401
|
Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 2006; 26:821-35. [PMID: 16251887 PMCID: PMC2570707 DOI: 10.1038/sj.jcbfm.9600234] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resuscitation and prolonged ventilation using 100% oxygen after cardiac arrest is standard clinical practice despite evidence from animal models indicating that neurologic outcome is improved using normoxic compared with hyperoxic resuscitation. This study tested the hypothesis that normoxic ventilation during the first hour after cardiac arrest in dogs protects against prelethal oxidative stress to proteins, loss of the critical metabolic enzyme pyruvate dehydrogenase complex (PDHC), and minimizes subsequent neuronal death in the hippocampus. Anesthetized beagles underwent 10 mins ventricular fibrillation cardiac arrest, followed by defibrillation and ventilation with either 21% or 100% O2. At 1 h after resuscitation, the ventilator was adjusted to maintain normal blood gas levels in both groups. Brains were perfusion-fixed at 2 h reperfusion and used for immunohistochemical measurements of hippocampal nitrotyrosine, a product of protein oxidation, and the E1alpha subunit of PDHC. In hyperoxic dogs, PDHC immunostaining diminished by approximately 90% compared with sham-operated dogs, while staining in normoxic animals was not significantly different from nonischemic dogs. Protein nitration in the hippocampal neurons of hyperoxic animals was 2-3 times greater than either sham-operated or normoxic resuscitated animals at 2 h reperfusion. Stereologic quantification of neuronal death at 24 h reperfusion showed a 40% reduction using normoxic compared with hyperoxic resuscitation. These results indicate that postischemic hyperoxic ventilation promotes oxidative stress that exacerbates prelethal loss of pyruvate dehydrogenase and delayed hippocampal neuronal cell death. Moreover, these findings indicate the need for clinical trials comparing the effects of different ventilatory oxygen levels on neurologic outcome after cardiac arrest.
Collapse
Affiliation(s)
- Viktoria Vereczki
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
402
|
Richards EM, Rosenthal RE, Kristian T, Fiskum G. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radic Biol Med 2006; 40:1960-70. [PMID: 16716897 PMCID: PMC2570699 DOI: 10.1016/j.freeradbiomed.2006.01.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 01/04/2023]
Abstract
The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21-30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite.
Collapse
Affiliation(s)
- Erica M. Richards
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Robert E. Rosenthal
- Program in Trauma, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
403
|
Picot CR, Perichon M, Lundberg KC, Friguet B, Szweda LI, Petropoulos I. Alterations in mitochondrial and cytosolic methionine sulfoxide reductase activity during cardiac ischemia and reperfusion. Exp Gerontol 2006; 41:663-7. [PMID: 16677789 DOI: 10.1016/j.exger.2006.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia/reperfusion, proteins are targets of reactive oxygen species produced by the mitochondrial respiratory chain resulting in the accumulation of oxidatively modified protein. Sulfur-containing amino acids are among the most sensitive to oxidation. Certain cysteine and methionine oxidation products can be reversed back to their reduced form within proteins by specific repair enzymes. Oxidation of methionine in protein produces methionine-S-sulfoxide and methionine-R-sulfoxide that can be catalytically reduced by two stereospecific enzymes, methionine sulfoxide reductases A and B, respectively. Due to the importance of the methionine sulfoxide reductase system in the maintenance of protein structure and function during conditions of oxidative stress, the fate of this system during ischemia/reperfusion was investigated. Mitochondrial and cytosolic methionine sulfoxide reductase activities are decreased during ischemia and at early times of reperfusion, respectively. Partial recovery of enzyme activity was observed upon extended periods of reperfusion. Evidence indicates that loss in activity is not due to a decrease in the level of MsrA but may involve structural modification of the enzyme.
