351
|
Mortazavi SAR, Kaveh-Ahangar K, Mortazavi SMJ, Firoozi D, Haghani M. How Our Neanderthal Genes Affect the COVID-19 Mortality: Iran and Mongolia, Two Countries with the Same SARS-CoV-2 Mutation Cluster but Different Mortality Rates. J Biomed Phys Eng 2021; 11:109-114. [PMID: 33564646 PMCID: PMC7859372 DOI: 10.31661/jbpe.v0i0.2010-1218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 11/17/2022]
Abstract
Neanderthal genes possibly gave modern human protection against viruses. However, a recent study revealed that that a long sequence of DNA that is inherited from our Neanderthal ancestors can be linked to severe COVID-19 infection and hospitalization. Substantial evidence now indicates that our genetic background may be involved in the transmissibility of SARS-CoV-2 and the rapid progress of COVID-19 in some infected individuals. Although both morbidity and mortality of COVID-19 strongly depends on key factors such as age and co-existing health conditions, potential classes of human genomic variants possibly affect the likelihood of SARS-CoV-2 infection and its progress. Despite Iran and Mongolia seem to share the same SARS-CoV-2 mutation cluster, the COVID-19 mortality rates in these two countries are drastically different. While the population in Iran is 25.8 times higher than that of Mongolia, the number of confirmed cases is 1170 times higher. Moreover, the death rate shows a drastic difference. Since Neanderthals interbred with modern humans in Middle East between 47,000 and 65,000 years ago before going extinct 40,000 years ago, some Iranians have much more Neanderthal DNA than other people. Although neither genetic background nor environmental factors alone can determine our risk of developing severe COVID-19, our genes clearly affect both the development and progression of infectious diseases including COVID-19. Given these considerations, we believe that these great differences, at least to some extent, can be due to the proportion of Neanderthal genes among the people of these two countries
Collapse
Affiliation(s)
- S A R Mortazavi
- MD, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K Kaveh-Ahangar
- MSc, Vice-Chancellery for Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S M J Mortazavi
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - D Firoozi
- PhD Candidate, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Haghani
- PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
352
|
Singh RKS, Malik MZ, Singh RKB. Diversity of SARS-CoV-2 isolates driven by pressure and health index. Epidemiol Infect 2021; 149:e38. [PMID: 33517929 PMCID: PMC7884664 DOI: 10.1017/s0950268821000248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main concerns about the fast spreading coronavirus disease 2019 (Covid-19) pandemic is how to intervene. We analysed severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) isolates data using the multifractal approach and found a rich in viral genome diversity, which could be one of the root causes of the fast Covid-19 pandemic and is strongly affected by pressure and health index of the hosts inhabited regions. The calculated mutation rate (mr) is observed to be maximum at a particular pressure, beyond which mr maintains diversity. Hurst exponent and fractal dimension are found to be optimal at a critical pressure (Pm), whereas, for P > Pm and P < Pm, we found rich genome diversity relating to complicated genome organisation and virulence of the virus. The values of these complexity measurement parameters are found to be increased linearly with health index values.
Collapse
Affiliation(s)
- R. K. Sanayaima Singh
- School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Md. Zubbair Malik
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - R. K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
353
|
Sajna KV, Kamat S. Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy 2021; 23:101-110. [PMID: 32988772 PMCID: PMC7458058 DOI: 10.1016/j.jcyt.2020.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
In view of devastating effects of COVID-19 on human life, there is an urgent need for the licened vaccines or therapeutics for the SARS-CoV-2 infection. Age-old passive immunization with protective antibodies to neutralize the virus is one of the strategies for emergency prophylaxis and therapy for coronavirus disease 2019 (COVID-19). In this review, the authors discuss up-to-date advances in immune-based therapy for COVID-19. The use of convalescent plasma therapy as the first line of defense to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been established, with encouraging results. Monoclonal antibodies (mAbs) that bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein or block the interaction between SARS-CoV-2 RBD and the human angiotensin-converting enzyme 2 receptor have been found to be very promising as a countermeasure for tackling the SARS-CoV-2 infection, and clinical trials are underway. Considering the counterproductive antibody-dependent enhancement of the virus, mAbs therapy that is safe and efficacious, even in people with underlying conditions, will be a significant breakthrough. In addition, emerging immunotherapeutic interventions using nanobodies and cellular immunotherapy are promising avenues for tackling the COVID-19 pandemic. The authors also discuss the implication of mAbs as mediators of cytokine storm syndrome to modify the immune response of COVID-19 patients, thus reducing the fatality rate of COVID-19 infection.
Collapse
Affiliation(s)
| | - Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
354
|
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021. [PMID: 33572857 DOI: 10.3390/v13020202]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| |
Collapse
|
355
|
Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021; 13:202. [PMID: 33572857 PMCID: PMC7911532 DOI: 10.3390/v13020202] [Citation(s) in RCA: 321] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Three major outbreaks of the coronavirus, a zoonotic virus known to cause respiratory disease, have been reported since 2002, including SARS-CoV, MERS-CoV and the most recent 2019-nCoV, or more recently known as SARS-CoV-2. Bats are known to be the primary animal reservoir for coronaviruses. However, in the past few decades, the virus has been able to mutate and adapt to infect humans, resulting in an animal-to-human species barrier jump. The emergence of a novel coronavirus poses a serious global public health threat and possibly carries the potential of causing a major pandemic outbreak in the naïve human population. The recent outbreak of COVID-19, the disease caused by SARS-CoV-2, in Wuhan, Hubei Province, China has infected over 36.5 million individuals and claimed over one million lives worldwide, as of 8 October 2020. The novel virus is rapidly spreading across China and has been transmitted to 213 other countries/territories across the globe. Researchers have reported that the virus is constantly evolving and spreading through asymptomatic carriers, further suggesting a high global health threat. To this end, current up-to-date information on the coronavirus evolution and SARS-CoV-2 modes of transmission, detection techniques and current control and prevention strategies are summarized in this review.
Collapse
Affiliation(s)
- Anshika Sharma
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
| | - Isra Ahmad Farouk
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia; (A.S.); (I.A.F.)
- Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor DE, Malaysia
| |
Collapse
|
356
|
Malik JA, Mulla AH, Farooqi T, Pottoo FH, Anwar S, Rengasamy KRR. Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother 2021; 137:111254. [PMID: 33550049 PMCID: PMC7843096 DOI: 10.1016/j.biopha.2021.111254] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2, previously called a novel coronavirus, that broke out in the Wuhan city of China caused a significant number of morbidity and mortality in the world. It is spreading at peak levels since the first case reported and the need for vaccines is in immense demand globally. Numerous treatment and vaccination strategies that were previously employed for other pathogens including coronaviruses are now being been adopted to guide the formulation of new SARS-CoV-2 vaccines. Several vaccine targets can be utilized for the development of the SARS-CoV-2 vaccine. In this review, we highlighted the potential of various antigenic targets and other modes for formulating an effective vaccine against SARS-CoV-2. There are a varying number of challenges encountered during developing the most effective vaccines, and measures for tackling such challenges will assist in fast pace development of vaccines. This review will give a concise overview of various aspects of the vaccine development process against SARS-CoV-2, including 1) potential antigen targets 2) different vaccination strategies from conventional to novel platforms, 3) ongoing clinical trials, 4) varying challenges encountered during developing the most effective vaccine and the futuristic approaches.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India; Department of Biomedical Engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | | | - Tahmeena Farooqi
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Hyderabad Telangana, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia.
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2745, North West Province, South Africa.
| |
Collapse
|
357
|
Shaibu JO, Onwuamah CK, James AB, Okwuraiwe AP, Amoo OS, Salu OB, Ige FA, Liboro G, Odewale E, Okoli LC, Ahmed RA, Achanya D, Adesesan A, Amuda OA, Sokei J, Oyefolu BAO, Salako BL, Omilabu SA, Audu RA. Full length genomic sanger sequencing and phylogenetic analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Nigeria. PLoS One 2021; 16:e0243271. [PMID: 33428634 PMCID: PMC7799769 DOI: 10.1371/journal.pone.0243271] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
In an outbreak, effective detection of the aetiological agent(s) involved using molecular techniques is key to efficient diagnosis, early prevention and management of the spread. However, sequencing is necessary for mutation monitoring and tracking of clusters of transmission, development of diagnostics and for vaccines and drug development. Many sequencing methods are fast evolving to reduce test turn-around-time and to increase through-put compared to Sanger sequencing method; however, Sanger sequencing remains the gold standard for clinical research sequencing with its 99.99% accuracy This study sought to generate sequence data of SARS-CoV-2 using Sanger sequencing method and to characterize them for possible site(s) of mutations. About 30 pairs of primers were designed, synthesized, and optimized using endpoint PCR to generate amplicons for the full length of the virus. Cycle sequencing using BigDye Terminator v.3.1 and capillary gel electrophoresis on ABI 3130xl genetic analyser were performed according to the manufacturers’ instructions. The sequence data generated were assembled and analysed for variations using DNASTAR Lasergene 17 SeqMan Ultra. Total length of 29,760bp of SARS-CoV-2 was assembled from the sample analysed and deposited in GenBank with accession number: MT576584. Blast result of the sequence assembly shows a 99.97% identity with the reference sequence. Variations were noticed at positions: nt201, nt2997, nt14368, nt16535, nt20334, and nt28841-28843, which caused amino acid alterations at the S (aa614) and N (aa203-204) regions. The mutations observed at S and N-gene in this study may be indicative of a gradual changes in the genetic coding of the virus hence, the need for active surveillance of the viral genome.
