351
|
Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J Neurochem 2007; 103:914-26. [PMID: 17711425 DOI: 10.1111/j.1471-4159.2007.04848.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The age-related deficit in long-term potentiation (LTP) in the dentate gyrus is positively correlated with hippocampal concentration of the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). Previous evidence also indicates that the inhibition of LTP induced by intracerebroventricular injection of amyloid-beta(1-40) (Abeta) is accompanied by increased hippocampal IL-1beta concentration and IL-1beta-stimulated signalling, specifically activation of the stress-activated protein kinase, c-jun N-terminal kinase (JNK). We considered that the underlying age-related neuroinflammation may render older rats more susceptible to Abeta administration and, to investigate this, young, middle-aged and aged rats were injected intracerebroventricularly with Abeta or vehicle. Hippocampal IL-1beta concentration, JNK phosphorylation, expression of the putative Abeta receptor, Receptor for advanced glycation end products (RAGE) and the microglial cell surface marker, CD40 were assessed. We report that Abeta inhibited LTP in a concentration-dependent manner in young rats and that this was accompanied by concentration-dependent increases in hippocampal IL-1beta and expression of phosphorylated JNK, RAGE and CD40. While 20 micromol/L Abeta exerted no significant effect on LTP in young rats, it inhibited LTP in middle-aged and aged rats and the increased vulnerability of aged rats was associated with increased IL-1beta concentration. Treatment of rats with eicosapentaenoic acid attenuated the inhibitory effect of 60 micromol/L Abeta on LTP in young rats and the effect of 20 micromol/L Abeta in middle-aged and aged rats. We present evidence which indicates that the effect of eicosapentaenoic acid may be linked with its ability to stimulate activation of peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- Aedín M Minogue
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | |
Collapse
|
352
|
Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, Xu XM, Lu P. Interleukin-1beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SAPK/JNK pathway. Mol Cell Neurosci 2007; 36:343-54. [PMID: 17822921 DOI: 10.1016/j.mcn.2007.07.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/07/2007] [Accepted: 07/17/2007] [Indexed: 01/01/2023] Open
Abstract
Neural precursor cells (NPCs) have been experimentally used to repair the damaged nervous system either by exogenous transplantation or by endogenous activation. In post-injury inflammation, an array of cytokines including interleukin-1beta (IL-1beta) are released by host as well as invading immune cells and increased markedly. In the present study, we investigated the effects of IL-1beta on the survival, proliferation, differentiation and migration of NPCs as well as underlying intracellular signaling pathways. NPCs derived from the E16 rat brain were expanded in neurospheres that were found to express IL-1beta, IL-1RI and IL-1RII, but not IL-1alpha and IL-1ra. IL-1beta inhibited the proliferation of NPCs in a dose-dependent manner, an effect that can be reversed by IL-1ra, an antagonist for IL-1 receptor. This inhibitory effect of IL-1beta on NPCs proliferation resulted in part from its effect on increased apoptosis of NPCs. Moreover, IL-1ra did not affect NPCs lineage fate but rather inhibited GFAP expression in differentiated astrocytes. We also found that IL-1ra had no effect on the transmigration of NPCs in vitro. Finally, we showed that the effect of IL-1beta on NPCs proliferation and differentiation appeared to be mediated by SAPK/JNK, but not ERK, P38MAPK nor NF-kappaB pathways. These findings collectively suggest that the inflammatory environment following CNS injuries may influence the ability of NPCs to repair the damage.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurobiology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | | | | | | | | | | | | | | |
Collapse
|
353
|
Abstract
While the term neuroinflammation often conjures up images of cellular damage, mounting evidence suggests that certain proinflammatory molecules, such as the cytokine IL-1 beta, may have beneficial and protective effects. In a report in this issue of the JCI, Shaftel and coworkers have generated an elegant mouse model in which local hippocampal overexpression of IL-1 beta in an Alzheimer disease (AD) transgenic mouse model resulted not in the expected exacerbation of the amyloid beta plaque deposition common to AD, but instead in plaque amelioration (see the related article beginning on page 1595). Thus, manipulation of the immune system may be a potential therapeutic approach to protect against AD, although further studies are needed to understand all of the downstream effects of this manipulation.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
354
|
van den Biggelaar AHJ, Gussekloo J, de Craen AJM, Frölich M, Stek ML, van der Mast RC, Westendorp RGJ. Inflammation and interleukin-1 signaling network contribute to depressive symptoms but not cognitive decline in old age. Exp Gerontol 2007; 42:693-701. [PMID: 17350781 DOI: 10.1016/j.exger.2007.01.011] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 01/30/2007] [Indexed: 11/23/2022]
Abstract
The association between inflammation and neuropsychiatric symptoms in old age is generally accepted but poorly understood. The purpose of this study was to examine whether inflammation precedes depressive symptoms and cognitive decline in old age, and to identify specific inflammatory pathways herein. We measured serum C-reactive protein (CRP) and lipopolysaccharide-induced production of Interleukin (IL)-1beta, IL-6, Tumor Necrosis Factor (TNF)-alpha, IL-1 receptor antagonist (ra), and IL-10 levels in 85-year-old participants free from neuropsychiatric symptoms at baseline (n=267). Participants were prospectively followed for depressive symptoms (Geriatric Depression Scale) and cognitive functioning (Mini Mental State Examination) from 85 to 90 years. Higher baseline CRP levels preceded accelerated increase in depressive symptoms (p<0.001). A higher production capacity of the pro-inflammatory cytokine IL-1beta preceded a greater increase of depressive symptoms (p=0.06), whereas that of its natural antagonist IL-1ra preceded a smaller increase of depressive symptoms (p=0.003). There was no relation of CRP, IL-1beta, and IL-1ra with cognitive decline. Our findings show that in old age inflammatory processes contribute to the development of depressive symptoms but not cognitive decline. A high innate IL-1ra to IL-1beta production capacity reflects a better ability to neutralize inflammation and may therefore protect against depressive symptoms.
Collapse
|
355
|
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VMY. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53:337-51. [PMID: 17270732 DOI: 10.1016/j.neuron.2007.01.010] [Citation(s) in RCA: 1613] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/06/2006] [Accepted: 01/10/2007] [Indexed: 11/21/2022]
Abstract
Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and related tauopathies, but earlier pathologies may herald disease onset. To investigate this, we studied wild-type and P301S mutant human tau transgenic (Tg) mice. Filamentous tau lesions developed in P301S Tg mice at 6 months of age, and progressively accumulated in association with striking neuron loss as well as hippocampal and entorhinal cortical atrophy by 9-12 months of age. Remarkably, hippocampal synapse loss and impaired synaptic function were detected in 3 month old P301S Tg mice before fibrillary tau tangles emerged. Prominent microglial activation also preceded tangle formation. Importantly, immunosuppression of young P301S Tg mice with FK506 attenuated tau pathology and increased lifespan, thereby linking neuroinflammation to early progression of tauopathies. Thus, hippocampal synaptic pathology and microgliosis may be the earliest manifestations of neurodegenerative tauopathies, and abrogation of tau-induced microglial activation could retard progression of these disorders.
Collapse
Affiliation(s)
- Yasumasa Yoshiyama
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
356
|
Kim YS, Martinez T, Deshpande DM, Drummond J, Provost-Javier K, Williams A, McGurk J, Maragakis N, Song H, Ming GL, Kerr DA. Correction of humoral derangements from mutant superoxide dismutase 1 spinal cord. Ann Neurol 2007; 60:716-28. [PMID: 17192933 DOI: 10.1002/ana.21034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We sought to define molecular and cellular participants that mediate motor neuron injury in amyotrophic lateral sclerosis using a coculture system. METHODS We cocultured embryonic stem cell-derived motor neurons with organotypic slice cultures from wild-type or SOD1G93A (MT) mice. We examined axon lengths and cell survival of embryonic stem cell-derived motor neurons. We defined and quantified the humoral factors that differed between wild-type and MT organotypic cultures, and then corrected these differences in cell culture. RESULTS MT spinal cord organotypic slices were selectively toxic to motor neurons as defined by axonal lengths and cell survival. MT spinal cord organotypic slices secreted higher levels of nitric oxide, interleukin (IL)-1beta, IL-6, and IL-12p70 and lower levels of vascular endothelial growth factor. The toxicity of MT spinal cord organotypic cultures was reduced and axonal lengths were restored to near normal by coculturing in the presence of reactive oxygen species scavenger, vascular endothelial growth factor, and neutralizing antibodies to IL-1beta, IL-6, and IL-12. INTERPRETATION MT spinal cord organotypic cultures overexpress certain factors and underexpress others, creating a nonpermissive environment for cocultured motor neurons. Correction of these abnormalities as a group, but not individually, restores axonal length to near normal. Such a "cocktail" approach to the treatment of amyotrophic lateral sclerosis should be investigated further.