Collapse
Affiliation(s)
- Cédric R Picot
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, Université Paris 7-Denis Diderot, 2 place Jussieu, Tour 33-23, 1er étage, CC 7128, 75251 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
404
|
Bulteau AL, Szweda LI, Friguet B. Mitochondrial protein oxidation and degradation in response to oxidative stress and aging. Exp Gerontol 2006; 41:653-7. [PMID: 16677792 DOI: 10.1016/j.exger.2006.03.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/15/2006] [Accepted: 03/17/2006] [Indexed: 12/31/2022]
Abstract
Mitochondria are a major source of intracellular reactive oxygen species (ROS), the production of which increases with age. These organelles are also targets of oxidative damage. The deleterious effects of ROS may be responsible for impairment of mitochondrial function observed during various pathophysiological states associated with oxidative stress and aging. An important factor for protein maintenance in the presence of oxidative stress is enzymatic reversal of oxidative modifications and/or protein degradation. Failure of these protein maintenance systems is likely a critical component of the aging process. Mitochondrial matrix proteins are sensitive to oxidative inactivation and oxidized proteins are known to accumulate during aging. The ATP-stimulated mitochondrial Lon protease is a highly conserved protease found in prokaryotes and the mitochondrial compartment of eukaryotes and is believed to play an important role in the degradation of oxidized mitochondrial matrix proteins. Age-dependent declines in the activity and regulation of this proteolytic system may underlie accumulation of oxidatively modified and dysfunctional protein and loss in mitochondrial viability.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Université Denis Diderot-Paris 7, Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106/IFR 117, case courrier 7128, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | | | |
Collapse
|
405
|
Hernebring M, Brolén G, Aguilaniu H, Semb H, Nyström T. Elimination of damaged proteins during differentiation of embryonic stem cells. Proc Natl Acad Sci U S A 2006; 103:7700-5. [PMID: 16672370 PMCID: PMC1472508 DOI: 10.1073/pnas.0510944103] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During mammalian aging, cellular proteins become increasingly damaged: for example, by carbonylation and formation of advanced glycation end products (AGEs). The means to ensure that offspring are born without such damage are unknown. Unexpectedly, we found that undifferentiated mouse ES cells contain high levels of both carbonyls and AGEs. The damaged proteins, identified as chaperones and proteins of the cytoskeleton, are the main targets for protein oxidation in aged tissues. However, the mouse ES cells rid themselves of such damage upon differentiation in vitro. This elimination of damaged proteins coincides with a considerably elevated activity of the 20S proteasome. Moreover, damaged proteins were primarily observed in the inner cell mass of blastocysts, whereas the cells that had embarked on differentiation into the trophectoderm displayed drastically reduced levels of protein damage. Thus, the elimination of protein damage occurs also during normal embryonic development in vivo. This clear-out of damaged proteins may be a part of a previously unknown rejuvenation process at the protein level that occurs at a distinct stage during early embryonic development.
Collapse
Affiliation(s)
- Malin Hernebring
- *Department of Cell and Molecular Biology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
| | - Gabriella Brolén
- Stem Cell Center, Biomedical Center, Lund University, B10, SE-221 84 Lund, Sweden; and
| | - Hugo Aguilaniu
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | - Henrik Semb
- Stem Cell Center, Biomedical Center, Lund University, B10, SE-221 84 Lund, Sweden; and
| | - Thomas Nyström
- *Department of Cell and Molecular Biology, Göteborg University, Box 462, 405 30 Göteborg, Sweden
- To whom correspondence should be addressed at:
Department of Cell and Molecular Biology, Medicinaregatan 9C, Box 462, 413 90 Göteborg, Sweden. E-mail:
| |
Collapse
|
406
|
Storz P. Reactive oxygen species-mediated mitochondria-to-nucleus signaling: a key to aging and radical-caused diseases. Sci Signal 2006; 2006:re3. [PMID: 16639035 DOI: 10.1126/stke.3322006re3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mitochondria-generated reactive oxygen species have been implicated as a common feature that connects aging of organisms and age-related diseases. Efficient elimination of these radicals by antioxidants correlates with increased life span. Understanding how the mitochondrion signals to the nucleus to regulate antioxidant proteins might be a key to aging processes and treatment of human diseases.
Collapse
Affiliation(s)
- Peter Storz
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
407
|
Friguet B. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Lett 2006; 580:2910-6. [PMID: 16574110 DOI: 10.1016/j.febslet.2006.03.028] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 12/23/2022]
Abstract
Cellular ageing is characterized by the accumulation of oxidatively modified proteins which may be due to increased protein damage and/or decreased elimination of oxidized protein. Since the proteasome is in charge of protein turnover and removal of oxidized protein, its fate during ageing and upon oxidative stress has received special attention, and evidence has been provided for an age-related impairment of proteasome function. However, proteins when oxidized at the level of sulfur-containing amino acids can also be repaired. Therefore, the fate of the methionine sulfoxide reductase system during ageing has also been addressed as well as its role in protection against oxidative stress.