Collapse
Affiliation(s)
- Joseph Ojonugwa Shaibu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- * E-mail:
| | - Chika K. Onwuamah
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Azuka Patrick Okwuraiwe
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Olufemi Samuel Amoo
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- Department of Medical Microbiology and Parasitology, Centre for Human and Zoonotic Virology, College of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Fehintola A. Ige
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Gideon Liboro
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Ebenezer Odewale
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Leona Chika Okoli
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Rahaman A. Ahmed
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- Department of Cell Biology and Genetics, University of Lagos, Akoka, Lagos, Nigeria
| | - Dominic Achanya
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Adesegun Adesesan
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Oyewunmi Abosede Amuda
- Centre for Tuberculosis Research, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Judith Sokei
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Bola A. O. Oyefolu
- Department of Microbiology, Virology Research Group, Lagos State University, Ojo, Lagos, Nigeria
| | | | - Sunday Aremu Omilabu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
- Department of Medical Microbiology and Parasitology, Centre for Human and Zoonotic Virology, College of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Rosemary Ajuma Audu
- Microbiology Department, Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
358
|
Leading Enterovirus Genotypes Causing Hand, Foot, and Mouth Disease in Guangzhou, China: Relationship with Climate and Vaccination against EV71. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18010292. [PMID: 33401757 PMCID: PMC7795377 DOI: 10.3390/ijerph18010292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
(1) Background: Assignment of pathogens to the correct genus, species, and type is vital for controlling infectious epidemics. However, the role of different enteroviruses during hand, foot, and mouth disease (HFMD) epidemics and the major contributing factors remain unknown. (2) Methods: HFMD cases from 2016 to 2018 in Guangzhou, China were collected. The relationship between HFMD cases and genotype frequency, as well as the association between genotype frequency and climate factors, were studied using general linear models. We transformed the genotype frequency to the isometric log-ratio (ILR) components included in the model. Additionally, vaccination rates were adjusted in the climate-driven models. (3) Results: We observed seasonal trends in HFMD cases, genotype frequency, and climate factors. The model regressing case numbers on genotype frequency revealed negative associations with both the ILRs of CAV16 (RR = 0.725, p < 0.001) and EV71 (RR = 0.421, p < 0.001). The model regressing genotype frequency on driven factors showed that the trends for EV71 proportions were inversely related to vaccination rate (%, β = -0.152, p = 0.098) and temperature (°C, β = -0.065, p = 0.004). Additionally, the trends for CVA16 proportions were inversely related to vaccination rate (%, β = -0.461, p = 0.004) and temperature (°C, β = -0.068, p = 0.031). The overall trends for genotype frequency showed that EV71 decreased significantly, while the trends for CVA16 increased annually. (4) Conclusions: Our findings suggest a potential pathway for climate factors, genotype frequency, and HFMD cases. Our study is practical and useful for targeted prevention and control, and provides environmental-based evidence.
Collapse
|
359
|
Origin of imported SARS-CoV-2 strains in The Gambia identified from whole genome sequences. PLoS One 2021; 16:e0241942. [PMID: 34464385 PMCID: PMC8407536 DOI: 10.1371/journal.pone.0241942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/06/2021] [Indexed: 02/01/2023] Open
Abstract
The SARS-CoV-2 disease, first detected in Wuhan, China, in December 2019 has become a global pandemic and is causing an unprecedented burden on health care systems and the economy globally. While the travel history of index cases may suggest the origin of infection, phylogenetic analysis of isolated strains from these cases and contacts will increase the understanding and link between local transmission and other global populations. The objective of this analysis was to provide genomic data on the first six cases of SARS-CoV-2 in The Gambia and to determine the source of infection. This ultimately provide baseline data for subsequent local transmission and contribute genomic diversity information towards local and global data. Our analysis has shown that the SARS-CoV-2 virus identified in The Gambia are of European and Asian origin and sequenced data matched patients' travel history. In addition, we were able to show that two COVID-19 positive cases travelling in the same flight had different strains of SARS-CoV-2. Although whole genome sequencing (WGS) data is still limited in sub-Saharan Africa, this approach has proven to be a highly sensitive, specific and confirmatory tool for SARS-CoV-2 detection.
Collapse
|
360
|
Rasmussen DA, Grünwald NJ. Phylogeographic Approaches to Characterize the Emergence of Plant Pathogens. PHYTOPATHOLOGY 2021; 111:68-77. [PMID: 33021879 DOI: 10.1094/phyto-07-20-0319-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phylogeography combines geographic information with phylogenetic and population genomic approaches to infer the evolutionary history of a species or population in a geographic context. This approach has been instrumental in understanding the emergence, spread, and evolution of a range of plant pathogens. In particular, phylogeography can address questions about where a pathogen originated, whether it is native or introduced, and when and how often introductions occurred. We review the theory, methods, and approaches underpinning phylogeographic inference and highlight applications providing novel insights into the emergence and spread of select pathogens. We hope that this review will be useful in assessing the power, pitfalls, and opportunities presented by various phylogeographic approaches.
Collapse
Affiliation(s)
- David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | - Niklaus J Grünwald
- Horticultural Crops Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Corvallis, OR
| |
Collapse
|
361
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
362
|
Lorenzo-Redondo R, Ozer EA, Achenbach CJ, D'Aquila RT, Hultquist JF. Molecular epidemiology in the HIV and SARS-CoV-2 pandemics. Curr Opin HIV AIDS 2021; 16:11-24. [PMID: 33186230 PMCID: PMC7723008 DOI: 10.1097/coh.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The aim of this review was to compare and contrast the application of molecular epidemiology approaches for the improved management and understanding of the HIV versus SARS-CoV-2 epidemics. RECENT FINDINGS Molecular biology approaches, including PCR and whole genome sequencing (WGS), have become powerful tools for epidemiological investigation. PCR approaches form the basis for many high-sensitivity diagnostic tests and can supplement traditional contact tracing and surveillance strategies to define risk networks and transmission patterns. WGS approaches can further define the causative agents of disease, trace the origins of the pathogen, and clarify routes of transmission. When coupled with clinical datasets, such as electronic medical record data, these approaches can investigate co-correlates of disease and pathogenesis. In the ongoing HIV epidemic, these approaches have been effectively deployed to identify treatment gaps, transmission clusters and risk factors, though significant barriers to rapid or real-time implementation remain critical to overcome. Likewise, these approaches have been successful in addressing some questions of SARS-CoV-2 transmission and pathogenesis, but the nature and rapid spread of the virus have posed additional challenges. SUMMARY Overall, molecular epidemiology approaches offer unique advantages and challenges that complement traditional epidemiological tools for the improved understanding and management of epidemics.
Collapse
Affiliation(s)
- Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
363
|
Krishnamoorthy P, Raj AS, Roy S, Kumar NS, Kumar H. Comparative transcriptome analysis of SARS-CoV, MERS-CoV, and SARS-CoV-2 to identify potential pathways for drug repurposing. Comput Biol Med 2021; 128:104123. [PMID: 33260034 PMCID: PMC7683955 DOI: 10.1016/j.compbiomed.2020.104123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The ongoing COVID-19 pandemic caused by the coronavirus, SARS-CoV-2, has already caused in excess of 1.25 million deaths worldwide, and the number is increasing. Knowledge of the host transcriptional response against this virus and how the pathways are activated or suppressed compared to other human coronaviruses (SARS-CoV, MERS-CoV) that caused outbreaks previously can help in the identification of potential drugs for the treatment of COVID-19. Hence, we used time point meta-analysis to investigate available SARS-CoV and MERS-CoV in-vitro transcriptome datasets in order to identify the significant genes and pathways that are dysregulated at each time point. The subsequent over-representation analysis (ORA) revealed that several pathways are significantly dysregulated at each time point after both SARS-CoV and MERS-CoV infection. We also performed gene set enrichment analyses of SARS-CoV and MERS-CoV with that of SARS-CoV-2 at the same time point and cell line, the results of which revealed that common pathways are activated and suppressed in all three coronaviruses. Furthermore, an analysis of an in-vivo transcriptomic dataset of COVID-19 patients showed that similar pathways are enriched to those identified in the earlier analyses. Based on these findings, a drug repurposing analysis was performed to identify potential drug candidates for combating COVID-19.
Collapse
Affiliation(s)
- Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Athira S Raj
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India
| | - Swagnik Roy
- Microbiology Department, Zoram Medical College, Falkawn, Mizoram, 796005, India
| | | | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, MP, India; Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, 5650871, Japan.
| |
Collapse
|
364
|
Singh SP, Pritam M, Pandey B, Yadav TP. Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. J Med Virol 2021; 93:275-299. [PMID: 32617987 PMCID: PMC7361355 DOI: 10.1002/jmv.26254] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
There have been over seven million cases and almost 413 372 deaths globally due to the novel coronavirus (2019-nCoV) associated disease COVID-19, as of 11 June 2020. Phylogenetic analysis suggests that there is a common source for these infections. The overall sequence similarities between the spike protein of 2019-nCoV and that of SARS-CoV are known to be around 76% to 78% and 73% to 76% for the whole protein and receptor-binding domain (RBD), respectively. Thus, they have the potential to serve as the drug and/or vaccine candidate. However, the individual response against 2019-nCoV differs due to genetic variations in the human population. Understanding the variations in angiotensin-converting enzyme 2 (ACE2) and human leukocyte antigen (HLA) that may affect the severity of 2019-nCoV infection could help in identifying individuals at a higher risk from the COVID-19. A number of potential drugs/vaccines as well as antibody/cytokine-based therapeutics are in various developmental stages of preclinical/clinical trials against SARS-CoV, MERS-CoV, and 2019-nCoV with substantial cross-reactivity, and may be used against COVID-19. For diagnosis, the reverse-transcription polymerase chain reaction is the gold standard test for initial diagnosis of COVID-19. A kit based on serological tests are also recommended for investigating the spread of COVID-19 but this is challenging due to the antibodies cross-reactivity. This review comprehensively summarizes the recent reports available regarding the host-pathogen interaction, morphological and genomic structure of the virus, and the diagnostic techniques as well as the available potential therapeutics against COVID-19.
