA may have penetrated into the pores of the CS layer, thereby increasing the polyelectrolyte contacts between the two polymers. The bilayer CS-HA scaffold exhibited good compatibility with mesenchymal stem cells. This characteristic makes the developed material promising for tissue engineering applications.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daniil D Chernyakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Iosif V Gofman
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia.
| | - Alexander I Mishanin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Alexey S Golovkin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| |
Collapse
|
391
|
Widholz B, Tsitlakidis S, Reible B, Moghaddam A, Westhauser F. Pooling of Patient-Derived Mesenchymal Stromal Cells Reduces Inter-Individual Confounder-Associated Variation without Negative Impact on Cell Viability, Proliferation and Osteogenic Differentiation. Cells 2019; 8:cells8060633. [PMID: 31238494 PMCID: PMC6628337 DOI: 10.3390/cells8060633] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Patient-derived mesenchymal stromal cells (MSCs) play a key role in bone tissue engineering. Various donor-specific factors were identified causing significant variability in the biological properties of MSCs impairing quality of data and inter-study comparability. These limitations might be overcome by pooling cells of different donors. However, the effects of pooling on osteogenic differentiation, proliferation and vitality remain unknown and have, therefore, been evaluated in this study. MSCs of 10 donors were cultivated and differentiated into osteogenic lineage individually and in a pooled setting, containing MSCs of each donor in equal parts. Proliferation was evaluated in expansion (assessment of generation time) and differentiation (quantification of dsDNA content) conditions. Vitality was visualized by a fluorescence-microscopy-based live/dead assay. Osteogenic differentiation was assessed by quantification of alkaline phosphatase (ALP) activity and extracellular calcium deposition. Compared to the individual setting, generation time of pooled MSCs was shorter and proliferation was increased during differentiation with significantly lower variances. Calcium deposition was comparable, while variances were significantly higher in the individual setting. ALP activity showed high variance in both groups, but increased comparably during the incubation period. In conclusion, MSC pooling helps to compensate donor-dependent variability and does not negatively influence MSC vitality, proliferation and osteogenic differentiation.
Collapse
Affiliation(s)
- Benedikt Widholz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
- ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
392
|
Kusuyama J, Seong C, Makarewicz NS, Ohnishi T, Shima K, Semba I, Bandow K, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) maintains osteogenic potency by the increased expression and stability of Nanog through spleen tyrosine kinase (Syk) activation. Cell Signal 2019; 62:109345. [PMID: 31228531 DOI: 10.1016/j.cellsig.2019.109345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are a powerful tool for cell-based, clinical therapies like bone regeneration. Therapeutic use of cell transplantation requires many cells, however, the expansion process needed to produce large quantities of cells reduces the differentiation potential of MSCs. Here, we examined the protective effects of low intensity pulsed ultrasound (LIPUS) on the maintenance of osteogenic potency. Primary osteoblastic cells were serially passaged between 2 and 12 times with daily LIPUS treatment. We found that LIPUS stimulation maintains osteogenic differentiation capacity in serially passaged cells, as characterized by improved matrix mineralization and Osteocalcin mRNA expression. Decreased expression of Nanog, Sox2, and Msx2, and increased expression of Pparg2 from serial passaging was recovered in LIPUS-stimulated cells. We found that LIPUS stimulation not only increased but also sustained expression of Nanog in primary osteoblasts and ST2 cells, a mouse mesenchymal stromal cell line. Nanog overexpression in serially passaged cells mimicked the recuperative effects of LIPUS on osteogenic potency, highlighting the important role of Nanog in LIPUS stimulation. Additionally, we found that spleen tyrosine kinase (Syk) is an important signaling molecule to induce Nanog expression in LIPUS-stimulated cells. Syk activation was regulated by both Rho-associated kinase 1 (ROCK1) and extracellular ATP in a paracrine manner. Interestingly, the LIPUS-induced increase in Nanog mRNA expression was regulated by ATP-P2X4-Syk Y323 activation, while the improvement of Nanog protein stability was controlled by the ROCK1-Syk Y525/526 pathway. Taken together, these results indicate that LIPUS stimulation recovers and maintains the osteogenic potency of serially passaged cells through a Syk-Nanog axis.