Collapse
Affiliation(s)
- Bertrand Friguet
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement (EA 3106/IFR 117), Université Denis Diderot, Paris 7, 2 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
408
|
Major T, von Janowsky B, Ruppert T, Mogk A, Voos W. Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 2006; 26:762-76. [PMID: 16428434 PMCID: PMC1347025 DOI: 10.1128/mcb.26.3.762-776.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent oligomeric proteases are major components of cellular protein quality control systems. To investigate the role of proteolytic processes in the maintenance of mitochondrial functions, we analyzed the dynamic behavior of the mitochondrial proteome of Saccharomyces cerevisiae by two-dimensional (2D) polyacrylamide gel electrophoresis. By a characterization of the influence of temperature on protein turnover in isolated mitochondria, we were able to define four groups of proteins showing a differential susceptibility to proteolysis. The protein Pim1/LON has been shown to be the main protease in the mitochondrial matrix responsible for the removal of damaged or nonnative proteins. To assess the substrate range of Pim1 under in vivo conditions, we performed a quantitative comparison of the 2D protein spot patterns between wild-type and pim1Delta mitochondria. We were able to identify a novel subset of mitochondrial proteins that are putative endogenous substrates of Pim1. Using an in organello degradation assay, we confirmed the Pim1-specific, ATP-dependent proteolysis of the newly identified substrate proteins. We could demonstrate that the functional integrity of the Pim1 substrate proteins, in particular, the presence of intact prosthetic groups, had a major influence on the susceptibility to proteolysis.
Collapse
Affiliation(s)
- Tamara Major
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann Herder Str. 7, 79104 Freiburg, Germany.
| | | | | | | | | |
Collapse
|
409
|
Yamamoto M, Hiroi T, Kohno H, Yamamoto Y, Hara M, Tanaka T, Mamba K, Watabe S. Nucleotide sequence for cDNA of bovine mitochondrial ATP-dependent protease and determination of N-terminus of the mature enzyme from the adrenal cortex. ACTA ACUST UNITED AC 2006; 16:474-8. [PMID: 16287628 DOI: 10.1080/10425170500289233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have determined the cDNA sequence encoding bovine mitochondrial ATP-dependent Lon protease. Since the 5'-end region of the cDNA was highly GC-rich and thus could not be amplified by the 5'-RACE method, a genomic DNA fragment containing an in-frame ATG was isolated and sequenced. The translated amino acid sequence contained 961 amino acids with a calculated molecular weight 106,665. Sequence similarities of the bovine enzyme to human and E. coli orthologs were 92 and 27%, respectively. The N-terminal amino acid sequence seemed to be a mitochondrial targeting signal. To determine the cleavage site of the signal sequence we analyzed the mature enzyme purified from bovine adrenocortical mitochondria. Analysis of CNBr-digested peptides revealed that the N-terminus was heterogeneous. We suggest that nonspecific aminopeptidase might remove several amino acids from the N-terminus after mitochondrial processing peptidase has cleaved Gly(67)-Leu(68) or Leu(68)-Trp(69).
Collapse
Affiliation(s)
- Misa Yamamoto
- Laboratory Sciences, Faculty of Health Sciences,Yamaguchi University School of Medicine, Ube 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
410
|
Farout L, Friguet B. Proteasome function in aging and oxidative stress: implications in protein maintenance failure. Antioxid Redox Signal 2006; 8:205-16. [PMID: 16487054 DOI: 10.1089/ars.2006.8.205] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Damage to cellular components by reactive oxygen species is believed to be an important factor contributing to the aging process. Likewise, the progressive failure of maintenance and repair is believed to be a major cause of biological aging. Cellular aging is characterized by the accumulation of oxidatively modified proteins, a process that results, at least in part, from impaired protein turnover. Indeed, oxidized protein buildup with age may be due to increased protein damage, decreased elimination of oxidized protein (i.e., repair and degradation), or a combination of both mechanisms. Since the proteasome has been implicated in both general protein turnover and the removal of oxidized protein, the fate of the proteasome during aging has recently received considerable attention, and evidence has been provided for impaired proteasome function with age in different cellular systems. The present review will mainly address age-related changes in proteasome structure and function in relation to the impact of oxidative stress on the proteasome and the accumulation of oxidized protein. Knowledge of molecular mechanisms involved in the decline of proteasome function during aging and in oxidative stress is expected to provide new insight that will be useful in defining antiaging strategies aimed at preserving this critical function.
