401
|
Oppermann H, Faust H, Yamanishi U, Meixensberger J, Gaunitz F. Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling. PLoS One 2019; 14:e0218972. [PMID: 31247000 PMCID: PMC6597087 DOI: 10.1371/journal.pone.0218972] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma is a high-grade glioma with poor prognosis even after surgery and standard therapy. Here, we asked whether carnosine (β-alanyl-L-histidine), a naturally occurring dipeptide, exert its anti-neoplastic effect on glioblastoma cells via PI3K/Akt/mTOR signaling. Therefore, glioblastoma cells from the lines U87 and T98G were exposed to carnosine, to the mTOR inhibitor rapamycin and to the PI3K inhibitor Ly-294,002. Pyruvate dehydrogenase kinase (PDK4) expression, known to be a target of PI3K/Akt/mTOR, and which is also affected by carnosine, was analyzed by RT-qPCR, and reporter gene assays with the human PDK4 promoter were performed. Cell viability was assessed by cell-based assays and mTOR and Akt phosphorylation by Western blotting. Rapamycin and Ly-294,002 increased PDK4 mRNA expression in both cell lines but significance was only reached in U87. Carnosine significantly increased expression in both lines. A significant combinatorial effect of carnosine was only detected in U87 when the dipeptide was combined with Ly-294,002. Reporter gene assays revealed no specific effect of carnosine on the human PDK4 promoter, whereas both inhibitors increased reporter gene expression. Rapamycin reduced phosphorylation of mTOR, and Ly-294,002 that of Akt. A significant reduction of Akt phosphorylation was observed in the presence of carnosine in U87 but not in T98G, and carnosine had no effect on mTOR phosphorylation. Cell viability as determined by ATP in cell lysates was reduced only in the presence of carnosine. We conclude that carnosine’s anti-neoplastic effect is independent from PI3K/Akt/mTOR signaling. As the dipeptide reduced viability in tumor cells that do not respond to PI3K or mTOR inhibitors, it appears to be worth to further investigate the mechanisms by which carnosine exerts its anti-tumor effect and to consider it for therapy, especially as it is a naturally occurring compound that has already been used for the treatment of other diseases without indication of side-effects.
Collapse
Affiliation(s)
- Henry Oppermann
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Helene Faust
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Ulrike Yamanishi
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Jürgen Meixensberger
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, Leipzig, Germany
- * E-mail:
| |
Collapse
|
402
|
Wei L, Li P, Zhao C, Wang N, Wei N. Upregulation of microRNA-1270 suppressed human glioblastoma cancer cell proliferation migration and tumorigenesis by acting through WT1. Onco Targets Ther 2019; 12:4839-4848. [PMID: 31417281 PMCID: PMC6592694 DOI: 10.2147/ott.s192521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors among human beings. In this study, we explored the functions of human microRNA-1270 (hsa-miR-1270) on GBM cancer cell proliferation, migration, and tumorigenesis. Materials and methods In GBM cell lines and clinical tissues, hsa-miR-1270 expression was probed by quantitative real-time PCR (qRT-PCR). In LN-18 and A172 cells, hsa-miR-1270 was upregulated by lentiviral transduction. The effects of hsa-miR-1270 upregulation on GBM in vitro and in vivo functions were probed by proliferation, migration, and xenograft assays, respectively. The correlation between hsa-miR-1270 and Wilms’ tumor gene (WT1) was probed by dual-luciferase activity assay, qRT-PCR, and Western blot. WT1 was then secondarily over-expressed in hsa-miR-1270-upregulated LN-18 and A172 cells, to explore its mechanisms in GBM’s association with hsa-miR-1270. Results Hsa-miR-1270 was significantly downregulated in both GBM cell lines and clinical tumors. Upregulating hsa-miR-1270 considerably suppressed GBM cell proliferation and migration in vitro and xenograft in vivo. WT1 was inversely correlated with hsa-miR-1270 in GBM. WT1 overexpression in hsa-miR-1270-upregulated GBM cells reversed the anticancer functions of hsa-miR-1270 on cancer proliferation and migration. Conclusion Hsa-miR-1270 upregulation may have suppressing effects on GBM cancer cells, likely by functionally acting through WT1.
Collapse
Affiliation(s)
- Lai Wei
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| | - Pan Li
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
| | - Chunjing Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| | - Na Wang
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| | - Na Wei
- Department of Pharmacy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| |
Collapse
|
403
|
Basu B, Ghosh MK. Extracellular Vesicles in Glioma: From Diagnosis to Therapy. Bioessays 2019; 41:e1800245. [PMID: 31188499 DOI: 10.1002/bies.201800245] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) secreted from tumor cells play a key role in the overall progression of the disease state. EVs such as exosomes are secreted by a wide variety of cells and transport a varied population of proteins, lipids, DNA, and RNA species within the body. Gliomas constitute a significant proportion of all primary brain tumors and majority of brain malignancies. Glioblastoma multiforme (GBM) represents grade IV glioma and is associated with very poor prognosis despite the cumulative advances in diagnostic procedures and treatment strategies. Here, the authors describe the progress in understanding the role of EVs, especially exosomes, in overall glioma progression, and how new research is unraveling the utilities of exosomes in glioma diagnostics and development of next-generation therapeutic systems. Finally, based on an understanding of the latest scientific literature, a model for the possible working of therapeutic exosomes in glioma treatment is proposed.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata, 700091, & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
404
|
Daboudi M, Papadaki E, Vakis A, Chlouverakis G, Makrakis D, Karageorgou D, Simos P, Koukouraki S. Brain SPECT and perfusion MRI: do they provide complementary information about the tumour lesion and its grading? Clin Radiol 2019; 74:652.e1-652.e9. [PMID: 31164195 DOI: 10.1016/j.crad.2019.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/22/2019] [Indexed: 10/26/2022]
Abstract
AIM To evaluate the relative and combined utility of 99mTc-tetrofosmin (99mTc-TF) brain single-photon-emission computed tomography (SPECT) and dynamic susceptibility contrast (DSC) perfusion magnetic resonance imaging (MRI) in grading brain gliomas. MATERIALS AND METHODS Thirty-six patients with clinically suspected brain tumours were assessed by 99mTc-TF SPECT and DSC-MRI. Brain tumour malignancy was confirmed in all patients at histopathology. On both techniques brain lesions were evaluated via visual and semi-quantitative analysis methods (deriving tetrofosmin index [T-index] and relative cerebral blood volume [rCBV] ratios, respectively). RESULTS 99mTc-TF SPECT showed abnormally elevated tracer uptake in 31/36 patients whereas MRI detected the brain tumour in all patients. Optimal cut-off values of each index for discriminating between low- and high-grade gliomas were obtained through receiver operating characteristic (ROC) analyses. A T-index cut-off of 6.35 ensured 82% sensitivity and 71% specificity for discriminating between high- and low-grade gliomas, whereas a relative rCBV ratio cut-off of 1.80 achieved 91% sensitivity and 100% specificity. Requiring a positive result on either technique to characterise a high-grade glioma was associated with similar specificity and slightly increased sensitivity. CONCLUSION Both imaging techniques, 99mTF SPECT and DSC MRI, may provide complementary indices of tumour grade and have an independent diagnostic value for high-risk tumours.