Collapse
Affiliation(s)
| | - Manisha Pritam
- Amity Institute of BiotechnologyAmity University Uttar PradeshLucknowIndia
| | - Brijesh Pandey
- Department of BiotechnologyMahatma Gandhi Central UniversityMotihariIndia
| | - Thakur Prasad Yadav
- Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
| |
Collapse
|
365
|
Yashvardhini N, Jha DK, Bhattacharya S. Identification and characterization of mutations in the SARS-CoV-2 RNA-dependent RNA polymerase as a promising antiviral therapeutic target. Arch Microbiol 2021; 203:5463-5473. [PMID: 34410443 PMCID: PMC8374121 DOI: 10.1007/s00203-021-02527-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/29/2022]
Abstract
The causative agent of COVID-19 is a novel betacoronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV-2), which has emerged as a pandemic of global concern. Considering its rapid transmission, WHO has declared public health emergency on 11th March 2020 worldwide. SARS-CoV-2 is a genetically diverse positive sense RNA virus that typically exhibit high rates of mutation than DNA viruses. Higher rates of mutation bring higher genomic variability which may lead to viral evolution and enabling viruses to evade the pre-existing immunity of host and quickly acquire drug resistance properties. The objective of our study was to compare the SARS-CoV-2 RdRp sequences of Indian SARS-CoV-2 isolates with those of Wuhan type virus. A total of 384 point mutations were detected from 488 sequence of the RdRp protein of Indian SARS-CoV-2 genome, out of which seven were used for subsequent study. Furthermore, prediction of secondary structure, protein modeling and its dynamics were performed which revealed that seven mutations (R118C, T148I, Y149C, E802A, Q822H, V880I and D893Y) significantly altered the stability and flexibility of RdRp protein. Present study was therefore, undertaken to analyze the variations occurring in RdRp due to multiple mutations leading to the alterations in the structure and function of RNA-dependent RNA polymerase which is essential for the replication /transcription of this virus and hence can be utilized as a promising therapeutic target to curb SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Niti Yashvardhini
- grid.412457.10000 0001 1276 6626Department of Microbiology, Patna Women’s College, Patna, 800 001 India
| | - Deepak Kumar Jha
- Department of Zoology, P. C. Vigyan Mahavidyalaya, J. P. University, Chapra, 841 301 India
| | - Saurav Bhattacharya
- grid.449713.c0000 0004 5944 7827Department of Biotechnology, Techno India University, Kolkata, 700 091 India
| |
Collapse
|
366
|
Wallace MA, Coffman KA, Gilbert C, Ravindran S, Albery GF, Abbott J, Argyridou E, Bellosta P, Betancourt AJ, Colinet H, Eric K, Glaser-Schmitt A, Grath S, Jelic M, Kankare M, Kozeretska I, Loeschcke V, Montchamp-Moreau C, Ometto L, Onder BS, Orengo DJ, Parsch J, Pascual M, Patenkovic A, Puerma E, Ritchie MG, Rota-Stabelli O, Schou MF, Serga SV, Stamenkovic-Radak M, Tanaskovic M, Veselinovic MS, Vieira J, Vieira CP, Kapun M, Flatt T, González J, Staubach F, Obbard DJ. The discovery, distribution, and diversity of DNA viruses associated with Drosophila melanogaster in Europe. Virus Evol 2021; 7:veab031. [PMID: 34408913 PMCID: PMC8363768 DOI: 10.1093/ve/veab031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drosophila melanogaster is an important model for antiviral immunity in arthropods, but very few DNA viruses have been described from the family Drosophilidae. This deficiency limits our opportunity to use natural host-pathogen combinations in experimental studies, and may bias our understanding of the Drosophila virome. Here, we report fourteen DNA viruses detected in a metagenomic analysis of 6668 pool-sequenced Drosophila, sampled from forty-seven European locations between 2014 and 2016. These include three new nudiviruses, a new and divergent entomopoxvirus, a virus related to Leptopilina boulardi filamentous virus, and a virus related to Musca domestica salivary gland hypertrophy virus. We also find an endogenous genomic copy of galbut virus, a double-stranded RNA partitivirus, segregating at very low frequency. Remarkably, we find that Drosophila Vesanto virus, a small DNA virus previously described as a bidnavirus, may be composed of up to twelve segments and thus represent a new lineage of segmented DNA viruses. Two of the DNA viruses, Drosophila Kallithea nudivirus and Drosophila Vesanto virus are relatively common, found in 2 per cent or more of wild flies. The others are rare, with many likely to be represented by a single infected fly. We find that virus prevalence in Europe reflects the prevalence seen in publicly available datasets, with Drosophila Kallithea nudivirus and Drosophila Vesanto virus the only ones commonly detectable in public data from wild-caught flies and large population cages, and the other viruses being rare or absent. These analyses suggest that DNA viruses are at lower prevalence than RNA viruses in D.melanogaster, and may be less likely to persist in laboratory cultures. Our findings go some way to redressing an earlier bias toward RNA virus studies in Drosophila, and lay the foundation needed to harness the power of Drosophila as a model system for the study of DNA viruses.
Collapse
Affiliation(s)
- Megan A Wallace
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Kelsey A Coffman
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Clément Gilbert
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sanjana Ravindran
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Jessica Abbott
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Eliza Argyridou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Paola Bellosta
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Cellular, Computational and Integrative Biology, CIBIO University of Trento, Via Sommarive 9, Trento 38123, Italy
- Department of Medicine & Endocrinology, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Andrea J Betancourt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Hervé Colinet
- The European Drosophila Population Genomics Consortium (DrosEU)
- UMR CNRS 6553 ECOBIO, Université de Rennes1, Rennes, France
| | - Katarina Eric
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Amanda Glaser-Schmitt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Sonja Grath
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Mihailo Jelic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Maaria Kankare
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Iryna Kozeretska
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
| | - Volker Loeschcke
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Genetics, Ecology and Evolution, Aarhus University, Ny Munkegade 116, Aarhus C DK-8000, Denmark
| | - Catherine Montchamp-Moreau
- The European Drosophila Population Genomics Consortium (DrosEU)
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Lino Ometto
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology and Biotechnology, University of Pavia, Pavia 27100, Italy
| | - Banu Sebnem Onder
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Dorcas J Orengo
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - John Parsch
- The European Drosophila Population Genomics Consortium (DrosEU)
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Marta Pascual
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Aleksandra Patenkovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Eva Puerma
- The European Drosophila Population Genomics Consortium (DrosEU)
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Michael G Ritchie
- The European Drosophila Population Genomics Consortium (DrosEU)
- Centre for Biological Diversity, St Andrews University, St Andrews HY15 4SS, UK
| | - Omar Rota-Stabelli
- The European Drosophila Population Genomics Consortium (DrosEU)
- Research and Innovation Center, Fondazione E. Mach, San Michele all’Adige (TN) 38010, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige (TN) 38010, Italy
| | - Mads Fristrup Schou
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Svitlana V Serga
- The European Drosophila Population Genomics Consortium (DrosEU)
- National Antarctic Scientific Center of Ukraine, 16 Shevchenko Avenue, Kyiv, 01601, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrska str, Kyiv 01601, Ukraine
| | - Marina Stamenkovic-Radak
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Marija Tanaskovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Savic Veselinovic
- The European Drosophila Population Genomics Consortium (DrosEU)
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| | - Jorge Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Cristina P Vieira
- The European Drosophila Population Genomics Consortium (DrosEU)
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, i3S, Porto, Portugal
| | - Martin Kapun
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Division of Cell & Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas Flatt
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Josefa González
- The European Drosophila Population Genomics Consortium (DrosEU)
- Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Fabian Staubach
- The European Drosophila Population Genomics Consortium (DrosEU)
- Department of Evolution and Ecology, University of Freiburg, Freiburg 79104, Germany
| | - Darren J Obbard
- The European Drosophila Population Genomics Consortium (DrosEU)
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
367
|
Fakhroo AD, Al Thani AA, Yassine HM. Markers Associated with COVID-19 Susceptibility, Resistance, and Severity. Viruses 2020; 13:E45. [PMID: 33396584 PMCID: PMC7823574 DOI: 10.3390/v13010045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
In December 2019, the latest member of the coronavirus family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, leading to the outbreak of an unusual viral pneumonia known as coronavirus disease 2019 (COVID-19). COVID-19 was then declared as a pandemic in March 2020 by the World Health Organization (WHO). The initial mortality rate of COVID-19 declared by WHO was 2%; however, this rate has increased to 3.4% as of 3 March 2020. People of all ages can be infected with SARS-CoV-2, but those aged 60 or above and those with underlying medical conditions are more prone to develop severe symptoms that may lead to death. Patients with severe infection usually experience a hyper pro-inflammatory immune reaction (i.e., cytokine storm) causing acute respiratory distress syndrome (ARDS), which has been shown to be the leading cause of death in COVID-19 patients. However, the factors associated with COVID-19 susceptibility, resistance and severity remain poorly understood. In this review, we thoroughly explore the correlation between various host, viral and environmental markers, and SARS-CoV-2 in terms of susceptibility and severity.
Collapse
Affiliation(s)
- Aisha D. Fakhroo
- Research and Development Department, Barzan Holdings, Doha 7178, Qatar;
| | | | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
368
|
Padhi AK, Shukla R, Saudagar P, Tripathi T. High-throughput rational design of the remdesivir binding site in the RdRp of SARS-CoV-2: implications for potential resistance. iScience 2020; 24:101992. [PMID: 33490902 PMCID: PMC7807151 DOI: 10.1016/j.isci.2020.101992] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 02/09/2023] Open
Abstract
The use of remdesivir to treat COVID-19 will likely continue before clinical trials are completed. Due to the lengthening pandemic and evolving nature of the virus, predicting potential residues prone to mutation is crucial for the management of remdesivir resistance. Using a rational ligand-based interface design complemented with mutational mapping, we generated a total of 100,000 mutations and provided insight into the functional outcomes of mutations in the remdesivir-binding site in nsp12 subunit of RdRp. After designing 46 residues in the remdesivir-binding site of nsp12, the designs retained 97%–98% sequence identity, suggesting that very few mutations in nsp12 are required for SARS-CoV-2 to attain remdesivir resistance. Several mutants displayed decreased binding affinity to remdesivir, suggesting drug resistance. These hotspot residues had a higher probability of undergoing selective mutation and thus conferring remdesivir resistance. Identifying the potential residues prone to mutation improves our understanding of SARS-CoV-2 drug resistance and COVID-19 pathogenesis. SARS-CoV-2 may acquire mutations in nsp12 to develop remdesivir resistance Hotspot residues that exhibited the highest potential for mutation were identified Virus can undergo positive selection and attain resistance with very few mutations Data is crucial for the understanding and management of drug resistance
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
369
|
Garvin MR, T Prates E, Pavicic M, Jones P, Amos BK, Geiger A, Shah MB, Streich J, Felipe Machado Gazolla JG, Kainer D, Cliff A, Romero J, Keith N, Brown JB, Jacobson D. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol 2020; 21:304. [PMID: 33357233 PMCID: PMC7756312 DOI: 10.1186/s13059-020-02191-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - B Kirtley Amos
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- Department of Horticulture, N-318 Ag Sciences Center, University of Kentucky, Lexington, KY, USA
| | - Armin Geiger
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Manesh B Shah
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Jared Streich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | | | - David Kainer
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Ashley Cliff
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Jonathon Romero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Nathan Keith
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA.
