4401
|
Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 2002; 277:40265-74. [PMID: 12181319 DOI: 10.1074/jbc.m206324200] [Citation(s) in RCA: 408] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transcriptional coactivator PPARgamma coactivator-1alpha (PGC-1alpha) has been characterized as a broad regulator of cellular energy metabolism. Although PGC-1alpha functions through many transcription factors, the PGC-1alpha partners identified to date are unlikely to account for all of its biologic actions. The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) was identified in a yeast two-hybrid screen of a cardiac cDNA library as a novel PGC-1alpha-binding protein. ERRalpha was implicated previously in regulating the gene encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyzes the initial step in mitochondrial fatty acid oxidation. The cardiac perinatal expression pattern of ERRalpha paralleled that of PGC-1alpha and MCAD. Adenoviral-mediated ERRalpha overexpression in primary neonatal cardiac mycoytes induced endogenous MCAD expression. Furthermore, PGC-1alpha enhanced the transactivation of reporter plasmids containing an estrogen response element or the MCAD gene promoter by ERRalpha and the related isoform ERRgamma. In vitro binding experiments demonstrated that ERRalpha interacts with PGC-1alpha via its activation function-2 homology region. Mutagenesis studies revealed that the LXXLL motif at amino acid position 142-146 of PGC-1alpha (L2), necessary for PGC-1alpha interactions with other nuclear receptors, is not required for the PGC-1alpha.ERRalpha interaction. Rather, ERRalpha binds PGC-1alpha primarily through a Leu-rich motif at amino acids 209-213 (Leu-3) and utilizes additional LXXLL-containing domains as accessory binding sites. Thus, the PGC-1alpha.ERRalpha interaction is distinct from that of other nuclear receptor PGC-1alpha partners, including PPARalpha, hepatocyte nuclear factor-4alpha, and estrogen receptor alpha. These results identify ERRalpha and ERRgamma as novel PGC-1alpha interacting proteins, implicate ERR isoforms in the regulation of mitochondrial energy metabolism, and suggest a potential mechanism whereby PGC-1alpha selectively binds transcription factor partners.
Collapse
Affiliation(s)
- Janice M Huss
- Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
4402
|
Kakuma T, Lee Y, Unger RH. Effects of leptin, troglitazone, and dietary fat on stearoyl CoA desaturase. Biochem Biophys Res Commun 2002; 297:1259-63. [PMID: 12372423 DOI: 10.1016/s0006-291x(02)02375-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leptin, troglitazone, and high fat feeding profoundly influence the lipid content of various tissues. To determine if they affect the expression of stearoyl CoA desaturase (SCD)-1 and -2, their mRNA was measured in livers of normal, hyperleptinemic, troglitazone-treated, and fat-fed rats. Hyperleptinemia, which reduces tissue TG by downregulating lipogenic enzymes and upregulating fatty acid oxidation, lowered SCD-1 96% below controls and reduced SCD-2 slightly. By contrast, hepatic SCD-1 mRNA of leptin-resistant fa/fa rats was five times wild-type controls, but SCD-2 mRNA was 66% lower. High fat feeding lowered SCD-1 by 80%, possibly by inducing hyperleptinemia. Troglitazone treatment, which reduces nonadipose tissue TG of fa/fa rats without downregulating lipogenic enzymes, raised SCD-2 13-fold but lowered SCD-1 by 25%. The findings suggest that leptin controls SCD-1 expression and that troglitazone's antilipotoxic action may involve SCD-2 upregulation.
Collapse
Affiliation(s)
- Tetsuya Kakuma
- Department of Internal Medicine, Gifford Laboratories, Touchstone Center for Diabetes Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-8854, USA
| | | | | |
Collapse
|
4403
|
Culbert AA, Tavaré JM. Multiple signalling pathways mediate insulin-stimulated gene expression in 3T3-L1 adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:43-50. [PMID: 12393186 DOI: 10.1016/s0167-4781(02)00481-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In differentiated 3T3-L1 adipocytes, insulin stimulated the expression of the mRNA for the genes encoding Fra-1 (>100-fold), which is a component of the AP-1 transcriptional complex, beta-actin (6.0-fold) and hexokinase II (2.4-fold). We have examined the signalling pathways involved in these effects of insulin. Rapamycin, which binds to FRAP/mTOR and completely suppressed the activation of p70S6 kinase by insulin, almost completely blocked the induction of the hexokinase II gene, and caused an approximately 50% inhibition of the induction of the Fra-1 gene. PD98059, which completely blocks MAP kinase activation by insulin, inhibited insulin-induced Fra-1 and beta-actin gene expression by approximately 70% and 40%, respectively. These findings suggest that a FRAP/mTOR-dependent pathway is responsible for the induction of hexokinase II expression, and that MAP kinase is required, at least in part, for the stimulation of beta-actin gene expression. However, the induction of Fra-1 gene expression by insulin requires both the FRAP/mTOR and MAP kinase pathways.
Collapse
Affiliation(s)
- Ainsley A Culbert
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
4404
|
Louet JF, Hayhurst G, Gonzalez FJ, Girard J, Decaux JF. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J Biol Chem 2002; 277:37991-8000. [PMID: 12107181 DOI: 10.1074/jbc.m205087200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver carnitine palmitoyltransferase I catalyzes the transfer of long-chain fatty acids into mitochondria. L-CPT I is considered the rate-controlling enzyme in fatty acid oxidation. Expression of the L-CPT I gene is induced by starvation in response to glucagon secretion from the pancreas, an effect mediated by cAMP. Here, the molecular mechanisms underlying the induction of L-CPT I gene expression by cAMP were characterized. We demonstrate that the cAMP response unit of the L-CPT I gene is composed of a cAMP-response element motif and a DR1 sequence located 3 kb upstream of the transcription start site. Our data strongly suggest that the coactivator PGC-1 is involved in the regulation of this gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). Indeed, (i) cotransfection of CREB or HNF4 alpha dominant negative mutants completely abolishes the effect of cAMP on the L-CPT I promoter, and (ii) the cAMP-responsive unit binds HNF4 alpha and CREB through the DR1 and the cAMP-response element sequences, respectively. Moreover, cotransfection of PGC-1 strongly activates the L-CPT I promoter through HNF4 alpha bound at the DR1 element. Finally, we show that the transcriptional induction of the PGC-1 gene by glucagon through cAMP in hepatocytes precedes that of L-CPT-1. In addition to the key role that PGC-1 plays in glucose homeostasis, it may also be critical for lipid homeostasis. Taken together these observations suggest that PGC-1 acts to coordinate the process of metabolic adaptation in the liver.
Collapse
Affiliation(s)
- Jean-François Louet
- Institut Cochin, Département d'Endocrinologie, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | |
Collapse
|
4405
|
Quinn PG. Mechanisms of basal and kinase-inducible transcription activation by CREB. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:269-305. [PMID: 12206454 DOI: 10.1016/s0079-6603(02)72072-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The cAMP response element (CRE)-binding protein (CREB) stimulates basal transcription of CRE-containing genes and mediates induction of transcription upon phosphorylation by protein kinases. The basal activity of CREB maps to a carboxy-terminal constitutive activation domain (CAD), whereas phosphorylation and inducibility map to a central, kinase-inducible domain (KID). The CAD interacts with and recruits the promoter recognition factor TFIID through an interaction with a specific TATA-binding-protein-associated factor (TAF), dTAFII110/ hTAFII135. Interaction between the TAF and the CAD is mediated by a central cluster of hydrophobic amino acids, mutation of which disrupts TAF binding, polymerase recruitment, and transcription activation. Assessment of the contributions of the CAD and KID to recruitment of the polymerase complex versus enhancement of subsequent reaction steps (isomerization, promoter clearance, and reinitiation) showed that the CAD and P-KID act in a concerted mechanism to stimulate transcription. The CAD, but not the KID, mediated recruitment of a complex containing components of a transcription initiation complex, including pol II, IIB, and IID. However, the CAD was relatively ineffective in stimulating subsequent steps in the reaction mechanism. In contrast, phosphorylation of the KID in CREB effectively stimulated isomerization of the recruited polymerase complex and multiple-round transcription. A model for the activation of transcription by phosphorylated CREB is proposed, in which the polymerase is recruited by interaction of the CAD with TFIID and the recruited polymerase is activated further by phosphorylation of the KID in CREB.
Collapse
Affiliation(s)
- Patrick G Quinn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
4406
|
Härndahl L, Jing XJ, Ivarsson R, Degerman E, Ahrén B, Manganiello VC, Renström E, Holst LS. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem 2002; 277:37446-55. [PMID: 12169692 DOI: 10.1074/jbc.m205401200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic beta-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on beta-cell PDE3 is, however, scarce. To provide such information, we have studied the specific effects of the PDE3B isoform by adenovirus-mediated overexpression. In rat islets and rat insulinoma cells, approximate 10-fold overexpression of PDE3B was accompanied by a 6-8-fold increase in membrane-associated PDE3B activity. The cAMP concentration was significantly lowered in transduced cells (INS-1(832/13)), and insulin secretion in response to stimulation with high glucose (11.1 mm) was reduced by 40% (islets) and 50% (INS-1). Further, the ability of GLP-1 (100 nm) to augment glucose-stimulated insulin secretion was inhibited by approximately 30% (islets) and 70% (INS-1). Accordingly, when stimulating with cAMP, a substantial decrease (65%) in exocytotic capacity was demonstrated in patch-clamped single beta-cells. In untransduced insulinoma cells, application of the PDE3-selective inhibitor OPC3911 (10 microm) was shown to increase glucose-stimulated insulin release as well as cAMP-enhanced exocytosis. The findings suggest a significant role of PDE3B as an important regulator of insulin secretory processes.