Collapse
Affiliation(s)
- Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| | - Changhwan Seong
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Department of Oral and Maxillofacial Surgery, Field of Oral and Maxillofacial Rehabilitation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Nathan S Makarewicz
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kaori Shima
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichiro Semba
- Department of Oral Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakato 350-0283, Saitama, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
393
|
The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int 2019; 2019:3548917. [PMID: 31281372 PMCID: PMC6594275 DOI: 10.1155/2019/3548917] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
The benefits attributed to mesenchymal stem/stromal cells (MSC) in cell therapy applications are mainly attributed to the secretion of factors, which exhibit immunomodulatory and anti-inflammatory effects and stimulate angiogenesis. Despite the desirable features such as high proliferation levels, multipotency, and immune response regulation, there are important variables that must be considered. Although presenting similar morphological aspects, MSC collected from different tissues can form heterogeneous cellular populations and, therefore, manifest functional differences. Thus, the source of MSC should be a factor to be considered in the development of novel therapies. The following text presents an updated review of recent research outcomes related to Wharton's jelly mesenchymal stem/stromal cells (WJ-MSC), harvested from umbilical cords and considered novel and potential candidates for the development of cell-based approaches. This text highlights information on how WJ-MSC affect immune responses in comparison with other sources of MSC.
Collapse
|
394
|
Lazarević JJ, Ralević U, Kukolj T, Bugarski D, Lazarević N, Bugarski B, Popović ZV. Influence of chemical fixation process on primary mesenchymal stem cells evidenced by Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:173-178. [PMID: 30897378 DOI: 10.1016/j.saa.2019.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In investigation of (patho)physiological processes, cells represent frequently used analyte as an exceptional source of information. However, spectroscopic analysis of live cells is still very seldom in clinics, as well as in research studies. Among others, the reasons are long acquisition time during which autolysis process is activated, necessity of specified technical equipment, and inability to perform analysis in a moment of sample preparation. Hence, an optimal method of preserving cells in the existing state is of extreme importance, having in mind that selection of fixative is cell lineage dependent. In this study, two commonly used chemical fixatives, formaldehyde and methanol, are used for preserving primary mesenchymal stem cells extracted from periodontal ligament, which are valuable cell source for reconstructive dentistry. By means of Raman spectroscopy, cell samples were probed and the impact of these fixatives on their Raman response was analyzed and compared. Different chemical mechanisms are the core processes of formaldehyde and methanol fixation and certain Raman bands are shifted and/or of changed intensity when Raman spectra of cells fixed in that manner are compared. In order to get clearer picture, comprehensive statistical analysis was performed.
Collapse
Affiliation(s)
- J J Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - U Ralević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - T Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia
| | - D Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia
| | - N Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia.
| | - B Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia
| | - Z V Popović
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade 11000, Serbia
| |
Collapse
|
395
|
Kwong HK, Huang Y, Bao Y, Lam ML, Chen TH. Remnant Effects of Culture Density on Cell Chirality After Reseeding. ACS Biomater Sci Eng 2019; 5:3944-3953. [DOI: 10.1021/acsbiomaterials.8b01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | - Miu Ling Lam
- CityU Shenzhen Research Institute, Shenzhen 518057, China
| | - Ting-Hsuan Chen
- CityU Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200086, China
| |
Collapse
|
396
|
Zhai W, Yong D, El-Jawhari JJ, Cuthbert R, McGonagle D, Win Naing M, Jones E. Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions. Cytotherapy 2019; 21:803-819. [PMID: 31138507 DOI: 10.1016/j.jcyt.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has been shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable because it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighboring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example, involving cell size and spectroscopic measurements, could be the best way forward because they do not modify the cells of interest, thus maximizing the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data.