Collapse
Affiliation(s)
- M Daboudi
- Department of Nuclear Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - E Papadaki
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece; Institute of Computer Science, Foundation of Research and Technology, Heraklion, Crete, Greece
| | - A Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - G Chlouverakis
- Biostatistics Lab., Department of Social and Family Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - D Makrakis
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - D Karageorgou
- Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - P Simos
- Institute of Computer Science, Foundation of Research and Technology, Heraklion, Crete, Greece; Department of Psychiatry, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - S Koukouraki
- Department of Nuclear Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
405
|
Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Mol Cell Proteomics 2019; 18:1255-1268. [PMID: 31154438 PMCID: PMC6553928 DOI: 10.1074/mcp.ra119.001524] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Further, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Eilon Barnea
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Slobodin
- §Rheumatology Unit, Bnai Zion Medical Center, Haifa 31048, Israel
| | - Itzhak Rosner
- §Rheumatology Unit, Bnai Zion Medical Center, Haifa 31048, Israel
| | | | - Norbert Hilf
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Sabrina Kuttruff
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Colette Song
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Cedrik Britten
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - John Castle
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | | | | | - Marcos Tatagiba
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ghazaleh Tabatabai
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Pierre-Yves Dietrich
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Valérie Dutoit
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Wolfgang Wick
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Michael Platten
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Frank Winkler
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Andreas von Deimling
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Judith Kroep
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juan Sahuquillo
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Martinez-Ricarte
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ulrik Lassen
- ‖‖‖Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Christian Ottensmeier
- §§§Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sjoerd H van der Burg
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - Per Thor Straten
- ‖‖‖Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- ‡‡‡‡Rigshospitalet, Departments of Radiation Biology and Oncology, Rigshospitalet 9, Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - Berta Ponsati
- §§§§BCN Peptides, Pol. Ind. Els Vinyets-Els Fogars II. 08777 Sant Quinti de Mediona (Barcelona), Spain
| | - Hideho Okada
- ¶¶¶¶University of California and the Parker Institute for Cancer Immunotherapy, San Francisco, CA 94131
| | - Hans-Georg Rammensee
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ugur Sahin
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | - Harpreet Singh
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Arie Admon
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
406
|
A tumorsphere model of glioblastoma multiforme with intratumoral heterogeneity for quantitative analysis of cellular migration and drug response. Exp Cell Res 2019; 379:73-82. [DOI: 10.1016/j.yexcr.2019.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
|
407
|
Khanna R, Brahimaj B, Tchalukov K, Byrne K, Adogwa O, Jhaveri M, Byrne R. A case of recurrent gliosarcoma mimicking subdural hematoma. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2019. [DOI: 10.1016/j.inat.2018.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
408
|
Gadhave D, Gorain B, Tagalpallewar A, Kokare C. Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
409
|
Liu B, Liu J, Liao Y, Jin C, Zhang Z, Zhao J, Liu K, Huang H, Cao H, Cheng Q. Identification of SEC61G as a Novel Prognostic Marker for Predicting Survival and Response to Therapies in Patients with Glioblastoma. Med Sci Monit 2019; 25:3624-3635. [PMID: 31094363 PMCID: PMC6536036 DOI: 10.12659/msm.916648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The survival and therapeutic outcome vary greatly among glioblastoma (GBM) patients. Treatment resistance, including resistance to temozolomide (TMZ) and radiotherapy, is a great obstacle for these therapies. In this study, we aimed to evaluate the predictive value of SEC61G on survival and therapeutic response in GBM patients. MATERIAL AND METHODS Survival analyses were performed to assess the correlation between SEC61G expression and survival of GBM patients from the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. Univariate and multivariate Cox proportional hazard regression analysis was introduced to determine prognostic factors with independent impact power. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were conducted to illustrate possible biological functions of SEC61G. RESULTS High expression of SEC61G was significantly correlated with poor prognosis in all GBM patients. High expression of SEC61G was also associated with poor outcome in those who received TMZ treatment or radiotherapy in TCGA GBM cohort. Univariate and multivariate Cox proportional hazards regression demonstrated that SEC61G was an independent prognostic factor affecting the prognosis and therapeutic outcome. The combination of age, SEC61G expression, and MGMT promoter methylation in survival analysis could provide better outcome assessment. Finally, a strong correlation between SEC61G expression and Notch pathway was observed in GSEA and GSVA, which suggested a possible mechanism that SEC61G affected survival and TMZ resistance. CONCLUSIONS SEC61G expression may be a potential prognostic marker of poor survival, and a predictor of poor outcome to TMZ treatment and radiotherapy in GBM patients.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jingping Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yuxiang Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Chen Jin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Kun Liu
- Department of Neurosurgery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China (mainland)
| | - Hao Huang
- Department of Neurosurgery, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China (mainland)
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China (mainland)
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland).,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
410
|
Cemeli T, Guasch-Vallés M, Nàger M, Felip I, Cambray S, Santacana M, Gatius S, Pedraza N, Dolcet X, Ferrezuelo F, Schuhmacher AJ, Herreros J, Garí E. Cytoplasmic cyclin D1 regulates glioblastoma dissemination. J Pathol 2019; 248:501-513. [PMID: 30957234 DOI: 10.1002/path.5277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is a highly invasive brain neoplasia with an elevated recurrence rate after surgical resection. The cyclin D1 (Ccnd1)/Cdk4-retinoblastoma 1 (RB1) axis is frequently altered in GBM, leading to overproliferation by RB1 deletion or by Ccnd1-Cdk4 overactivation. High levels of Ccnd1-Cdk4 also promote GBM cell invasion by mechanisms that are not so well understood. The purpose of this work is to elucidate the in vivo role of cytoplasmic Ccnd1-Cdk4 activity in the dissemination of GBM. We show that Ccnd1 activates the invasion of primary human GBM cells through cytoplasmic RB1-independent mechanisms. By using GBM mouse models, we observed that evaded GBM cells showed cytoplasmic Ccnd1 colocalizing with regulators of cell invasion such as RalA and paxillin. Our genetic data strongly suggest that, in GBM cells, the Ccnd1-Cdk4 complex is acting upstream of those regulators. Accordingly, expression of Ccnd1 induces focal adhesion kinase, RalA and Rac1 activities. Finally, in vivo experiments demonstrated increased GBM dissemination after expression of membrane-targeted Ccnd1. We conclude that Ccnd1-Cdk4 activity promotes GBM dissemination through cytoplasmic and RB1-independent mechanisms. Therefore, inhibition of Ccnd1-Cdk4 activity may be useful to hinder the dissemination of recurrent GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tània Cemeli
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Marta Guasch-Vallés
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Mireia Nàger
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Isidre Felip
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Serafí Cambray
- Vascular and Renal Translational Group, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Maria Santacana
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Sònia Gatius
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova (HUAV), Lleida, Spain
| | - Neus Pedraza
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Xavier Dolcet
- Oncological Pathology, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Francisco Ferrezuelo
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Alberto J Schuhmacher
- Biomedical Research Center of Aragon, Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Judit Herreros
- Calcium Signaling, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| | - Eloi Garí
- Cell Cycle, Department of Basic Medical Sciences, Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), University of Lleida, Lleida, Spain
| |
Collapse
|
411
|
Vargas-Patron LA, Agudelo-Dueñas N, Madrid-Wolff J, Venegas JA, González JM, Forero-Shelton M, Akle V. Xenotransplantation of Human glioblastoma in Zebrafish larvae: in vivo imaging and proliferation assessment. Biol Open 2019; 8:bio.043257. [PMID: 31085547 PMCID: PMC6550087 DOI: 10.1242/bio.043257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent type of primary brain tumor. Treatment options include maximal surgical resection and drug-radiotherapy combination. However, patient prognosis remains very poor, prompting the search for new models for drug discovery and testing, especially those that allow assessment of in vivo responses to treatment. Zebrafish xenograft models have an enormous potential to study tumor behavior, proliferation and cellular interactions. Here, an in vivo imaging and proliferation assessment method of human GBM xenograft in zebrafish larvae is introduced. Zebrafish larvae microinjected with fluorescently labeled human GBM cells were screened daily using a stereomicroscope and imaged by light sheet fluorescence microscopy (LSFM); volumetric modeling and composite reconstructions were done in single individuals. Larvae containing tumors were enzymatically dissociated, and proliferation of cancer cells was measured using dye dilution by flow cytometry. GBM micro-tumors formed mainly in the zebrafish yolk sac and perivitelline space following injection in the yolk sac, with an engraftment rate of 73%. Daily image analysis suggested cellular division, as micro-tumors progressively grew with differentiated fluorescence intensity signals. Using dye dilution assay by flow cytometry, at least three GBM cells' division cycles were identified. The combination of LSFM and flow cytometry allows assessment of proliferation and tumor growth of human GBM inside zebrafish, making it a useful model to identify effective anti-proliferative agents in a preclinical setting.
Collapse
Affiliation(s)
- Luis A Vargas-Patron
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Nathalie Agudelo-Dueñas
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia.,Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Jorge Madrid-Wolff
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Juan A Venegas
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - John M González
- Biomedical Sciences Laboratory, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| | - Manu Forero-Shelton
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogota, 111711, Colombia
| | - Veronica Akle
- Laboratory of Neurosciences and Circadian Rhythms, School of Medicine, Universidad de los Andes, Bogota, 111711, Colombia
| |
Collapse
|
412
|
Xiong DD, Xu WQ, He RQ, Dang YW, Chen G, Luo DZ. In silico analysis identified miRNA‑based therapeutic agents against glioblastoma multiforme. Oncol Rep 2019; 41:2194-2208. [PMID: 30816530 PMCID: PMC6412522 DOI: 10.3892/or.2019.7022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) contribute to the development of various malignant neoplasms, including glioblastoma multiforme (GBM). The present study aimed to explore the pathogenesis of GBM and to identify latent therapeutic agents for patients with GBM, based on an in silico analysis. Gene chips that provide miRNA expression profiling in GBM were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEMs) were also determined via the RobustRankAggreg algorithm. The target genes of DEMs were predicted and then intersected with GBM‑associated genes that were collected from the Gene Expression Profiling Interactive Analysis. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of the overlapping genes were then performed. Simultaneously, a connectivity map (CMap) analysis was performed to screen for potential therapeutic agents for GBM. A total of 10 DEMs (hsa‑miR‑196a, hsa‑miR‑10b, hsa‑miR‑196b, hsa‑miR‑18b, hsa‑miR‑542‑3p, hsa‑miR‑129‑3p, hsa‑miR‑1224‑5p, hsa‑miR‑876‑3p and hsa‑miR‑770‑5p) were obtained from three GEO gene chips (GSE25631, GSE42657 and GSE61710). Then, 1,720 target genes of the 10 miRNAs and 4,185 differently expressed genes in GBM were collected. By intersecting the aforementioned gene clusters, the present study identified 390 overlapping genes. GO and KEGG analyses of the 390 genes demonstrated that these genes were involved in certain cancer‑associated biological functions and pathways. Eight genes [(GTPase NRas (NRAS), calcium/calmodulin‑dependent protein kinase type II subunit Gamma (CAMK2G), platelet‑derived growth factor receptor alpha (PDGFRA), calmodulin 3 (CALM3), cyclin‑dependent kinase 6 (CDK6), calcium/calmodulin‑dependent protein kinase type II subunit beta (CAMK2B), retinoblastoma‑associated protein (RB1) and protein kinase C beta type (PRKCB)] that were centralized in the glioma pathway were selected for CMap analysis. Three chemicals (W‑13, gefitinib and exemestane) were identified as putative therapeutic agents for GBM. In summary, the present study identified three miRNA‑based chemicals for use as a therapy for GBM. However, more experimental data are needed to verify the therapeutic properties of these latent drugs in GBM.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Qing Xu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
413
|
Luwor R, Morokoff AP, Amiridis S, D'Abaco G, Paradiso L, Stylli SS, Nguyen HPT, Tarleton M, Young KA, O'Brien TJ, Robinson PJ, Chircop M, McCluskey A, Jones NC. Targeting Glioma Stem Cells by Functional Inhibition of Dynamin 2: A Novel Treatment Strategy for Glioblastoma. Cancer Invest 2019; 37:144-155. [PMID: 30907150 DOI: 10.1080/07357907.2019.1582060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.