Collapse
Affiliation(s)
- Linda Härndahl
- Department of Cell and Molecular Biology, Biomedical Centre, C11, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
4407
|
Ehses JA, Pelech SL, Pederson RA, McIntosh CHS. Glucose-dependent insulinotropic polypeptide activates the Raf-Mek1/2-ERK1/2 module via a cyclic AMP/cAMP-dependent protein kinase/Rap1-mediated pathway. J Biol Chem 2002; 277:37088-97. [PMID: 12138104 DOI: 10.1074/jbc.m205055200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gastrointestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is one of the most important regulators of insulin secretion following ingestion of a meal. GIP stimulates insulin secretion from the pancreatic beta-cell via its G protein-coupled receptor activation of adenylyl cyclase and other signal transduction pathways, but there is little known regarding subsequent protein kinase pathways that are activated. A screening technique was used to determine the relative abundance of 75 protein kinases in CHO-K1 cells expressing the GIP receptor and in two pancreatic beta-cell lines (betaTC-3 and INS-1 (832/13) cells). This information was used to identify kinases that are potentially regulated following GIP stimulation, with a focus on GIP regulation of the ERK1/2 MAPK pathway. In CHO-K1 cells, GIP induced phosphorylation of Raf-1 (Ser-259), Mek1/2 (Ser-217/Ser-221), ERK1/2 (Thr-202 and Tyr-204), and p90 RSK (Ser-380) in a concentration-dependent manner. Activation of ERK1/2 was maximal at 4 min and was cAMP-dependent protein kinase-dependent and protein kinase C-independent. Studies using a beta-cell line (INS-1 clone 832/13) corroborated these findings, and it was also demonstrated that the ERK1/2 module could be activated by GIP in the absence of glucose. Finally, we have shown that GIP regulation of the ERK1/2 module is via Rap1 but does not involve Gbetagamma subunits nor Src tyrosine kinase, and we propose that cAMP-based regulation occurs via B-Raf in both CHO-K1 and beta-cells. These results establish the importance of GIP in the cellular regulation of the ERK1/2 module and identify a role for cAMP in coupling its G protein-coupled receptors to ERK1/2 activity in pancreatic beta-cells.
Collapse
Affiliation(s)
- Jan A Ehses
- Department of Physiology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
4408
|
Calsbeek DJ, Thompson TL, Dahl JA, Stob NR, Brozinick JT, Hill JO, Hickey MS. Metabolic and anthropometric factors related to skeletal muscle UCP3 gene expression in healthy human adults. Am J Physiol Endocrinol Metab 2002; 283:E631-7. [PMID: 12217879 DOI: 10.1152/ajpendo.00449.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This cross-sectional investigation sought to determine the relationship between selected metabolic, endocrine, and anthropometric factors and skeletal muscle UCP3 mRNA in healthy adult humans. Twenty-four healthy adults (13 male and 11 female) across a range of aerobic capacity, age, and body composition were studied. Muscle biopsies were obtained from the vastus lateralis, from which UCP3 mRNA was quantified by Northern blot, and fiber type was determined by use of the myosin ATPase staining procedure. In addition, resting energy expenditure and maximum rate of oxygen consumption were determined by indirect calorimetry, body composition was determined by dual-energy X-ray absorptiometry, and fasting plasma leptin and insulin were determined by ELISA. UCP3 mRNA was correlated positively with the percent type I fibers (r = 0.842, P < 0.001), plasma leptin (r = 0.454, P = 0.026), and plasma insulin (r = 0.615, P < 0.001) and inversely to age (r = -0.411, P = 0.046). Stepwise multiple regression analysis determined that percent type I muscle fibers was the best predictor of vastus lateralis UCP3 mRNA, and no other variable entered the equation (model r(2) = 0.66). This study suggests that of the variables measured, UCP3 mRNA is primarily related to skeletal muscle fiber type in healthy adults. The factors that contribute to fiber-specific differences in UCP3 mRNA expression will need to be examined in future studies.
Collapse
Affiliation(s)
- D J Calsbeek
- Department of Physiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
4409
|
Sahu A. Resistance to the satiety action of leptin following chronic central leptin infusion is associated with the development of leptin resistance in neuropeptide Y neurones. J Neuroendocrinol 2002; 14:796-804. [PMID: 12372004 DOI: 10.1046/j.1365-2826.2002.00840.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Leptin regulates food intake and body weight by acting primarily in the hypothalamus. In humans and rodents, obesity is associated with hyperleptinaemia, suggesting a possible state of leptin resistance. Thus, to begin to examine the mechanisms of leptin resistance, we developed a rat model in which chronic central leptin infusion results in the development of resistance to leptin's satiety action. Adult male rats were infused chronically into the lateral cerebroventricle with leptin (160 ng/h) or phosphate-buffered saline via Alzet pumps for 28 days, followed by artificial cerebrospinal fluid infusion for 3 weeks. After the initial decrease in food intake, rats developed resistance to the satiety action of leptin, and withdrawal of the chronic leptin infusion resulted in hyperphagia. During leptin infusion, body weight was gradually decreased to reach a nadir on day 12, and thereafter, body weight was sustained at a reduced level throughout the entire 28-day infusion, despite normalization in food intake. Body weight was mostly normalized by day 22 postleptin. Since neuropeptide Y (NPY) neurones are one of the targets of leptin signalling in the hypothalamus, we next examined whether the development of resistance to the satiety action of leptin was due to altered NPY gene expression. On day 3-4 of infusion, hypothalamic NPY mRNA levels, as determined by RNAse protection assay (RPA), were significantly decreased in leptin treated rats compared to controls. By contrast, on day 16 of infusion, NPY mRNA levels in the leptin treated group had returned to control levels. In situ hybridization study confirmed the results obtained with RPA and showed further that the effect of chronic leptin infusion on NPY mRNA levels was restricted to the rostral and middle parts of the arcuate nucleus. Overall, the finding that the action of continuous leptin exposure on NPY neurones was not sustained suggests that NPY neurones may be involved in the development of leptin resistance to the satiety action of leptin in the hypothalamus.
Collapse
Affiliation(s)
- A Sahu
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
4410
|
Anand P, Boylan JM, Ou Y, Gruppuso PA. Insulin signaling during perinatal liver development in the rat. Am J Physiol Endocrinol Metab 2002; 283:E844-52. [PMID: 12217903 DOI: 10.1152/ajpendo.00111.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin has long been assigned a key role in the regulation of growth and metabolism during fetal life. Our prior observations indicated that hepatic insulin signaling is attenuated in the late-gestation fetal rat. Therefore, we studied the perinatal ontogeny of hepatic insulin signaling extending from phosphatidylinositol 3-kinase (PI3K) to the ribosome. Initial studies demonstrated markedly decreased insulin-mediated activation of ribosomal protein S6 kinase 1 (S6K1) in the fetus. We found a similar pattern in the regulation of Akt, a kinase upstream from S6K1. Insulin produced minimal activation of insulin receptor substrate (IRS)-1-associated PI3K activity in fetal liver. A modest IRS-2-associated response was seen in the fetus. However, levels of both IRS-1 and IRS-2 were very low in fetal liver relative to adult liver. IRS-1 content and insulin responsiveness of PI3K, Akt, and S6K1 showed a transition to the adult phenotype during the first several postnatal weeks. Examination of downstream insulin signaling to the translational apparatus showed marked attenuation, relative to the adult, of fetal hepatic insulin-mediated phosphorylation of 4E-BP1, the regulatory protein for the eukaryotic initiation factor eIF4E, and ribosomal protein S6. The mammalian target of rapamycin (mTOR), a key integrator of nutritional and metabolic regulation of translation, was present in low amounts, was hypophosphorylated, and was not insulin sensitive in the fetus. Our results indicate that protein synthesis during late-gestation liver development may be mTOR and insulin independent. Reexamination of the role of insulin in fetal liver physiology may be warranted.
Collapse
Affiliation(s)
- Padmanabhan Anand
- Department of Pediatrics, Rhode Island Hospital and Brown University, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
4411
|
Ge H, Huang L, Pourbahrami T, Li C. Generation of soluble leptin receptor by ectodomain shedding of membrane-spanning receptors in vitro and in vivo. J Biol Chem 2002; 277:45898-903. [PMID: 12270921 DOI: 10.1074/jbc.m205825200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Leptin is an adipocyte-derived hormone with potent effects on food intake and body weight. Genetically obese rodents with mutations of leptin or leptin receptor develop morbid obesity and diabetes. The receptor for leptin, OB-R, is alternatively spliced to at least five transcripts, encoding receptors designated OB-Ra, -b, -c, -d, and -e. OB-Re does not encode a transmembrane domain and is secreted. In humans, transcripts corresponding to OB-Re have not been discovered. However, soluble leptin receptor does circulate in human plasma and represents the major leptin-binding activity. In this report, we attempted to determine whether the soluble leptin receptor may also be derived from membrane-spanning receptor isoforms by ectodomain shedding. Using stable cell lines expressing both OB-Ra, the most abundant leptin receptor isoform, and OB-Rb, the signaling form of the leptin receptor, we demonstrate that soluble leptin receptor protein can indeed be generated by proteolytic cleavage of these two receptor isoforms in vitro. Experiments using adenoviruses expressing dually tagged OB-Ra or Ob-Rb also demonstrate that soluble leptin receptor may be derived from ectodomain shedding of both receptor isoforms in vivo. Because our earlier and other studies have shown that the soluble receptors modulate the levels as well as activity of leptin, our findings suggest that regulated shedding of the ectodomain of membrane-spanning leptin receptors may represent a novel mechanism of modulating leptin's biological activity.