Collapse
Affiliation(s)
- Luc Farout
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Denis Diderot-Paris 7, Paris, France
| | | |
Collapse
|
411
|
Abstract
The incidence of many diseases rises sharply with age. Although clearly separable, ageing and certain age-related diseases might share common mechanisms. Cellular metabolism and subsequent generation of reactive oxygen species might contribute both to the rate at which we age and to our susceptibility to numerous chronic diseases, therefore therapies that directly target the ageing process might provide new ways to treat human diseases.
Collapse
Affiliation(s)
- Toren Finkel
- Cardiovascular Branch ofthe National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
412
|
Hansen J, Gregersen N, Bross P. Differential degradation of variant medium-chain acyl-CoA dehydrogenase by the protein quality control proteases Lon and ClpXP. Biochem Biophys Res Commun 2005; 333:1160-70. [PMID: 15978546 DOI: 10.1016/j.bbrc.2005.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022]
Abstract
The coordinated activities of chaperones and proteases that supervise protein folding and degradation are important factors for deciding the fate of proteins whose folding is impaired by missense variations. We have studied the role of Lon and ClpXP proteases in handling of wild-type and a folding-impaired disease-associated variant (R28C) of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). Using an Escherichia coli model system, we co-overexpressed the MCAD variants and the respective proteases at two conditions: at 31 degrees C where R28C MCAD protein folds partially and at 37 degrees C where it misfolds and aggregates. Co-overexpression of Lon protease considerably accelerated the degradation rate of a pool of R28C variant MCAD synthesised during a 30min pulse and counteracted accumulation of aggregates at 37 degrees C, whereas increasing the amounts of ClpXP protease had no clear effect. Co-overexpression of either Lon or ClpXP protease markedly decreased the steady state levels of both wild-type and R28C mutant MCAD at 37 degrees C but not at 31 degrees C. Our results suggest that Lon is more efficient than ClpXP in elimination of non-native MCAD protein conformations, and accordingly, that Lon can recognise a broader spectrum of MCAD protein conformations.
Collapse
Affiliation(s)
- Jakob Hansen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Faculty of Health Sciences, University of Aarhus, Denmark.
| | | | | |
Collapse
|
413
|
Shadel GS. Mitochondrial DNA, aconitase 'wraps' it up. Trends Biochem Sci 2005; 30:294-6. [PMID: 15950872 DOI: 10.1016/j.tibs.2005.04.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 03/30/2005] [Accepted: 04/22/2005] [Indexed: 11/26/2022]
Abstract
Mitochondria are the sites of many essential biochemical reactions, an important subset of which require proteins encoded in the mitochondrial DNA (mtDNA). How mtDNA is regulated in response to changing cellular demands is largely unknown. A recent study documents that the mitochondrial TCA-cycle enzyme aconitase is associated with protein-mtDNA complexes called nucleoids. In this novel context, aconitase functions to stabilize mtDNA, perhaps by reversibly remodeling nucleoids to directly influence mitochondrial gene expression in response to changing cellular metabolism.
Collapse
Affiliation(s)
- Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, P.O. Box 208023, New Haven, CT 06520-8023, USA.
| |
Collapse
|
414
|
Fredriksson A, Ballesteros M, Dukan S, Nyström T. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 2005; 187:4207-13. [PMID: 15937182 PMCID: PMC1151714 DOI: 10.1128/jb.187.12.4207-4213.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein carbonylation is an irreversible oxidative modification that increases during organism aging and bacterial growth arrest. We analyzed whether the heat shock regulon has a role in defending Escherichia coli cells against this deleterious modification upon entry into stationary phase. Providing the cell with ectopically elevated levels of the heat shock transcription factor, sigma32, effectively reduced stasis-induced carbonylation. Separate overproduction of the major chaperone systems, DnaK/DnaJ and GroEL/GroES, established that the former of these is more important in counteracting protein carbonylation. Deletion of the heat shock proteases Lon and HslVU enhanced carbonylation whereas a clpP deletion alone had no effect. However, ClpP appears to have a role in reducing protein carbonyls in cells lacking Lon and HslVU. Proteomic immunodetection of carbonylated proteins in the wild-type, lon, and hslVU strains demonstrated that the same spectrum of proteins displayed a higher load of carbonyl groups in the lon and hslVU mutants. These proteins included the beta-subunit of RNA polymerase, elongation factors Tu and G, the E1 subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, 6-phosphogluconate dehydrogenase, and serine hydroxymethyltranferase.