Collapse
Affiliation(s)
- Yun-Sook Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
357
|
Clarke RM, O'Connell F, Lyons A, Lynch MA. The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-β1–42 in the rat hippocampus in vivo. Neuropharmacology 2007; 52:136-45. [PMID: 16920163 DOI: 10.1016/j.neuropharm.2006.07.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/22/2006] [Accepted: 07/24/2006] [Indexed: 12/11/2022]
Abstract
One response of the brain to stressors is to increase microglial activation with the consequent production of proinflammatory cytokines like interleukin-1beta (IL-1beta), which has been shown to exert an inhibitory effect on long-term potentiation (LTP) in the hippocampus. It has been consistently shown, particularly in vitro, that amyloid-beta (Abeta) peptides increase activation of microglia, while its inhibitory effect on LTP is well documented, and associated with the Abeta-induced increase in IL-1beta. Here we set out to establish whether the Abeta-induced inhibition of LTP in perforant path-granule cell synapses, was coupled with evidence of microglial activation and to assess whether atorvastatin, which is used primarily in the treatment of hyperlipidaemia but which possesses anti-inflammatory properties, might modulate the effect of Abeta on LTP. We report that intracerebroventricular injection of Abeta increased expression of several markers of microglial activation, and in parallel, inhibited LTP in dentate gyrus. The data show that atorvastatin abrogated the Abeta-induced microglial activation and the associated deficit in LTP. On the basis of the evidence presented, we propose that the action of atorvastatin is mediated by its ability to increase production of the anti-inflammatory cytokine, interleukin-4, which we report mimics several of the actions of atorvastatin in the rat hippocampus.
Collapse
Affiliation(s)
- Rachael M Clarke
- Trinity College Institute for Neuroscience, Physiology Department, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
358
|
Mrak RE, Griffin WST. Dementia with Lewy bodies: Definition, diagnosis, and pathogenic relationship to Alzheimer's disease. Neuropsychiatr Dis Treat 2007; 3:619-25. [PMID: 19300591 PMCID: PMC2656298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Clinical dementia associated with the appearance of Lewy bodies in the cerebral cortex has been recognized for over 40 years. Until the 1990s, however, cortical Lewy body disease was thought to be a rare cause of dementia. At that time, the advent of sensitive and specific immunohistochemical techniques for highlighting these elusive structures led to the recognition of cortical Lewy body disease as a common substrate for clinical dementia. Current diagnostic criteria recognize dementia with Lewy bodies as a clinicopathological entity. Also recognized is the closely related (and perhaps biologically identical) entity of Parkinson's disease dementia, which differs from dementia with Lewy bodies only in the temporal sequence of appearance of clinical symptoms. The generic term "Lewy body disease" encompasses both entities. There is frequent and extensive overlap, both clinically and pathologically, between dementia with Lewy bodies and Alzheimer's disease. The two diseases share several genetic and environmental risk factors that have in common increased inflammatory states associated with increased disease risk. Moreover, pathological and experimental work has implicated the involvement of activated microglia and of microglia-derived interleukin-1 in the pathogenesis of the pathognomonic lesions of both diseases. Such neuroinflammatory processes may be the common link driving progression in both diseases and explaining the frequent overlap between the two diseases.
Collapse
Affiliation(s)
- Robert E Mrak
- Department of Pathology #1090, University of Toledo Health Sciences, Campus, 3000 Arlington Avenue, Toledo, Ohio, USA.
| | | |
Collapse
|
359
|
Dunckley T, Beach TG, Ramsey KE, Grover A, Mastroeni D, Walker DG, LaFleur BJ, Coon KD, Brown KM, Caselli R, Kukull W, Higdon R, McKeel D, Morris JC, Hulette C, Schmechel D, Reiman EM, Rogers J, Stephan DA. Gene expression correlates of neurofibrillary tangles in Alzheimer's disease. Neurobiol Aging 2006; 27:1359-71. [PMID: 16242812 PMCID: PMC2259291 DOI: 10.1016/j.neurobiolaging.2005.08.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/26/2005] [Accepted: 08/08/2005] [Indexed: 11/19/2022]
Abstract
Neurofibrillary tangles (NFT) constitute one of the cardinal histopathological features of Alzheimer's disease (AD). To explore in vivo molecular processes involved in the development of NFTs, we compared gene expression profiles of NFT-bearing entorhinal cortex neurons from 19 AD patients, adjacent non-NFT-bearing entorhinal cortex neurons from the same patients, and non-NFT-bearing entorhinal cortex neurons from 14 non-demented, histopathologically normal controls (ND). Of the differentially expressed genes, 225 showed progressively increased expression (AD NFT neurons > AD non-NFT neurons > ND non-NFT neurons) or progressively decreased expression (AD NFT neurons < AD non-NFT neurons < ND non-NFT neurons), raising the possibility that they may be related to the early stages of NFT formation. Immunohistochemical studies confirmed that many of the implicated proteins are dysregulated and preferentially localized to NFTs, including apolipoprotein J, interleukin-1 receptor-associated kinase 1, tissue inhibitor of metalloproteinase 3, and casein kinase 2, beta. Functional validation studies are underway to determine which candidate genes may be causally related to NFT neuropathology, thus providing therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Travis Dunckley
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | - Thomas G. Beach
- Sun Health Research Institute, USA
- Arizona Alzheimer’s Disease Research Center, USA
| | - Keri E. Ramsey
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | | | | | | | | | - Keith D. Coon
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | - Kevin M. Brown
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | - Richard Caselli
- Department of Neurology, Mayo Clinic Scottsdale, USA
- Arizona Alzheimer’s Disease Research Center, USA
| | | | | | - Daniel McKeel
- Washington University Alzheimer’s Disease Research Center, USA
| | - John C. Morris
- Washington University Alzheimer’s Disease Research Center, USA
| | | | | | - Eric M. Reiman
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
- Banner Good Samaritan Medical Center, USA
- Arizona Alzheimer’s Disease Research Center, USA
| | - Joseph Rogers
- Sun Health Research Institute, USA
- Arizona Alzheimer’s Disease Research Center, USA
| | - Dietrich A. Stephan
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
- Arizona Alzheimer’s Disease Research Center, USA
| |
Collapse
|
360
|
Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to 'tangle' in Alzheimer's disease. NEURODEGENER DIS 2006; 3:313-9. [PMID: 16954650 DOI: 10.1159/000095638] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 05/16/2006] [Indexed: 01/08/2023] Open
Abstract
Neurofibrillary tangles (NFT) are one of the pathologic hallmarks of Alzheimer's disease (AD). Their major component is tau, a protein that becomes hyperphosphorylated and accumulates into insoluble paired helical filaments. During the course of the disease such filaments aggregate into bulky NFT that get ubiquitinated. What triggers their formation is not known, but neuroinflammation could play a role. Neuroinflammation is an active process detectable in the earliest stages of AD. The neuronal toxicity associated with inflammation makes it a potential risk factor in the pathogenesis of chronic neurodegenerative diseases, such as AD. Determining the sequence of events that lead to this devastating disease has become one of the most important goals for AD prevention and treatment. In this review we focus on three topics relevant to AD pathology and to NFT formation: (1) what triggers CNS inflammation resulting in glia activation and neuronal toxicity; (2) how products of inflammation might change the substrate specificity of kinases/phosphatases leading to tau phosphorylation at pathological sites; (3) the relationship between the ubiquitin/proteasome pathway and tau ubiquitination and accumulation in NFT. The overall aim of this review is to provide a challenging and sometimes provocative survey of important contributions supporting the view that CNS inflammation might be a critical contributor to AD pathology. Neuronal cell death resulting from neuroinflammatory processes may have devastating effects as, in the vast majority of cases, neurons lost to disease cannot be replaced. In order to design therapies that will prevent endangered neurons from dying, it is critical that we learn more about the effects of neuroinflammation and its products.
Collapse
Affiliation(s)
- Lisette Arnaud
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10021, USA
| | | | | |
Collapse
|
361
|
Rentzos M, Paraskevas GP, Kapaki E, Nikolaou C, Zoga M, Rombos A, Tsoutsou A, Vassilopoulos D D. Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer's disease and frontotemporal dementia. J Neurol Sci 2006; 249:110-4. [PMID: 16843497 DOI: 10.1016/j.jns.2006.05.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/14/2006] [Accepted: 05/26/2006] [Indexed: 11/19/2022]
Abstract
UNLABELLED Interleukin-12 is a heterodimeric cytokine produced by activated blood monocytes, macrophages and glial cells. It enhances differentiation and proliferation of T cells and increases production of proinflammatory cytokines, such as Interferon-gamma and Tumor Necrosis Factor-alpha. There is little information about the involvement of IL-12 in the pathophysiology of Alzheimer's disease (AD) and other tauopathies. OBJECTIVES The objective of our study was to assess the role of IL-12 as a potential marker of immune reactions in patients with AD and frontotemporal dementia (FTD). PATIENTS AND METHODS We measured by immunoassay cerebrospinal fluid (CSF) IL-12 levels in 19 patients with AD and 7 patients with FTD in comparison with CSF IL-12 levels in 30 patients with non-inflammatory neurological diseases served as neurological control patients (NCTRL). IL-12 levels were correlated with age, age of disease onset, disease duration, MMSE score, and rate of dementia progression. Abeta42 and Total tau (tau(T)) levels in CSF were also measured. RESULTS Patients with AD had significantly lower CSF IL-12 levels compared with NCTRL patients (p<0.001). Patients with FTD had also lower CSF IL-12 levels compared with NCTRL patients (p<0.05). Age, sex, disease duration and MMSE score did not affect IL-12 levels in any of the groups. In AD a significant positive correlation was noted between IL-12 levels and tau(T) levels (Rs=0.46, p=0.048). CONCLUSIONS Our findings may suggest a reduced inflammatory reaction during the course of AD and FTD. A neurotrophic role of IL-12 and other proinflammatory cytokines cannot be excluded.