Collapse
Affiliation(s)
- Weichao Zhai
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Derrick Yong
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Jehan Jomaa El-Jawhari
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK; Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Richard Cuthbert
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK
| | - May Win Naing
- Singapore Institute of Manufacturing Technology, A*STAR, Innovis, Singapore
| | - Elena Jones
- Leeds Institute of Rheumatic and musculoskeletal Medicine, Leeds, UK.
| |
Collapse
|
397
|
Wilson A, Hodgson-Garms M, Frith JE, Genever P. Multiplicity of Mesenchymal Stromal Cells: Finding the Right Route to Therapy. Front Immunol 2019; 10:1112. [PMID: 31164890 PMCID: PMC6535495 DOI: 10.3389/fimmu.2019.01112] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/26/2022] Open
Abstract
Over the last decade, the acceleration in the clinical use of mesenchymal stromal cells (MSCs) has been nothing short of spectacular. Perhaps most surprising is how little we know about the "MSC product." Although MSCs are being delivered to patients at an alarming rate, the regulatory requirements for MSC therapies (for example in terms of quality assurance and quality control) are nowhere near the expectations of traditional pharmaceuticals. That said, the standards that define a chemical compound or purified recombinant protein cannot be applied with the same stringency to a cell-based therapy. Biological processes are dynamic, adaptive and variable. Heterogeneity will always exist or emerge within even the most rigorously sorted clonal cell populations. With MSCs, perhaps more so than any other therapeutic cell, heterogeneity pervades at multiple levels, from the sample source to the single cell. The research and clinical communities collectively need to recognize and take steps to address this troublesome truth, to ensure that the promise of MSC-based therapies is fulfilled.
Collapse
Affiliation(s)
- Alison Wilson
- Department of Biology, University of York, York, United Kingdom
| | | | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Paul Genever
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
398
|
Pioglitazone Improves the Function of Human Mesenchymal Stem Cells in Chronic Kidney Disease Patients. Int J Mol Sci 2019; 20:ijms20092314. [PMID: 31083336 PMCID: PMC6540009 DOI: 10.3390/ijms20092314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are optimal sources of autologous stem cells for cell-based therapy in chronic kidney disease (CKD). However, CKD-associated pathophysiological conditions, such as endoplasmic reticulum (ER) stress and oxidative stress, decrease MSC function. In this work, we study the protective effect of pioglitazone on MSCs isolated from CKD patients (CKD-MSCs) against CKD-induced ER stress. In CKD-MSCs, ER stress is found to induce mitochondrial reactive oxygen species generation and mitochondrial dysfunction. Treatment with pioglitazone reduces the expression of ER stress markers and mitochondrial fusion proteins. Pioglitazone increases the expression of cellular prion protein (PrPC) in CKD-MSCs, which is dependent on the expression levels of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Treatment with pioglitazone is found to protect CKD-MSCs against reactive oxygen species generation, aberrant mitochondrial oxidative phosphorylation of complexes I and IV, and aberrant proliferation capacity through the PGC-1α-PrPC axis. These results indicate that pioglitazone protects the mitochondria of MSCs from CKD-induced ER stress. Pioglitazone treatment of CKD-MSCs may be a potential therapeutic strategy for CKD patients.