Collapse
Affiliation(s)
- Rodney Luwor
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Andrew P Morokoff
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,b Department of Neurosurgery , The Royal Melbourne Hospital , Parkville , Australia
| | - Stephanie Amiridis
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Giovanna D'Abaco
- d Melbourne School of Engineering, School of Chemical and Biomedical Engineering , The University of Melbourne , Parkville , Australia
| | - Lucia Paradiso
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Stanley S Stylli
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,b Department of Neurosurgery , The Royal Melbourne Hospital , Parkville , Australia
| | - Hong P T Nguyen
- a Department of Surgery , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia
| | - Mark Tarleton
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Kelly A Young
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Terence J O'Brien
- c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,f Department of Neuroscience , Central Clinical School, Monash University , Melbourne , Australia.,g Department of Neurology , The Alfred Hospital , Melbourne , Australia
| | - Phillip J Robinson
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia.,h Children's Medical Research Institute, The University of Sydney , Westmead , Australia
| | - Megan Chircop
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia.,h Children's Medical Research Institute, The University of Sydney , Westmead , Australia
| | - Adam McCluskey
- e Department of Chemistry, School of Environmental and Life Sciences , The University of Newcastle , Callaghan , Australia
| | - Nigel C Jones
- c Department of Medicine , The University of Melbourne, The Royal Melbourne Hospital , Parkville , Australia.,f Department of Neuroscience , Central Clinical School, Monash University , Melbourne , Australia.,g Department of Neurology , The Alfred Hospital , Melbourne , Australia
| |
Collapse
|
414
|
Shu C, Yan X, Zhang X, Wang Q, Cao S, Wang J. Tumor-induced mortality in adult primary supratentorial glioblastoma multiforme with different age subgroups. Future Oncol 2019; 15:1105-1114. [PMID: 30880453 DOI: 10.2217/fon-2018-0719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To assess the independent determinants of tumor-induced mortality in different age subgroups after considering competing risk (CR). METHODS Data were extracted from the SEER database. The independent determinants of tumor-induced mortality were defined by CR analysis and validated by conditional inference trees. A CR nomogram was created based on the proportional subdistribution hazard model. RESULTS The different age subgroups had their own independent determinants of tumor-induced mortality. Using these variables, a CR nomogram was built with good discrimination and calibration. CONCLUSION When conducting population-based cohort studies, a CR analysis is recommended for cancers with short survival and high mortality. A CR nomogram represents the first attempt at a predictive model for quantifying tumor-induced mortality.
Collapse
Affiliation(s)
- Chang Shu
- Tianjin Cerebral Vascular & Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, PR China.,School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Xiaoling Yan
- Department of Pathology, Tianjin Huan Hu Hospital, Tianjin 300350, PR China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huan Hu Hospital, Tianjin 300350, PR China
| | - Qiong Wang
- Tianjin Cerebral Vascular & Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, PR China
| | - Sen Cao
- Tianjin Zhongtianchi Software Technology Development Co., Ltd, Tianjin 300210, PR China
| | - Jinhuan Wang
- Tianjin Cerebral Vascular & Neural Degenerative Disease Key Laboratory, Tianjin Neurosurgery Institute, Department of Neurosurgery, Tianjin Huan Hu Hospital, Tianjin 300350, PR China.,School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| |
Collapse
|
415
|
Liu JR, Yu CW, Hung PY, Hsin LW, Chern JW. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma. Biochem Pharmacol 2019; 163:458-471. [PMID: 30885763 DOI: 10.1016/j.bcp.2019.03.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
Glioblastoma is the most fatal type of primary brain cancer, and current treatments for glioblastoma are insufficient. HDAC6 is overexpressed in glioblastoma, and siRNA-mediated knockdown of HDAC6 inhibits glioma cell proliferation. Herein, we report a high-selective HDAC6 inhibitor, J22352, which has PROTAC (proteolysis-targeting chimeras)-like property resulted in both p62 accumulation and proteasomal degradation, leading to proteolysis of aberrantly overexpressed HDAC6 in glioblastoma. The consequences of decreased HDAC6 expression in response to J22352 decreased cell migration, increased autophagic cancer cell death and significant tumor growth inhibition. Notably, J22352 reduced the immunosuppressive activity of PD-L1, leading to the restoration of host anti-tumor activity. These results demonstrate that J22352 promotes HDAC6 degradation and induces anticancer effects by inhibiting autophagy and eliciting the antitumor immune response in glioblastoma. Therefore, this highly selective HDAC6 inhibitor can be considered a potential therapeutic for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Jia-Rong Liu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Chao-Wu Yu
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Pei-Yun Hung
- AnnJi Pharmaceutical Co., Ltd. No. 18, Siyuan St., Taipei 10087, Taiwan, ROC
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC
| | - Ji-Wang Chern
- School of Pharmacy, College of Medicine, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC; Center for Innovative Therapeutics Discovery, National Taiwan University, No. 33, LinSen South Road, Taipei 100, Taiwan, ROC.
| |
Collapse
|
416
|
Glioblastoma with brainstem leptomeningeal pseudoprogression following radiation therapy. Radiol Case Rep 2019; 14:613-617. [PMID: 30906492 PMCID: PMC6411609 DOI: 10.1016/j.radcr.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 11/22/2022] Open
Abstract
In brain tumor patients, worsening of imaging findings in the first 6 months after surgical debulking and chemoradiation can occur in the absence of tumor growth, a phenomenon known as pseudoprogression. Awareness of pseudoprogression is important as it can lead to unnecessary additional changes in patient management. In this case, a patient with bilateral frontal glioblastoma presented with new post-treatment brainstem leptomeningeal enhancement which was distant from the original tumor site, concerning for disease progression. However, the patient was asymptomatic and correlation of leptomeningeal enhancement locations with radiation therapy dose maps revealed high doses at the affected site, supporting a diagnosis of treatment effect which was confirmed by resolution on follow-up imaging after treatment with steroids. Parenchymal pseudoprogression in brain tumor patients is well-documented, but worsening leptomeningeal enhancement following therapy may also represent treatment effects. If spatially remote leptomeningeal enhancement occurs, correlation with radiation dose maps may be useful in suggesting a diagnosis of treatment effect over tumor progression.
Collapse
|
417
|
Wang Y, Zhang J, Yang Y, Liu Q, Xu G, Zhang R, Pang Q. ROS generation and autophagosome accumulation contribute to the DMAMCL-induced inhibition of glioma cell proliferation by regulating the ROS/MAPK signaling pathway and suppressing the Akt/mTOR signaling pathway. Onco Targets Ther 2019; 12:1867-1880. [PMID: 30881039 PMCID: PMC6413739 DOI: 10.2147/ott.s195329] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Chemotherapy after surgery can prolong the survival of patients with gliomas. Dimethylaminomicheliolide (DMAMCL), a novel chemotherapeutic agent, exhibited antitumor properties in acute myeloid leukemia stem cells and showed an increased drug concentration in the brain. This study aims to investigate the specific anticancer activities and mechanisms of DMAMCL in glioma cells. Materials and methods In this study, the effects of DMAMCL were evaluated and characterized in U87-MG and U251 glioma cells. Cell viability was assessed by Cell Counting Kit-8. Apoptosis, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) generation were assessed by fluorescence microscopy. Autophagosome formation was observed with transmission electron microscopy, and the autophagy flux was measured by transfecting cells with mRFP-GFP-LC3 adenoviral vectors. Immunofluorescence and Western blot analyses were used to determine the expression of proteins. Results In the present study, treatment with DMAMCL decreased cell viability and induced apoptosis in U87-MG and U251 glioma cells. Additionally, DMAMCL activated autophagy-mediated cell death as evidenced by the formation of autophagosomes, accumulation of LC3B-II, inhibition of autophagy flux, and increase in cell viability after cotreatment with an autophagy inhibitor. Subsequent experiments showed that the DMAMCL-induced apoptosis and autophagy were possibly mediated by ROS generation and Akt/mTOR signaling pathway inhibition. On the other hand, the ROS scavenger N-acetyl-L-cysteine and the Akt activator insulin-like growth factor-1 attenuated the DMAMCL-induced autophagy and cell death. Conclusion Our findings revealed that DMAMCL induced apoptosis and autophagic cell death by regulating the ROS/mitogen-activated protein kinase signaling pathway and suppressing the Akt/mTOR signaling pathway in human glioma cells. DMAMCL may be a novel effective anticancer agent, which can target gliomas.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Jiachen Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Yihang Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Qian Liu
- Department of Histology and Embryology, Shandong University Cheeloo College Medicine, Jinan, 250012, Shandong, China
| | - Guangming Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China, ;
| |
Collapse
|
418
|
Jiao X, Yu Y, Meng J, He M, Zhang CJ, Geng W, Ding B, Wang Z, Ding X. Dual-targeting and microenvironment-responsive micelles as a gene delivery system to improve the sensitivity of glioma to radiotherapy. Acta Pharm Sin B 2019; 9:381-396. [PMID: 30972284 PMCID: PMC6437633 DOI: 10.1016/j.apsb.2018.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Dbait is a small double-stranded DNA molecule that has been utilized as a radiosensitizer to enhance the sensitivity of glioma to radiotherapy (RT). However, there is no effective drug delivery system to effectively overcome the blood-brain barrier (BBB). The aim of this study was to develop a gene delivery system by using the BBB and glioma dual-targeting and microenvironment-responsive micelles (ch-Kn(s-s)R8-An) to deliver Dbait into glioma for RT. Angiopep-2 can target the low-density lipoprotein receptor-related protein-1 (LRP1) that is overexpressed on brain capillary endothelial cells (BCECs) and glioma cells. In particular, due to upregulated matrix metalloproteinase 2 (MMP-2) in the tumor microenvironment, we utilized MMP-2-responsive peptides as the enzymatically degradable linkers to conjugate angiopep-2. The results showed that ch-Kn(s-s)R8-An micelles maintained a reasonable size (80-160 nm) with a moderate distribution and a decreased mean diameter from the cross-linking as well as exhibited low critical micelle concentration (CMC) with positive surface charge, ranging from 15 to 40 mV. The ch-K5(s-s)R8-An/pEGFP showed high gene transfection efficiency in vitro, improved uptake in glioma cells and good biocompatibility in vitro and in vivo. In addition, the combination of ch-K5(s-s)R8-An/Dbait with RT significantly inhibited the growth of U251 cells in vitro. Thus, ch-K5(s-s)R8-An/Dbait may prove to be a promising gene delivery system to target glioma and enhance the efficacy of RT on U251 cells.