Collapse
Affiliation(s)
- Michael Rentzos
- Department of Neurology, Aeginition Hospital, Athens National University, School of Medicine, 72-74 Vas. Sophias Ave, Athens 11528, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
362
|
Nawa H, Takei N. Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 2006; 56:2-13. [PMID: 16837094 DOI: 10.1016/j.neures.2006.06.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 06/01/2006] [Accepted: 06/05/2006] [Indexed: 11/29/2022]
Abstract
Epidemiologic studies demonstrate significant environmental impact of maternal viral infection and obstetric complications on the risk of schizophrenia and indicate their detrimental influences on brain development in this disorder. Based on these findings, animal models for schizophrenia have been established using double stranded RNA, bacterial lipopolysaccharides, hippocampal lesion, or prenatal/perinatal ischemia. Key molecules regulating such immune/inflammatory reactions are cytokines, which are also involved in brain development, regulating dopaminergic and GABAergic differentiation, and synaptic maturation. Specific members of the cytokine family, such as interleukin-1, epidermal growth factor, and neuregulin-1, are induced after infection and brain injury; therefore, certain cytokines are postulated to have a central role in the neurodevelopmental defects of schizophrenia. Recently, to test this hypothesis, a variety of cytokines were administered to rodent pups. Cytokines administered in the periphery penetrated the immature blood-brain barrier and perturbed phenotypic neural development. Among the many cytokines examined, epidermal growth factor (or potentially other ErbB1 ligands) and interleukin-1 specifically induced the most severe and persistent behavioral and cognitive abnormalities, most of which were ameliorated by antipsychotics. These animal experiments illustrate that, during early development, these cytokine activities in the periphery perturbs normal brain development and impairs later psychobehavioral and/or cognitive traits. The neurodevelopmental and behavioral consequences of prenatal/perinatal cytokine activity are compared with those of other schizophrenia models and cytokine interactions with genes are also discussed in this review.
Collapse
Affiliation(s)
- Hiroyuki Nawa
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata, Japan.
| | | |
Collapse
|
363
|
Thal LJ, Kantarci K, Reiman EM, Klunk WE, Weiner MW, Zetterberg H, Galasko D, Praticò D, Griffin S, Schenk D, Siemers E. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20:6-15. [PMID: 16493230 PMCID: PMC1820855 DOI: 10.1097/01.wad.0000191420.61260.a8] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biomarkers are likely to be important in the study of Alzheimer disease (AD) for a variety of reasons. A clinical diagnosis of Alzheimer disease is inaccurate even among experienced investigators in about 10% to 15% of cases, and biomarkers might improve the accuracy of diagnosis. Importantly for the development of putative disease-modifying drugs for Alzheimer disease, biomarkers might also serve as indirect measures of disease severity. When used in this way, sample sizes of clinical trials might be reduced, and a change in biomarker could be considered supporting evidence of disease modification. This review summarizes a meeting of the Alzheimer's Association's Research Roundtable, during which existing and emerging biomarkers for AD were evaluated. Imaging biomarkers including volumetric magnetic resonance imaging and positron emission tomography assessing either glucose utilization or ligands binding to amyloid plaque are discussed. Additionally, biochemical biomarkers in blood or cerebrospinal fluid are assessed. Currently appropriate uses of biomarkers in the study of Alzheimer disease, and areas where additional work is needed, are discussed.
Collapse
Affiliation(s)
- Leon J. Thal
- From the University of California San Diego, Department of Neurosciences, La Jolla, California
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Eric M. Reiman
- Banner Good Samaritan Medical Center, University of Arizona, Translational Genomics Research Institute, Arizona Alzheimer’s Disease Consortium, Phoenix, Arizona
| | - William E. Klunk
- Department of Psychiatry, Laboratory of Molecular Neuropharmacology, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, VA Medical Center
- Department of Radiology, University of California, San Francisco; San Francisco, California; # Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Henrik Zetterberg
- From the University of California San Diego, Department of Neurosciences, La Jolla, California
- Institute of Clinical Neuroscience, Department of Experimental Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego; San Diego, California
| | - Domenico Praticò
- Department of Pharmacology, Center for Experimental Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sue Griffin
- Donald W. Reynolds Institute on Aging, Department of Geriatrics, University of Arkansas for Medical Sciences and GRECC VA Medical Center, Little Rock, Arkansas
| | - Dale Schenk
- Elan Pharmaceuticals, South San Francisco, California
| | | |
Collapse
|
364
|
Lynch AM, Loane DJ, Minogue AM, Clarke RM, Kilroy D, Nally RE, Roche OJ, O'Connell F, Lynch MA. Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus. Neurobiol Aging 2006; 28:845-55. [PMID: 16714069 DOI: 10.1016/j.neurobiolaging.2006.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/02/2006] [Accepted: 04/07/2006] [Indexed: 11/26/2022]
Abstract
Among the changes that occur in the hippocampus with age, is a deficit in long-term potentiation (LTP). This impairment is associated with inflammatory changes, which are typified by increased concentration of the pro-inflammatory cytokine interleukin-1beta (IL-1beta). Activated microglia are the most likely cell source of IL-1beta, but data demonstrating an age-related increase in microglial activation is equivocal. Here we demonstrate that the age-related deficit in LTP is accompanied by increased expression of cell surface markers of activated microglia (major histocompatibility complex II and CD40) and increased IL-1beta production, and that these changes may be stimulated by interferon-gamma. Treatment of aged rats with eicosapentaenoic acid (EPA) attenuates these changes and we suggest that IL-4 mediates the action of EPA. We demonstrate that aged rats exhibit an exaggerated response to intracerebroventricular injection of beta-amyloid peptide 1-40 (Abeta). Thus Abeta inhibited LTP in aged, but not young, rats and induced a further increase in hippocampal IL-1beta concentration. Of particular significance is the demonstration that EPA protects the aged brain so that the increased vulnerability to Abeta is ameliorated in EPA-treated rats.
Collapse
Affiliation(s)
- Aileen M Lynch
- Trinity College Institute of Neuroscience, Physiology Department, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
365
|
Griffin WST, Liu L, Li Y, Mrak RE, Barger SW. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 2006; 3:5. [PMID: 16542445 PMCID: PMC1435743 DOI: 10.1186/1742-2094-3-5] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/16/2006] [Indexed: 12/04/2022] Open
Abstract
Background Clinical and neuropathological overlap between Alzheimer's (AD) and Parkinson's disease (PD) is now well recognized. Such cases of concurrent AD and Lewy body disease (AD/LBD) show neuropathological changes that include Lewy bodies (α-synuclein aggregates), neuritic amyloid plaques, and neurofibrillary tangles (hyperphosphorylated tau aggregates). The co-occurrence of these clinical and neuropathological changes suggests shared pathogenic mechanisms in these diseases, previously assumed to be distinct. Glial activation, with overexpression of interleukin-1 (IL-1) and other proinflammatory cytokines, has been increasingly implicated in the pathogenesis of both AD and PD. Methods Rat primary cultures of microglia and cortical neurons were cultured either separately or as mixed cultures. Microglia or cocultures were treated with a secreted fragment (sAPPα) of the β-amyloid precursor protein (βAPP). Neurons were treated with IL-1β or conditioned medium from sAPPα-activated microglia, with or without IL-1 receptor antagonist. Slow-release pellets containing either IL-1β or bovine serum albumin (control) were implanted in cortex of rats, and mRNA for various neuropathological markers was analyzed by RT-PCR. Many of the same markers were assessed in tissue sections from human cases of AD/LBD. Results Activation of microglia with sAPPα resulted in a dose-dependent increase in secreted IL-1β. Cortical neurons treated with IL-1β showed a dose-dependent increase in sAPPα release, an effect that was enhanced in the presence of microglia. IL-1β also elevated the levels of α-synuclein, activated MAPK-p38, and phosphorylated tau; a concomitant decrease in levels of synaptophysin occurred. Delivery of IL-1β by slow-release pellets elevated mRNAs encoding α-synuclein, βAPP, tau, and MAPK-p38 compared to controls. Finally, human cases of AD/LBD showed colocalization of IL-1-expressing microglia with neurons that simultaneously overexpressed βAPP and contained both Lewy bodies and neurofibrillary tangles. Conclusion Our findings suggest that IL-1 drives production of substrates necessary for formation of the major neuropathological changes characteristic of AD/LBD.