Collapse
Affiliation(s)
- Hongfei Ge
- Touchstone Center for Diabetes Research, Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA
| | | | | | | |
Collapse
|
4412
|
Lee Y, Yu X, Gonzales F, Mangelsdorf DJ, Wang MY, Richardson C, Witters LA, Unger RH. PPAR alpha is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue. Proc Natl Acad Sci U S A 2002; 99:11848-53. [PMID: 12195019 PMCID: PMC129357 DOI: 10.1073/pnas.182420899] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2002] [Indexed: 01/30/2023] Open
Abstract
Adenovirus-induced hyperleptinemia causes rapid disappearance of body fat in normal rats, presumably by up-regulating fatty acid oxidation within white adipocytes. To determine the role of peroxisomal proliferation-activated receptor (PPAR)alpha expression, which was increased during the rapid loss of fat, we infused adenovirus-leptin into PPAR alpha(-/-) and PPAR alpha(+/+) mice. Despite similar degrees of hyperleptinemia and reduction in food intake, epididymal fat pad weight declined 55% in wild-type but only 6% in PPAR alpha(-/-) mice; liver triacylglycerol fell 39% in the wild-type group but was unchanged in PPAR(-/-) mice. Carnitine palmitoyl transferase-1 mRNA rose 52% in the wild-type mice but did not increase in PPAR alpha(-/-) mice. PPAR gamma coactivator-1 alpha rose 3-fold in the fat and 46% in the liver of wild-type mice but was unchanged in PPAR alpha(-/-) mice. Although AMP-activated protein kinase could not be implicated in the lipopenic actions of hyperleptinemia, acetyl CoA carboxylase protein was reduced in the liver of wild-type but not in PPAR alpha(-/-) mice. Thus, in PPAR alpha(-/-) mice, up-regulation of carnitine palmitoyl transferase-1 mRNA in fat, down-regulation of acetyl CoA carboxylase in liver, and up-regulation of PPAR gamma coactivator-1 alpha mRNA in both tissues are abolished, as is the reduction in their triacylglycerol content.
Collapse
Affiliation(s)
- Y Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
4413
|
Abstract
Although adipose tissue has long been considered to be metabolically passive and primarily responsible for energy storage, recent scientific advances have dramatically altered our understanding of the function of this ubiquitous tissue. The fat cell is a transducer of energy supply for the changing metabolic needs of the body, modulating glucose homeostasis, hypothalamic function, sympathetic output, vascular tone, immune response, and reproduction. Through endocrine/autocrine and paracrine actions, adipocyte-derived molecules defend the body during periods of energy deficit and stress. With the development of obesity, maladaptive responses to adipose excess result in pathologic states of inflammation, coagulopathy, and altered insulin sensitivity.
Collapse
Affiliation(s)
- Frank B Diamond
- Department of Pediatrics, University of South Florida, College of Medicine, Tampa 33612, USA
| | | |
Collapse
|
4414
|
Wisely GB, Miller AB, Davis RG, Thornquest AD, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Miller AB, Willson TM, Williams SP. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 2002; 10:1225-34. [PMID: 12220494 DOI: 10.1016/s0969-2126(02)00829-8] [Citation(s) in RCA: 241] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2.7 A X-ray crystal structure of the HNF4gamma ligand binding domain (LBD) revealed the presence of a fatty acid within the pocket, with the AF2 helix in a conformation characteristic of a transcriptionally active nuclear receptor. GC/MS and NMR analysis of chloroform/methanol extracts from purified HNF4alpha and HNF4gamma LBDs identified mixtures of saturated and cis-monounsaturated C14-18 fatty acids. The purified HNF4 LBDs interacted with nuclear receptor coactivators, and both HNF4 subtypes show high constitutive activity in transient transfection assays, which was reduced by mutations designed to interfere with fatty acid binding. The endogenous fatty acids did not readily exchange with radiolabeled palmitic acid, and all attempts to displace them without denaturing the protein failed. Our results suggest that the HNF4s may be transcription factors that are constitutively bound to fatty acids.
Collapse
Affiliation(s)
- G Bruce Wisely
- GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4415
|
Abstract
Recently, leptin has emerged as a potential candidate responsible for protective effects of fat on bone tissue. However, it remains difficult to draw a clear picture of leptin effects on bone metabolism because published data are sometimes conflicting or apparently contradictory. Beyond differences in models or experimental procedures, it is tempting to hypothesize that leptin exerts dual effects depending on bone tissue, skeletal maturity, and/or signaling pathway. Early in life, leptin could stimulate bone growth and bone size through direct angiogenic and osteogenic effects on stromal precursor cells. Later, it may decrease bone remodeling in the mature skeleton, when trabecular bone turnover is high, by stimulating osteoprotegerin (OPG) expression. Leptin negative effects on bone formation effected through central nervous system pathway could counterbalance these peripheral and positive effects, the latter being predominant when the blood-brain barrier permeability decreases or the serum leptin level rises above a certain threshold. Thus, the sex-dependent specificity of the relationship between leptin and bone mineral density (BMD) in human studies could be, at least in part, caused by serum leptin levels that are two- to threefold higher in women than in men, independent of adiposity. Although these hypotheses remain highly speculative and require further investigations, existing studies consistently support the role of leptin as a link between fat and bone.
Collapse
Affiliation(s)
- Thierry Thomas
- INSERM E9901, University Hospital of Saint-Etienne, France
| | | |
Collapse
|
4416
|
Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O, Reitman ML. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes 2002; 51:2727-33. [PMID: 12196465 DOI: 10.2337/diabetes.51.9.2727] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Severe adipose tissue deficiency (lipoatrophy) causes insulin-resistant diabetes, elevated serum triglyceride and fatty acid levels, and massive triglyceride deposition in the liver. In lipoatrophic A-ZIP/F-1 mice, transplantation of normal adipose tissue greatly improved these parameters, whereas 1 week of leptin infusion had more modest effects. In contrast, leptin infusion was strikingly more effective in the aP2-n sterol response element binding protein 1 lipoatrophic mouse. Here we show that a longer duration of leptin infusion further improves the metabolic status of the A-ZIP/F-1 mice and that genetic background does not make a major contribution to the effect of leptin on glucose and insulin levels. Adipose transplantation using leptin-deficient ob/ob fat had no effect on the phenotype of the A-ZIP/F-1 mice. Moreover, the presence of ob/ob adipose tissue did not enhance the effects of leptin infusion. Serum adiponectin levels were 2% of control levels in the A-ZIP/F-1 mouse and increased only twofold with adipose transplantation and not at all after leptin infusion, suggesting that adiponectin deficiency is not a major contributor to the diabetic phenotype. Taken together, these results suggest that sequestration of triglycerides into fat may not be enough to restore a nondiabetic phenotype and that leptin deficiency plays a major role in causing the metabolic complications of lipoatrophy.
Collapse
Affiliation(s)
- Carlo Colombo
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
4417
|
Perseghin G, Scifo P, Danna M, Battezzati A, Benedini S, Meneghini E, Del Maschio A, Luzi L. Normal insulin sensitivity and IMCL content in overweight humans are associated with higher fasting lipid oxidation. Am J Physiol Endocrinol Metab 2002; 283:E556-64. [PMID: 12169449 DOI: 10.1152/ajpendo.00127.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intramyocellular lipid (IMCL) storage is considered a local marker of whole body insulin resistance; because increments of body weight are supposed to impair insulin sensitivity, this study was designed to assess IMCL content, lipid oxidation, and insulin action in individuals with a moderate increment of body fat mass and no family history of diabetes. We studied 14 young, nonobese women with body fat <30% (n = 7) or >30% (n = 7) and 14 young, nonobese men with body fat <25% (n = 7) or >25% (n = 7) by means of the euglycemic-insulin clamp to assess whole body glucose metabolism, with indirect calorimetry to assess lipid oxidation, by localized (1)H NMR spectroscopy of the calf muscles to assess IMCL content, and with dual-energy X-ray absorptiometry to assess body composition. Subjects with higher body fat had normal insulin-stimulated glucose disposal (P = 0.80), IMCL content in both soleus (P = 0.22) and tibialis anterior (P = 0.75) muscles, and plasma free fatty acid levels (P = 0.075) compared with leaner subjects in association with increased lipid oxidation (P < 0.05), resting energy expenditure (P = 0.046), resting oxygen consumption (P = 0.049), and plasma leptin levels (P < 0.01) in the postabsorptive condition. In conclusion, in overweight subjects, preservation of insulin sensitivity was combined with increased lipid oxidation and maintenance of normal IMCL content, suggesting that abnormalities of these factors may mutually determine the development of insulin resistance associated with weight gain.
Collapse
Affiliation(s)
- Gianluca Perseghin
- Division of Nutrition/Metabolism, Università Vita e Salute San Raffaele, Istituto Scientifico H San Raffaele, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
4418
|
Atkinson LL, Fischer MA, Lopaschuk GD. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J Biol Chem 2002; 277:29424-30. [PMID: 12058043 DOI: 10.1074/jbc.m203813200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Leptin regulates fatty acid metabolism in liver, skeletal muscle, and pancreas by partitioning fatty acids into oxidation rather than triacylglycerol (TG) storage. Although leptin receptors are present in the heart, it is not known whether leptin also regulates cardiac fatty acid metabolism. To determine whether leptin directly regulates cardiac fatty acid metabolism, isolated working rat hearts were perfused with 0.8 mm [9,10-(3)H]palmitate and 5 mm [1-(14)C]glucose to measure palmitate and glucose oxidation rates. Leptin (60 ng/ml) significantly increased palmitate oxidation rates 60% above control hearts (p < 0.05) and decreased TG content by 33% (p < 0.05) over the 60-min perfusion period. In contrast, there was no difference in glucose oxidation rates between leptin-treated and control hearts. Although leptin did not affect cardiac work, oxygen consumption increased by 30% (p < 0.05) and cardiac efficiency was decreased by 42% (p < 0.05). AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels. Leptin has also been shown to increase fatty acid oxidation in skeletal muscle through the activation of AMPK. However, we demonstrate that leptin had no significant effect on AMPK activity, AMPK phosphorylation state, ACC activity, or malonyl-CoA levels. AMPK activity and its phosphorylation state were also unaffected after 5 and 10 min of perfusion in the presence of leptin. The addition of insulin (100 microunits/ml) to the perfusate reduced the ability of leptin to increase fatty acid oxidation and decrease cardiac TG content. These data demonstrate for the first time that leptin activates fatty acid oxidation and decreases TG content in the heart. We also show that the effects of leptin in the heart are independent of changes in the AMPK-ACC-malonyl-CoA axis.