Collapse
Key Words
- ATCC, American Type Culture Collection
- Arg, arginine
- BBB, blood–brain barrier
- BBTB, blood—brain tumor barriers
- CMC, critical micelle concentration
- Cell-penetrating peptides
- DTSSP, 3,3′-dithiobis(sulfosuccinimidylpropionate)
- DTT, dithiothreitol
- FBS, fetal bovine serum
- GBM, glioblastoma multiforme
- GSH, glutathione
- Gene delivery
- Glioma-targeting
- KnR8, cholesterol-polylysine-polyarginine peptide, n = 3, 5, 7
- Lys, lysine
- MMP-2, matrix metalloproteinase 2
- MWCO, molecular weight cutoff
- Microenvironment-responsive micelles
- PDI, polydispersity index
- PE, plating efficiency
- PEI, polyethylenimine
- RT, radiotherapy
- Radiosensitizer
- ch-Kn(s-s)R8-An, the disulfide cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- ch-KnR8-An, the non-cross-linked cholesterol-polylysine-polyarginine peptide core-shell polymer micelles modified with angiopep-2, n = 3, 5, 7
- pDNA, plasmid DNA
Collapse
Affiliation(s)
- Xiuxiu Jiao
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Yuan Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, Second Military Medical University, Shanghai 200082, China
| | - Jianxia Meng
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Mei He
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Charles Jian Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91768, USA
| | - Wenqian Geng
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai 200082, China
| | - Xueying Ding
- Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai 200080, China
| |
Collapse
|
419
|
Jesionek-Kupnicka D, Braun M, Trąbska-Kluch B, Czech J, Szybka M, Szymańska B, Kulczycka-Wojdala D, Bieńkowski M, Kordek R, Zawlik I. MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci 2019; 15:504-512. [PMID: 30899304 PMCID: PMC6425218 DOI: 10.5114/aoms.2017.69374] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION TP53 and MGMT alterations play a crucial role in glioblastoma (GB) pathogenesis. TP53 and MGMT function is affected by several pathologic mechanisms, such as point mutations or promoter methylation, which are well characterized. Expression of both genes can be regulated by other mechanisms as well, e.g., microRNAs (miRNAs). Moreover, cross-talk among various pathologic processes may occur, further affecting MGMT and TP53 functionality. MATERIAL AND METHODS In 49 GB patients, we analyzed the possible associations between TP53 and its miRNA regulators miR-125b, miR-21, and miR-34a, as well as MGMT and its miRNA regulators miR-181d and miR-648. We evaluated the possible influence of mutational and methylation status on the pre-identified associations. RESULTS In patients with immunohistochemistry-detected TP53 overexpression, expression levels of miR-34a and TP53 were negatively correlated (r = -0.56, p = 0.0195), and in patients with TP53 mutations, expression levels of TP53 and miR-21 were negatively correlated (r = -0.67, p = 0.0330). In patients with MGMT methylation, expression levels of MGMT were negatively correlated with miR-648 and miR-125b expression levels (r = -0.61, p = 0.0269 and r = -0.34, p = 0.0727, respectively). CONCLUSIONS Our findings demonstrate that selected miRNAs are significantly correlated with MGMT and TP53 levels, but the extent of this correlation differs regarding the TP53 and MGMT mutational and promoter methylation status.
Collapse
Affiliation(s)
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Joanna Czech
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Małgorzata Szybka
- Department of Microbiology and Laboratory Medical Immunology, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Bożena Szymańska
- Central Scientific Laboratory, Medical University of Lodz, Lodz, Poland
| | | | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Radzisław Kordek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Izabela Zawlik
- Department of Genetics, Chair of Molecular Medicine, Faculty of Medicine, University of Rzeszow, Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
420
|
MiR-218-5p targets LHFPL3 to regulate proliferation, migration, and epithelial-mesenchymal transitions of human glioma cells. Biosci Rep 2019; 39:BSR20180879. [PMID: 30314994 PMCID: PMC6395304 DOI: 10.1042/bsr20180879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/27/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is a main subtype of high-grade gliomas with features in progressive brain tumor. Lipoma HMGIC fusion partner-like 3 (LHFPL3) is reported to be highly expressed in malignant glioma, but the relationship and mechanism between LHFPL3 and tumor is inexplicit. The present study aimed to screen the miRNAs targeting LHFPL3 and verify the pathogenesis and development of gliomas. Bioinformatics software predicted that miR-218-5p and miR-138-5p can specifically bind to LHFPL3 mRNA. And the expression of miR-218-5p and miR-138-5p was down-regulated in glioma cell lines and glioma tissues from the patients compared with the normal cells. While dual luciferase activity experiment confirmed, only miR-218-5p can directly bind to LHFPL3. After miR-218-5p transfection of U251 and U87 cells, cytological examinations found a reduction in cell activity, proliferation and invasive ability. Further study showed that miR-218-5p transfection could inhibit epithelial–mesenchymal transitions (EMT). Therefore, miR-218-5p targeting LHFPL3 mRNA plays significant roles in preventing the invasiveness of glioma cells. The present study also revealed a novel mechanism for miRNA–LHFPL3 interaction in glioma cells, which may be potential targets for developing therapies in treating glioma.
Collapse
|
421
|
Kanemitsu T, Kawabata S, Fukumura M, Futamura G, Hiramatsu R, Nonoguchi N, Nakagawa F, Takata T, Tanaka H, Suzuki M, Masunaga SI, Ono K, Miyatake SI, Nakamura H, Kuroiwa T. Folate receptor-targeted novel boron compound for boron neutron capture therapy on F98 glioma-bearing rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:59-67. [PMID: 30474719 DOI: 10.1007/s00411-018-0765-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Folic acid (FA) has high affinity for the folate receptor (FR), which is limited expressed in normal human tissues, but over-expressed in several tumor cells, including glioblastoma cells. In the present work, a novel pteroyl-closo-dodecaborate conjugate (PBC) was developed, in which the pteroyl group interacts with FR, and the efficacy of boron neutron capture therapy (BNCT) using PBC was investigated. Thus, in vitro and in vivo studies were performed using F98 rat glioma cells and F98 glioma-bearing rats. For the in vivo study, boronophenylalanine (BPA) was intravenously administered, while PBC was administered by convection-enhanced delivery (CED)-a method for direct local drug infusion into the brain of rats. Furthermore, a combination of PBC administered by CED and BPA administered by intravenous (i.v.) injection was also investigated. In the biodistribution experiment, PBC administration at 6 h after CED termination showed the highest cellular boron concentrations (64.6 ± 29.6 µg B/g). Median survival time (MST) of untreated controls was 23.0 days (range 21-24 days). MST of rats administered PBC (CED) followed by neutron irradiation was 31 days (range 26-36 days), which was similar to that of rats administered i.v. BPA (30 days; range 25-37 days). Moreover, the combination group [PBC (CED) and i.v. BPA] showed the longest MST (38 days; range 28-40 days). It is concluded that a significant MST increase was noted in the survival time of the combination group of PBC (CED) and i.v. BPA compared to that in the single-boron agent groups. These findings suggest that the combination use of PBC (CED) has additional effects.