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| |
Collapse
|
370
|
Elaswad A, Fawzy M, Basiouni S, Shehata AA. Mutational spectra of SARS-CoV-2 isolated from animals. PeerJ 2020; 8:e10609. [PMID: 33384909 PMCID: PMC7751428 DOI: 10.7717/peerj.10609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 12/03/2022] Open
Abstract
Coronaviruses are ubiquitous and infect a wide spectrum of animals and humans. The newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a worldwide pandemic. To address the role that animals may play in the evolution of SARS-CoV-2, the full genome sequences of SARS-CoV-2 isolated from animals were compared with SARS-CoV-2 human isolates from the same clade and geographic region. Phylogenetic analysis of SARS-CoV-2 isolated from the cat, dog, mink, mouse, and tiger revealed a close relationship with SARS-CoV-2 human isolates from the same clade and geographic region with sequence identities of 99.94-99.99%. The deduced amino acid sequence of spike (S) protein revealed the presence of a furin cleavage site (682RRAR▾685), which did not differ among all SARS-CoV-2 isolates from animals and humans. SARS-CoV-2 isolates from minks exhibited two amino acid substitutions (G261D, A262S) in the N-terminal domain of S protein and four (L452M, Y453F, F486L, N501T) in the receptor-binding motif (RBM). In the mouse, the S protein had two amino acid substitutions, one in the RBM (Q498H) and the other (N969S) in the heptad repeat 1. SARS-CoV-2 isolated from minks furtherly exhibited three unique amino acid substitutions in the nucleocapsid (N)protein. In the cat, two unique amino acid substitutions were discovered in the N (T247I) and matrix (T175M) proteins. Additionally, SARS-CoV-2 isolated from minks possessed sixteen, four, and two unique amino acid substitutions in the open reading frame 1ab (ORF1ab), ORF3a, and ORF6, respectively. Dog and cat SARS-CoV-2 isolates showed one and seven unique amino acid substitutions in ORF1ab, respectively. Further studies may be necessary to determine the pathogenic significance of these amino acid substitutions to understand the molecular epidemiology and evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed Elaswad
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
- Research and Development Section, PerNaturam GmbH, Gödenroth, Germany
| |
Collapse
|
371
|
Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother 2020; 28:2040206620976786. [PMID: 33297724 PMCID: PMC7734526 DOI: 10.1177/2040206620976786] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zoonotic spillover, i.e. pathogen transmission from animal to human, has repeatedly introduced RNA viruses into the human population. In some cases, where these viruses were then efficiently transmitted between humans, they caused large disease outbreaks such as the 1918 flu pandemic or, more recently, outbreaks of Ebola and Coronavirus disease. These examples demonstrate that RNA viruses pose an immense burden on individual and public health with outbreaks threatening the economy and social cohesion within and across borders. And while emerging RNA viruses are introduced more frequently as human activities increasingly disrupt wild-life eco-systems, therapeutic or preventative medicines satisfying the “one drug-multiple bugs”-aim are unavailable. As one central aspect of preparedness efforts, this review digs into the development of broadly acting antivirals via targeting viral genome synthesis with host- or virus-directed drugs centering around nucleotides, the genomes’ universal building blocks. Following the first strategy, selected examples of host de novo nucleotide synthesis inhibitors are presented that ultimately interfere with viral nucleic acid synthesis, with ribavirin being the most prominent and widely used example. For directly targeting the viral polymerase, nucleoside and nucleotide analogues (NNAs) have long been at the core of antiviral drug development and this review illustrates different molecular strategies by which NNAs inhibit viral infection. Highlighting well-known as well as recent, clinically promising compounds, structural features and mechanistic details that may confer broad-spectrum activity are discussed. The final part addresses limitations of NNAs for clinical development such as low efficacy or mitochondrial toxicity and illustrates strategies to overcome these.
Collapse
Affiliation(s)
- Johanna Huchting
- Chemistry Department, Institute for Organic Chemistry, Faculty of Mathematics, Computer Science and Natural Sciences, University of Hamburg, Hamburg, Germany
| |
Collapse
|
372
|
Doddapaneni H, Cregeen SJ, Sucgang R, Meng Q, Qin X, Avadhanula V, Chao H, Menon V, Nicholson E, Henke D, Piedra FA, Rajan A, Momin Z, Kottapalli K, Hoffman KL, Sedlazeck FJ, Metcalf G, Piedra PA, Muzny DM, Petrosino JF, Gibbs RA. Oligonucleotide Capture Sequencing of the SARS-CoV-2 Genome and Subgenomic Fragments from COVID-19 Individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.11.421057. [PMID: 33330863 PMCID: PMC7743067 DOI: 10.1101/2020.12.11.421057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The newly emerged and rapidly spreading SARS-CoV-2 causes coronavirus disease 2019 (COVID-19). To facilitate a deeper understanding of the viral biology we developed a capture sequencing methodology to generate SARS-CoV-2 genomic and transcriptome sequences from infected patients. We utilized an oligonucleotide probe-set representing the full-length genome to obtain both genomic and transcriptome (subgenomic open reading frames [ORFs]) sequences from 45 SARS-CoV-2 clinical samples with varying viral titers. For samples with higher viral loads (cycle threshold value under 33, based on the CDC qPCR assay) complete genomes were generated. Analysis of junction reads revealed regions of differential transcriptional activity and provided evidence of expression of ORF10. Heterogeneous allelic frequencies along the 20kb ORF1ab gene suggested the presence of a defective interfering viral RNA species subpopulation in one sample. The associated workflow is straightforward, and hybridization-based capture offers an effective and scalable approach for sequencing SARS-CoV-2 from patient samples.
Collapse
Affiliation(s)
- Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sara Javornik Cregeen
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Sucgang
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vipin Menon
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erin Nicholson
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
- Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America, USA
| | - David Henke
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
| | - Felipe-Andres Piedra
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
| | - Zeineen Momin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kavya Kottapalli
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kristi L. Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ginger Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Houston, Texas, United States of America, USA
- Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph F. Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
373
|
Linsky TW, Vergara R, Codina N, Nelson JW, Walker MJ, Su W, Barnes CO, Hsiang TY, Esser-Nobis K, Yu K, Reneer ZB, Hou YJ, Priya T, Mitsumoto M, Pong A, Lau UY, Mason ML, Chen J, Chen A, Berrocal T, Peng H, Clairmont NS, Castellanos J, Lin YR, Josephson-Day A, Baric RS, Fuller DH, Walkey CD, Ross TM, Swanson R, Bjorkman PJ, Gale M, Blancas-Mejia LM, Yen HL, Silva DA. De novo design of potent and resilient hACE2 decoys to neutralize SARS-CoV-2. Science 2020; 370:1208-1214. [PMID: 33154107 PMCID: PMC7920261 DOI: 10.1126/science.abe0075] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023]
Abstract
We developed a de novo protein design strategy to swiftly engineer decoys for neutralizing pathogens that exploit extracellular host proteins to infect the cell. Our pipeline allowed the design, validation, and optimization of de novo human angiotensin-converting enzyme 2 (hACE2) decoys to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The best monovalent decoy, CTC-445.2, bound with low nanomolar affinity and high specificity to the receptor-binding domain (RBD) of the spike protein. Cryo-electron microscopy (cryo-EM) showed that the design is accurate and can simultaneously bind to all three RBDs of a single spike protein. Because the decoy replicates the spike protein target interface in hACE2, it is intrinsically resilient to viral mutational escape. A bivalent decoy, CTC-445.2d, showed ~10-fold improvement in binding. CTC-445.2d potently neutralized SARS-CoV-2 infection of cells in vitro, and a single intranasal prophylactic dose of decoy protected Syrian hamsters from a subsequent lethal SARS-CoV-2 challenge.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Su
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Katharina Esser-Nobis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kevin Yu
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Z Beau Reneer
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Yixuan J Hou
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Tanu Priya
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Avery Pong
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Uland Y Lau
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Jerry Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | - Alex Chen
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Hong Peng
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | | | - Yu-Ru Lin
- Neoleukin Therapeutics Inc., Seattle, WA, USA
| | | | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | | | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | | | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | |
Collapse
|
374
|
Kumar S, Yadav PK, Srinivasan R, Perumal N. Selection of animal models for COVID-19 research. Virusdisease 2020; 31:453-458. [PMID: 33283030 PMCID: PMC7709475 DOI: 10.1007/s13337-020-00637-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023] Open
Abstract
The researcher community across the globe is on a search for a promising animal model that closely mimics the clinical manifestation of SARS-CoV-2. Though some developments were seen such as serial adaptation in various animal species or the creation of genetically engineered models, a suitable animal model remains elusive. A model that could display the severity of human illness and can be used for the fast-track evaluation of potential drugs as well as for the clinical trials of vaccines is an urgent need of the hour. In the light of huge information generated on SARS-CoV-2 and daily updates received from the research community, we have chosen to review the current status of animal models of SARS-CoV-2 in encompassing the areas of viral replication, transmission, active/passive immunization, clinical disease, and pathology. The review is intended to help the researchers in the selection of appropriate animal models for SARS CoV-2 research in the fight against the current global pandemic.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Noida, UP India
| | - Pardeep Kumar Yadav
- Central Animal Facility, All India Institute of Medical Science, New Delhi, India
| | - Ramesh Srinivasan
- Department of veterinary Pharmacology and Toxicology, Madras Veterinary College, Tamil NAdu Veterinary and Animal Science University, Chennai, Tamil Nadu India
| | - Nagarajan Perumal
- Experimental Animal Facility, National Institute of Immunology, New Delhi, 110067 India
| |
Collapse
|
375
|
Saha O, Hossain MS, Rahaman MM. Genomic exploration light on multiple origin with potential parsimony-informative sites of the severe acute respiratory syndrome coronavirus 2 in Bangladesh. GENE REPORTS 2020; 21:100951. [PMID: 33163695 PMCID: PMC7603978 DOI: 10.1016/j.genrep.2020.100951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of beta coronavirus that has spread worldwide within a short period of time and has been responsible for the current COVID-19 pandemic. This novel virus shows high transmission and adaptability frequency into the host with rapid changes in genomic sequences. In this study, we analyzed the complete genome of 41 strains isolated in Bangladesh to understand the evolutionary route and genetic variations of this rapidly evolving virus. The phylogenetics, parsimony informative sites and mutation analyses were performed using MEGA X, Multiple sequence alignment program (MAFFT), and Virus Pathogen Resource. The phylogenetic analysis of the studied genomes along with the reference genome suggested that the viral strains found in Bangladesh might be coming from multiple countries such as France, Germany, India, the USA, and Brazil. After entering into the country, intra-cluster and inter-cluster began to circulate in the 8 individual divisions of Bangladesh. We also identified 26 parsimony-informative sites along with the 9 most important sites for virus evolution. Genome-wide annotations revealed 256 mutations, of which 10 were novel (NSP3, RdRp, Spike) in Bangladeshi strains where I120F(NSP2), P323L(RdRp), D614G (Spike), R203K, G204R(N) are the most prominent. Most importantly, numerous mutations were flourishing in the N protein gene (67) followed by S (45), RdRp (38), NSP2 (34), NSP3 (20), and ORF8 (6) gene. Moreover, nucleotide deletion analysis found nine deletions throughout the genomes including in ORF7a (8), ORF8 (1) with one insertion (G) at 265 positions in only one genome. The underlying mechanism of disease severity, molecular evolution, and epidemiology lie in genomic sequences that are not fully understood yet. Identification of the evolutionary history, parsimony-informative sites and others genetic variations of this deadly virus will facilitate the development of new strategies to control the local transmission and provide deep insight in the identification of potential therapeutic targets for controlling COVID-19.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | | |
Collapse
|
376
|
Chand GB, Banerjee A, Azad GK. Identification of twenty-five mutations in surface glycoprotein (Spike) of SARS-CoV-2 among Indian isolates and their impact on protein dynamics. GENE REPORTS 2020; 21:100891. [PMID: 33015411 PMCID: PMC7521409 DOI: 10.1016/j.genrep.2020.100891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 01/20/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, is an RNA virus that has inherent high rate of mutation. Due to the mutations, the virus evolves at a rapid pace that helps them to survive better inside the host. One of the hotspots of pharmacological interventions is to inhibit binding of virus with the host cells, which is mediated by Spike glycoprotein of SARS-CoV-2 and ACE2 receptors present on the human cells. This study was conducted with an aim to identify and characterise the mutation (s) present in the Spike glycoprotein of the SARS-CoV-2. Towards this, an in silico methodology was used, and the mutations on Spike glycoprotein were identified by comparing the Spike glycoprotein of first reported sequence from Wuhan wet seafood market virus with the available sequences of SARS-CoV-2 from Indian isolates. Our analysis revealed the presence of twenty-five mutations in Spike glycoprotein among Indian SARS-CoV-2 isolates. These mutations spread all over the protein and can be clustered at least into four distinct positions. Further, mutations at eleven positions exhibited alterations in the secondary structure of the polypeptide chain. We also investigated the influence of these mutations on overall protein dynamics and have shown that they affect the dynamic stability of the Spike glycoprotein.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Zoology, Samastipur College, Samastipur 848134, Bihar, India
| | | |
Collapse
|
377
|
Jakhmola S, Indari O, Kashyap D, Varshney N, Rani A, Sonkar C, Baral B, Chatterjee S, Das A, Kumar R, Jha HC. Recent updates on COVID-19: A holistic review. Heliyon 2020; 6:e05706. [PMID: 33324769 PMCID: PMC7729279 DOI: 10.1016/j.heliyon.2020.e05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Omkar Indari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Dharmendra Kashyap
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Nidhi Varshney
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Annu Rani
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Charu Sonkar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Budhadev Baral
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Sayantani Chatterjee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Ayan Das
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology, Indore, India
| | - Hem Chandra Jha
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
378
|
Phylogenomics Analysis of SARS-CoV2 Genomes Reveals Distinct Selection Pressure on Different Viral Strains. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5746461. [PMID: 33299872 PMCID: PMC7703455 DOI: 10.1155/2020/5746461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022]
Abstract
We are witnessing a tremendous outbreak of a novel coronavirus (SARS-CoV2) across the globe. Upon exposure to different population and changing environment, the viral strain might experience different mutational bias that leads to genetic diversity among the viral population. Also, the diversification can be influenced by distinct selection pressure on different viral genomes. We have carried out a comparative genomic analysis of 82 SARS-CoV2 genomes. We have evaluated their evolutionary divergence, substitution pattern, and rates. Viral genomes under distinct selection pressure have been identified. Sites that experience strong selection pressure also have been identified. Our result shows that the translational preference of a few codons is strongly correlated with the mutational bias imposed by genome compositional constraint and influenced by natural selection. Few genomes are evolving with a higher mutational rate with a distinct signature of nucleotide substitution in comparison to others. Four viral strains are under the effect of purifying selection, while nine SARS-CoV2 genomes are under strong positive selection bias. Site analysis indicates a strong positive selection pressure on two codon positions at 3606th and 8439th positions. Our study elucidates adaptation of few SARS-CoV2 viral strain during the outbreak shaping by natural selection and genomic compositional constraints.
Collapse
|
379
|
Foladori P, Cutrupi F, Segata N, Manara S, Pinto F, Malpei F, Bruni L, La Rosa G. SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140444. [PMID: 32649988 PMCID: PMC7311891 DOI: 10.1016/j.scitotenv.2020.140444] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 04/13/2023]
Abstract
SARS-CoV-2, the virus that causes COVID-19, has been found in the faeces of infected patients in numerous studies. Stool may remain positive for SARS-CoV-2, even when the respiratory tract becomes negative, and the interaction with the gastrointestinal tract poses a series of questions about wastewater and its treatments. This review aims to understand the viral load of SARS-CoV-2 in faeces and sewage and its fate in wastewater treatment plants (WWTPs). The viral load in the faeces of persons testing positive for SARS-CoV-2 was estimated at between 5·103 to 107.6 copies/mL, depending on the infection course. In the sewerage, faeces undergo dilution and viral load decreases considerably in the wastewater entering a WWTP with a range from 2 copies/100 mL to 3·103 copies/mL, depending on the level of the epidemic. Monitoring of SARS-CoV-2 in sewage, although no evidence of COVID-19 transmission has been found via this route, could be advantageously exploited as an early warning of outbreaks. Preliminary studies on WBE seem promising; but high uncertainty of viral loads in wastewater and faeces remains, and further research is needed. The detection of SARS-CoV-2 in sewage, based on RNA sequences and RT-PCR, requires a shared approach on sample pre-treatment and on-site collection to ensure comparable results. The finding of viral RNA in stools does not imply that the virus is viable and infectious. Viability of CoVs such as SARS-CoV-2 decreases in wastewater - due to temperature, pH, solids, micropollutants - but high inactivation in WWTPs can be obtained only by using disinfection (free chlorine, UVC light). A reduction in the quantity of disinfectants can be obtained by implementing Membrane-Bioreactors with ultrafiltration to separate SARS-CoV-2 virions with a size of 60-140 nm. In sludge treatment, thermophilic digestion is effective, based on the general consensus that CoVs are highly sensitive to increased temperatures.
Collapse
Affiliation(s)
- Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy.
| | - Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Nicola Segata
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Pinto
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
| | - Laura Bruni
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, National Institute of Health, Rome, Italy
| |
Collapse
|
380
|
Qu F, Zheng L, Zhang S, Sun R, Slot J, Miyashita S. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive-sense RNA viruses. Virus Evol 2020; 6:veaa086. [PMID: 33343926 PMCID: PMC7733609 DOI: 10.1093/ve/veaa086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many positive-sense RNA viruses, especially those infecting plants, are known to experience stringent, stochastic population bottlenecks inside the cells they invade, but exactly how and why these populations become bottlenecked are unclear. A model proposed ten years ago advocates that such bottlenecks are evolutionarily favored because they cause the isolation of individual viral variants in separate cells. Such isolation in turn allows the viral variants to manifest the phenotypic differences they encode. Recently published observations lend mechanistic support to this model and prompt us to refine the model with novel molecular details. The refined model, designated Bottleneck, Isolate, Amplify, Select (BIAS), postulates that these viruses impose population bottlenecks on themselves by encoding bottleneck-enforcing proteins (BNEPs) that function in a concentration-dependent manner. In cells simultaneously invaded by numerous virions of the same virus, BNEPs reach the bottleneck-ready concentration sufficiently early to arrest nearly all internalized viral genomes. As a result, very few (as few as one) viral genomes stochastically escape to initiate reproduction. Repetition of this process in successively infected cells isolates viral genomes with different mutations in separate cells. This isolation prevents mutant viruses encoding defective viral proteins from hitchhiking on sister genome-encoded products, leading to the swift purging of such mutants. Importantly, genome isolation also ensures viral genomes harboring beneficial mutations accrue the cognate benefit exclusively to themselves, leading to the fixation of such beneficial mutations. Further interrogation of the BIAS hypothesis promises to deepen our understanding of virus evolution and inspire new solutions to virus disease mitigation.
Collapse
Affiliation(s)
- Feng Qu
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Limin Zheng
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Shaoyan Zhang
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Rong Sun
- Department of Plant Pathology and.,Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
381
|
Cowley JA. The genomes of Mourilyan virus and Wēnzhōu shrimp virus 1 of prawns comprise 4 RNA segments. Virus Res 2020; 292:198225. [PMID: 33181202 DOI: 10.1016/j.virusres.2020.198225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Reported here is the complete genome sequence of Mourilyan virus (MoV) that infects giant tiger (Penaeus monodon) and kuruma prawns (P. japonicas) in Australia. Its genome was determined using various PCR strategies based on the sequences of 3 randomly-amplified cDNA clones to its L and M RNA segments discovered in a library generated to determine the genome sequence of gill-associated ronivirus. The sequences of PCR products and clones obtained showed the MoV genome to comprise 4 ssRNA segments (L, M, S1 and S2), as confirmed by Northern blotting using RNA from naïve and MoV-infected prawns, and by Illumina sequence analysis of semi-purified MoV. BLASTn searches identified the MoV L, M and S1 RNA segments to be homologous to Wēnzhōu shrimp virus 1 (WzSV1) segments discovered recently in a P. monodon RNA-Seq library (SRR1745808). Mapping this read library to the MoV S2 RNA segment identified WzSV1 to also possess an equivalent segment. BLASTp searches identified the putative non-structural protein (NSs2; 393-394 aa) encoded in their S2 RNA segments to have no homologs in GenBank. Possibly due to NSs2 being encoded in a discrete RNA segment rather than in ambisense relative to the N protein as in the S RNA segments of other phenuiviruses, each of 6 MoV S1 RNA segment clones sequenced possessed a variable-length (≤ 645 nt) imperfect GA-repeat extending from the N protein stop codon to the more variable ∼90 nt segment terminal sequence. Read mapping of RNA-Seq library SRR1745808 showed the WzSV1 S1 RNA segment to possess a similar GA-repeat. However, paired-read variations hindered definitive assembly of a consensus sequence. All 4 MoV and WzSV1 RNA segments terminated with a 10 nt inverted repeat sequence (5'-ACACAAAGAC.) identical to the RNA segment termini of uukuviruses. Phylogenetic analyses of MoV/WzSV1 RNA-dependant RNA polymerase (L RNA), G1G2 precursor glycoprotein (M RNA) and nucleocapsid (N) protein (S1 RNA) sequences generally clustered them with as yet unassigned crustacean/diptera bunya-like viruses on branches positioned closely to others containing tick-transmitted phenuiviruses. As genome sequences of most phenuiviruses discovered recently have originated from meta-transcriptomics studies, the data presented here showing the MoV and WzSV1 genomes to comprise more than 3 RNA segments, like the plant tenuiviruses, suggests a need to investigate the genomes of these unassigned viruses more closely.