Collapse
Affiliation(s)
- Asa Fredriksson
- Department of Cell and Molecular Biology, Microbiology, Medicinaregatan 9C, 413 90 Göteborg, Sweden
| | | | | | | |
Collapse
|
415
|
Ondrovicová G, Liu T, Singh K, Tian B, Li H, Gakh O, Perecko D, Janata J, Granot Z, Orly J, Kutejová E, Suzuki CK. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 2005; 280:25103-10. [PMID: 15870080 DOI: 10.1074/jbc.m502796200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanistic studies of ATP-dependent proteolysis demonstrate that substrate unfolding is a prerequisite for processive peptide bond hydrolysis. We show that mitochondrial Lon also degrades folded proteins and initiates substrate cleavage non-processively. Two mitochondrial substrates with known or homology-derived three-dimensional structures were used: the mitochondrial processing peptidase alpha-subunit (MPPalpha) and the steroidogenic acute regulatory protein (StAR). Peptides generated during a time course of Lon-mediated proteolysis were identified and mapped within the primary, secondary, and tertiary structure of the substrate. Initiating cleavages occurred preferentially between hydrophobic amino acids located within highly charged environments at the surface of the folded protein. Subsequent cleavages proceeded sequentially along the primary polypeptide sequence. We propose that Lon recognizes specific surface determinants or folds, initiates proteolysis at solvent-accessible sites, and generates unfolded polypeptides that are then processively degraded.
Collapse
Affiliation(s)
- Gabriela Ondrovicová
- Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Bulteau AL, Lundberg KC, Ikeda-Saito M, Isaya G, Szweda LI. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc Natl Acad Sci U S A 2005; 102:5987-91. [PMID: 15840721 PMCID: PMC1087934 DOI: 10.1073/pnas.0501519102] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prooxidents can induce reversible inhibition or irreversible inactivation and degradation of the mitochondrial enzyme aconitase. Cardiac ischemia/reperfusion is associated with an increase in mitochondrial free radical production. In the current study, the effects of reperfusion-induced production of prooxidants on mitochondrial aconitase and proteolytic activity were determined to assess whether alterations represented a regulated response to changes in redox status or oxidative damage. Evidence is provided that ATP-dependent proteolytic activity increased during early reperfusion followed by a time-dependent reduction in activity to control levels. These alterations in proteolytic activity paralleled an increase and subsequent decrease in the level of oxidatively modified protein. In vitro data supports a role for prooxidants in the activation of ATP-dependent proteolytic activity. Despite inhibition during early periods of reperfusion, aconitase was not degraded under the conditions of these experiments. Aconitase activity exhibited a decline in activity followed by reactivation during cardiac reperfusion. Loss and regain in activity involved reversible sulfhydryl modification. Aconitase was found to associate with the iron binding protein frataxin exclusively during reperfusion. In vitro, frataxin has been shown to protect aconitase from [4Fe-4S](2+) cluster disassembly, irreversible inactivation, and, potentially, degradation. Thus, the response of mitochondrial aconitase and ATP-dependent proteolytic activity to reperfusion-induced prooxidant production appears to be a regulated event that would be expected to reduce irreparable damage to the mitochondria.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | | | |
Collapse
|
417
|
Kambacheld M, Augustin S, Tatsuta T, Müller S, Langer T. Role of the novel metallopeptidase Mop112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria. J Biol Chem 2005; 280:20132-9. [PMID: 15772085 DOI: 10.1074/jbc.m500398200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space.