Collapse
Affiliation(s)
- Laura L Atkinson
- Cardiovascular Research Group, Muttart Diabetes Research and Training Center, Department of Pediatrics, Faculty of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
4419
|
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002; 418:797-801. [PMID: 12181572 DOI: 10.1038/nature00904] [Citation(s) in RCA: 2000] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.
Collapse
Affiliation(s)
- Jiandie Lin
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4420
|
Aarnes M, Schønberg S, Grill V. Fatty acids potentiate interleukin-1beta toxicity in the beta-cell line INS-1E. Biochem Biophys Res Commun 2002; 296:189-93. [PMID: 12147249 DOI: 10.1016/s0006-291x(02)00819-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED Evidence for "lipotoxicity," i.e., negative effects of fatty acids (FA) on pancreatic beta-cells is incomplete. Here, we tested whether non-toxic concentrations of FA potentiate toxic effects of interleukin-1beta (IL-1beta). Culture of INS-1E clonal beta-cells for 2-6 days with 70 microM docosahexaenoic acid (DHA), eicosapentaenoic acid, arachidonic acid, 0.1mM linoleic acid, or 0.1-0.2mM oleic acid exerted no or minor negative effects on cell viability (MTT assay). Viability was reduced by 0.5 ng/ml IL-1beta. All tested FA significantly aggravated this effect after 6 days of culture. IL-1beta also exerted negative effects on cellular insulin content and DHA and oleic acid aggravated these effects. L-NAME, an inhibitor of constitutive nitric oxide (NO) synthase, reduced the negative effects of IL-1beta per se but did not abolish the potentiating effects of FA. CONCLUSION FA potentiate toxic effects of IL-1beta on beta-cells by mechanisms that include NO-independent ones.
Collapse
Affiliation(s)
- M Aarnes
- Department of Cancer Research and Molecular Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
4421
|
Méndez-Sánchez N, González V, King-Martínez AC, Sánchez H, Uribe M. Plasma leptin and the cholesterol saturation of bile are correlated in obese women after weight loss. J Nutr 2002; 132:2195-2198. [PMID: 12163661 DOI: 10.1093/jn/132.8.2195] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Increased cholesterol secretion is a major alteration of biliary function in obese subjects Leptin is a regulator of food intake and is increased in plasma of subjects with low energy expenditure and high adiposity. We investigated the relationship between leptin and the cholesterol saturation of bile in obese women before and after weight reduction by energy restriction (5.02 MJ/d). We studied women (n = 14) with a body mass index (BMI) > or = 30 kg/m(2) who were 35.4 +/- 2.3 y old and who did not have a history of gallstones. They were studied by ultrasound to ensure absence of stones or sludge. BMI, gallbladder bile composition, plasma leptin, serum lipids and lipoproteins cholesterol levels were recorded at baseline and after 6 wk of weight reduction. There were decreases in BMI (33.9 +/- 3.1 to 31.1 +/- 3.6 kg/m(2), P < 0.0001) and leptin levels (16.7 +/- 9.7 to 10.0 +/- 6.7 micro mol/L, P < 0.05) during weight loss. After the experimental period, there were positive correlations between plasma leptin levels and BMI (r = 0.71, P < 0.004); leptin levels and the cholesterol saturation index (CSI) (r = 0.53, P < 0.05); the CSI and LDL cholesterol (r = 0.73, P < 0.003); and negative correlations between leptin levels and HDL cholesterol (r = -0.54, P < 0.05) and LDL cholesterol (r = -0.57, P < 0.03). We have shown relationships among HDL cholesterol, CSI and leptin. This could be useful in understanding the pathophysiology of cholesterol gallstone formation in obese people.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Department of Biomedical Research, Medica Sur Clinic & Foundation, Mexico City, Mexico.
| | | | | | | | | |
Collapse
|
4422
|
Kohl C, Ravel D, Girard J, Pégorier JP. Effects of benfluorex on fatty acid and glucose metabolism in isolated rat hepatocytes: from metabolic fluxes to gene expression. Diabetes 2002; 51:2363-8. [PMID: 12145146 DOI: 10.2337/diabetes.51.8.2363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of benfluorex and two of its metabolites (S 422-1 and S 1475-1) on fatty acid and glucose metabolic fluxes and specific gene expression were studied in hepatocytes isolated from 24-h fasted rats. Both benfluorex and S 422-1 (0.1 or 1 mmol/l) reduced beta-oxidation rates and ketogenesis, whereas S 1475-1 had no effect. At the same concentration, benfluorex and S 422-1 were more efficient in reducing gluconeogenesis from lactate/pyruvate than S 1475-1. Benfluorex inhibited gluconeogenesis at the level of pyruvate carboxylase (45% fall in acetyl-CoA concentration) and of glyceraldehyde-3-phosphate dehydrogenase (decrease in ATP/ADP and NAD(+)/NADH ratios). Accordingly, neither benfluorex nor S 422-1 inhibited gluconeogenesis from dihydroxyacetone, but both stimulated gluconeogenesis from glycerol. In hepatocytes cultured in the presence of benfluorex or S 422-1 (10 or 100 micromol/l), the expression of genes encoding enzymes of fatty acid oxidation (carnitine palmitoyltransferase [CPT] I), ketogenesis (hydroxymethylglutaryl-CoA synthase), and gluconeogenesis (glucose-6-phosphatase, PEPCK) was decreased, whereas mRNAs encoding glucokinase and pyruvate kinase were increased. By contrast, Glut-2, acyl-CoA synthetase, and CPT II gene expression was not affected by benfluorex or S 422-1. In conclusion, this work suggests that benfluorex mainly via S 422-1 reduces gluconeogenesis by affecting gene expression and metabolic status of hepatocytes.
Collapse
Affiliation(s)
- Claude Kohl
- Endocrinologie et Métabolisme, Institut Cochin, INSERM U567, Paris, France
| | | | | | | |
Collapse
|
4423
|
Scarpace PJ, Matheny M, Zhang Y, Shek EW, Prima V, Zolotukhin S, Tümer N. Leptin-induced leptin resistance reveals separate roles for the anorexic and thermogenic responses in weight maintenance. Endocrinology 2002; 143:3026-35. [PMID: 12130569 DOI: 10.1210/endo.143.8.8966] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of this study was to determine whether leptin induces leptin resistance by examining the temporal attenuation of the anorexic and energy expenditure responses to leptin. We administered recombinant adeno-associated virus encoding rat leptin cDNA or control viral vector into mildly obese rats for 138 d and compared these results with those from pair-fed rats. We measured food consumption, body weight, oxygen consumption, leptin signal transduction, and brown adipose tissue uncoupling protein 1. The anorexic response attenuated by d 25, whereas the increase in energy expenditure persisted for 83 d before attenuating. Despite attenuation of physiological responses, phosphorylated signal transducer and activator of transcription-3 remained elevated for the duration of the study. The temporal differential attenuation of the anorexic and thermogenic responses allowed us to determine the relative contributions of each response to weight maintenance. The anorexic response predominantly mediated the initial loss of body weight, but only the energy expenditure response was necessary to maintain the reduced weight. This study provides evidence that leptin induces leptin resistance. The leptin resistance was associated with persistent elevation in hypothalamic phosphorylated signal transducer and activator of transcription-3 and was characterized by a rapid attenuation of the anorexic response and slower onset for the attenuation of the energy expenditure response. We propose that both elevated leptin and obesity may be necessary for the development of leptin resistance.
Collapse
Affiliation(s)
- Philip J Scarpace
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Gainesville, FL 32608-1197, USA.
| | | | | | | | | | | | | |
Collapse
|
4424
|
Beretta E, Dube MG, Kalra PS, Kalra SP. Long-term suppression of weight gain, adiposity, and serum insulin by central leptin gene therapy in prepubertal rats: effects on serum ghrelin and appetite-regulating genes. Pediatr Res 2002; 52:189-98. [PMID: 12149495 DOI: 10.1203/00006450-200208000-00010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracerebroventricular administration of recombinant adeno-associated virus (rAAV) encoding the rat leptin gene (rAAV-lep) to 24-d-old female and male rats suppressed postpubertal weight gain for extended periods by decreasing food consumption and adiposity, as reflected by lowered serum leptin, insulin, and FFA. Serum ghrelin levels were increased in young but not older rats. Central rAAV-lep therapy also increased energy expenditure through nonshivering thermogenesis in younger rats as shown by expression of uncoupling protein mRNA in brown adipose tissue. The sustained decrease in appetite seemingly resulted from attenuation of appetite-stimulating neuropeptide Y and enhancement of appetite-inhibiting melanocortin signalings in the hypothalamus. Neither the onset of pubertal sexual maturation nor reproductive cyclicity in adult female rats was affected by the sustained reduction in energy consumption and weight gain. These findings demonstrate that central leptin gene therapy in prepubertal rats is a novel therapy to control postpubertal weight gain, adiposity, and hyperinsulinemia for extended periods.
Collapse
Affiliation(s)
- Elena Beretta
- Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville 32610-0244, USA
| | | | | | | |
Collapse
|
4425
|
Bain JR, Hoffman AS. Glycophase glass revisited: protein adsorption and cell growth on glass surfaces bearing immobilized glycerol monosaccharides. Biomaterials 2002; 23:3347-57. [PMID: 12099277 DOI: 10.1016/s0142-9612(02)00035-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gamma-Glycerylpropylsilyl or "glycophase" glass has been promoted as a non-fouling surface, resistant to protein adsorption and cell attachment, on which one can immobilize oligopeptide ligands, and thus create cell-type-specific culture surfaces. The present study confirmed that the glycerol-rich glycophase surface is a useful support for peptide immobilization. But glycophase glass was observed to adsorb more albumin than glass. At pH 7.4, desorption studies revealed that albumin bound more tightly to glycophase glass than to glass. Moreover, the growth rates, morphologies, and functions of transgenic betaG I/17 insulinoma cell cultures were equivalent on the two surfaces. Glycophase glass is neither protein- nor cell-repellant.