Collapse
Affiliation(s)
- Jeff A Cowley
- Livestock & Aquaculture, CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
382
|
Rouchka EC, Chariker JH, Chung D. Variant analysis of 1,040 SARS-CoV-2 genomes. PLoS One 2020; 15:e0241535. [PMID: 33152019 PMCID: PMC7643988 DOI: 10.1371/journal.pone.0241535] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/18/2020] [Indexed: 01/02/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral genome is an RNA virus consisting of approximately 30,000 bases. As part of testing efforts, whole genome sequencing of human isolates has resulted in over 1,600 complete genomes publicly available from GenBank. We have performed a comparative analysis of the sequences, in order to detect common mutations within the population. Analysis of variants occurring within the assembled genomes yields 417 variants occurring in at least 1% of the completed genomes, including 229 within the 5' untranslated region (UTR), 152 within the 3'UTR, 2 within intergenic regions and 34 within coding sequences.
Collapse
Affiliation(s)
- Eric C. Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, United States of America
| | - Julia H. Chariker
- Kentucky Biomedical Research Infrastructure Network Bioinformatics Core, University of Louisville, Louisville, Kentucky, United States of America
- Neuroscience Training Program, University of Louisville, Louisville, Kentucky, United States of America
| | - Donghoon Chung
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
383
|
Duda-Chodak A, Lukasiewicz M, Zięć G, Florkiewicz A, Filipiak-Florkiewicz A. Covid-19 pandemic and food: Present knowledge, risks, consumers fears and safety. Trends Food Sci Technol 2020; 105:145-160. [PMID: 32921922 PMCID: PMC7480472 DOI: 10.1016/j.tifs.2020.08.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND COVID-19 is a pandemic disease that has paralyzed social life and the economy around the world since the end of 2019, and which has so far killed nearly 600,000 people. The rapidity of its spread and the lack of detailed research on the course and methods of transmission significantly impede both its eradication and prevention. SCOPE AND APPROACH Due to the high transmission rate and fatality resulting from COVID-19 disease, the paper focuses on analyzing the current state of knowledge about SARS-CoV-2 as well as its potential connection with food as a source of pathogen and infection. KEY FINDINGS AND CONCLUSIONS There is currently no evidence (scientific publications, WHO, EFSA etc.) that COVID-19 disease can spread directly through food and the human digestive system. However, according to the hypothesis regarding the primary transmission of the virus, the source of which was food of animal origin (meat of wild animals), as well as the fact that food is a basic necessity for humans, it is worth emphasizing that food can, if not directly, be a carrier of the virus. Particular attention should be paid to this indirect pathway when considering the potential for the spread of an epidemic and the development of prevention principles.
Collapse
Affiliation(s)
- Aleksandra Duda-Chodak
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Marcin Lukasiewicz
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Gabriela Zięć
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | - Adam Florkiewicz
- Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, PL30-149, Krakow, Poland
| | | |
Collapse
|
384
|
Ahammad I, Lira SS. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int J Biol Macromol 2020; 162:820-837. [PMID: 32599237 PMCID: PMC7319648 DOI: 10.1016/j.ijbiomac.2020.06.213] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
SARS-CoV-2 is the deadly virus behind COVID-19, the disease that went on to ravage the world and caused the biggest pandemic 21st century has witnessed so far. On the face of ongoing death and destruction, the urgent need for the discovery of a vaccine against the virus is paramount. This study resorted to the emerging discipline of immunoinformatics in order to design a multi-epitope mRNA vaccine against the spike glycoprotein of SARS-CoV-2. Various immunoinformatics tools were utilized to predict T and B lymphocyte epitopes. The epitopes were channeled through a filtering pipeline comprised of antigenicity, toxicity, allergenicity, and cytokine inducibility evaluation with the goal of selecting epitopes capable of generating both T and B cell-mediated immune responses. Molecular docking simulation between the epitopes and their corresponding MHC molecules was carried out. 13 epitopes, a highly immunogenic adjuvant, elements for proper sub-cellular trafficking, a secretion booster, and appropriate linkers were combined for constructing the vaccine. The vaccine was found to be antigenic, almost neutral at physiological pH, non-toxic, non-allergenic, capable of generating a robust immune response and had a decent worldwide population coverage. Based on these parameters, this design can be considered a promising choice for a vaccine against SARS-CoV-2.
Collapse
MESH Headings
- Betacoronavirus/immunology
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Drug Design
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- RNA, Messenger/immunology
- SARS-CoV-2
- Sequence Analysis, Protein
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/chemistry
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Department of Biochemistry and Microbiology, North South University, Dhaka 1229, Bangladesh.
| | - Samia Sultana Lira
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
385
|
Khan Z, Ghafoor D, Khan A, Ualiyeva D, Khan S, Bilal H, Khan B, Khan A, Sajjad W. Diagnostic approaches and potential therapeutic options for coronavirus disease 2019. New Microbes New Infect 2020; 38:100770. [PMID: 33014380 PMCID: PMC7525249 DOI: 10.1016/j.nmni.2020.100770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan city of China in late December 2019 and identified as a novel coronavirus. Due to its contagious nature, the virus spreads rapidly and causes coronavirus disease 2019 (COVID-19). The global tally of COVID-19 was 28 million in early September 2020. The fears and stress associated with SARS-CoV-2 has demolished the socio-economic status worldwide. Researchers are trying to identify treatments, especially antiviral drugs and/or vaccines, that could potentially control the viral spread and manage the ongoing unprecedented global crisis. To date, more than 300 clinical trials have been conducted on various antiviral drugs, and immunomodulators are being evaluated at various stages of COVID-19. This review aims to collect and summarize a list of drugs used to treat COVID-19, including dexamethasone, chloroquine, hydroxychloroquine, lopinavir/ritonavir, favipiravir, remdesivir, tociluzimab, nitazoxanide and ivermectin. However, some of these drugs are not effective and their use has been suspended by WHO.
Collapse
Affiliation(s)
- Z. Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - D. Ghafoor
- University of Chinese Academy of Sciences, Beijing, China
- Wuhan Institute of Virology, Chinese Academy of Sciences Xiao Hong Shan No.44, Wuhan, Hubei, China
| | - A. Khan
- Department of Microbiology, School of Life Sciences, Lanzhou University, China
| | - D. Ualiyeva
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Molecular Biology and Evolution, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - S.A. Khan
- Department of Pathobiology, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Azad Kashmir, Pakistan
| | - H. Bilal
- Centre for Management and Commerce, University of Swat, Mingora, Pakistan
| | - B. Khan
- Department of Optometry, Isra University Islamabad, Islamabad, Pakistan
| | - A. Khan
- Department of Computer and Software Technology, University of Swat, Mingora, Pakistan
| | - W. Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
386
|
Ghorbani A, Samarfard S, Ramezani A, Izadpanah K, Afsharifar A, Eskandari MH, Karbanowicz TP, Peters JR. Quasi-species nature and differential gene expression of severe acute respiratory syndrome coronavirus 2 and phylogenetic analysis of a novel Iranian strain. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104556. [PMID: 32937193 PMCID: PMC7487081 DOI: 10.1016/j.meegid.2020.104556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
A novel coronavirus related to severe acute respiratory syndrome virus, (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. Despite the genetic mutations across the SARS-CoV-2 genome being recently investigated, its transcriptomic genetic polymorphisms at inter-host level and the viral gene expression level based on each Open Reading Frame (ORF) remains unclear. Using available High Throughput Sequencing (HTS) data and based on SARS-CoV-2 infected human transcriptomic data, this study presents a high-resolution map of SARS-CoV-2 single nucleotide polymorphism (SNP) hotspots in a viral population at inter-host level. Four throat swab samples from COVID-19 infected patients were pooled, with RNA-Seq read retrieved from SRA NCBI to detect 21 SNPs and a replacement across the SARS-CoV-2 genomic population. Twenty-two RNA modification sites on viral transcripts were identified that may cause inter-host genetic diversity of this virus. In addition, the canonical genomic RNAs of N ORF showed higher expression in transcriptomic data and reverse transcriptase quantitative PCR compared to other SARS-CoV-2 ORFs, indicating the importance of this ORF in virus replication or other major functions in virus cycle. Phylogenetic and ancestral sequence analyses based on the entire genome revealed that SARS-CoV-2 is possibly derived from a recombination event between SARS-CoV and Bat SARS-like CoV. Ancestor analysis of the isolates from different locations including Iran suggest shared Chinese ancestry. These results propose the importance of potential inter-host level genetic variations to the evolution of SARS-COV-2, and the formation of viral quasi-species. The RNA modifications discovered in this study may cause amino acid sequence changes in polyprotein, spike protein, product of ORF8 and nucleocapsid (N) protein, suggesting further insights to understanding the functional impacts of mutations in the life cycle and pathogenicity of SARS-CoV-2.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Samira Samarfard
- Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Alireza Afsharifar
- Plant Virology Research Centre, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Thomas P. Karbanowicz
- Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jonathan R. Peters
- Queensland Biosciences Precinct, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
387
|
Laha S, Chakraborty J, Das S, Manna SK, Biswas S, Chatterjee R. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104445. [PMID: 32615316 PMCID: PMC7324922 DOI: 10.1016/j.meegid.2020.104445] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The recent pandemic of SARS-CoV-2 infection has affected more than 3.0 million people worldwide with more than 200 thousand reported deaths. The SARS-CoV-2 genome has the capability of gaining rapid mutations as the virus spreads. Whole-genome sequencing data offers a wide range of opportunities to study mutation dynamics. The advantage of an increasing amount of whole-genome sequence data of SARS-CoV-2 intrigued us to explore the mutation profile across the genome, to check the genome diversity, and to investigate the implications of those mutations in protein stability and viral transmission. We have identified frequently mutated residues by aligning ~660 SARS-CoV-2 genomes and validated in 10,000 datasets available in GISAID Nextstrain. We further evaluated the potential of these frequently mutated residues in protein structure stability of spike glycoprotein and their possible functional consequences in other proteins. Among the 11 genes, surface glycoprotein, nucleocapsid, ORF1ab, and ORF8 showed frequent mutations, while envelop, membrane, ORF6, ORF7a and ORF7b showed conservation in terms of amino acid substitutions. Combined analysis with the frequently mutated residues identified 20 viral variants, among which 12 specific combinations comprised more than 97% of the isolates considered for the analysis. Some of the mutations across different proteins showed co-occurrences, suggesting their structural and/or functional interaction among different SARS-COV-2 proteins, and their involvement in adaptability and viral transmission. Analysis of protein structure stability of surface glycoprotein mutants indicated the viability of specific variants and are more prone to be temporally and spatially distributed across the globe. A similar empirical analysis of other proteins indicated the existence of important functional implications of several variants. Identification of frequently mutated variants among COVID-19 patients might be useful for better clinical management, contact tracing, and containment of the disease.