Collapse
Affiliation(s)
- Melanie Kambacheld
- Institut für Genetik and Zentrum für Molekulare Medizin (ZMMK), Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
418
|
Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, Villani G. Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radic Biol Med 2005; 38:796-805. [PMID: 15721990 DOI: 10.1016/j.freeradbiomed.2004.11.034] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/13/2004] [Accepted: 11/29/2004] [Indexed: 12/16/2022]
Abstract
The understanding of the involvement of mitochondrial oxidative phosphorylation (OXPHOS) in the aging process has often been biased by the different methodological approaches as well as the choice of the biological material utilized by the various groups. In the present paper, we have carried out a detailed analysis of several bioenergetic parameters and oxidative markers in brain and heart mitochondria from young (2 months) and old (28 months) rats. This analysis has revealed an age-related decrease in respiratory fluxes in brain but not in heart mitochondria. The age-related decrease in respiratory rate (-43%) by NAD-dependent substrates was associated with a consistent decline (-40%) of complex I activity in brain mitochondria. On the other hand, heart mitochondria showed an age-related decline of complex II activity. Both tissues showed, however, an age-associated accumulation of oxidative damage. We have then performed the same analysis on old (28 months) rats subjected to a long-term (16 months) diet containing the antioxidant N-acetylcysteine (NAC). The treated old rats showed a slight brain-specific improvement of mitochondrial energy production efficiency, mostly with NAD-dependent substrates, together with a decrease in carbonyl protein content and an increase in the amount of protein thiols of brain cytosolic fraction. A full recovery of complex II activity was detected in heart mitochondria from NAC-treated old rats. The present work documents the marked tissue specificity of the decline of bioenergetic functions in isolated mitochondria from aged rats and provides the first data on the effects of a long-term treatment with N-acetylcysteine.
Collapse
Affiliation(s)
- Tiziana Cocco
- Department of Medical Biochemistry & Biology, University of Bari, Piazza G. Cesare, 70124 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
419
|
Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24:1311-7. [PMID: 15775985 PMCID: PMC1142534 DOI: 10.1038/sj.emboj.7600599] [Citation(s) in RCA: 564] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 02/04/2005] [Indexed: 12/16/2022] Open
Abstract
Proteins can become modified by a large number of reactions involving reactive oxygen species. Among these reactions, carbonylation has attracted a great deal of attention due to its irreversible and unrepairable nature. Carbonylated proteins are marked for proteolysis by the proteasome and the Lon protease but can escape degradation and form high-molecular-weight aggregates that accumulate with age. Such carbonylated aggregates can become cytotoxic and have been associated with a large number of age-related disorders, including Parkinson's disease, Alzheimer's disease, and cancer. This review focuses on the generation of and defence against protein carbonyls and speculates on the potential role of carbonylation in protein quality control, cellular deterioration, and senescence.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology-Microbiology, Göteborg University, Göteborg, Sweden.
| |
Collapse
|
420
|
Bota DA, Ngo JK, Davies KJA. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic Biol Med 2005; 38:665-77. [PMID: 15683722 DOI: 10.1016/j.freeradbiomed.2004.11.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/10/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
Lon now emerges as a major regulator of multiple mitochondrial functions in human beings. Lon catalyzes the degradation of oxidatively modified matrix proteins, chaperones the assembly of inner membrane complexes, and participates in the regulation of mitochondrial gene expression and genome integrity. An early result of Lon downregulation in WI-38 VA-13 human lung fibroblasts is massive caspase 3 activation and extensive (although not universal) apoptotic death. At a later stage, the surviving cells fail to divide, display highly abnormal mitochondrial function and morphology, and rely almost exclusively on anaerobic metabolism. In a selected subpopulation of cells, the mitochondrial mass decreases probably as a result of mitochondrial inability to divide. At this final point the Lon-deficient cells are not engaged anymore in apoptosis, and are lost by necrosis or "mitoptosis." Our results indicate that mitochondrial Lon is required for normal survival and proliferation; a clear impetus for Lon's evolutionary conservation.
Collapse
Affiliation(s)
- Daniela A Bota
- Ethel Percy Andrus Gerontology Center, and Division of Molecular and Computational Biology, 3715 McClintock Avenue, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
421
|
Petropoulos I, Friguet B. Protein maintenance in aging and replicative senescence: a role for the peptide methionine sulfoxide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:261-6. [PMID: 15680234 DOI: 10.1016/j.bbapap.2004.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/31/2004] [Accepted: 08/31/2004] [Indexed: 12/23/2022]
Abstract
Cellular aging is characterized by the build-up of oxidatively modified protein that results, at least in part, from impaired redox homeostasis associated with the aging process. Protein degradation and repair are critical for eliminating oxidized proteins from the cell. Oxidized protein degradation is mainly achieved by the proteasomal system and it is now well established that proteasomal function is generally impaired with age. Specific enzymatic systems have been identified which catalyze the regeneration of cysteine and methionine following oxidation within proteins. Protein-bound methionine sulfoxide diastereoisomers S and R are repaired by the combined action of the enzymes MsrA and MsrB that are subsequently regenerated by thioredoxin/thioredoxin reductase. Importantly, the peptide methionine sulfoxide reductase system has been implicated in increased longevity and resistance to oxidative stress in different cell types and model organisms. In a previous study, we reported that peptide methionine sulfoxide reductase activity as well as gene and protein expression of MsrA are decreased in various organs as a function of age. More recently, we have shown that gene expression of both MsrA and MsrB2 (Cbs-1) is decreased during replicative senescence of WI-38 fibroblasts, and this decline is associated with an alteration in catalytic activity and the accumulation of oxidized protein. In this review, we will address the importance of protein maintenance in the aging process as well as in replicative senescence, with a special focus on regulation of the peptide methionine sulfoxide reductase systems.