Collapse
Affiliation(s)
- James R Bain
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
4426
|
Abstract
Glucocorticoids are the most effective anti-inflammatory agents known. However, the use of these powerful molecules is plagued by a host of serious, sometimes life-threatening side-effects. The search for new compounds that maintain the efficacy of the steroids without some of the side-effects has entered a new phase. New approaches are leading to novel kinds of steroidal and non-steroidal compounds with unique profiles that may represent the next generation of safer glucocorticoids.
Collapse
Affiliation(s)
- Jeffrey N Miner
- Department of Molecular and Cellular Biology, Ligand Pharmaceuticals, 10275 Science Center Drive, San Diego, CA 92121, USA.
| |
Collapse
|
4427
|
Steinberg GR, Parolin ML, Heigenhauser GJF, Dyck DJ. Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 2002; 283:E187-92. [PMID: 12067860 DOI: 10.1152/ajpendo.00542.2001] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The adipocyte-derived hormone leptin has been shown to acutely increase fatty acid (FA) oxidation and decrease esterification in resting rodent skeletal muscle. However, the effects of leptin on human skeletal muscle FA metabolism are completely unknown. In these studies, we have utilized an isolated human skeletal muscle preparation combined with the pulse-chase technique to measure FA metabolism with and without leptin in lean and obese human skeletal muscle. Under basal conditions (in the absence of leptin), muscle from the obese demonstrated significantly elevated levels of total FA uptake (+72%, P = 0.038) and enhanced rates of FA esterification into triacylglycerol (+102%, P = 0.042) compared with lean subjects. In the presence of leptin, lean muscle had elevated rates of endogenous (+103%, P = 0.01) and exogenous (+150%, P = 0.03) palmitate oxidation. When the ratio of esterification to exogenous oxidation was examined, leptin reduced this ratio (-47%, P = 0.032), demonstrating the increased partitioning of FA toward oxidation and away from storage. Contrary to these findings in lean muscle, leptin had no effect on FA metabolism in skeletal muscle of the obese. This study provides the first evidence that leptin increases FA oxidation in skeletal muscle of lean, but not obese humans, thus demonstrating the development of leptin resistance in obese human skeletal muscle.
Collapse
Affiliation(s)
- Gregory R Steinberg
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | |
Collapse
|
4428
|
Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 2002; 51:2207-13. [PMID: 12086951 DOI: 10.2337/diabetes.51.7.2207] [Citation(s) in RCA: 489] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Historically, insulin resistance during pregnancy has been ascribed to increased production of placental hormones and cortisol. The purpose of this study was to test this hypothesis by correlating the longitudinal changes in insulin sensitivity during pregnancy with changes in placental hormones, cortisol, leptin, and tumor necrosis factor (TNF)-alpha. Insulin resistance was assessed in 15 women (5 with gestational diabetes mellitus [GDM] and 10 with normal glucose tolerance) using the euglycemic-hyperinsulinemic clamp procedure, before pregnancy (pregravid) and during early (12-14 weeks) and late (34-36 weeks) gestation. Body composition, plasma TNF-alpha, leptin, cortisol, and reproductive hormones (human chorionic gonadotropin, estradiol, progesterone, human placental lactogen, and prolactin) were measured in conjunction with the clamps. Placental TNF-alpha was measured in vitro using dually perfused human placental cotyledon from five additional subjects. Compared with pregravid, insulin resistance was evident during late pregnancy in all women (12.4 +/- 1.2 vs. 8.1 +/- 0.8 10(-2) mg. kg(-1) fat-free mass. min(-1). microU(-1). ml(-1)). TNF-alpha, leptin, cortisol, all reproductive hormones, and fat mass were increased in late pregnancy (P < 0.001). In vitro, most of the placental TNF-alpha (94%) was released into the maternal circulation; 6% was released to the fetal side. During late pregnancy, TNF-alpha was inversely correlated with insulin sensitivity (r = -0.69, P < 0.006). Furthermore, among all of the hormonal changes measured in this study, the change in TNF-alpha from pregravid to late pregnancy was the only significant predictor of the change in insulin sensitivity (r = -0.60, P < 0.02). The placental reproductive hormones and cortisol did not correlate with insulin sensitivity in late pregnancy. Multivariate stepwise regression analysis revealed that TNF-alpha was the most significant independent predictor of insulin sensitivity (r = -0.67, P < 0.0001), even after adjustment for fat mass by covariance (r = 0.46, P < 0.01). These observations challenge the view that the classical reproductive hormones are the primary mediators of change in insulin sensitivity during gestation and provide the basis for including TNF-alpha in a new paradigm to explain insulin resistance in pregnancy.
Collapse
Affiliation(s)
- John P Kirwan
- Department of Reproductive Biology, Case Western Reserve University School of Medicine at MetroHealth Medical Center, Bell Greve Building Rm. G-232E, 2500 MetroHealth Drive, Cleveland, OH 44109-1998, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4429
|
Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002; 51:2082-9. [PMID: 12086936 DOI: 10.2337/diabetes.51.7.2082] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advanced glycation end products (AGEs), known promoters of diabetic complications, form abundantly in heated foods and are ingested in bioreactive forms. To test whether dietary AGEs play a role in the progression of insulin resistance, C57/BL/KsJ db/db mice were randomly placed for 20 weeks on a diet with either a low AGE content (LAD) or a 3.4-fold higher content of AGE (high AGE diet [HAD]), including (epsilon)N-carboxymethyllysine (CML) and methylglyoxal (MG). LAD-fed mice showed lower fasting plasma insulin levels throughout the study (P = 0.01). Body weight was reduced by approximately 13% compared with HAD-fed mice (P = 0.04) despite equal food intake. LAD-fed mice exhibited significantly improved responses to both glucose (at 40 min, P = 0.003) and insulin (at 60 min, P = 0.007) tolerance tests, which correlated with a twofold higher glucose uptake by adipose tissue (P = 0.02). Compared with the severe hypertrophy and morphological disorganization of islets from HAD-fed mice, LAD-fed mice presented a better-preserved structure of the islets. LAD-fed mice demonstrated significantly increased plasma HDL concentrations (P < 0.0001). Consistent with these observations, LAD-fed mice exhibited twofold lower serum CML and MG concentrations compared with HAD-fed mice (P = 0.02). These results demonstrate that reduced AGE intake leads to lower levels of circulating AGE and to improved insulin sensitivity in db/db mice.
Collapse
Affiliation(s)
- Susanna M Hofmann
- Brookdale Department of Genetics, Division of Experimental Diabetes and Aging, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4430
|
Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD. Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology 2002; 143:2486-90. [PMID: 12072378 DOI: 10.1210/endo.143.7.8898] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of type 2 diabetes in humans and rats. Unsuppressed endogenous hepatic glucose production is a common component of the insulin resistance associated with type 2 diabetes. Peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC-1) mediates hepatic glucose production by controlling mRNA levels of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1,6-bisphosphatase (FBPase). We therefore hypothesized that gene expression of PGC-1 would be increased in juvenile IUGR rat livers, and this increase would directly correlate with hepatic mRNA levels of PEPCK, G-6-Pase, and FBPase, but not glucokinase. We found that IUGR hepatic PGC-1 protein levels were increased to 230 +/- 32% and 310 +/- 47% of control values at d 0 and d 21 of life, respectively. Similarly, IUGR hepatic PGC-1 mRNA levels were significantly elevated at both ages. Concurrent with the increased PGC-1 gene expression, IUGR hepatic mRNA levels of G-6-Pase, PEPCK, and FBPase were also significantly increased, whereas glucokinase mRNA levels were significantly decreased. These data suggest that increased PGC-1 expression and subsequent hepatic glucose production contribute to the insulin resistance observed in the IUGR juvenile rat.
Collapse
Affiliation(s)
- Robert H Lane
- UCLA School of Medicine, Department of Pediatrics, Mattel Children's Hospital at UCLA, 90095-1752, USA.
| | | | | | | | | |
Collapse
|
4431
|
Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:1-14. [PMID: 12031478 DOI: 10.1016/s0167-4781(02)00343-3] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biogenesis of mitochondria requires the expression of a large number of genes, most of which reside in the nuclear genome. The protein-coding capacity of mtDNA is limited to 13 respiratory subunits necessitating that nuclear regulatory factors play an important role in governing nucleo-mitochondrial interactions. Two classes of nuclear transcriptional regulators implicated in mitochondrial biogenesis have emerged in recent years. The first includes DNA-binding transcription factors, typified by nuclear respiratory factor (NRF)-1, NRF-2 and others, that act on known nuclear genes that specify mitochondrial functions. A second, more recently defined class, includes nuclear coactivators typified by PGC-1 and related family members (PRC and PGC-1 beta). These molecules do not bind DNA but rather work through their interactions with DNA-bound transcription factors to regulate gene expression. An important feature of these coactivators is that their expression is responsive to physiological signals mediating thermogenesis, cell proliferation and gluconeogenesis. Thus, they have the ability to integrate the action of multiple transcription factors in orchestrating programs of gene expression essential to cellular energetics. The interplay of these nuclear factors appears to be a major determinant in regulating the biogenesis of mitochondria.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, 303 East Chicago Avenue, Searle 4-458, Chicago, IL 60611, USA.
| |
Collapse
|
4432
|
Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D. Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscle. Biochem Biophys Res Commun 2002; 294:301-8. [PMID: 12051710 DOI: 10.1016/s0006-291x(02)00473-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fasting triggers a complex array of adaptive metabolic and hormonal responses including an augmentation in the capacity for mitochondrial fatty acid (FA) oxidation in skeletal muscle. This study hypothesized that this adaptive response is mediated by increased mRNA of key genes central to the regulation of fat oxidation in human skeletal muscle. Fasting dramatically increased UCP3 gene expression, by 5-fold at 15 h and 10-fold at 40 h. However the expression of key genes responsible for the uptake, transport, oxidation, and re-esterification of FA remained unchanged following 15 and 40 h of fasting. Likewise there was no change in the mRNA abundance of transcription factors. This suggests a unique role for UCP3 in the regulation of FA homeostasis during fasting as adaptation to 40 h of fasting does not require alterations in the expression of other genes necessary for lipid metabolism.