Collapse
Affiliation(s)
- Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan.
| | - Masao Fukumura
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Fumiko Nakagawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Shin-Ichiro Masunaga
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Shin-Ichi Miyatake
- Section for Advanced Medical Development, Cancer Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki City, Osaka, 569-8686, Japan
| |
Collapse
|
422
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
423
|
Zeng C, Xing W, Liu Y. Identification of UGP2 as a progression marker that promotes cell growth and motility in human glioma. J Cell Biochem 2019; 120:12489-12499. [PMID: 30816613 DOI: 10.1002/jcb.28515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/23/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Chun Zeng
- Department of Neurosurgery, West China Hospital Sichuan University Chengdu Sichuan China
| | - Wenli Xing
- Department of Neurosurgery Suining Central Hospital Suining China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
424
|
Kadiyala P, Li D, Nuñez FM, Altshuler D, Doherty R, Kuai R, Yu M, Kamran N, Edwards M, Moon JJ, Lowenstein PR, Castro MG, Schwendeman A. High-Density Lipoprotein-Mimicking Nanodiscs for Chemo-immunotherapy against Glioblastoma Multiforme. ACS NANO 2019; 13:1365-1384. [PMID: 30721028 PMCID: PMC6484828 DOI: 10.1021/acsnano.8b06842] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor, for which there is no cure. Treatment effectiveness for GBM has been limited due to tumor heterogeneity, an immunosuppressive tumor microenvironment (TME), and the presence of the blood-brain barrier, which hampers the transport of chemotherapeutic compounds to the central nervous system (CNS). High-density lipoprotein (HDL)-mimicking nanodiscs hold considerable promise to achieve delivery of bioactive compounds into tumors. Herein, we tested the ability of synthetic HDL nanodiscs to deliver chemotherapeutic agents to the GBM microenvironment and elicit tumor regression. To this end, we developed chemo-immunotherapy delivery vehicles based on sHDL nanodiscs loaded with CpG, a Toll-like receptor 9 (TLR9) agonist, together with docetaxel (DTX), a chemotherapeutic agent, for targeting GBM. Our data show that delivery of DTX-sHDL-CpG nanodiscs into the tumor mass elicited tumor regression and antitumor CD8+ T cell responses in the brain TME. We did not observe any overt off-target side effects. Furthermore, the combination of DTX-sHDL-CpG treatment with radiation (IR), which is the standard of care for GBM, resulted in tumor regression and long-term survival in 80% of GBM-bearing animals. Mice remained tumor-free upon tumor cell rechallenge in the contralateral hemisphere, indicating the development of anti-GBM immunological memory. Collectively, these data indicate that sHDL nanodiscs constitute an effective drug delivery platform for the treatment of GBM, resulting in tumor regression, long-term survival, and immunological memory when used in combination with IR. The proposed delivery platform has significant potential for clinical translation.
Collapse
Affiliation(s)
- Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dan Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fernando M. Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David Altshuler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rui Kuai
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Minzhi Yu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marta Edwards
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Lead Contacts
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Lead Contacts
| |
Collapse
|
425
|
Radiation Increases Functional KCa3.1 Expression and Invasiveness in Glioblastoma. Cancers (Basel) 2019; 11:cancers11030279. [PMID: 30813636 PMCID: PMC6468446 DOI: 10.3390/cancers11030279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/25/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is a deadly brain tumor, with fast recurrence even after surgical intervention, radio- and chemotherapies. One of the reasons for relapse is the early invasion of surrounding brain parenchyma by GBM, rendering tumor eradication difficult. Recent studies demonstrate that, in addition to eliminate possible residual tumoral cells after surgery, radiation stimulates the infiltrative behavior of GBM cells. The intermediate conductance of Ca2+-activated potassium channels (KCa3.1) play an important role in regulating the migration of GBM. Here, we show that high dose radiation of patient-derived GBM cells increases their invasion, and induces the transcription of key genes related to these functions, including the IL-4/IL-4R pair. In addition, we demonstrate that radiation increases the expression of KCa3.1 channels, and that their pharmacological inhibition counteracts the pro-invasive phenotype induced by radiation in tumor cells. Our data describe a possible approach to treat tumor resistance that follows radiation therapy in GBM patients.
Collapse
|
426
|
Zhang H, Wang J, Wang Z, Ruan C, Wang L, Guo H. Serum miR-100 is a potential biomarker for detection and outcome prediction of glioblastoma patients. Cancer Biomark 2019; 24:43-49. [PMID: 30530966 DOI: 10.3233/cbm-181416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huiping Zhang
- Department of Neurology, Baoji Hi-Tech People’s Hospital, Baoji, Shaanxi 721000, China
| | - Jianfeng Wang
- Department of Neurology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi 712000, China
| | - Zhanying Wang
- Department of Neurology, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi 712000, China
| | - Cailian Ruan
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Lu Wang
- Medical College, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Hongtao Guo
- College of Physical Education, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
427
|
Gao Y, Liu B, Feng L, Sun B, He S, Yang Y, Wu G, E G, Liu C, Gao Y, Zhang E, Zhu B. Targeting JUN, CEBPB, and HDAC3: A Novel Strategy to Overcome Drug Resistance in Hypoxic Glioblastoma. Front Oncol 2019; 9:33. [PMID: 30775317 PMCID: PMC6367651 DOI: 10.3389/fonc.2019.00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/14/2019] [Indexed: 11/23/2022] Open
Abstract
Hypoxia is a predominant feature in glioblastoma (GBM) and contributes greatly to its drug resistance. However, the molecular mechanisms which are responsible for the development of the resistant phenotype of GBM under hypoxic conditions remain unclear. To analyze the key pathways promoting therapy resistance in hypoxic GBM, we utilized the U87-MG cell line as a human GBM cell model and the human brain HEB cell line as a non-neoplastic brain cell model. These cell lines were cultured in the presence of 21, 5, and 1% O2 for 24 h. We detected the changes in transcriptional profiling and analyzed the biological processes and functional interactions for the genes with different expression levels under different hypoxia conditions. The results indicated that those alterations of U87-MG cells presented specific transcriptional signature in response to diverse hypoxia levels. Gene ontology analysis revealed that the genes related to the DNA replication and cell cycle were suppressed, while the genes involved in tissue and system development to promote cancer development were activated following hypoxia. Moreover, functional interaction analysis suggested that the epigenetic regulator HDAC3 and the transcriptional factors CEBPB and JUN played a central role in organ and system developmental process pathway. Previous studies reported the global alterations caused by activation of HDAC3, CEBPB, and JUN could form the molecular basis of the resistance to chemotherapy and radiation therapy of hypoxic GBM. In our study, the significant growth inhibitory effect of temozolomide on hypoxic GBM cells could be promoted under downregulation of these genes. The experiment suggested that HDAC3, CEBPB, and JUN were closely involved in the drug-resistance phenotype of hypoxic GBM. In summary, we profiled the hypoxia-dependent changes in the transcriptome of the U87-MG cell line and the human brain cell line HEB to identify the transcriptional signatures of U87-MG cells and elucidate the role of hypoxia in the drug-resistant phenotype of GBM. Furthermore, we identified three key genes and explored their important roles in the drug resistance of hypoxic GBM.
Collapse
Affiliation(s)
- Yixing Gao
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yidong Yang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Chang Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
428
|
Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E105. [PMID: 30654536 PMCID: PMC6359729 DOI: 10.3390/nano9010105] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme is the most common and aggressive primary brain tumor. Even with aggressive treatment including surgical resection, radiation, and chemotherapy, patient outcomes remain poor, with five-year survival rates at only 10%. Barriers to treatment include inefficient drug delivery across the blood brain barrier and development of drug resistance. Because gliomas occur due to sequential acquisition of genetic alterations, gene therapy represents a promising alternative to overcome limitations of conventional therapy. Gene or nucleic acid carriers must be used to deliver these therapies successfully into tumor tissue and have been extensively studied. Viral vectors have been evaluated in clinical trials for glioblastoma gene therapy but have not achieved FDA approval due to issues with viral delivery, inefficient tumor penetration, and limited efficacy. Non-viral vectors have been explored for delivery of glioma gene therapy and have shown promise as gene vectors for glioma treatment in preclinical studies and a few non-polymeric vectors have entered clinical trials. In this review, delivery systems including viral, non-polymeric, and polymeric vectors that have been used in glioblastoma multiforme (GBM) gene therapy are discussed. Additionally, advances in glioblastoma gene therapy using viral and non-polymeric vectors in clinical trials and emerging polymeric vectors for glioma gene therapy are discussed.
Collapse
Affiliation(s)
- Breanne Caffery
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Jeoung Soo Lee
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
| | - Angela A Alexander-Bryant
- Drug Design, Development, and Delivery (4D) Laboratory, Clemson University, Clemson, SC 29634, USA.
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
429
|
Activation of Dopamine Receptor 2 Prompts Transcriptomic and Metabolic Plasticity in Glioblastoma. J Neurosci 2019; 39:1982-1993. [PMID: 30651332 DOI: 10.1523/jneurosci.1589-18.2018] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal tumor types. Evidence continues to accrue indicating that the complex relationship between GBM and the brain microenvironment contributes to this malignant phenotype. However, the interaction between GBM and neurotransmitters, signaling molecules involved in neuronal communication, remains incompletely understood. Here we examined, using human patient-derived xenograft lines, how the monoamine dopamine influences GBM cells. We demonstrate that GBM cells express dopamine receptor 2 (DRD2), with elevated expression in the glioma-initiating cell (GIC) population. Stimulation of DRD2 caused a neuron-like hyperpolarization exclusively in GICs. In addition, long-term activation of DRD2 heightened the sphere-forming capacity of GBM cells, as well as tumor engraftment efficiency in both male and female mice. Mechanistic investigation revealed that DRD2 signaling activates the hypoxia response and functionally alters metabolism. Finally, we found that GBM cells synthesize and secrete dopamine themselves, suggesting a potential autocrine mechanism. These results identify dopamine signaling as a potential therapeutic target in GBM and further highlight neurotransmitters as a key feature of the pro-tumor microenvironment.SIGNIFICANCE STATEMENT This work offers critical insight into the role of the neurotransmitter dopamine in the progression of GBM. We show that dopamine induces specific changes in the state of tumor cells, augmenting their growth and shifting them to a more stem-cell like state. Further, our data illustrate that dopamine can alter the metabolic behavior of GBM cells, increasing glycolysis. Finally, this work demonstrates that GBM cells, including tumor samples from patients, can synthesize and secrete dopamine, suggesting an autocrine signaling process underlying these results. These results describe a novel connection between neurotransmitters and brain cancer, further highlighting the critical influence of the brain milieu on GBM.