Collapse
Affiliation(s)
- Isabelle Petropoulos
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, EA 3106, IFR 117, Université Denis Diderot-Paris 7, CC 7128, 2 Place Jussieu, 75251 Paris Cedex 05, France
| | | |
Collapse
|
422
|
Abstract
Bacteria enjoy an infinite capacity for reproduction as long as they reside in an environment supporting growth. However, their rapid growth and efficient metabolism ultimately results in depletion of growth-supporting substrates and the population of cells enters a phase defined as the stationary phase of growth. In this phase, their reproductive ability is gradually lost. The molecular mechanism underlying this cellular degeneration has not been fully deciphered. Still, recent analysis of the physiology and molecular biology of stationary-phase E. coli cells has revealed interesting similarities to the aging process of higher organisms. The similarities include increased oxidation of cellular constituents and its target specificity, the role of antioxidants and oxygen tension in determining life span, and an apparent trade-off between activities related to reproduction and survival.
Collapse
Affiliation(s)
- Thomas Nyström
- Department of Cell and Molecular Biology, Microbiology, Göteborg University, Box 462, 405 30 Göteborg , Sweden.
| |
Collapse
|
423
|
Augustin S, Nolden M, Müller S, Hardt O, Arnold I, Langer T. Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J Biol Chem 2004; 280:2691-9. [PMID: 15556950 DOI: 10.1074/jbc.m410609200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conserved ATP-dependent proteases ensure the quality control of mitochondrial proteins and control essential steps in mitochondrial biogenesis. Recent studies demonstrated that non-assembled mitochondrially encoded proteins are degraded to peptides and amino acids that are released from mitochondria. Here, we have characterized peptides extruded from mitochondria by mass spectrometry and identified 270 peptides that are exported in an ATP- and temperature-dependent manner. The peptides originate from 51 mitochondrially and nuclearly encoded proteins localized mainly in the matrix and inner membrane, indicating that peptides generated by the activity of all known mitochondrial ATP-dependent proteases can be released from the organelle. Pulse-labeling experiments in logarithmically growing yeast cells revealed that approximately 6-12% of preexisting and newly imported proteins is degraded and contribute to this peptide pool. Under respiring conditions, we observed an increased proteolysis of newly imported proteins that suggests a higher turnover rate of respiratory chain components and thereby rationalizes the predominant appearance of representatives of this functional class in the detected peptide pool. These results demonstrated a constant efflux of peptides from mitochondria and provided new insight into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Steffen Augustin
- Institut für Genetik and Zentrum für Molekulare Medizin, Universität zu Köln, 50674 Köln, Germany
| | | | | | | | | | | |
Collapse
|
424
|
Besche H, Tamura N, Tamura T, Zwickl P. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. FEBS Lett 2004; 574:161-6. [PMID: 15358558 DOI: 10.1016/j.febslet.2004.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 08/11/2004] [Indexed: 10/26/2022]
Abstract
The Lon protease from the archaeon Thermoplasma acidophilum (TaLon) is composed of an N-terminal ATPase associated with various cellular activities (AAA+) domain and a C-terminal Lon protease domain. Although related in sequence to the soluble Lon proteases, TaLon was shown to be membrane-bound in its native host and also when expressed in Escherichia coli. Recombinant TaLon was purified as a functional high-molecular weight complex displaying ATPase and proteolytic activity. Mutagenesis of conserved AAA+ residues revealed that the Walker A and B motifs, and the sensor 1 and sensor 2' residues were essential for the ATPase activity, while the sensor 2 and the arginine finger were involved in activation of the protease domain.