Collapse
Affiliation(s)
- Sayantan Laha
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
| | - Joyeeta Chakraborty
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
| | - Shantanab Das
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
| | - Soumen Kanti Manna
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics (HBNI), 1/AF Bidhannagar, Kolkata 700 064, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India,Homi Bhaba National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Raghunath Chatterjee
- Human Genetics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India.
| |
Collapse
|
388
|
Gupta AM, Chakrabarti J, Mandal S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect 2020; 22:598-607. [PMID: 33049387 PMCID: PMC7547839 DOI: 10.1016/j.micinf.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
The non-synonymous mutations of SARS-CoV-2 isolated from across the world have been identified during the last few months. The surface glycoprotein spike of SARS-CoV-2 forms the most important hotspot for amino acid alterations followed by the ORF1a/ORF1ab poly-proteins. It is evident that the D614G mutation in spike glycoprotein and P4715L in RdRp is the important determinant of SARS-CoV-2 evolution since its emergence. P4715L in RdRp, G251V in ORF3a and S1498F of Nsp3 is associated with the epitope loss that may influence pathogenesis caused by antibody escape variants. The phylogenomics distinguished the ancestral viral samples from China and most part of Asia, isolated since the initial outbreak and the later evolved variants isolated from Europe and Americas. The evolved variants have been found to predominant globally with the loss of epitopes from its proteins. These have implications for SARS-CoV-2 transmission, pathogenesis and immune interventions.
Collapse
Affiliation(s)
- Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700 106, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
389
|
Genetic diversity of Nipah virus in Bangladesh. Int J Infect Dis 2020; 102:144-151. [PMID: 33129964 DOI: 10.1016/j.ijid.2020.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Nipah virus (NiV) infection, often fatal in humans, is primarily transmitted in Bangladesh through the consumption of date palm sap contaminated by Pteropus bats. Person-to-person transmission is also common and increases the concern of large outbreaks. This study aimed to characterize the molecular epidemiology, phylogenetic relationship, and the evolution of the nucleocapsid gene (N gene) of NiV. METHODS We conducted molecular detection, genetic characterization, and Bayesian time-scale evolution analyses of NiV using pooled Pteropid bat roost urine samples from an outbreak area in 2012 and archived RNA samples from NiV case patients identified during 2012-2018 in Bangladesh. RESULTS NiV-RNA was detected in 19% (38/456) of bat roost urine samples and among them; nine N gene sequences were recovered. We also retrieved sequences from 53% (21 out of 39) of archived RNA samples from patients. Phylogenetic analysis revealed that all Bangladeshi strains belonged to NiV-BD genotype and had an evolutionary rate of 4.64 × 10-4 substitutions/site/year. The analyses suggested that the strains of NiV-BD genotype diverged during 1995 and formed two sublineages. CONCLUSION This analysis provides further evidence that the NiV strains of the Malaysian and Bangladesh genotypes diverged recently and continue to evolve. More extensive surveillance of NiV in bats and human will be helpful to explore strain diversity and virulence potential to infect humans through direct or person-to-person virus transmission.
Collapse
|
390
|
Lubrano C, Matrone GM, Iaconis G, Santoro F. New Frontiers for Selective Biosensing with Biomembrane-Based Organic Transistors. ACS NANO 2020; 14:12271-12280. [PMID: 33052643 PMCID: PMC8015208 DOI: 10.1021/acsnano.0c07053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biosensing plays vital roles in multiple fields, including healthcare monitoring, drug screening, disease diagnosis, and environmental pollution control. In recent years, transistor-based devices have been considered to be valid platforms for fast, low-cost sensing of diverse analytes. Without additional functionalization, however, these devices lack selectivity; several strategies have been developed for the direct immobilization of bioreceptors on the transistor surface to improve detection capabilities. In this scenario, organic transistors have gained attention for their abilities to be coupled to biological systems and to detect biomolecules. In this Perspective, we discuss recent developments in organic-transistor-based biosensors, highlighting how their coupling with artificial membranes provides a strategy to improve sensitivity and selectivity in biosensing applications. Looking at future applications, this class of biosensors represents a breakthrough starting point for implementing multimodal high-throughput screening platforms.
Collapse
Affiliation(s)
- Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80126 Naples, Italy
| | | | - Gennaro Iaconis
- Department
of Medicine, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
391
|
Amamuddy OS, Verkhivker GM, Bishop ÖT. Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M pro. J Chem Inf Model 2020; 60:5080-5102. [PMID: 32853525 PMCID: PMC7496595 DOI: 10.1021/acs.jcim.0c00634] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/15/2022]
Abstract
A new coronavirus (SARS-CoV-2) is a global threat to world health and economy. Its dimeric main protease (Mpro), which is required for the proteolytic cleavage of viral precursor proteins, is a good candidate for drug development owing to its conservation and the absence of a human homolog. Improving our understanding of Mpro behavior can accelerate the discovery of effective therapies to reduce mortality. All-atom molecular dynamics (MD) simulations (100 ns) of 50 mutant Mpro dimers obtained from filtered sequences from the GISAID database were analyzed using root-mean-square deviation, root-mean-square fluctuation, Rg, averaged betweenness centrality, and geometry calculations. The results showed that SARS-CoV-2 Mpro essentially behaves in a similar manner to its SAR-CoV homolog. However, we report the following new findings from the variants: (1) Residues GLY15, VAL157, and PRO184 have mutated more than once in SARS CoV-2; (2) the D48E variant has lead to a novel "TSEEMLN"" loop at the binding pocket; (3) inactive apo Mpro does not show signs of dissociation in 100 ns MD; (4) a non-canonical pose for PHE140 widens the substrate binding surface; (5) dual allosteric pockets coinciding with various stabilizing and functional components of the substrate binding pocket were found to display correlated compaction dynamics; (6) high betweenness centrality values for residues 17 and 128 in all Mpro samples suggest their high importance in dimer stability-one such consequence has been observed for the M17I mutation whereby one of the N-fingers was highly unstable. (7) Independent coarse-grained Monte Carlo simulations suggest a relationship between the rigidity/mutability and enzymatic function. Our entire approach combining database preparation, variant retrieval, homology modeling, dynamic residue network (DRN), relevant conformation retrieval from 1-D kernel density estimates from reaction coordinates to other existing approaches of structural analysis, and data visualization within the coronaviral Mpro is also novel and is applicable to other coronaviral proteins.
Collapse
Affiliation(s)
- Olivier Sheik Amamuddy
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics, Department of Microbiology and Biochemistry, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
392
|
Generation of Chicken IgY against SARS-COV-2 Spike Protein and Epitope Mapping. J Immunol Res 2020; 2020:9465398. [PMID: 33134398 PMCID: PMC7568776 DOI: 10.1155/2020/9465398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
This new decade has started with a global pandemic of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), precipitating a worldwide health crisis and economic downturn. Scientists and clinicians have been racing against time to find therapies for COVID-19. Repurposing approved drugs, developing vaccines and employing passive immunization are three major therapeutic approaches to fighting COVID-19. Chicken immunoglobulin Y (IgY) has the potential to be used as neutralizing antibody against respiratory infections, and its advantages include high avidity, low risk of adverse immune responses, and easy local delivery by intranasal administration. In this study, we raised antibody against the spike (S) protein of SARS-CoV-2 in chickens and extracted IgY (called IgY-S) from egg yolk. IgY-S exhibited high immunoreactivity against SARS-CoV-2 S, and by epitope mapping, we found five linear epitopes of IgY-S in SARS-CoV-2 S, two of which are cross-reactive with SARS-CoV S. Notably, epitope SIIAYTMSL, one of the identified epitopes, partially overlaps the S1/S2 cleavage region in SARS-CoV-2 S and is located on the surface of S trimer in 3D structure, close to the S1/S2 cleavage site. Thus, antibody binding at this location could physically block the access of proteolytic enzymes to S1/S2 cleavage site and thereby impede S1/S2 proteolytic cleavage, which is crucial to subsequent virus-cell membrane fusion and viral cell entry. Therefore, the feasibility of using IgY-S or epitope SIIAYTMS-specific IgY as neutralizing antibody for preventing or treating SARS-CoV-2 infection is worth exploring.
Collapse
|
393
|
Rahman MS, Islam MR, Hoque MN, Alam ASMRU, Akther M, Puspo JA, Akter S, Anwar A, Sultana M, Hossain MA. Comprehensive annotations of the mutational spectra of SARS-CoV-2 spike protein: a fast and accurate pipeline. Transbound Emerg Dis 2020; 68:1625-1638. [PMID: 32954666 PMCID: PMC7646266 DOI: 10.1111/tbed.13834] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/12/2020] [Accepted: 09/08/2020] [Indexed: 01/06/2023]
Abstract
Infecting millions of people, the SARS‐CoV‐2 is evolving at an unprecedented rate, demanding advanced and specified analytic pipeline to capture the mutational spectra. In order to explore mutations and deletions in the spike (S) protein — the most‐discussed protein of SARS‐CoV‐2 — we comprehensively analyzed 35,750 complete S protein‐coding sequences through a custom Python‐based pipeline. This GISAID‐collected dataset of until 24 June 2020 covered six continents and five major climate zones. We identified 27,801 (77.77% sequences) mutated strains compared to reference Wuhan‐Hu‐1 wherein 84.40% of these strains mutated by only a single amino acid (aa). An outlier strain (EPI_ISL_463893) from Bosnia and Herzegovina possessed six aa substitutions. We also identified 11 residues with high aa mutation frequency, and each contains four types of aa variations. The infamous D614G variant has spread worldwide with ever‐rising dominance and across regions with different climatic conditions alongside L5F and D936Y mutants, which have been documented throughout all regions and climate zones, respectively. We also found 988 unique aa substitutions spanned across 660 residues, which differed significantly among different continents (p = .003) and climatic zones (p = .021) as inferred with the Kruskal–Wallis test. Besides, 17 in‐frame deletions at four sites adjacent to receptor‐binding‐domain were determined that may have a possible impact on attenuation. This study provides a fast and accurate pipeline for identifying mutations and deletions from the large dataset for coding and also non‐coding sequences as evidenced by the representative analysis on existing S protein data. By using separate multi‐sequence alignment, removing ambiguous sequences and in‐frame stop codons, and utilizing pairwise alignment, this method can derive both synonymous and non‐synonymous mutations (strain_ID reference aa:mutation position:strain aa). We suggest that the pipeline will aid in the evolutionary surveillance of any SARS‐CoV‐2 encoded proteins and will prove to be crucial in tracking the ever‐increasing variation of many other divergent RNA viruses in the future. The code is available at https://github.com/SShaminur/Mutation-Analysis.