Collapse
Affiliation(s)
- Rebecca J Tunstall
- School of Health Sciences, Deakin University, Burwood, Vic. 3125, Australia
| | | | | | | | | |
Collapse
|
4433
|
Abstract
Following the successful cloning of the orphan nuclear receptors during the 1990s we entered the 21st century with knowledge of the full complement of human nuclear receptors. Many of these proteins are ligand-activated transcription factors that act as the cognate receptors for steroid, retinoid, and thyroid hormones. In addition to these well characterized endocrine hormone receptors, there are a large number of orphan receptors of which less is known about the nature and function of their ligands. The task of deciphering the physiological function of these orphan receptors has been aided by a new generation of genomic technologies. Through application of chemical, structural, and functional genomics, several orphan nuclear receptors have emerged as pharmaceutical drug targets for the treatment of important human diseases. The significant progress that has been made in the functional analysis of more than half of the nuclear receptor gene family provides an opportunity to review the impact of genomics in this endeavor.
Collapse
Affiliation(s)
- Timothy M Willson
- GlaxoSmithKline, Discovery Research, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
4434
|
Ukropec J, Klimes I, Gasperíková D, Demcáková E, Drevon CA, Reseland JE, Seböková E. An increase in peroxisomal fatty acid oxidation is not sufficient to prevent tissue lipid accumulation in hHTg rats. Ann N Y Acad Sci 2002; 967:71-9. [PMID: 12079837 DOI: 10.1111/j.1749-6632.2002.tb04265.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We observed earlier that increased skeletal muscle lipid content in the hereditary hypertriglyceridemic (hHTg) rat is accompanied by a decline in plasma leptin. Leptin has recently been shown to enhance peripheral insulin sensitivity by decreasing the tissue triglyceride accumulation, possibly through regulation of fatty acid oxidation and lipogenesis. Thus, to test the hypothesis that insulin resistance and increased skeletal muscle lipid accumulation in hHTg rats are due to a defect in lipid catabolism, we measured mitochondrial and peroxisomal fatty acid oxidation and malonyl-CoA and acetyl-CoA carboxylase-2 content in skeletal muscles of these animals. In addition, we investigated possible molecular mechanisms responsible for the lower leptin levels in hHTg rats by measuring leptin and leptin-receptor (Ob-Ra) mRNA levels. We found the following: (1) in spite of a higher skeletal muscle malonyl-CoA content and an increased sensitivity of carnitine palmitoyltransferase-1 to malonyl-CoA, carnitine palmitoyltransferase-1 activity in muscle of hHTg rats was normal; (2) increased peroxisomal fatty acid oxidation did not seem to be sufficient to prevent the tissue lipid accumulation in these animals; (3) both lower leptin production by white adipose tissue and increased leptin uptake seem to be responsible for lower circulating leptin levels and therefore lower fatty acid catabolism.
Collapse
Affiliation(s)
- J Ukropec
- Diabetes and Nutrition Research Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
4435
|
Larsen MO, Rolin B, Wilken M, Carr RD, Svendsen O. High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Göttingen minipig: results from a pilot study. Ann N Y Acad Sci 2002; 967:414-23. [PMID: 12079869 DOI: 10.1111/j.1749-6632.2002.tb04297.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-fat diet and obesity are known to be of major importance for development of type 2 diabetes in humans. High-fat feeding can induce syndromes of glucose intolerance and/or insulin resistance in several species, and the Göttingen minipig might be a useful model for studying the effect of dietary high-fat intake and obesity on glucose homeostasis and the susceptibility to diabetes. The present study was designed as a pilot study to investigate the effects of obesity caused by high-fat high-energy feeding on oral and intravenous glucose tolerance. Male Göttingen minipigs were fed a control diet (CD) or a high-fat high-energy diet (HFD) for 3 months. Body weight (32.6 +/- 2.4 kg vs. 24.9 +/- 0.5 kg, p < 0.001) and total (13.2 +/- 3.2% vs. 6.1 +/- 0.5%, p = 0.002) and truncal (11.0 +/- 3.9% vs. 1.8 +/- 1.1%, p = 0.001) fat percent were increased significantly, whereas relative lean body mass was decreased (84.8 +/- 3.3% vs. 91.9 +/- 0.5%, p = 0.002) in the HFD group compared to CD. Fasting plasma glucose (4.3 +/- 0.4 mM vs. 3.6 +/- 0.3 mM, p = 0.023) and insulin (80 +/- 23 pM vs. 23 +/- 21 pM, p = 0.012) were increased in the HFD group compared to CD, but oral glucose tolerance was not significantly changed. Insulin responses to intravenous glucose were increased (6741 +/- 2538 vs. 3938 +/- 771 pM 3 min, p = 0.050), while glucose clearance was not changed by HFD vs. CD, thus indicating insulin resistance. In conclusion, changes in body weight and composition, resulting in minor abnormalities in glucose tolerance and insulin sensitivity, characterized by slight hyperglycemia and compensatory hyperinsulinemia, can be induced in the male Göttingen minipig by high-fat high-energy feeding for 3 months. This approach seems to be an interesting and promising method for establishment of a nonrodent model of insulin resistance or type 2 diabetes.
Collapse
|
4436
|
Goodpaster BH, Kelley DE. Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus? Curr Diab Rep 2002; 2:216-22. [PMID: 12643176 DOI: 10.1007/s11892-002-0086-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inability of insulin to stimulate glucose metabolism in skeletal muscle is a classic characteristic of type 2 diabetes, but this insulin resistance entails altered patterns of lipid metabolism as well. An association between intracellular triglyceride and insulin resistance has been well established in both human and animal studies of obesity-related insulin resistance and type 2 diabetes. Skeletal muscle's ability to select substrate for fuel metabolism, a metabolic flexibility, is also lost in insulin resistance, and defects in fatty acid metabolism during fasting or postabsorptive conditions likely play an important role in lipid oversupply to insulin-resistant muscle. These impairments appear to be at least indirectly centered on the ability of mitochondria to oxidize fatty acids, possibly through mediation of lipid metabolite levels such as ceramide or diacylglycerol, which are known to directly attenuate insulin signaling. Moreover, periodic use of muscle triglyceride by exercise may mediate the association between muscle triglyceride and insulin resistance. Thus, it appears that skeletal muscle triglyceride is perhaps a surrogate for other lipid species having a more direct effect on insulin action. Defining mechanisms by which dysregulation of fatty acid metabolism and persistent lipid oversupply alter insulin action may help to target more effective strategies to prevent or treat type 2 diabetes.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Division of Endocrinology and Metabolism, 3459 Fifth Avenue, 810N MUH, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
4437
|
Abstract
A chronic minor imbalance between energy intake and energy expenditure may lead to obesity. Both lean and obese subjects eventually reach energy balance and their body weight regulation implies that the adipose tissue mass is "sensed", leading to appropriate responses of energy intake and energy expenditure. The cloning of the ob gene and the identification of its encoded protein, leptin, have provided a system signaling the amount of adipose energy stores to the brain. Leptin, a hormone secreted by fat cells, acts in rodents via hypothalamic receptors to inhibit feeding and increase thermogenesis. A feedback regulatory loop with three distinct steps has been identified: (1) a sensor (leptin production by adipose cells) monitors the size of the adipose tissue mass; (2) hypothalamic centers receive and integrate the intensity of the leptin signal through leptin receptors (LRb); (3) effector systems, including the sympathetic nervous system, control the two main determinants of energy balance-energy intake and energy expenditure. While this feedback regulatory loop is well established in rodents, there are many unsolved questions about its applicability to body weight regulation in humans. The rate of leptin production is related to adiposity, but a large portion of the interindividual variability in plasma leptin concentration is independent of body fatness. Gender is an important factor determining plasma leptin, with women having markedly higher leptin concentrations than men for any given degree of fat mass. The ob mRNA expression is also upregulated by glucocorticoids, whereas stimulation of the sympathetic nervous system results in its inhibition. Furthermore, leptin is not a satiety factor in humans because changes in food intake do not induce short-term increases in plasma leptin levels. After its binding to LRb in the hypothalamus, leptin stimulates a specific signaling cascade that results in the inhibition of several orexigenic neuropeptides, while stimulating several anorexigenic peptides. The orexigenic neuropeptides that are downregulated by leptin are NPY (neuropeptide Y), MCH (melanin-concentrating hormone), orexins, and AGRP (agouti-related peptide). The anorexigenic neuropeptides that are upregulated by leptin are alpha-MSH (alpha-melanocyte-stimulating hormone), which acts on MC4R (melanocortin-4 receptor); CART (cocaine and amphetamine-regulated transcript); and CRH (corticotropin-releasing-hormone). Obese humans have high plasma leptin concentrations related to the size of adipose tissue, but this elevated leptin signal does not induce the expected responses (i.e., a reduction in food intake and an increase in energy expenditure). This suggests that obese humans are resistant to the effects of endogenous leptin. This resistance is also shown by the lack of effect of exogenous leptin administration to induce weight loss in obese patients. The mechanisms that may account for leptin resistance in human obesity include a limitation of the blood-brain-barrier transport system for leptin and an inhibition of the leptin signaling pathways in leptin-responsive hypothalamic neurons. During periods of energy deficit, the fall in leptin plasma levels exceeds the rate at which fat stores are decreased. Reduction of the leptin signal induces several neuroendocrine responses that tend to limit weight loss, such as hunger, food-seeking behavior, and suppression of plasma thyroid hormone levels. Conversely, it is unlikely that leptin has evolved to prevent obesity when plenty of palatable foods are available because the elevated plasma leptin levels resulting from the increased adipose tissue mass do not prevent the development of obesity. In conclusion, in humans, the leptin signaling system appears to be mainly involved in maintenance of adequate energy stores for survival during periods of energy deficit. Its role in the etiology of human obesity is only demonstrated in the very rare situations of absence of the leptin signal (mutations of the leptin gene or of the leptin receptor gene), which produces an internal perception of starvation and results in a chronic stimulation of excessive food intake.