Collapse
Affiliation(s)
- W Sue T Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
- Mental Illness Research Education Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yuekui Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Geriatric Research, Education and Clinical Center, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas 72205, USA
| |
Collapse
|
366
|
NESSA BEGUMNURUN, TANAKA TOSHIHISA, KAMINO KOUZIN, SADIK GOLAM, ANSAR ASHIKBIN, KIMURA RYO, TANII HISASHI, OKOCHI MASAYASU, MORIHARA TAKASHI, TAGAMI SHINJI, KUDO TAKASHI, TAKEDA MASATOSHI. Toll-like receptor 3 mediated hyperphosphorylation of tau in human SH-SY5Y neuroblastoma cells. Psychiatry Clin Neurosci 2006. [DOI: 10.1111/j.1440-1819.2006.01526.x-i1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
367
|
Maher FO, Clarke RM, Kelly A, Nally RE, Lynch MA. Interaction between interferon ? and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. J Neurochem 2006; 96:1560-71. [PMID: 16464236 DOI: 10.1111/j.1471-4159.2006.03664.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is compelling evidence to suggest that inflammation significantly contributes to neurodegenerative changes. Consistent with this is the observation that several neurodegenerative disorders are accompanied by an increase in the concentration of interleukin (IL)-1beta. IL-1beta has a negative impact on synaptic plasticity and therefore an increased concentration of IL-1beta, such as that in the hippocampus of the aged rat, is associated with a deficit in long-term potentiation (LTP). IL-1beta is derived mainly from activated microglia but the trigger leading to this activation, specifically in the aged brain, remains to be identified. Here we examined the possibility that interferon (IFN)gamma may stimulate microglial activation and increase IL-1beta concentration, thereby inhibiting LTP. The IFNgamma concentration was increased in hippocampus prepared from aged, compared with young, rats and inversely correlated with the ability of rats to sustain LTP. Intracerebroventricular injection of IFNgamma inhibited LTP, and increased microglial activation was observed in both IFNgamma-injected and aged rats. The age-related increase in IFNgamma was accompanied by a decrease in the hippocampal concentration of insulin-like growth factor (IGF)-1. The evidence presented suggests that IGF-1 acts to antagonize the IFNgamma-induced microglial activation, the accompanying increase in IL-1beta concentration and the consequent deficit in LTP.
Collapse
Affiliation(s)
- Frank O Maher
- Trinity College Institute for Neuroscience, Physiology Department, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
368
|
Bergamaschi A, Corsi M, Garnier MJ. Synergistic effects of cAMP-dependent signalling pathways and IL-1 on IL-6 production by H19-7/IGF-IR neuronal cells. Cell Signal 2006; 18:1679-84. [PMID: 16497477 DOI: 10.1016/j.cellsig.2006.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
cAMP-dependent signalling cascades regulate a number of CNS functions including brain inflammation processes. In this study, we characterized IL-1-induced IL-6 production in hippocampal cells using H19-7/IGF-IR cells and investigated the effect of changes in intracellular cAMP levels on IL-1 activity. IL-1 potently induced IL-6 mRNA expression with a corresponding increase in IL-6 release, in a time- and dose-dependent manner with a maximal at 24 h and with an EC50 value of 0.11 ng/ml. Cell pre-treatment with the IL-1sR antagonist produced a rightward shift of IL-1 dose-response effect with a corresponding decrease in IL-1 potency. IL-1-induced IL 6 release was attenuated in the presence of the p38 MAPK inhibitor SB203580 but was not significantly affected by the PKA inhibitor KT 5720. Western blotting analysis of phospho-CREB cell content showed a marked increase in CREB activation. Similar results were obtained by pharmacologically increasing cAMP using dibutyryl cyclic adenosine monophosphate (dbcAMP) or the cAMP-specific type-4 phosphodiesterase inhibitor rolipram. Both dbcAMP and rolipram increased IL-6 production to about 50% of IL-1 effect. However, in the presence of IL-1, IL-6 production was further potentiated by either dbcAMP and rolipram, reaching 300% and 500% IL-1-induced levels. These data implicate the role of cAMP-dependent pathways on IL-6 production in neuronal cells and suggest novel synergistic mechanisms of regulation of cytokine production in brain.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Neuropharmacology Research Department, GlaxoSmithKline S.p.A., Psychiatry Center of Excellence for Drug Discovery, Via A. Fleming 4, IT-37135 Verona, Italy
| | | | | |
Collapse
|
369
|
Hao S, Mata M, Glorioso JC, Fink DJ. HSV-mediated expression of interleukin-4 in dorsal root ganglion neurons reduces neuropathic pain. Mol Pain 2006; 2:6. [PMID: 16503976 PMCID: PMC1395302 DOI: 10.1186/1744-8069-2-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To examine the role of inflammatory mediators in neuropathic pain, we used a replication-defective genomic herpes simplex virus (HSV)-based vector containing the coding sequence for the anti-inflammatory peptide interleukin (IL)-4 under the transcriptional control of the HSV ICP4 immediate early promoter, vector S4IL4, to express IL-4 in dorsal root ganglion (DRG) neurons in vivo. RESULTS Subcutaneous inoculation of S4IL4 in the foot transduced lumbar DRG to produce IL-4. Transgene-mediated expression of IL-4 did not alter thermal latency or tactile threshold in normal animals, but inoculation of S4IL4 1 week after spinal nerve ligation (SNL) reduced mechanical allodynia and reversed thermal hyperalgesia resulting from SNL. Inoculation of S4IL4 1 week before SNL delayed the development of thermal hyperalgesia and tactile allodynia, but did not prevent the ultimate development of these manifestations of neuropathic pain. S4IL4 inoculation suppressed non-noxious-induced expression of c-Fos immunoreactivity in dorsal horn of spinal cord and reversed the upregulation of spinal IL-1beta, PGE2, and phosphorylated-p38 MAP kinase, characteristic of neuropathic pain. CONCLUSION HSV-mediated expression of IL-4 effectively reduces the behavioral manifestations of neuropathic pain, and reverses some of the biochemical and histologic correlates of neuropathic pain at the spinal level.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation/genetics
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/virology
- Genetic Vectors/genetics
- Hyperalgesia/immunology
- Hyperalgesia/metabolism
- Hyperalgesia/physiopathology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-4/metabolism
- Male
- Neuralgia/immunology
- Neuralgia/metabolism
- Neuralgia/physiopathology
- Neurons, Afferent/immunology
- Neurons, Afferent/metabolism
- Neurons, Afferent/virology
- Pain Threshold/physiology
- Peripheral Nervous System Diseases/immunology
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/physiopathology
- Posterior Horn Cells/immunology
- Posterior Horn Cells/metabolism
- Promoter Regions, Genetic/genetics
- Rats
- Rats, Sprague-Dawley
- Reaction Time/genetics
- Reaction Time/immunology
- Simplexvirus/genetics
- Spinal Nerves/injuries
- Spinal Nerves/physiopathology
- Spinal Nerves/surgery
- Transfection/methods
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Shuanglin Hao
- Department of Neurology, University of Michigan Health System, 1500 E. Medical Center Drive, Room 1914 TC, Ann Arbor, Michigan, 48109-0316, USA
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, Michigan, 48105, USA
| | - Marina Mata
- Department of Neurology, University of Michigan Health System, 1500 E. Medical Center Drive, Room 1914 TC, Ann Arbor, Michigan, 48109-0316, USA
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, Michigan, 48105, USA
| | - Joseph C Glorioso
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, 200 Lothrop St., Pittsburgh, Pennsylvania, 15261, USA
| | - David J Fink
- Department of Neurology, University of Michigan Health System, 1500 E. Medical Center Drive, Room 1914 TC, Ann Arbor, Michigan, 48109-0316, USA
- VA Ann Arbor Healthcare System, 2215 Fuller Road, Ann Arbor, Michigan, 48105, USA
| |
Collapse
|
370
|
Abstract
The decline in mental fitness associated with Alzheimer disease is accompanied by physical changes in the brain, including the development of characteristic plaques and neurofibrillary tangles, but the pathogenesis of those changes is not clear. Recent work suggests that the activation of microglia in response to injury, illness, aging, or other causes begins a cascade of events that can best be characterized as an inflammatory process. This cascade is mediated at first by the proinflammatory cytokine interleukin 1, which is overexpressed by the activated microglia. Through various pathways, interleukin 1 causes neuronal death, which activates more microglia, which in turn release more interleukin 1 in a self-sustaining and self-amplifying fashion. Over a period of years, this slow, smoldering inflammation in the brain destroys sufficient neurons to cause the clinical signs of Alzheimer disease.
Collapse
Affiliation(s)
- W Sue T Griffin
- Donald W Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences, and the Geriatric Research Education Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA.
| |
Collapse
|
371
|
Gordo AC, Falcão AS, Fernandes A, Brito MA, Silva RFM, Brites D. Unconjugated bilirubin activates and damages microglia. J Neurosci Res 2006; 84:194-201. [PMID: 16612833 DOI: 10.1002/jnr.20857] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Microglia are the resident immune cells of the brain and are the principal source of cytokines produced during central nervous system inflammation. We have previously shown that increased levels of unconjugated bilirubin (UCB), which can be detrimental to the central nervous system during neonatal life, induce the secretion of inflammatory cytokines and glutamate by astrocytes. Nevertheless, the effect of UCB on microglia has never been investigated. Hence, the main goal of the present study was to evaluate whether UCB leads to microglial activation and to the release of the cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6. Additionally, we investigated the effects of UCB on glutamate efflux and cell death. The results showed that UCB induces morphological changes characteristic of activated microglia and the release of high levels of TNF-alpha, IL-1beta, and IL-6 in a concentration-dependent manner. In addition, UCB triggered extracellular accumulation of glutamate and an increased cell death by apoptosis and necrosis. These results demonstrate, for the first time, that UCB is toxic to microglial cells and point to microglia as an important target of UCB in the central nervous system. Moreover, they suggest that UCB-induced cytokine production, by mediating cell injury, can further contribute to exacerbate neurototoxicity. Interestingly, microglia cells are much more responsive to UCB than astrocytes. Collectively, these data indicate that microglia may play an important role in the pathogenesis of encephalopathy during severe hyperbilirubinemia.