Collapse
Affiliation(s)
| | | | - Mohammad Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Masuda Akther
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Joynob Akter Puspo
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.,Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
394
|
Nyayanit DA, Yadav PD, Kharde R, Shete-Aich A. Quasispecies analysis of the SARS-CoV-2 from representative clinical samples: A preliminary analysis. Indian J Med Res 2020; 152:105-107. [PMID: 32773417 PMCID: PMC7853256 DOI: 10.4103/ijmr.ijmr_2251_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dimpal A. Nyayanit
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pashan, Pune 411 021, Maharashtra, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pashan, Pune 411 021, Maharashtra, India
| | - Rutuja Kharde
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pashan, Pune 411 021, Maharashtra, India
| | - Anita Shete-Aich
- Maximum Containment Laboratory, ICMR-National Institute of Virology, Pashan, Pune 411 021, Maharashtra, India
| |
Collapse
|
395
|
Chicken Astrovirus (CAstV) Molecular Studies Reveal Evidence of Multiple Past Recombination Events in Sequences Originated from Clinical Samples of White Chick Syndrome (WCS) in Western Canada. Viruses 2020; 12:v12101096. [PMID: 32998356 PMCID: PMC7600043 DOI: 10.3390/v12101096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to molecularly characterize 14 whole genome sequences of chicken astrovirus (CAstV) isolated from samples obtained from white chick syndrome (WCS) outbreaks in Western Canada during the period of 2014–2019. Genome sequence comparisons showed all these sequences correspond to the novel Biv group from which no confirmed representatives were published in GenBank. Molecular recombination analyses using recombination detection software (i.e., RDP5 and SimPlot) and phylogenetic analyses suggest multiple past recombination events in open reading frame (ORF)1a, ORF1b, and ORF2. Our findings suggest that recombination events and the accumulation of point mutations may have contributed to the substantial genetic variation observed in CAstV and evidenced by the current seven antigenic sub-clusters hitherto described. This is the first paper that describes recombination events in CAstV following analysis of complete CAstV sequences originated in Canada.
Collapse
|
396
|
Castillo AE, Parra B, Tapia P, Lagos J, Arata L, Acevedo A, Andrade W, Leal G, Tambley C, Bustos P, Fasce R, Fernández J. Geographical Distribution of Genetic Variants and Lineages of SARS-CoV-2 in Chile. Front Public Health 2020; 8:562615. [PMID: 33072699 PMCID: PMC7536338 DOI: 10.3389/fpubh.2020.562615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide public health concern. First confined in China and then disseminated widely across Europe and America, SARS-CoV-2 has impacted and moved the scientific community around the world to working in a fast and coordinated way to collect all possible information about this virus and generate new strategies and protocols to try to stop the infection. During March 2020, more than 16,000 full viral genomes have been shared in public databases that allow the construction of genetic landscapes for tracking and monitoring the viral advances over time and study the genomic variations present in geographic regions. In this work, we present the occurrence of genetic variants and lineages of SARS-CoV-2 in Chile during March to April 2020. Complete genome analysis of 141 viral samples from different regions of Chile revealed a predominance of variant D614G like in Europe and the USA and the major presence of lineage B.1. These findings could help take control measures due to the similarity of the viral variants present in Chile, compared with other countries, and monitor the dynamic change of virus variants in the country.
Collapse
Affiliation(s)
- Andrés E Castillo
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| | - Bárbara Parra
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| | - Paz Tapia
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| | - Jaime Lagos
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| | - Loredana Arata
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| | - Alejandra Acevedo
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Winston Andrade
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Gabriel Leal
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Carolina Tambley
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Patricia Bustos
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Rodrigo Fasce
- Section of Respiratory and Exanthematic Viruses, Institute of Public Health of Chile, Santiago, Chile
| | - Jorge Fernández
- Molecular Genetics Sub Department, Institute of Public Health of Chile, Santiago, Chile
| |
Collapse
|
397
|
A SARS-CoV-2 host infection model network based on genomic human Transcription Factors (TFs) depletion. Heliyon 2020; 6:e05010. [PMID: 32984567 PMCID: PMC7501776 DOI: 10.1016/j.heliyon.2020.e05010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
In December 2019 a new beta-coronavirus was isolated and characterized by sequencing samples from pneumonia patients in Wuhan, Hubei Province, China. Coronaviruses are positive-sense RNA viruses widely distributed among different animal species and humans in which they cause respiratory, enteric, liver and neurological symptomatology. Six species of coronavirus have been described (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) that cause cold-like symptoms in immunocompetent or immunocompromised subjects and two strains of sometimes fatal zoonotic origin that cause severe acute respiratory syndrome (SARS-CoV and MERS-CoV). The SARS-CoV-2 strain is the emerging seventh member of the coronavirus family, which is actually determining a global emergency. In silico analysis is a promising approach for understanding biological events in complex diseases and due to serious worldwide emergency and serious threat to global health, it is extremely important to use bioinformatics methods able to study an emerging pathogen like SARS-CoV-2. Herein, we report on in silico comparative analysis between complete genome of SARS-CoV, MERS-CoV, HCoV-OC43 and SARS-CoV-2 strains, to identify the occurrence of specific conserved motifs on viral genomic sequences which should be able to bind and therefore induce a subtraction of host's Transcription Factors (TFs) which lead to a depletion, an effect comparable to haploinsufficiency (a genetic dominant condition in which a single copy of wild-type allele at a locus, in heterozygous combination with a variant allele, is insufficient to produce the correct quantity of transcript and, therefore, of protein, for a correct standard phenotypic expression). In this competitive scenario, virus versus host, the proposed in silico protocol identified the TFs same as the distribution of TFBSs (Transcription Factor Binding Sites) on analyzed viral strains, potentially able to influence genes and pathways with biological functions confirming that this approach could brings useful insights regarding SARS-CoV-2. According to our results obtained by this in silico approach it is possible to hypothesize that TF-binding motifs could be of help in the explanation of the complex and heterogeneous clinical presentation in SARS-CoV-2 and subsequently predict possible interactions regarding metabolic pathways, and drug or target relationships.
Collapse
|
398
|
Alam MNU, Chowdhury UF. Short k-mer abundance profiles yield robust machine learning features and accurate classifiers for RNA viruses. PLoS One 2020; 15:e0239381. [PMID: 32946529 PMCID: PMC7500682 DOI: 10.1371/journal.pone.0239381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/06/2020] [Indexed: 01/20/2023] Open
Abstract
High-throughput sequencing technologies have greatly enabled the study of genomics, transcriptomics and metagenomics. Automated annotation and classification of the vast amounts of generated sequence data has become paramount for facilitating biological sciences. Genomes of viruses can be radically different from all life, both in terms of molecular structure and primary sequence. Alignment-based and profile-based searches are commonly employed for characterization of assembled viral contigs from high-throughput sequencing data. Recent attempts have highlighted the use of machine learning models for the task, but these models rely entirely on DNA genomes and owing to the intrinsic genomic complexity of viruses, RNA viruses have gone completely overlooked. Here, we present a novel short k-mer based sequence scoring method that generates robust sequence information for training machine learning classifiers. We trained 18 classifiers for the task of distinguishing viral RNA from human transcripts. We challenged our models with very stringent testing protocols across different species and evaluated performance against BLASTn, BLASTx and HMMER3 searches. For clean sequence data retrieved from curated databases, our models display near perfect accuracy, outperforming all similar attempts previously reported. On de novo assemblies of raw RNA-Seq data from cells subjected to Ebola virus, the area under the ROC curve varied from 0.6 to 0.86 depending on the software used for assembly. Our classifier was able to properly classify the majority of the false hits generated by BLAST and HMMER3 searches on the same data. The outstanding performance metrics of our model lays the groundwork for robust machine learning methods for the automated annotation of sequence data.
Collapse
Affiliation(s)
- Md. Nafis Ul Alam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Umar Faruq Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
399
|
Su F, Liu X, Jiang Y. Roles of MOV10 in Animal RNA Virus Infection. Front Vet Sci 2020; 7:569737. [PMID: 33195554 PMCID: PMC7524886 DOI: 10.3389/fvets.2020.569737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Animal epidemic diseases caused by RNA viruses are the primary threat to the livestock industry, and understanding the mechanisms of RNA virus clearance from target cells is critical to establish an effective method to reduce economic losses. As an SF-1, ATP-dependent RNA helicase in the UPF1p family, MOV10 participates in the RNA degradation of multiple viruses mediated via miRNA pathways and therefore contributes to a decrease in the replication of RNA viruses. This review primarily focuses on the bioactivity of MOV10, the mechanism of RNA virus removal, and the potential roles of MOV10 in RNA virus clearance. In addition, clues are provided to reduce animal diseases caused by RNA viruses.
Collapse
Affiliation(s)
- Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xueming Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
400
|
Bhatta TR, Ryt-Hansen P, Nielsen JP, Larsen LE, Larsen I, Chamings A, Goecke NB, Alexandersen S. Infection Dynamics of Swine Influenza Virus in a Danish Pig Herd Reveals Recurrent Infections with Different Variants of the H1N2 Swine Influenza A Virus Subtype. Viruses 2020; 12:v12091013. [PMID: 32927910 PMCID: PMC7551734 DOI: 10.3390/v12091013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Influenza A virus (IAV) in swine, so-called swine influenza A virus (swIAV), causes respiratory illness in pigs around the globe. In Danish pig herds, a H1N2 subtype named H1N2dk is one of the main circulating swIAV. In this cohort study, the infection dynamic of swIAV was evaluated in a Danish pig herd by sampling and PCR testing of pigs from two weeks of age until slaughter at 22 weeks of age. In addition, next generation sequencing (NGS) was used to identify and characterize the complete genome of swIAV circulating in the herd, and to examine the antigenic variability in the antigenic sites of the virus hemagglutinin (HA) and neuraminidase (NA) proteins. Overall, 76.6% of the pigs became PCR positive for swIAV during the study, with the highest prevalence at four weeks of age. Detailed analysis of the virus sequences obtained showed that the majority of mutations occurred at antigenic sites in the HA and NA proteins of the virus. At least two different H1N2 variants were found to be circulating in the herd; one H1N2 variant was circulating at the sow and nursery sites, while another H1N2 variant was circulating at the finisher site. Furthermore, it was demonstrated that individual pigs had recurrent swIAV infections with the two different H1N2 variants, but re-infection with the same H1N2 variant was also observed. Better understandings of the epidemiology, genetic and antigenic diversity of swIAV may help to design better health interventions for the prevention and control of swIAV infections in the herds.
Collapse
Affiliation(s)
- Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
- Correspondence: (T.R.B.); (S.A.); Tel.: +61-0-452199095 (T.R.B.); +61-0-342159635 (S.A.)
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Jens Peter Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Inge Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Nicole B. Goecke
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (P.R.-H.); (J.P.N.); (L.E.L.); (I.L.); (N.B.G.)
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC 3220, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC 3220, Australia
- Correspondence: (T.R.B.); (S.A.); Tel.: +61-0-452199095 (T.R.B.); +61-0-342159635 (S.A.)
| |
Collapse
|