Collapse
Affiliation(s)
- Eric Jéquier
- Institute of Physiology, University of Lausanne, Switzerland.
| |
Collapse
|
4438
|
Maor G, Rochwerger M, Segev Y, Phillip M. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res 2002; 17:1034-43. [PMID: 12054158 DOI: 10.1359/jbmr.2002.17.6.1034] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Childhood obesity frequently is associated with an increase in height velocity and acceleration of epiphyseal growth plate maturation despite low levels of serum growth hormone (GH). In addition, obesity is associated with higher circulating levels of leptin, a 16-kDa protein that is secreted from the adipocytes. In this study, we evaluated the direct effect of leptin on the chondrocyte population of the skeletal growth centers in the mouse mandibular condyle, a model of endochondral ossification. We found that chondrocytes in the growth centers contain specific binding sites for leptin. Leptin, at a concentration of 0.5-1.0 microg/ml, stimulated in a dose-dependent manner the width of the chondroprogenitor zone (up to 64%), whereas higher concentrations had an inhibitory effect. Leptin induction of both proliferation and differentiation activities in the mandibular condyle was confirmed by our findings of an increase in bromodeoxyuridine (BrdU) incorporation into DNA and in (acidic) Alcian blue (AB) staining of the cartilaginous matrix. Leptin also increased the abundance of the insulin-like growth factor (IGF) I receptor and IGF-I receptor messenger RNA (mRNA) within the chondrocytes and the progenitor cell population. Our results indicate that leptin acts as a skeletal growth factor with a direct peripheral effect on skeletal growth centers. Some of its effects on the growing bone may be mediated by the IGF system via regulation of IGF-I receptor expression. We speculate that the high circulating levels of leptin in obese children might contribute to their growth.
Collapse
Affiliation(s)
- Gila Maor
- Department of Morphology Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | |
Collapse
|
4439
|
Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP. Central leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, and hyperinsulinemia: increase in serum ghrelin levels. Diabetes 2002; 51:1729-36. [PMID: 12031959 DOI: 10.2337/diabetes.51.6.1729] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recombinant adeno-associated virus (rAAV), encoding either rat leptin (rAAV-lep) or green fluorescent protein (rAAV-GFP, control), was injected intracerebroventricularly in rats consuming a high-fat diet (HFD; 45 kcal%). Caloric consumption and body weight were monitored weekly until the rats were killed at 9 weeks. Untreated control rats consuming regular rat diet (RCD; 11 kcal%) were monitored in parallel. Body weight gain was accelerated in rAAV-GFP + HFD control rats relative to those consuming RCD, despite equivalent kcal consumption. At 9 weeks, serum leptin, free fatty acids, triglycerides, and insulin were elevated in HFD control rats. In contrast, rAAV-lep treatment reduced intake and blocked the HFD-induced increase in weight, adiposity, and metabolic variables. Blood glucose was slightly reduced but within the normal range, and serum ghrelin levels were significantly elevated in rAAV-lep + HFD rats. Uncoupling protein-1 (UCP1) mRNA in brown adipose tissue (BAT), an index of energy expenditure through nonshivering thermogenesis, was decreased in rats consuming HFD. Treatment with rAAV-lep significantly augmented BAT UCP1 mRNA expression, indicating increased thermogenic energy expenditure. These findings demonstrate that central leptin gene therapy efficiently prevents weight gain, increased adiposity, and hyperinsulinemia in rats consuming an HFD by decreasing energy intake and increasing thermogenic energy expenditure.
Collapse
Affiliation(s)
- Michael G Dube
- Department of Physiology and Functional Genomics, University of Florida McKnight Brain Institute, College of Medicine, Gainesville, Florida 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
4440
|
Rubí B, Antinozzi PA, Herrero L, Ishihara H, Asins G, Serra D, Wollheim CB, Maechler P, Hegardt FG. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion. Biochem J 2002; 364:219-26. [PMID: 11988095 PMCID: PMC1222564 DOI: 10.1042/bj3640219] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids.
Collapse
Affiliation(s)
- Blanca Rubí
- Department of Biochemistry and Molecular Biology, University of Barcelona, School of Pharmacy, Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
4441
|
Hamilton SR, O'Donnell JB, Hammet A, Stapleton D, Habinowski SA, Means AR, Kemp BE, Witters LA. AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit. Biochem Biophys Res Commun 2002; 293:892-8. [PMID: 12051742 DOI: 10.1016/s0006-291x(02)00312-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active.
Collapse
Affiliation(s)
- Stephen R Hamilton
- Departments of Medicine and Biochemistry, Endocrine-Metabolism Division, Dartmouth Medical School, Hanover, NH 03755-3833, USA
| | | | | | | | | | | | | | | |
Collapse
|
4442
|
Rajas F, Gautier A, Bady I, Montano S, Mithieux G. Polyunsaturated fatty acyl coenzyme A suppress the glucose-6-phosphatase promoter activity by modulating the DNA binding of hepatocyte nuclear factor 4 alpha. J Biol Chem 2002; 277:15736-44. [PMID: 11864989 DOI: 10.1074/jbc.m200971200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glucose-6-phosphatase confers on gluconeogenic tissues the capacity to release endogenous glucose in blood. The expression of its gene is modulated by nutritional mechanisms dependent on dietary fatty acids, with specific inhibitory effects of polyunsaturated fatty acids (PUFA). The presence of consensus binding sites of hepatocyte nuclear factor 4 (HNF4) in the -1640/+60 bp region of the rat glucose-6-phosphatase gene has led us to consider the hypothesis that HNF4 alpha could be involved in the regulation of glucose-6-phosphatase gene transcription by long chain fatty acid (LCFA). Our results have shown that the glucose-6-phosphatase promoter activity is specifically inhibited in the presence of PUFA in HepG2 hepatoma cells, whereas saturated LCFA have no effect. In HeLa cells, the glucose-6-phosphatase promoter activity is induced by the co-expression of HNF4 alpha or HNF1 alpha. PUFA repress the promoter activity only in HNF4 alpha-cotransfected HeLa cells, whereas they have no effects on the promoter activity in HNF1 alpha-cotransfected HeLa cells. From gel shift mobility assays, deletion, and mutagenesis experiments, two specific binding sequences have been identified that appear able to account for both transactivation by HNF4 alpha and regulation by LCFA in cells. The binding of HNF4 alpha to its cognate sites is specifically inhibited by polyunsaturated fatty acyl coenzyme A in vitro. These data strongly suggest that the mechanism by which PUFA suppress the glucose-6-phosphatase gene transcription involves an inhibition of the binding of HNF4 alpha to its cognate sites in the presence of polyunsaturated fatty acyl-CoA thioesters.
Collapse
Affiliation(s)
- Fabienne Rajas
- INSERM U. 449, Faculté de Médecine Laennec, Rue Guillaume Paradin, 69372 Lyon cedex 08, France.
| | | | | | | | | |
Collapse
|
4443
|
Abstract
I review evidence that leptin is a liporegulatory hormone that controls lipid homeostasis in nonadipose tissues during periods of overnutrition. When adipocytes store excess calories as triacylglycerol (TG), leptin secretion rises so as to prevent accumulation of lipids in nonadipose tissues, which are not adapted for TG storage. Whenever leptin action is lacking, whether through leptin deficiency or leptin resistance, overnutrition causes disease of nonadipose tissues with generalized steatosis, lipotoxicity, and lipoapoptosis. Examples of such disorders of liporegulation include generalized lipodystrophies, mutations of leptin and leptin receptor genes, and diet-induced obesity. Lipotoxicity of pancreatic beta-cells, myocardium, and skeletal muscle leads, respectively, to type 2 diabetes, cardiomyopathy, and insulin resistance. In humans this constellation of abnormalities is referred to as the metabolic syndrome, a major health problem in the United States. When lipids overaccumulate in nonadipose tissues during overnutrition, fatty acids enter deleterious pathways such as ceramide production, which, through increased nitric oxide formation, causes apoptosis of lipid-laden cells, such as beta-cells and cardiomyocytes. Lipoapoptosis can be prevented by caloric restriction, by thiazolidinedione treatment, and by administration of nitric oxide blockers. There is now substantial evidence that complications of human obesity may reflect lipotoxicity similar to that described in rodents.
Collapse
Affiliation(s)
- Roger H Unger
- Gifford Laboratories, Touchstone Center for Diabetes Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8854, USA.
| |
Collapse
|
4444
|
Greco AV, Mingrone G, Vettor R, Manco M, Rosa G, Capristo E, Federspil G, Castagneto M, Gasbarrini G. Lowering of circulating free-fatty acids levels and reduced expression of leptin in white adipose tissue in postobesity status. J Investig Med 2002; 50:207-13. [PMID: 12033286 DOI: 10.2310/6650.2002.33435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Our aim was to investigate the regulation of the gene expression of leptin in subcutaneous adipose tissue biopsies in morbid obesity before and after biliopancreatic diversion (BPD). METHODS Longitudinal study in morbidly obese subjects investigated twice: before and 6 months after BPD. Fourteen morbidly obese women, 37+/-13 years old and with a body mass index of 51.6+/-8.2 kg/m2, were studied before and 6 months after BPD (40.6+/-8.0 kg/m2). Using reverse transcriptase polymerase chain reaction analysis, the mRNA expression of leptin was investigated in adipose tissue. Plasma leptin was measured by radioimmunoassay; plasma insulin was measured by microparticle enzyme immunoassay. Free fatty acids (FFA) were measured using a colorimetric kit. RESULTS A significant decrease in leptin mRNA level was observed in comparison with pretreatment in BPD patients (59+/-34 vs 143+/-85 arbitrary units, P<0.01). A strict relationship between adipose tissue leptin mRNA and plasma leptin either before (R2=0.80, P<0.0001) or after BPD (R2=0.86, P<0.0001) and between plasma FFA concentration and insulin either before (R2=0.65, P<0.001) or after BPD (R2=0.92, P<0.0001) was observed. Finally, a significant correlation was found between changes in FFA and insulin (R2=0.64, P<0.001), insulin and leptin (R2=0.88, P<0.0001), and insulin and leptin mRNA (R2=0.83, P<0.0001). CONCLUSION These data demonstrate a high correlation between leptin mRNA expression in adipose tissue and plasma leptin in postobese subjects after BPD. The significant relationship between both leptin mRNA and plasma leptin with insulin suggests that circulating insulin might regulate leptin expression. It might be hypothesized that plasma FFA concentration can act on the insulin secretion and subsequently on the leptin secretory pathway.