Collapse
Affiliation(s)
- Ana C Gordo
- Centro de Patogénese Molecular-UBMBE, Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
372
|
Weisman D, Hakimian E, Ho GJ. Interleukins, inflammation, and mechanisms of Alzheimer's disease. VITAMINS AND HORMONES 2006; 74:505-30. [PMID: 17027528 DOI: 10.1016/s0083-6729(06)74020-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative form of dementia in the elderly and is characterized neuropathologically by neurofibrillary tangles (NFT), amyloid neuritic plaques (NP), and prominent synaptic and eventually neuronal loss. Although the molecular basis of AD is not clearly understood, a neuroinflammatory process, triggered by Abeta42, plays a central role in the neurodegenerative process. This inflammatory process is driven by activated microglia, astrocytes and the induction of proinflammatory molecules and related signaling pathways, leading to both synaptic and neuronal damage as well as further inflammatory cell activation. Epidemiologic data as well as clinical trial evidence suggest that nonsteroidal anti-inflammatory drug (NSAID) use may decrease the incidence of AD, further supporting a role for inflammation in AD pathogenesis. Although the precise molecular and cellular relationship between AD and inflammation remains unclear, interleukins and cytokines might induce activation of signaling pathways leading to futher inflammation and neuronal injury. This chapter will discuss the association between interleukins and neurodegeneration in AD and highlight the significance of genetic and clinical aspects of interleukins in disease expression and progression. As part of an emerging inflammatory signaling network underlying AD pathogenesis, beta-amyloid (Abeta) stimulates the glial and microglial production of interleukins and other cytokines, leading to an ongoing inflammatory cascade and contributing to synaptic dysfunction and loss, and later, neuronal death. Inflammatory pathways involving interleukin and cytokine signaling might suggest potential targets for intervention and influence the development of novel therapies to circumvent synaptic and neuronal dysfunction ultimately leading to AD neurodegeneration.
Collapse
Affiliation(s)
- David Weisman
- Department of Neurosciences and the Alzheimer's Disease Research Center, University of California, San Diego, California 92093, USA
| | | | | |
Collapse
|
373
|
Tixier E, Lalanne F, Just I, Galmiche JP, Neunlist M. Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion. Cell Microbiol 2005; 7:1798-810. [PMID: 16309465 DOI: 10.1111/j.1462-5822.2005.00596.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interleukin-8 (IL-8) is a key chemokine upregulated in various forms of intestinal inflammation, especially those induced by bacteria such as Clostridium difficile (C. difficile). Although interactions between different mucosal and submucosal cellular components have been reported, whether such interactions are involved in the regulation of IL-8 secretion during C. difficile infection is unknown. Moreover, whether the enteric nervous system, a major component of the submucosa, is involved in IL-8 secretion during an inflammatory challenge remains to be determined. In order to investigate mucosa/submucosa interactions that regulate IL-8 secretion, we co-cultured human intestinal mucosa and submucosa. In control condition, IL-8 secretion in co-culture was lower than the sum of the IL-8 secretion of both tissue layers cultured alone. Contrastingly, IL-8 secretion increased in co-culture after mucosal challenge with toxin B of C. difficile through an IL-1 beta-dependent pathway. Moreover, we observed that toxin B of C. difficile increased IL-8 immunoreactivity in submucosal enteric neurones in co-culture and in intact preparations of mucosa/submucosa, through an IL-1 beta-dependent pathway. IL-1 beta also increased IL-8 secretion and IL-8 mRNA expression in human neuronal cell lines (NT2-N and SH-SY5Y), through p38 and ERK1/2 MAP kinase-dependent pathways. Our results demonstrate that mucosa/submucosa interactions regulate IL-8 secretion during inflammatory processes in human through IL-1 beta-dependent pathways. Finally we observed that human submucosal neurones synthesize IL-8, whose production in neurones is induced by IL-1 beta via MAPK-dependent pathways.
Collapse
Affiliation(s)
- Emmanuelle Tixier
- Institut National de la Santé et de la Recherche Médicale U539, Hôpital Hôtel-Dieu, 44035 Nantes, France
| | | | | | | | | |
Collapse
|
374
|
Hellstrom IC, Danik M, Luheshi GN, Williams S. Chronic LPS exposure produces changes in intrinsic membrane properties and a sustained IL-beta-dependent increase in GABAergic inhibition in hippocampal CA1 pyramidal neurons. Hippocampus 2005; 15:656-64. [PMID: 15889405 DOI: 10.1002/hipo.20086] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chronic inflammation has been reported to be a significant factor in the induction and progression of a number of chronic neurological disorders including Alzheimer's disease and Down syndrome. It is believed that inflammation may promote synaptic dysfunction, an effect that is mediated in part by pro-inflammatory cytokines such as interleukin-1beta (IL-1beta). However, the role of IL-1beta and other cytokines in synaptic transmission is still poorly understood. In this study, we have investigated how synaptic transmission and neuronal excitability in hippocampal pyramidal neurons are affected by chronic inflammation induced by exposing organotypic slices to the bacterial cell-wall product lipopolysaccharide (LPS). We report that CA1 pyramidal neurons recorded in whole cell from slices previously exposed to LPS for 7 days had resting membrane potential and action potential properties similar to those of the controls. However, they had significantly lower membrane resistance and a more elevated action potential threshold, and displayed a slower frequency of action potential discharge. Moreover, the amplitude of pharmacologically isolated postsynaptic gamma-aminobutyric acid (GABA)ergic potentials, but not excitatory glutamatergic postsynaptic potentials, was significantly larger following chronic LPS exposure. Interestingly, co-incubation of the IL-1 receptor antagonist (IL-1Ra) concurrently with LPS prevented the increase in GABAergic transmission, but not the reduction in intrinsic neuronal excitability. Finally, we confirmed that LPS dramatically increased IL-1beta, and IL-1beta-dependent IL-6 levels in the culture medium for 2 days before returning to baseline. We conclude that CA1 pyramidal neurons in slices chronically exposed to LPS show a persistent decrease in excitability due to a combined decrease in intrinsic membrane excitability and an enhancement in synaptic GABAergic input, the latter being dependent on IL-1beta. Therefore, chronic inflammation in hippocampus produces IL-1beta-dependent and -independent effects in neuronal and synaptic function that could contribute significantly to cognitive disturbances.
Collapse
Affiliation(s)
- Ian C Hellstrom
- Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
375
|
Ramage SN, Anthony IC, Carnie FW, Busuttil A, Robertson R, Bell JE. Hyperphosphorylated tau and amyloid precursor protein deposition is increased in the brains of young drug abusers. Neuropathol Appl Neurobiol 2005; 31:439-48. [PMID: 16008828 DOI: 10.1111/j.1365-2990.2005.00670.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drug abuse is a major problem worldwide. The incidence of drug-related deaths attributed to opiate abuse is increasing annually. Apart from routine examination, little is known of the neuropathology of drug abuse. We, and others, have shown previously that drug abuse is associated with microglial activation. We hypothesised that neuroinflammation might lead to premature neurodegeneration in drug abusers. We investigated the brains of young opiate abusers (n=34, all<40 years) for the presence of proteins associated with neurodegenerative diseases and compared them with the brains of age-matched, non-drug users (n=16) all of whom died suddenly. Detailed immunohistochemical analysis of the hippocampus, brainstem and basal ganglia for hyperphosphorylated tau, beta-amyloid, beta-amyloid precursor protein (betaAPP) and ubiquitin demonstrated an excess of AT 8-positive neurofibrillary tangles (NFT) in the drug abusers. These were not only more prevalent in the drug abusers than in controls (44%vs. 19%) but also involved more brain areas. In controls NFT were confined to the entorhinal cortex whereas in drug users they were also found in the subiculum, temporal neocortex, nucleus basalis of Meynert and the locus coeruleus. Virtually no amyloid plaques were present but betaAPP positivity was again much more common in drug abusers than controls (73%vs. 20% in the brainstem and 59%vs. 23% in the temporal lobe). There is no suggestion that these drug abusers had displayed major cognitive impairment although detailed neuropsychological assessment is difficult in this subject group. Likely causes of hyperphosphorylated tau deposition in drug abuse include hypoxic-ischaemic injury, microglial-associated cytokine release and possibly drug-associated neurotoxicity or hepatitis. Head injury, which is another major risk factor, does not appear to have contributed to our findings. Genetic factors also merit consideration. It is unclear at present how much of the hyperphosphorylated tau detected in these young drug abusers represents a transitory phenomenon.