Collapse
|
430
|
Topyalin N, Budak M, Ozbay N, Yildiz M, Kaner T, Aydin A, Gezen AF. A comparative histopathological and immunohistochemical study of Survivin and Ki-67 proteins in glial tumours. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1591931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Nur Topyalin
- Neurosurgery Clinic, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Metin Budak
- Faculty of Medicine, Department of Biophysics, Trakya University, Edirne, Turkey
| | - Nurver Ozbay
- Department of Pathology, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Yildiz
- Faculty of Medicine, Department of Biophysics, Trakya University, Edirne, Turkey
| | - Tuncay Kaner
- Neurosurgery Clinic, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Abdullah Aydin
- Neurosurgery Clinic, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Ferruh Gezen
- Neurosurgery Clinic, Istanbul Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
431
|
Liang R, Zhi Y, Zheng G, Zhang B, Zhu H, Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization. Onco Targets Ther 2018; 12:157-168. [PMID: 30613154 PMCID: PMC6306053 DOI: 10.2147/ott.s171957] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose This study focused on identification of long non-coding RNAs (lncRNAs) for prognosis prediction of glioblastoma (GBM) through weighted gene co-expression network analysis (WGCNA) and L1-penalized least absolute shrinkage and selection operator (LASSO) Cox proportional hazards (PH) model. Materials and methods WGCNA was performed based on RNA expression profiles of GBM from Chinese Glioma Genome Atlas (CGGA), National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), and the European Bioinformatics Institute ArrayExpress for the identification of GBM-related modules. Subsequently, prognostic lncRNAs were determined using LASSO Cox PH model, followed by constructing a risk scoring model based on these lncRNAs. The risk score was used to divide patients into high- and low-risk groups. Difference in survival between groups was analyzed using Kaplan-Meier survival analysis. IncRNA-mRNA networks were built for the prognostic lncRNAs, followed by pathway enrichment analysis for these networks. Results This study identified eight preserved GBM-related modules, including 188 lncRNAs. Consequently, C20orf166-AS1, LINC00645, LBX2-AS1, LINC00565, LINC00641, and PRRT3-AS1 were identified by LASSO Cox PH model. A risk scoring model based on the lncRNAs was constructed that could divide patients into different risk groups with significantly different survival rates. Prognostic value of this six-lncRNA signature was validated in two independent sets. C20orf166-AS1 was associated with antigen processing and presentation and cell adhesion molecule pathways, involving nine common genes. LBX2-AS1, LINC00641, PRRT3-AS1, and LINC00565 were related to focal adhesion, extracellular matrix receptor interaction, and mitogen-activated protein kinase signaling pathways, which shared 12 common genes. Conclusion This prognostic six-lncRNA signature may improve prognosis prediction of GBM. This study reveals many pathways and genes involved in the mechanisms behind these lncRNAs.
Collapse
Affiliation(s)
- Ruqing Liang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province 272000, China
| | - Yaqin Zhi
- Department of Oncology, Jining No 1 People's Hospital, Jining, Shandong Province 272000, China,
| | - Guizhi Zheng
- College of Integrated Chinese and Western Medicine, Jining Medical College, Jining, Shangdong 272067, China
| | - Bin Zhang
- Department of Oncology, Jining No 1 People's Hospital, Jining, Shandong Province 272000, China,
| | - Hua Zhu
- Department of Oncology, Jining No 1 People's Hospital, Jining, Shandong Province 272000, China,
| | - Meng Wang
- Department of Oncology, Jining No 1 People's Hospital, Jining, Shandong Province 272000, China,
| |
Collapse
|
432
|
Lu WJ, Wu GJ, Chen RJ, Chang CC, Lien LM, Chiu CC, Tseng MF, Huang LT, Lin KH. Licochalcone A attenuates glioma cell growth in vitro and in vivo through cell cycle arrest. Food Funct 2018; 9:4500-4507. [PMID: 30083664 DOI: 10.1039/c8fo00728d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Licochalcone A (LA), an active ingredient of licorice, has multiple biological activities, including antioxidative and anti-inflammatory activities. Although LA exerts antitumor effects in various cancer cells, its role in gliomas remains unclear. Therefore, this study determined whether LA inhibits glioma cell growth in vitro and in vivo. The present data revealed that LA effectively inhibited the growth of U87 glioma cells by inducing cell cycle arrest in the G0/G1 and G2/M phases; cell cycle arrest was attributed to the LA-mediated reduction of mRNA and protein levels of cyclins and cyclin-dependent kinases. Moreover, subcutaneous (flank) and orthotopic (brain) tumor models were used to determine the role of LA in gliomas. LA significantly alleviated tumor growth in both models. These findings indicate that LA exerts antitumor effects in gliomas in vitro and in vivo and that it is a potential agent for treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Wan Jung Lu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
433
|
Wu N, Zhang C, Wang C, Song L, Yao W, Gedanken A, Lin X, Shi D. Zinc-doped copper oxide nanocomposites reverse temozolomide resistance in glioblastoma by inhibiting AKT and ERK1/2. Nanomedicine (Lond) 2018; 13:1303-1318. [PMID: 29949469 DOI: 10.2217/nnm-2017-0359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To assess the effect of zinc-doped copper oxide nanocomposites (nZn-CuO NPs) on glioblastoma therapy. MATERIALS & METHODS nZn-CuO NPs were synthesized by sonochemical method and its antitumor effects and underlying molecular mechanisms were investigated both in vitro and in vivo. RESULTS After nZn-CuO NPs treatment, cell proliferation was significantly inhibited in dividing cancer cells but less toxicity was observed in normal cells. In vivo studies show that nZn-CuO NPs inhibited tumor growth in a dose-dependent manner. Further study found that nZn-CuO NPs trigger cell reactive oxygen species (ROS) generation and intrinsic apoptotic pathway. In temozolomide resistance glioblastoma, nZn-CuO NPs disturb cell growth and sphere formation by inhibiting AKT and ERK1/2 activation. CONCLUSION nZn-CuO NPs possess the potential to be developed as a novel anti-tumor agent, especially to treat temozolomide resistance glioblastoma.
Collapse
Affiliation(s)
- Ning Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chunyun Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Changhui Wang
- Shanghai Neuromedical Center, Qingdao University, Shanghai, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weicheng Yao
- Department of Neurosurgery, Qingdao University, Qingdao, China
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Dayong Shi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs & Bioproducts, Qingdao National Laboratory for Marine Science & Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
434
|
Cheng P, Ma Y, Gao Z, Duan L. High Mobility Group Box 1 (HMGB1) Predicts Invasion and Poor Prognosis of Glioblastoma Multiforme via Activating AKT Signaling in an Autocrine Pathway. Med Sci Monit 2018; 24:8916-8924. [PMID: 30531692 PMCID: PMC6296343 DOI: 10.12659/msm.912104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background As a nuclear protein and a secreted protein, HMGB1 is involved in many cellular processes such as proliferation, transcription, and inflammation. The overexpression of HMGB1 in various types of cancers is reported, but its clinical significance and prognostic value in glioblastoma multiforme (GBM) has not been well defined. Material/Methods The expression of HMGB1 in 116 patients with GBM was investigated with immunohistochemistry, and was detected with qRT-PCR in 12 pairs of tumor tissues and adjacent tissues. The correlations between HMGB1 and clinicopathological factors were analyzed with the chi-square test. Prognostic value of HMGB1 was evaluated with univariate analysis and multivariate analysis. By knocking down HMGB1 by siRNA, the functions of HMGB1 in progression of GBM cell lines were investigated by experiments in vitro. Results In our study, patients with high HMGB1 expression accounted for 42.2% of all the patients. High HMGB1 was correlated with low survival rates and was identified as an independent prognostic factor of GBM. Knockdown of intracellular HMGB1 remarkably decreased GBM cells proliferation and invasion. In hypoxia, intracellular HMGB1 of GBM cells was released out and activated AKT and ERK signaling pathways, thus promoting GBM cell invasion in this autocrine pathway. Conclusions HMGB1 is an independent prognostic biomarker for unfavorable prognosis of patients with GBM. Released HMGB1 of GBM cells can activate AKT and ERK signaling pathways and promote GBM cells invasion in this autocrine pathway, indicating that anti-HMGB1 therapy may be a promising treatment for GBM.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Yun Ma
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Zhiqiang Gao
- Department of Nephrology, Yidu Central Hospital of Weifang, Weifang, Shandong, China (mainland)
| | - Lingling Duan
- Department of Geriatric Medicine, Jinan Central Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
435
|
Toma M, Witusik-Perkowska M, Szwed M, Stawski R, Szemraj J, Drzewiecka M, Nieborowska-Skorska M, Radek M, Kolasa P, Matlawska-Wasowska K, Sliwinski T, Skorski T. Eradication of LIG4-deficient glioblastoma cells by the combination of PARP inhibitor and alkylating agent. Oncotarget 2018; 9:36867-36877. [PMID: 30627327 PMCID: PMC6305145 DOI: 10.18632/oncotarget.26409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer cells often accumulate spontaneous and treatment-induced DNA damage i.e. potentially lethal DNA double strand breaks (DSBs). Targeting DSB repair mechanisms with specific inhibitors could potentially sensitize cancer cells to the toxic effect of DSBs. Current treatment for glioblastoma includes tumor resection followed by radiotherapy and/or temozolomide (TMZ) - an alkylating agent inducing DNA damage. We hypothesize that combination of PARP inhibitor (PARPi) with TMZ in glioblastoma cells displaying downregulation of DSB repair genes could trigger synthetic lethality. In our study, we observed that PARP inhibitor (BMN673) was able to specifically sensitize DNA ligase 4 (LIG4)-deprived glioblastoma cells to TMZ while normal astrocytes were not affected. LIG4 downregulation resulting in low effectiveness of DNA-PK-mediated non-homologous end-joining (D-NHEJ), which in combination with BMN673 and TMZ resulted in accumulation of lethal DSBs and specific eradication of glioblastoma cells. Restoration of the LIG4 expression caused loss of sensitivity to BMN673+TMZ. In conclusion, PARP inhibitor combined with DNA damage inducing agents can be utilized in patients with glioblastoma displaying defects in D-NHEJ.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Marzena Szwed
- Department of Medical Biophysics, University of Lodz, Lodz, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Malgorzata Drzewiecka
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Margaret Nieborowska-Skorska
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Maciej Radek
- Department of Neurosurgery, Surgery of Spine and Peripheral Nerves, Medical University of Lodz, University Hospital WAM-CSW, Lodz, Poland
| | - Pawel Kolasa
- Department of Neurosurgery, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
- Social Sciences Academy in Lodz, Lodz, Poland
| | - Ksenia Matlawska-Wasowska
- Division of Pediatric Research, Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
436
|
Jiang Y, Zhang J, Meng F, Zhong Z. Apolipoprotein E Peptide-Directed Chimeric Polymersomes Mediate an Ultrahigh-Efficiency Targeted Protein Therapy for Glioblastoma. ACS NANO 2018; 12:11070-11079. [PMID: 30395440 DOI: 10.1021/acsnano.8b05265] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The inability to cross the blood-brain barrier (BBB) prevents nearly all chemotherapeutics and biotherapeutics from the effective treatment of brain tumors, rendering few improvements in patient survival rates to date. Here, we report that apolipoprotein E peptide [ApoE, (LRKLRKRLL)2C] specifically binds to low-density lipoprotein receptor members (LDLRs) and mediates superb BBB crossing and highly efficient glioblastoma (GBM)-targeted protein therapy in vivo. The in vitro BBB model studies reveal that ApoE induces 2.2-fold better penetration of the immortalized mouse brain endothelial cell line (bEnd.3) monolayer for chimeric polymersomes (CP) compared to Angiopep-2, the best-known BBB-crossing peptide used in clinical trials for GBM therapy. ApoE-installed CP (ApoE-CP) carrying saporin (SAP) displays a highly specific and potent antitumor effect toward U-87 MG cells with a low half-maximum inhibitory concentration of 14.2 nM SAP. Notably, ApoE-CP shows efficient BBB crossing as well as accumulation and penetration in orthotopic U-87 MG glioblastoma. The systemic administration of SAP-loaded ApoE-CP causes complete growth inhibition of orthotopic U-87 MG GBM without eliciting any observable adverse effects, affording markedly improved survival benefits. ApoE peptide provides an ultrahigh-efficiency targeting strategy for GBM therapy.