Collapse
Affiliation(s)
- Aldo V Greco
- Istituto di Medicina Interna, Università Cattolica S. Cuore, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
4445
|
Sudre B, Broqua P, White RB, Ashworth D, Evans DM, Haigh R, Junien JL, Aubert ML. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 2002; 51:1461-9. [PMID: 11978643 DOI: 10.2337/diabetes.51.5.1461] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acute suppression of dipeptidyl peptidase IV (DPP-IV) activity improves glucose tolerance in the Zucker fatty rat, a rodent model of impaired glucose tolerance, through stabilization of glucagon-like peptide (GLP)-1. This study describes the effects of a new and potent DPP-IV inhibitor, FE 999011, which is able to suppress plasma DPP-IV activity for 12 h after a single oral administration. In the Zucker fatty rat, FE 999011 dose-dependently attenuated glucose excursion during an oral glucose tolerance test and increased GLP-1 (7-36) release in response to intraduodenal glucose. Chronic treatment with FE 999011 (10 mg/kg, twice a day for 7 days) improved glucose tolerance, as suggested by a decrease in the insulin-to-glucose ratio. In the Zucker diabetic fatty (ZDF) rat, a rodent model of type 2 diabetes, chronic treatment with FE 999011 (10 mg/kg per os, once or twice a day) postponed the development of diabetes, with the twice-a-day treatment delaying the onset of hyperglycemia by 21 days. In addition, treatment with FE 999011 stabilized food and water intake to prediabetic levels and reduced hypertriglyceridemia while preventing the rise in circulating free fatty acids. At the end of treatment, basal plasma GLP-1 levels were increased, and pancreatic gene expression for GLP-1 receptor was significantly upregulated. This study demonstrates that DPP-IV inhibitors such as FE 999011 could be of clinical value to delay the progression from impaired glucose tolerance to type 2 diabetes.
Collapse
Affiliation(s)
- Béatrice Sudre
- Ferring Research Institute and Division of Biology of Growth and Reproduction, Department of Pediatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
4446
|
Affiliation(s)
- N Al-Daghri
- Department of Clinical Biochemistry, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK.
| | | | | | | |
Collapse
|
4447
|
Hegarty BD, Cooney GJ, Kraegen EW, Furler SM. Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 2002; 51:1477-84. [PMID: 11978645 DOI: 10.2337/diabetes.51.5.1477] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In humans and animal models, increased lipid content of skeletal muscle is strongly associated with insulin resistance. However, it is unclear whether this accumulation is due to increased uptake or reduced utilization of fatty acids (FAs). We used (3)H-R-bromopalmitate tracer to assess the contribution of tissue-specific changes in FA uptake to the lipid accumulation observed in tissues of insulin-resistant, high fat-fed rats (HFF) compared with control rats (CON) fed a standard diet. To study FA metabolism under different metabolic states, tracer was infused under basal conditions, during hyperinsulinemic-euglycemic clamp (low FA availability) or during the infusion of intralipid and heparin (high FA availability). FA clearance was significantly increased in the red gastrocnemius muscle of HFF under conditions of low (HFF = 10.4 +/- 1.1; CON = 7.4 +/- 0.5 ml x min(-1) x 100 g(-1); P < 0.05), basal (HFF = 8.3 +/- 1.4; CON = 4.5 +/- 0.7 ml x min(-1) x 100 g(-1); P < 0.01), and high (HFF = 7.0 +/- 0.8; CON = 4.3 +/- 0.5 ml x min(-1) x 100 g(-1); P < 0.05) FA levels. This indicates an adaptation by muscle for more efficient uptake of lipid. Associated with the enhanced efficiency of FA uptake, we observed increases in CD36/FA translocase mRNA expression (P < 0.01) and acyl-CoA synthetase activity (P < 0.02) in the same muscle. FA clearance into white adipose tissue was also increased in HFF when circulating FA were elevated, but there was little effect of the high-fat diet on hepatic FA uptake. In conclusion, insulin resistance induced by feeding rats a high-fat diet is associated with tissue-specific adaptations that enhance utilization of increased dietary lipid but could also contribute to the accumulation of intramuscular lipid with a detrimental effect on insulin action.
Collapse
Affiliation(s)
- Bronwyn D Hegarty
- Diabetes and Metabolism Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | | | | | | |
Collapse
|
4448
|
Atkinson LL, Kelly SE, Russell JC, Bar-Tana J, Lopaschuk GD. MEDICA 16 inhibits hepatic acetyl-CoA carboxylase and reduces plasma triacylglycerol levels in insulin-resistant JCR: LA-cp rats. Diabetes 2002; 51:1548-55. [PMID: 11978655 DOI: 10.2337/diabetes.51.5.1548] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intracellular triacylglycerol (TG) content of liver and skeletal muscle contributes to insulin resistance, and a significant correlation exists between TG content and the development of insulin resistance. Because acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme for liver fatty acid biosynthesis and a key regulator of muscle fatty acid oxidation, we examined whether ACC plays a role in the accumulation of intracellular TG. We also determined the potential role of 5'-AMP-activated protein kinase (AMPK) in this process, since it can phosphorylate and inhibit ACC activity in both liver and muscle. TG content, ACC, and AMPK were examined in the liver and skeletal muscle of insulin-resistant JCR:LA-cp rats during the time frame when insulin resistance develops. At 12 weeks of age, there was a threefold elevation in liver TG content and a sevenfold elevation in skeletal muscle TG content. Hepatic ACC activity was significantly elevated in 12-week-old JCR:LA-cp rats compared with lean age-matched controls (8.75 +/- 0.53 vs. 3.30 +/- 0.18 nmol. min(-1). mg(-1), respectively), even though AMPK activity was also increased. The observed increase in hepatic ACC activity was accompanied by a 300% increase in ACC protein expression. There were no significant differences in ACC activity, ACC protein expression, or AMPK activity in the skeletal muscle of the 12-week JCR:LA-cp rats. Treatment of 12-week JCR:LA-cp rats with MEDICA 16 (an ATP-citrate lyase inhibitor) resulted in a decrease in hepatic ACC and AMPK activities, but had no effect on skeletal muscle ACC and AMPK. Our data suggest that alterations in ACC or AMPK activity in muscle do not contribute to the development of insulin resistance. However, increased liver ACC activity in the JCR:LA-cp rat appears to contribute to the development of lipid abnormalities, although this increase does not appear to occur secondary to a decrease in AMPK activity.
Collapse
Affiliation(s)
- Laura L Atkinson
- Cardiovascular Research Group, Faculty of Medicine, the University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
4449
|
Gualillo O, Eiras S, White DW, Diéguez C, Casanueva FF. Leptin promotes the tyrosine phosphorylation of SHC proteins and SHC association with GRB2. Mol Cell Endocrinol 2002; 190:83-89. [PMID: 11997181 DOI: 10.1016/s0303-7207(02)00012-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The identification and characterization of proteins that become tyrosine phosphorylated in response to growth factor stimulation is critical for furthering our understanding of the signal transduction pathways involved in the regulation of cell proliferation, differentiation as well as metabolic activities. In this report, we demonstrate for the first time, that leptin is able to induce the tyrosine phosphorylation of the SH(2) containing protein SHC. These studies have been carried out on a human embryonic cell line (HEK 293) transfected with the cDNA encoding for the long form of the leptin receptor and stably expressing the receptor itself. We also shown that upon tyrosine phosphorylation, SHC associated with the adaptor protein, Grb(2). The formation of this complex may directly link tyrosine phosphorylation events to Ras activation and may be a critical step in proliferation and/or differentiation of cells. In conclusion, these results indicate that leptin receptor, after binding the ligand, activates several pathways for signal transduction that might lead to mitogenic effect.
Collapse
Affiliation(s)
- O Gualillo
- Complexo Hospitalario Universitario de Santiago (CHUS), Research AREA: Research Laboratory No. 4, Planta Baja Zona Metabolopatias, Trav. Choupana sn, 15706 Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|
4450
|
Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem 2002; 277:13918-25. [PMID: 11854298 DOI: 10.1074/jbc.m201134200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a tissue-specific coactivator that enhances the activity of many nuclear receptors and coordinates transcriptional programs important for energy metabolism. We describe here a novel PGC-1-related coactivator that is expressed in a similar tissue-specific manner as PGC-1, with the highest levels in heart and skeletal muscle. In contrast to PGC-1, the new coactivator shows high receptor specificity. It enhances potently the activity of estrogen receptor (ER) alpha, while having only small effects on other receptors. Because of its nuclear receptor selectivity, we have termed the new protein PERC (PGC-1 related Estrogen Receptor Coactivator). We show here that the coactivation function of PERC relies on a bipartite transcriptional activation domain and two LXXLL motifs that interact with the AF2 domain of ERalpha in an estrogen-dependent manner. PERC and PGC-1 are likely to have different functions in ER signaling. Whereas PERC acts selectively on ERalpha and not on the second estrogen receptor ERbeta, PGC-1 coactivates strongly both ERs. Moreover, PERC and PGC-1 show distinct preferences for enhancing ERalpha in different promoter contexts. Finally, PERC enhances the ERalpha-mediated response to the partial agonist tamoxifen, while PGC-1 modestly represses it. The two coactivators are likely to mediate distinct, tissue-specific responses to estrogens.
Collapse
Affiliation(s)
- Dieter Kressler
- Division of Biochemistry, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|