Collapse
Affiliation(s)
- S N Ramage
- Neuropathology Unit, University of Edinburgh, Alexander Donald Building, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
376
|
Orellana DI, Quintanilla RA, Gonzalez-Billault C, Maccioni RB. Role of the JAKs/STATs pathway in the intracellular calcium changes induced by interleukin-6 in hippocampal neurons. Neurotox Res 2005; 8:295-304. [PMID: 16371324 DOI: 10.1007/bf03033983] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent studies show that inflammation has an active role in the onset of neurodegenerative diseases. It is known that in response to extracellular insults microglia and/or astrocytes produce inflammatory agents. These contribute to the neuropathological events in the aging process and neuronal degeneration. Interleukin-6 (IL-6) has been involved in the pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Here, we show that IL-6 treatment of rat hippocampal neurons increases the calcium influx via NMDA-receptor, an effect that is prevented by the specific NMDA receptor antagonist MK-801 (dizocilpine). We also show that this calcium influx is mediated by the JAKs/STATs pathway, since the inhibitor of JAKs/STATs pathway, JAK 3 inhibitor, blocks calcium influx even in the presence of IL-6. This increase in calcium signal was dependent on external sources, since this signal was not observed in the presence of EGTA. Additional studies indicate that the increase in cytosolic calcium induces tau protein hyperphosphorylation, as revealed by using specific antibodies against Alzheimer phosphoepitopes. This anomalous tau hyperphosphorylation was dependent on both the JAKs/STATs pathway and NMDA receptor. These results suggest that IL-6 would induce a cascade of molecular events that produce a calcium influx through NMDA receptors, mediated by the JAKs/STATs pathway, which subsequently modifies the tau hyperphosphorylation patterns.
Collapse
Affiliation(s)
- D I Orellana
- Laboratory of Cellular, Molecular Biology and Neurosciences, Millennium Institute for Advanced Studies in Cell Biology and Biotechnology (CBB), Department of Biology, Faculty of Sciences, Universidad de Chile, Las Encinas 3370, Nunoa, Santiago, Chile
| | | | | | | |
Collapse
|
377
|
Madrigal JLM, Feinstein DL, Dello Russo C. Norepinephrine protects cortical neurons against microglial-induced cell death. J Neurosci Res 2005; 81:390-6. [PMID: 15948176 DOI: 10.1002/jnr.20481] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-1 beta (IL-1beta) is one of the main cytokines involved in the inflammatory response; it has multiple effects that can contribute to cell damage, one of which is the upregulation of the inducible form of nitric oxide (NO) synthase (NOS2) in certain cell types. We demonstrated previously that in vivo, cortical microglial inflammatory responses were increased when noradrenaline (NE) levels were depleted, suggesting that NE can reduce microglial activation. In the present report, we examined the role of IL-1beta in neurotoxicity induced by microglial-conditioned media, and possible neuroprotective effects of NE. Incubation of cortical neurons with conditioned media (CM) obtained from lipopolysaccharide (LPS)-treated microglia induced neuronal NOS2 expression and increased neuronal cell death, and these responses were reduced if the neurons were coincubated with interleukin-1 receptor antagonist. Cotreatment of microglial cells with LPS plus NE potently blocked IL-1beta production and reduced the ability of the CM to induce neuronal NOS2 and cell death. These results suggest that microglial release of IL-1beta is an important activator of neuronal inflammatory responses, and that protective effects of NE upon neurons involve a reduction of microglial-derived IL-1beta.
Collapse
Affiliation(s)
- Jose L M Madrigal
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
378
|
Moore ME, Piazza A, McCartney Y, Lynch MA. Evidence that vitamin D3 reverses age-related inflammatory changes in the rat hippocampus. Biochem Soc Trans 2005; 33:573-7. [PMID: 16042547 DOI: 10.1042/bst0330573] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the major challenges in neuroscience is to identify the changes which accompany aging and which contribute to the well-documented age-related deterioration in cognitive function. This is a particular challenge in the light of the vast array of reported changes, which include morphological changes like synaptic and perhaps cell loss, alteration in membrane composition and the resultant changes in function of membrane proteins, modulation of the hypothalamo–pituitary axis, impaired calcium homoeostatic mechanisms, alteration in enzyme function and decreased neurotransmitter release. In the past few years, evidence suggesting that an aged brain exhibits signs of oxidative stress and inflammatory stress has been accumulating, and recent evidence using microarray analysis has added support to this view. In this paper, we provide evidence to suggest that vitamin D3 acts as an anti-inflammatory agent and reverses the age-related increase in microglial activation and the accompanying increase in IL-1β (interleukin-1β) concentration.
Collapse
Affiliation(s)
- M E Moore
- Department of Physiology and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
379
|
Liu L, Li Y, Van Eldik LJ, Griffin WST, Barger SW. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem 2005; 92:546-53. [PMID: 15659225 DOI: 10.1111/j.1471-4159.2004.02909.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both the astrocytic cytokine S100B and the pro-inflammatory interleukin-1 (IL-1) are elevated in Alzheimer's disease, and each has been implicated in Alzheimer-related neuropathology. We examined the gene-regulatory events through which S100B induces IL-1beta expression. In primary microglia, S100B activated the transcription factors Sp1 and NFkappaB, followed by an increase in IL-1beta mRNA levels. The latter was blocked by a peptide inhibitor of NFkappaB or by a double-stranded oligonucleotide containing a NFkappaB-binding site to serve as "decoy" DNA and reduce available NFkappaB. But in primary cortical neurons, decoy and siRNA experiments indicated that the IL-1beta induction by S100B was mediated by Sp1 without evidence of a role for NFkappaB. Our results suggest that the elevation of S100B and IL-1 in Alzheimer brain and consequent neurodegenerative events are mediated through cell-type specific gene-regulatory events, providing mechanistic insight into connections between glial activation and neuronal dysfunction.
Collapse
Affiliation(s)
- Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive #807, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
380
|
Xu YF, Zhang YJ, Zhang AH, Zhang Q, Wu T, Wang JZ. Attenuation of okadaic acid-induced hyperphosphorylation of cytoskeletal proteins by heat preconditioning and its possible underlying mechanisms. Cell Stress Chaperones 2005; 9:304-12. [PMID: 15544168 PMCID: PMC1065289 DOI: 10.1379/csc-23r1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
An imbalanced phosphorylation system is recognized to be one of the main reasons for Alzheimer-like hyperphosphorylation of cytoskeletal proteins. However, little is known about the strategies rectifying the lesions caused by this disrupted phosphorylation. To search for the means to arrest Alzheimer-like damages and explore the underlying mechanisms, in this study we treated N2a/peuht40 cells with okadaic acid (OA), a specific inhibitor of protein phosphatase-2A (PP-2A) and PP-1, to mimic an Alzheimer-like phosphatase-deficient system and then used heat preconditioning (42 degrees C for 1 hour) to induce the expression of inducible heat shock protein 70 (Hsp70) in the cells. We observed that heat preconditioning arrested OA-induced hyperphosphorylation of neurofilament (NF) protein at SMI34 and SMI33 epitopes as well as hyperphosphorylation of tau at Tau-1 and PHF-1 epitopes. It counteracted OA-induced decrease in PP-2A activity with a concurrent inhibition in constitutive activity of mitogen-activated protein kinases (MAPKs) and cyclic adenosine 5'-monophosphate-dependent protein kinase A (PKA). Conversely, quercetin, a recognized blocker of stress-responsive Hsp70 expression, diminished the effects caused by heat preconditioning. These results suggested that Hsp70 antagonized OA-induced Alzheimer-like NF and tau hyperphosphorylation, and the restoration of PP-2A and inhibition of MAPKs-PKA activity might be part of the underlying mechanisms for the rectification of OA-induced hyperphosphorylation.
Collapse
Affiliation(s)
- Ya Fei Xu
- Pathophysiology Department, Neuroscience Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | | | |
Collapse
|
381
|
Mrak RE, Griffin WST. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 2005; 26:349-54. [PMID: 15639313 DOI: 10.1016/j.neurobiolaging.2004.05.010] [Citation(s) in RCA: 451] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/03/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
A glia-mediated, inflammatory immune response is an important component of the neuropathophysiology of Alzheimer's disease, of the midlife neurodegeneration of Down's syndrome, and of other age-related neurodegenerative conditions. All of these conditions are associated with early and often dramatic activation of, and cytokine overexpression in, microglia and astrocytes, sometimes decades before pathological changes consistent with a diagnosis of Alzheimer's disease are apparent, as in patients with Down's syndrome or head injury. Brains of normal elderly individuals also often show Alzheimer-type neuropathological changes, although to a lesser degree than those seen in Alzheimer's disease itself. These normal age-related glial changes, likely a response to the normal wear and tear of the aging process, raise the threshold of glial activation and thus may explain the fact that even genetically determined Alzheimer's disease, resulting from genetic mutations such as those in beta-amyloid precursor protein and presenilins or from genetic duplication such as of chromosome 21, only shows the full manifestation of the disease decades after birth. In the more common sporadic form of Alzheimer's disease, age-related increases in glial activation and expression of cytokines may act in synergy with other genetic and acquired environmental risks to culminate in the development of disease.