Collapse
Affiliation(s)
- Yu Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , PR China
| |
Collapse
|
437
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
438
|
Du S, Sarver JG, Trabbic CJ, Erhardt PW, Schroering A, Maltese WA. 6-MOMIPP, a novel brain-penetrant anti-mitotic indolyl-chalcone, inhibits glioblastoma growth and viability. Cancer Chemother Pharmacol 2018; 83:237-254. [PMID: 30426158 DOI: 10.1007/s00280-018-3726-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE 3-(6-Methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propene-1-one (6-MOMIPP) is a novel indole-based chalcone that disrupts microtubules. The present study aims to define the mechanism through which 6-MOMIPP induces cell death and to evaluate the efficacy of the compound in penetrating the blood-brain barrier and inhibiting growth of glioblastoma xenografts. METHODS The effects of 6-MOMIPP were evaluated in cultured U251 glioblastoma cells, using viability, flow cytometry, and tubulin polymerization assays. Scintillation proximity and tubulin crosslinking methods were used to identify the binding site of 6-MOMIPP on tubulin, and western blots were performed to define the signaling pathways that contribute to cell death. LC/MS assays were used to study the pharmacokinetic behavior of 6-MOMIPP in mice. Subcutaneous and intracerebral xenograft models were utilized to assess the effects of 6-MOMIPP on growth of U251 glioblastoma in vivo. RESULTS The findings indicate that 6-MOMIPP targets the colchicine site on β-tubulin. At concentrations ≥ 250 nm, 6-MOMIPP induces mitotic arrest, caspase activation and loss of cell viability. Cells are protected by caspase inhibitors, pointing to an apoptotic mechanism of cell death. Loss of cell viability is preceded by activation of Cdk1(Cdc2) and phosphorylation of Bcl-2 and Bcl-xL. Inhibition of both events with a Cdk1 inhibitor prevents cell death. 6-MOMIPP has broad activity against the viability of multiple glioblastoma, melanoma and lung carcinoma cell lines. Viability of normal cells, including differentiated neurons, is not significantly affected at a drug concentration (1 µM) that reduces viability in most cancer lines. Pharmacokinetic studies in mice show that concentrations of 6-MOMIPP in the brain mirror those in the plasma, indicating that 6-MOMIPP readily penetrates the blood-brain barrier. Studies with mice bearing human U251 glioblastoma xenografts demonstrate that 6-MOMIPP is effective in suppressing growth of subcutaneous and intracerebral tumors without causing general toxicity. CONCLUSIONS The results indicate that 6-MOMIPP is a novel microtubule disruptor that targets the colchicine binding site on β-tubulin to induce mitotic arrest and cell death. The ability of 6-MOMIPP to penetrate the blood-brain barrier and inhibit growth of glioblastoma xenografts suggests that it warrants further preclinical evaluation as potential small-molecule therapeutic that may have advantages in treating primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Shengnan Du
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Christopher J Trabbic
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Paul W Erhardt
- Center for Drug Design and Development, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 2810 W. Bancroft Street, Toledo, OH, 43606, USA
| | - Allen Schroering
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - William A Maltese
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
439
|
Differentiation between pilocytic astrocytoma and glioblastoma: a decision tree model using contrast-enhanced magnetic resonance imaging-derived quantitative radiomic features. Eur Radiol 2018; 29:3968-3975. [PMID: 30421019 DOI: 10.1007/s00330-018-5706-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/08/2018] [Accepted: 08/06/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To differentiate brain pilocytic astrocytoma (PA) from glioblastoma (GBM) using contrast-enhanced magnetic resonance imaging (MRI) quantitative radiomic features by a decision tree model. METHODS Sixty-six patients from two centres (PA, n = 31; GBM, n = 35) were randomly divided into training and validation data sets (about 2:1). Quantitative radiomic features of the tumours were extracted from contrast-enhanced MR images. A subset of features was selected by feature stability and Boruta algorithm. The selected features were used to build a decision tree model. Predictive accuracy, sensitivity and specificity were used to assess model performance. The classification outcome of the model was combined with tumour location, age and gender features, and multivariable logistic regression analysis and permutation test using the entire data set were performed to further evaluate the decision tree model. RESULTS A total of 271 radiomic features were successfully extracted for each tumour. Twelve features were selected as input variables to build the decision tree model. Two features S(1, -1) Entropy and S(2, -2) SumAverg were finally included in the model. The model showed an accuracy, sensitivity and specificity of 0.87, 0.90 and 0.83 for the training data set and 0.86, 0.80 and 0.91 for the validation data set. The classification outcome of the model related to the actual tumour types and did not rely on the other three features (p < 0.001). CONCLUSIONS A decision tree model with two features derived from the contrast-enhanced MR images performed well in differentiating PA from GBM. KEY POINTS • MRI findings of PA and GBM are sometimes very similar. • Radiomics provides much more quantitative information about tumours. • Radiomic features can help to distinguish PA from GBM.
Collapse
|
440
|
Kuo YC, Chang YH, Rajesh R. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol)‑poly(ε‑caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:114-128. [PMID: 30606517 DOI: 10.1016/j.msec.2018.10.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Wheat germ agglutinin (WGA) and folic acid (FA)-grafted methoxy poly(ethylene glycol) (MPEG)‑poly(ε‑caprolactone) (PCL) nanoparticles (WFNPs) were applied to transport anticancer drugs across the blood-brain barrier and treat glioblastoma multiforme (GBM). PCL was copolymerized with MPEG, and MPEG-PCL NPs were stabilized with pluronic F127 using a microemulsion-solvent evaporation technique and crosslinked with WGA and FA. The targeting ability of WFNPs loaded with etoposide (ETO), carmustine (BCNU) and doxorubicin (DOX) was investigated via the binding affinity of drug-loaded NP formulations to N‑acetylglucosamine expressed in human brain microvascular endothelial cells and to folate receptor in malignant U87MG cells. We found that a shorter PCL chain in drug-loaded MPEG-PCL NPs yielded a smaller average size of the particles. An increase in PCL chain length (stronger hydrophobicity) enhanced drug entrapment efficiencies in MPEG-PCL NPs, and reduced drug-releasing rates from NP formulations. In addition, anti-proliferative activity against U87MG cells for the 3 drugs followed the order of WFNPs > FA-grafted NPs > WGA-grafted NPs > MPEG-PCL NPs. Immunofluorescence staining revealed that the ligands of drug-loaded WFNPs connected to N‑acetylglucosamine and folate receptor with the help of surface WGA and FA. WFNPs carrying ETO, BCNU and DOX acted as dual-targeting nanocarriers, and their use can be a promising approach to inhibiting GBM growth in the brain.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China.