Collapse
|
399
|
Virant-Klun I, Omejec S, Stimpfel M, Skerl P, Novakovic S, Jancar N, Vrtacnik-Bokal E. Female Age Affects the Mesenchymal Stem Cell Characteristics of Aspirated Follicular Cells in the In Vitro Fertilization Programme. Stem Cell Rev Rep 2019; 15:543-557. [PMID: 31055736 DOI: 10.1007/s12015-019-09889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aspirated follicular cells (AFCs) from the in vitro fertilization program can express various stem cell markers and are even able to differentiate into different types of cells in vitro. The female reproductive potential decreases with increasing age due to lowered ovarian reserve and oocyte quality, but data on the effect of female age on stem cell characteristics of AFCs are scarce. Therefore, the aim of this study was to elucidate whether female age affects the mesenchymal stem cell (MSC) characteristics of AFCs. Follicular aspirates were collected from 12 patients included in the in vitro fertilization programme with a normal ovarian reserve. Patients were divided into four age groups: Group A ≤ 30 years, Group B 31-35 years, Group C 36-39 years and Group D ≥ 40 years. After removal of the oocytes, AFCs were collected from follicular aspirates using hypo-osmotic technique and cultured in vitro, and their stemness was compared according to female age. The cultured AFCs were analysed for gene expression using the Human Mesenchymal Stem Cell RT2 Profiler™ PCR Array, for their potential for differentiation into adipogenic and osteogenic lineage, and for their expression of MSC-related markers using immunocytochemistry. We found that female age can significantly influence their stemness: expression of pluripotency and MSC-related genes, and their differentiation potential. Despite the relatively high expression of MSC-related genes, the AFCs of the oldest patients had the lowest potential to differentiate into osteogenic and adipogenic lineages in vitro, which may be related to their age and the changed ovarian function.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.
| | - S Omejec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000, Ljubljana, Slovenia
| | - M Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - P Skerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - S Novakovic
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - N Jancar
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - E Vrtacnik-Bokal
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
400
|
Wang Y, Huang J, Gong L, Yu D, An C, Bunpetch V, Dai J, Huang H, Zou X, Ouyang H, Liu H. The Plasticity of Mesenchymal Stem Cells in Regulating Surface HLA-I. iScience 2019; 15:66-78. [PMID: 31030183 PMCID: PMC6487373 DOI: 10.1016/j.isci.2019.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/27/2019] [Accepted: 04/06/2019] [Indexed: 02/07/2023] Open
Abstract
A low surface expression level of human leukocyte antigen class I (HLA-I) ensures that the mesenchymal stem cells (MSCs) escape from the allogeneic recipients' immunological surveillance. Here, we discovered that both transcriptional and synthesis levels of HLA-I in MSCs increased continuously after interferon (IFN)-γ treatment, whereas interestingly, their surface HLA-I expression was downregulated after reaching an HLA-I surface expression peak. Microarray data indicated that the post-transcriptional process plays an important role in the downregulation of surface HLA-I. Further studies identified that IFN-γ-treated MSCs accelerated HLA-I endocytosis through a clathrin-independent dynamin-dependent endocytosis pathway. Furthermore, cells that have self-downregulated surface HLA-I expression elicit a weaker immune response than they previously could. Thus uncovering the plasticity of MSCs in the regulation of HLA-I surface expression would reveal insights into the membrane transportation events leading to the maintenance of low surface HLA-I expression, providing more evidence for selecting and optimizing low-immunogenic MSCs to improve the therapeutic efficiency. hESC-MSCs have the plasticity of maintaining low HLA-I expression on cell surface hESC-MSCs downregulate the surface HLA-I expression through endocytosis of HLA-I hESC-MSCs with lower HLA-I surface expression induce weaker MLR and slighter DTH
Collapse
Affiliation(s)
- Yafei Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jiayun Huang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Orthopedic Surgery, 2nd Affiliated Hospital, Zhejiang University, School of Medicine, Zhejiang 310009, P.R.China; Orthopaedics Research Institute of Zhejiang University, Zhejiang 310009, P.R.China
| | - Lin Gong
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Dongsheng Yu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, P.R.China
| | - Chenrui An
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China
| | - Jun Dai
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki 00290, Finland
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R. China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang 310003, P.R.China
| | - Xiaohui Zou
- Central Laboratory, the First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, P.R.China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Department of Sports Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University, School of Medicine, Hangzhou 310003, P. R. China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310003, P.R. China
| | - Hua Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University, School of Medicine, Hangzhou 310058, P.R.China.
| |
Collapse
|