Collapse
Affiliation(s)
- Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, 629 South Elm Street, Room 3103, Little Rock, AR 72205, USA
| | | |
Collapse
|
382
|
Birukova AA, Birukov KG, Gorshkov B, Liu F, Garcia JGN, Verin AD. MAP kinases in lung endothelial permeability induced by microtubule disassembly. Am J Physiol Lung Cell Mol Physiol 2005; 289:L75-84. [PMID: 15778245 DOI: 10.1152/ajplung.00447.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung endothelial barrier function is regulated by multiple signaling pathways, including mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK) 1/2 and p38. We have recently shown involvement of microtubule (MT) disassembly in endothelial cell (EC) barrier failure. In this study, we examined potential involvement of ERK1/2 and p38 MAPK in lung EC barrier dysfunction associated with MT disassembly. MT inhibitors nocodazole (0.2 microM) and vinblastine (0.1 microM) induced sustained activation of Ras-Raf-MEK1/2-ERK1/2 and MKK3/6-p38-MAPKAPK2 MAPK cascades in human and bovine pulmonary EC, as detected by phosphospecific antibodies and in MAPK activation assays. These effects were linked to increased permeability assessed by measurements of transendothelial electrical resistance and cytoskeletal remodeling analyzed by morphometric analysis of EC monolayers. MT stabilization by taxol (5 microM, 1 h) attenuated nocodazole-induced ERK1/2 and p38 MAPK activation and phosphorylation of p38 MAPK substrate 27-kDa heat shock protein and regulatory myosin light chains, the proteins involved in actin polymerization and actomyosin contraction. Importantly, only pharmacological inhibition of p38 MAPK by SB-203580 (20 microM, 1 h) attenuated nocodazole-induced MT depolymerization, actin remodeling, and EC barrier dysfunction, whereas the MEK/ERK1/2 inhibitor U0126 (5 microM, 1 h) exhibited no effect. These data suggest a direct link between p38 MAPK activation, remodeling of MT network, and EC barrier regulation.
Collapse
Affiliation(s)
- Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, MFL Center Tower, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
383
|
Ko LW, DeTure M, Sahara N, Chihab R, Vega IE, Yen SH. Recent advances in experimental modeling of the assembly of tau filaments. Biochim Biophys Acta Mol Basis Dis 2005; 1739:125-39. [PMID: 15615632 DOI: 10.1016/j.bbadis.2004.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/01/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Intracellular assembly of microtubule-associated protein tau into filamentous inclusions is central to Alzheimer's disease and related disorders collectively known as tauopathies. Although tau mutations, posttranslational modifications and degradations have been the focus of investigations, the mechanism of tau fibrillogenesis in vivo still remains elusive. Different strategies have been undertaken to generate animal and cellular models for tauopathies. Some are used to study the molecular events leading to the assembly and accumulation of tau filaments, and others to identify potential therapeutic agents that are capable of impeding tauopathy. This review highlights the latest developments in new models and how their utility improves our understanding of the sequence of events leading to human tauopathy.
Collapse
Affiliation(s)
- Li-Wen Ko
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
384
|
Barger SW. Vascular consequences of passive Abeta immunization for Alzheimer's disease. Is avoidance of "malactivation" of microglia enough? J Neuroinflammation 2005; 2:2. [PMID: 15644140 PMCID: PMC545943 DOI: 10.1186/1742-2094-2-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 01/11/2005] [Indexed: 11/10/2022] Open
Abstract
The role of inflammation in Alzheimer's disease (AD) has been controversial since its first consideration. As with most instances of neuroinflammation, the possibility must be considered that activation of glia and cytokine networks in AD arises merely as a reaction to neurodegeneration. Active, healthy neurons produce signals that suppress inflammatory events, and dying neurons activate phagocytic responses in microglia at the very least. But simultaneous with the arrival of a more complex view of microglia, evidence that inflammation plays a causal or exacerbating role in AD etiology has been boosted by genetic, physiological, and epidemiological studies. In the end, it may be that the semantics of "inflammation" and glial "activation" must be regarded as too simplistic for the advancement of our understanding in this regard. It is clear that elaboration of the entire repertoire of activated microglia - a phenomenon that may be termed "malactivation" - must be prevented for healthy brain structure and function. Nevertheless, recent studies have suggested that phagocytosis of Abeta by microglia plays an important role in clearance of amyloid plaques, a process boosted by immunization paradigms. To the extent that this clearance might produce clinical improvements (still an open question), this relationship thus obligates a more nuanced consideration of the factors that indicate and control the various activities of microglia and other components of neuroinflammation.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205 USA.
| |
Collapse
|
385
|
Bodles AM, Barger SW. Secreted β-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol Aging 2005; 26:9-16. [PMID: 15585341 DOI: 10.1016/j.neurobiolaging.2004.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 12/18/2003] [Accepted: 02/18/2004] [Indexed: 11/15/2022]
Abstract
Reactive microglia are thought to play a role in the pathogenesis of Alzheimer's disease (AD) and are localized to the senile plaques that are associated with cognitive decline. The beta-amyloid precursor protein (betaAPP) is over-expressed in the dystrophic neurites near such plaques, and secreted forms of betaAPP (sAPPalpha) activate inflammatory responses in microglia. To characterize the mechanisms by which sAPPalpha activates microglia, we assayed its effects on MAP kinases, including c-Jun N-terminal kinases (JNK), extracellular signal-regulated protein kinases (ERK), and p38-MAPK. sAPPalpha was found to rapidly activate JNKs, ERKs and p38-MAPK in a dose-dependent manner. The JNK inhibitor SP600125 and the p38 inhibitor SB203580 independently reduced both nitrite accumulation and induction of inflammatory nitric oxide synthase (iNOS). By contrast, inhibition of the ERK pathway with U0126 did not appreciably affect either outcome measure. These findings suggest that sAPP activates the ERK, JNK and p38 classes of MAP kinases but that only JNK and p38-MAPK are critical for activation of microglia by sAPPalpha, a process that compromises neuronal function and survival.
Collapse
Affiliation(s)
- Angela M Bodles
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | |
Collapse
|
386
|
Craft JM, Watterson DM, Frautschy SA, Van Eldik LJ. Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol Aging 2004; 25:1283-92. [PMID: 15465624 DOI: 10.1016/j.neurobiolaging.2004.01.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/23/2003] [Accepted: 01/06/2004] [Indexed: 11/20/2022]
Abstract
The critical role of chronic inflammation in disease progression continues to be increasingly appreciated across multiple disease areas, especially in neurodegenerative disorders such as Alzheimer's disease. We report that late intervention with a recently discovered aminopyridazine suppressor of glial activation, developed to inhibit both oxidative and inflammatory cytokine pathways, attenuates human amyloid beta (Abeta)-induced glial activation in a murine model. Peripheral administration of the aminopyridazine MW01-070C, beginning 3 weeks after the start of intracerebroventricular infusion of human Abeta1-42, decreased the number of activated astrocytes and microglia and the levels of proinflammatory cytokines interleukin-1beta, tumor necrosis factor-alpha and S100B in the hippocampus. Inhibition of neuroinflammation correlated with a decreased neuron loss, restoration towards control levels of synaptic dysfunction biomarkers in the hippocampus, and diminished amyloid plaque deposition. The results from this in vivo chemical biology approach provide a proof of concept that targeting of key glia inflammatory cytokine pathways can suppress Abeta-induced neuroinflammation in vivo, with resultant attenuation of neuronal damage.
Collapse
Affiliation(s)
- Jeffrey M Craft
- Drug Discovery Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
387
|
Licastro F, Veglia F, Chiappelli M, Grimaldi LME, Masliah E. A polymorphism of the interleukin-1 beta gene at position +3953 influences progression and neuro-pathological hallmarks of Alzheimer’s disease. Neurobiol Aging 2004; 25:1017-22. [PMID: 15212826 DOI: 10.1016/j.neurobiolaging.2003.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/17/2003] [Accepted: 11/04/2003] [Indexed: 11/20/2022]
Abstract
Interleukin-1 (IL-1) gene polymorphisms are associated with an increased risk of Alzheimer's disease (AD) and it has been suggested that altered immune responses of the brain may play a role in the pathogenesis of the disease. Here we investigated whether IL-1beta polymorphisms affected neuro-pathological features and clinical status of AD patients with autopsy confirmed diagnosis of the disease. AD patients (n=133) were genotyped for the polymorphic regions in the apolipoprotein E epsilon (APOE epsilon) and interleukin-1beta (IL-1beta) genes. APOE epsilon4 carriers showed increased neuritic amyloid plaques (NP) and neurofibrillary tangles (NFT). The IL-1beta +3953 polymorphism influenced survival in AD patients and those with the TT genotype and without the APOE epsilon4 allele showed the shortest cumulative survival. Patients with the +3953 IL-1beta T and without the APOE epsilon4 alleles had reduced NP and NFT, a delayed ages at onset and death, but a decreased duration of the disease. On the other hand a different polymorphism of the IL-1beta gene at position -511 did not influence any AD features. Our findings suggest that IL-1beta gene by affecting brain immune responses may influence the age at onset of the disease, survival and AD progression.