| | - Yu-Hsuan Chang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| |
Collapse
|
441
|
Xu PF, Yang JA, Liu JH, Yang X, Liao JM, Yuan FE, Liu BH, Chen QX. PI3Kβ inhibitor AZD6482 exerts antiproliferative activity and induces apoptosis in human glioblastoma cells. Oncol Rep 2018; 41:125-132. [PMID: 30542720 PMCID: PMC6278584 DOI: 10.3892/or.2018.6845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common type of primary brain tumour in adults, and its pathogenesis is particularly complicated. Among the many possible mechanisms underlying its pathogenesis, hyperactivation of the PI3K/Akt pathway is essential to the occurrence and development of glioma through the loss of PTEN or somatic activating mutations in PIK3CA. In the present study, we investigated the effect of the PI3Kβ inhibitor AZD6482 on glioma cells. The CCK-8 assay showed dose-dependent cytotoxicity in glioma cell lines treated with AZD6482. Additionally, AZD6482 treatment was found to significantly induce apoptosis and cell cycle arrest as detected using flow cytometry. Moreover, as shown using western blot analysis, the levels of p-AKT, p-GSK-3β, Bcl-2, and cyclin D1 were decreased after AZD6482 treatment. In addition, we found that AZD6482 inhibited the migration and invasion of glioma cells as detected by wound healing and Transwell invasion assays. Taken together, our findings indicate that AZD6482 exerts an antitumour effect by inhibiting proliferation and inducing apoptosis in human glioma cells. AZD6482 may be applied as an adjuvant therapy to improve the therapeutic efficacy of glioblastoma treatment.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jun-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian-Ming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
442
|
Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Mol Cell Proteomics 2018; 17:2132-2145. [PMID: 30072578 PMCID: PMC6210219 DOI: 10.1074/mcp.ra118.000792] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/22/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Furthermore, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Eilon Barnea
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Yael Haimovich
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Slobodin
- §Rheumatology Unit Bnai Zion Medical Center, Haifa 31048, Israel
| | - Itzhak Rosner
- §Rheumatology Unit Bnai Zion Medical Center, Haifa 31048, Israel
| | | | - Norbert Hilf
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Sabrina Kuttruff
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Colette Song
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Cedrik Britten
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - John Castle
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | | | | | - Marcos Tatagiba
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ghazaleh Tabatabai
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Pierre-Yves Dietrich
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Valérie Dutoit
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Wolfgang Wick
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Michael Platten
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Frank Winkler
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Andreas von Deimling
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Judith Kroep
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juan Sahuquillo
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Martinez-Ricarte
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ulrik Lassen
- ‡‡‡Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Christian Ottensmeier
- §§§Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sjoerd H van der Burg
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - Per Thor Straten
- ‡‡‡Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- ‖‖‖Rigshospitalet, Departments of Radiation Biology and Oncology, Rigshospitalet 9, Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - Berta Ponsati
- ****BCN Peptides, Pol. Ind. Els Vinyets-Els Fogars II. 08777 Sant Quinti de Mediona (Barcelona), Spain
| | - Hideho Okada
- ‡‡‡‡University of California, San Francisco, CA 94131 USA
| | - Hans-Georg Rammensee
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ugur Sahin
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | - Harpreet Singh
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Arie Admon
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
443
|
Saini J, Kumar Gupta P, Awasthi A, Pandey C, Singh A, Patir R, Ahlawat S, Sadashiva N, Mahadevan A, Kumar Gupta R. Multiparametric imaging-based differentiation of lymphoma and glioblastoma: using T1-perfusion, diffusion, and susceptibility-weighted MRI. Clin Radiol 2018; 73:986.e7-986.e15. [DOI: 10.1016/j.crad.2018.07.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/31/2018] [Indexed: 01/19/2023]
|
444
|
Xu P, Yang J, Liu J, Yang X, Liao J, Yuan F, Xu Y, Liu B, Chen Q. Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis. BMC Med Genomics 2018; 11:96. [PMID: 30382873 PMCID: PMC6211550 DOI: 10.1186/s12920-018-0407-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/25/2018] [Indexed: 02/03/2023] Open
Abstract
Background Glioblastoma multiforme, the most prevalent and aggressive brain tumour, has a poor prognosis. The molecular mechanisms underlying gliomagenesis remain poorly understood. Therefore, molecular research, including various markers, is necessary to understand the occurrence and development of glioma. Method Weighted gene co-expression network analysis (WGCNA) was performed to construct a gene co-expression network in TCGA glioblastoma samples. Gene ontology (GO) and pathway-enrichment analysis were used to identify significance of gene modules. Cox proportional hazards regression model was used to predict outcome of glioblastoma patients. Results We performed weighted gene co-expression network analysis (WGCNA) and identified a gene module (yellow module) related to the survival time of TCGA glioblastoma samples. Then, 228 hub genes were calculated based on gene significance (GS) and module significance (MS). Four genes (OSMR + SOX21 + MED10 + PTPRN) were selected to construct a Cox proportional hazards regression model with high accuracy (AUC = 0.905). The prognostic value of the Cox proportional hazards regression model was also confirmed in GSE16011 dataset (GBM: n = 156). Conclusion We developed a promising mRNA signature for estimating overall survival in glioblastoma patients. Electronic supplementary material The online version of this article (10.1186/s12920-018-0407-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Jian Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Jianming Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 9 Zhangzhidong Road and 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
445
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
446
|
Yang L, Li N, Yan Z, Li C, Zhao Z. MiR-29a-Mediated CD133 Expression Contributes to Cisplatin Resistance in CD133+ Glioblastoma Stem Cells. J Mol Neurosci 2018; 66:369-377. [DOI: 10.1007/s12031-018-1177-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
447
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
448
|
Xue J, Wu Y, Liu N. Ultrasound Enhanced Anti-tumor Effect of Temozolomide in Glioblastoma Cells and Glioblastoma Mouse Model. Cell Mol Bioeng 2018; 12:99-106. [PMID: 31719901 DOI: 10.1007/s12195-018-0553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/29/2018] [Indexed: 11/28/2022] Open
Abstract
Introduction Glioblastoma is the most aggressive cancer that begins within the brain. In clinic, temozolomide was used as anti-tumor drugs for glioblastoma chemotherapy, but showed limited effect. Therefore, how to improve the effect of temozolomide to glioblastoma is urgently needed. Methods The cell viability of T98G cells was detected by cell counting kit-8 (CCK-8) assay. Apoptosis was detected using the Annexin-V-FITC & PI apoptosis kit and assessed by flow cytometry. The expression levels of Bax, B cell lymphoma 2 (Bcl-2), phos-Jun N-terminal kinases (JNK), phos-extracellular signal-regulated kinases (ERK) and phos-p38 were determined by western blot. The effect of ultrasound and temozolomide combination in mice was determined by survival analysis. Results Compared with temozolomide treatment alone, ultrasound and temozolomide combination inhibited the cell viability, and promotes apoptosis of human glioblastoma T98G cells. Bax level increased, while Bcl-2 level decreased in combination group. Mechanically, combination treatment promoted apoptosis via JNK and p38 pathways. In mouse glioblastoma model, combination treatment improved overall survival. Conclusions Ultrasound enhanced anti-tumor effect of temozolomide in glioblastoma cells via JNK and p38 pathways.
Collapse
Affiliation(s)
- Jie Xue
- Department of Ultrasonography, Yantai Yuhuangding Hospital, 20# Yuhuangding East Road, Zhifu District, Yantai, 264000 Shandong China
| | - Yuanyuan Wu
- Department of Ultrasound, Central Hospital of Weihai, 3 West Mi Shan East Road, Wendeng District, Weihai, 264400 Shandong China
| | - Na Liu
- Department of Special Inspection, Yantai Yeda Hospital, Yantai Economic and Technological Development Area, No. 23-1 the Yellow River Road, Yantai, 264006 Shandong China
| |
Collapse
|
449
|
Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Iacopino DG, Campanella C. Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives. Int J Mol Sci 2018; 19:E2626. [PMID: 30189598 PMCID: PMC6164348 DOI: 10.3390/ijms19092626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90143 Palermo, Italy.
| | - Francesca Graziano
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Domenico G Iacopino
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| |
Collapse
|
450
|
Liu H, Zhou M, Sheng Z, Chen Y, Yeh CK, Chen W, Liu J, Liu X, Yan F, Zheng H. Theranostic nanosensitizers for highly efficient MR/fluorescence imaging-guided sonodynamic therapy of gliomas. J Cell Mol Med 2018; 22:5394-5405. [PMID: 30156368 PMCID: PMC6201228 DOI: 10.1111/jcmm.13811] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Glioma is the most frequent primary brain tumour of the central nervous system. Its high aggressiveness and deep‐seated brain lesion make it a great challenge to develop a non‐invasive, precise and effective treatment approach. Here, we report a multifunctional theranostic agent that can integrate imaging and therapy into a single nano‐platform for imaging‐guided sonodynamic therapy (SDT). The SDT agents were fabricated by encapsulation of sinoporphyrin sodium (DVDMS) chelating with manganese ions into nanoliposomes (DVDMS‐Mn‐LPs). DVDMS‐Mn‐LPs are physiologically stable and biologically compatible, and they can produce singlet oxygen upon ultrasound irradiation to kill cancer cells. Both cell and animal studies demonstrated that SDT with DVDMS‐Mn‐LPs can significantly improve the antitumour growth efficiency even in the presence of skull. In addition, DVDMS‐Mn‐LPs are good for MR and fluorescence imaging. Thus, DVDMS‐Mn‐LPs reported here may provide a promising strategy for imaging‐guided modality for glioma treatment.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Ultrasonography, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meijun Zhou
- Department of Ultrasonography, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Wenting Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Jia Liu
- Department of Ultrasonography, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Yan
- Department of Ultrasonography, Guangdong Second Provincial General Hospital, Guangzhou, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Department of Ultrasonography, Guangdong Second Provincial General Hospital, Guangzhou, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|