Collapse
Affiliation(s)
- Federico Licastro
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | |
Collapse
|
388
|
Abstract
In fetuses with Down syndrome, neurons fail to show normal dendritic development, yielding a "tree in winter" appearance. This developmental failure is thought to result in mental retardation. In adults with Down syndrome, neuronal loss is dramatic and neurofibrillary and neuritic Abeta plaque pathologies are consistent with Alzheimer disease. These pathological changes are thought to underlie the neuropsychological and physiological changes in older individuals with Down syndrome. Two chromosome 21-based gene products, beta-amyloid precursor protein (betaAPP) and S100B, have been implicated in these neuronal and interstitial changes. Although not necessary for mental retardation and other features, betaAPP gene triplication is necessary, although perhaps not sufficient, for development of Alzheimer pathology. S100B is overexpressed throughout life in Down patients, and mice with extra copies of the S100B gene have dendritic abnormalities. S100B overexpression correlates with Alzheimer pathology in post-adolescent Down syndrome patients and has been implicated in Abeta plaque pathogenesis. Interleukin-1 (IL-1) is a non-chromosome-21-based cytokine that is also overexpressed throughout life in Down syndrome. IL-1 upregulates betaAPP and S100B expression and drives numerous neurodegenerative and self-amplifying cascades that support a neuroinflammatory component in the pathogenesis of sporadic and Down syndrome-related Alzheimer disease.
Collapse
Affiliation(s)
- Robert E Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | |
Collapse
|
389
|
Li Y, Liu L, Liu D, Woodward S, Barger SW, Mrak RE, Griffin WST. Microglial activation by uptake of fDNA via a scavenger receptor. J Neuroimmunol 2004; 147:50-5. [PMID: 14741427 PMCID: PMC3846353 DOI: 10.1016/j.jneuroim.2003.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fate of the fragmented DNA (fDNA) observed in neuronal nuclei in Alzheimer brain is unknown. However, its fate is suggested as fDNA is found in the cytoplasm of adjacent activated microglia. After a brief incubation with fDNA, approximately 70% of microglia had fDNA in their cytoplasm, were activated, and overexpressed interleukin-1beta. Microglial activation enhanced uptake whereas blocking scavenger receptors suppressed this uptake. These results suggest that the brain rids itself of fDNA from dying neurons through microglial uptake, activation, and overexpression of IL-1. Such overexpression of IL-1 in Alzheimer brain has been linked to Alzheimer pathogenesis.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Animals
- Animals, Newborn
- Antibodies/pharmacology
- Antineoplastic Agents/pharmacology
- Biological Transport
- Blotting, Northern
- Brain/cytology
- Brain/physiopathology
- Case-Control Studies
- Cells, Cultured
- Cerebral Cortex/cytology
- DNA/metabolism
- Flow Cytometry/methods
- Humans
- In Situ Nick-End Labeling/methods
- Interferon-gamma/pharmacology
- Membrane Proteins
- Mice
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/metabolism
- Phagocytes/metabolism
- Polysaccharides/pharmacology
- RNA, Messenger
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/metabolism
- Receptors, Lipoprotein
- Receptors, Scavenger
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Scavenger Receptors, Class B
Collapse
Affiliation(s)
- Yuekui Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Dongge Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pathology, Beijing Hospital, Beijing 100730, China
| | - S. Woodward
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Steven W. Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research Education Clinical Center, Department of Veterans Affairs Medical Center, Little Rock, AR 72205, USA
| | - Robert E. Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - W. Sue T. Griffin
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Anatomy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Geriatric Research Education Clinical Center, Department of Veterans Affairs Medical Center, Little Rock, AR 72205, USA
- Corresponding author. Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA, (W.S.T. Griffin)
| |
Collapse
|
390
|
Abstract
Inflammation is a key component of host defence responses to peripheral inflammation and injury, but it is now also recognized as a major contributor to diverse, acute and chronic central nervous system (CNS) disorders. Expression of inflammatory mediators including complement, adhesion molecules, cyclooxygenase enzymes and their products and cytokines is increased in experimental and clinical neurodegenerative disease, and intervention studies in experimental animals suggest that several of these factors contribute directly to neuronal injury. Most notably, specific cytokines, such as interleukin-1 (IL-1), have been implicated heavily in acute neurodegeneration, such as stroke and head injury. In spite of their diverse presentation, common inflammatory mechanisms may contribute to many neurodegenerative disorders and in some (e.g. multiple sclerosis) inflammatory modulators are in clinical use. Inflammation may have beneficial as well as detrimental actions in the CNS, particularly in repair and recovery. Nevertheless, several anti-inflammatory targets have been identified as putative treatments for CNS disorders, initially in acute conditions, but which may also be appropriate to chronic neurodegenerative conditions.
Collapse
Affiliation(s)
- Stuart M Allan
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
391
|
Abstract
The most visible and, until very recently, the only hypothesis regarding the involvement of microglial cells in Alzheimer's disease (AD) pathogenesis is centered around the notion that activated microglia are neurotoxin-producing immune effector cells actively involved in causing the neurodegeneration that is the cause for AD dementia. The concept of detrimental neuroinflammation has gained a strong foothold in the AD arena and is being expanded to other neurodegenerative diseases. This review takes a comprehensive and critical look at the overall evidence supporting the neuroinflammation hypothesis and points out some weaknesses. The current work also reviews evidence for an alternative theory, the microglial dysfunction hypothesis, which, although eliminating some of the shortcomings, does not necessarily negate the amyloid/neuroinflammation theory. The microglial dysfunction theory offers a different perspective on the identity of activated microglia and their role in AD pathogenesis taking into account the most recent insights gained from studying basic microglial biology.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
392
|
Stein TD, Johnson JA. Genetic programming by the proteolytic fragments of the amyloid precursor protein: somewhere between confusion and clarity. Rev Neurosci 2003; 14:317-41. [PMID: 14640319 DOI: 10.1515/revneuro.2003.14.4.317] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mice engineered to overexpress disease-causing mutant amyloid precursor proteins (APP) display plaque deposition, but lack the hyperphosphorylated tau and massive neuronal loss characteristic of Alzheimer's disease (AD). Global gene expression profiles of brain regions from AD patients show upregulation of proapoptotic and inflammatory genes and down-regulation of neurotrophic, MAPK, phosphatase, and synaptic genes, while a profile of mice overexpressing a mutant APP shows the opposite trends in apoptotic and neurotrophic genes. The proteolytic fragments of the amyloid precursor protein have distinct biological actions. Both the gamma-secretase cleaved COOH-terminal fragment (CTFgamma) and the alpha-secretase cleaved NH2-terminal of APP (sAPPalpha) can regulate gene expression. While Abeta and CTFgamma can lead to toxicity and cell death, sAPPalpha promotes neurite outgrowth, enhances memory, and protects against a variety of insults, including Abeta toxicity. In AD, Abeta levels increase while sAPPalpha levels decrease. These subtleties in the levels of APP cleavage products are not reproduced in mice overexpressing mutant APP. In fact, the gene expression changes driven by sAPPalpha, such as increases in transthyretin and insulin-like growth factor 2, may protect these mice from high levels of Abeta.
Collapse
Affiliation(s)
- Thor D Stein
- Neuroscience Training Program, University of Wisconsin, Madison, WI 53705-2222, USA
| | | |
Collapse
|
393
|
Radesäter AC, Johansson S, Oberg C, Luthman J. The vitamin-E analog trolox and the NMDA antagonist MK-801 protect pyramidal neurons in hippocampal slice cultures from IL-1beta-induced neurodegeneration. Neurotox Res 2003; 5:433-42. [PMID: 14715447 DOI: 10.1007/bf03033173] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurotoxic effect of the pro-inflammatory cytokine interleukin (IL)-1beta was studied in monolayer cultures, obtained using roller-drum incubation of hippocampal slices from neonatal Sprague Dawley rats. Following exposure to recombinant rat IL-1beta for four days, a concentration dependent loss was observed in the number of NMDAR1 receptor subunit immunoreactive pyramidal neurons in the cultures, reaching significance at 10 ng/ml rIL-1beta. Also incubation with recombinant mouse IL-1beta caused a loss of pyramidal neurons, with a significant effect at a concentration of 30 pg/ml. The vitamin E analog trolox (30 microM) was found to exert a protective effect against the rIL-1beta induced neuronal degeneration. A neuroprotective action against rIL-1beta was also found after co-incubation with the NMDA antagonist dizocilpine (MK-801; 30 microM), while no protection was found with the GABAA mimetic clomethiazole. Hence, the pro-inflammatory cytokine IL-1beta is neurotoxic to hippocampal pyramidal neurons when studied in an in vitro system with advanced phenotypic characteristics. The neuroprotective effects exerted by trolox and MK-801 suggest that free radicals and NMDA receptor-mediated processes are involved in IL-1beta -induced neurodegeneration.
Collapse
Affiliation(s)
- Ann-Cathrin Radesäter
- Bioscience, Local Discovery Research Area CNS and Pain Control, AstraZeneca, SE-151 85 Södertälje, Sweden
| | | | | | | |
Collapse
|