Collapse
Affiliation(s)
- Henrike Besche
- Max-Planck-Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
425
|
Delaval E, Perichon M, Friguet B. Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. ACTA ACUST UNITED AC 2004; 271:4559-64. [PMID: 15560797 DOI: 10.1111/j.1432-1033.2004.04422.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mitochondrial matrix proteins are sensitive to oxidative inactivation, and oxidized proteins are known to accumulate during ageing. The Lon protease is believed to play an important role in the degradation of oxidized matrix proteins such as oxidized aconitase. We reported previously that an age-related accumulation of altered proteins occurs in the liver matrix of rats and that the ATP-stimulated proteolytic activity, referred as to Lon-like protease activity, decreases considerably in 27 month-old rats, whereas no concomitant changes in the levels of Lon protein expression occur in the liver. Here, we report that this decline is associated with a decrease in the activity of aconitase, an essential Krebs' cycle enzyme. Contrary to what we observed in the liver, the ATP-stimulated protease activity was found to remain constant in the heart mitochondrial matrix during ageing, and the levels of expression of the Lon protease increased in the older animals in comparison with the younger ones. Although the ATP-stimulated protease activity remained practically the same in older animals as in younger ones, a decrease in the level of aconitase activity was still observed. Altogether, these results indicate that matrix proteins, such as the critical enzymes aconitase and Lon protease, are inactivated with ageing and that the effects of ageing vary from one organ to another.
Collapse
Affiliation(s)
- Evelyne Delaval
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris 7-Denis Diderot, Paris, France
| | | | | |
Collapse
|
426
|
Romero DG, Plonczynski M, Vergara GR, Gomez-Sanchez EP, Gomez-Sanchez CE. Angiotensin II early regulated genes in H295R human adrenocortical cells. Physiol Genomics 2004; 19:106-16. [PMID: 15375197 DOI: 10.1152/physiolgenomics.00097.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence for the dysregulation of aldosterone synthesis in cardiovascular pathophysiology has renewed interest in the control of its production. Cellular mechanisms by which angiotensin II (ANG II) stimulates aldosterone synthesis in the adrenal zona glomerulosa are incompletely understood. To elucidate the mechanism of intracellular signaling by ANG II stimulation in the adrenal, we have studied immediate-early regulated genes in human adrenal H295R cells using cDNA microarrays. H295R cells were stimulated with ANG II for 3 h. Gene expression was analyzed by microarray technology and validated by real-time RT-PCR. Eleven genes were found to be upregulated by ANG II. These encode the proteins for ferredoxin, Nor1, Nurr1, c6orf37, CAT-1, A20, MBLL, M-Ras, RhoB, GADD45α, and a novel protein designated FLJ45273 . Maximum expression levels for all genes occurred 3–6 h after ANG II stimulation. This increase was dose dependent and preceded maximal aldosterone production. Other aldosterone secretagogues, K+and endothelin-1 (ET-1), also induced the expression of these genes with variable efficiency depending on the gene and with lower potency than ANG II. ACTH had negligible effect on gene expression except for the CAT-1 and Nurr1 genes. These ANG II-stimulated genes are involved in several cellular functions and are good candidate effectors and regulators of ANG II-mediated effects in adrenal zona glomerulosa.
Collapse
Affiliation(s)
- Damian G Romero
- Endocrine Section and Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
427
|
Koeck T, Fu X, Hazen SL, Crabb JW, Stuehr DJ, Aulak KS. Rapid and selective oxygen-regulated protein tyrosine denitration and nitration in mitochondria. J Biol Chem 2004; 279:27257-62. [PMID: 15084586 DOI: 10.1074/jbc.m401586200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growing evidence connects a cumulative formation of 3-nitrotyrosyl adducts in proteins as a marker for oxidative damage with the pathogenesis of various diseases and pathological conditions associated with oxidative stress. A physiological signaling role for protein nitration has also been suggested. Controlled "denitration" would be essential for such a contribution of protein nitration to cellular regulatory processes. Thus, we further characterized such a potentially controlled, reversible tyrosine nitration that occurs in respiring mitochondria during oxygen deprivation followed by reoxygenation, which we recently discovered. Mitochondria constitute cellular centers of protein nitration and are leading candidates for a "nitrative" regulation. Mitochondria are capable of completely eliminating 3-nitrotyrosyl adducts during 20 min of hypoxia-anoxia and undergoing a selective partial reduction after only 5 min. This denitration is independent of protein degradation but depends on the oxygen tension. Reoxygenation re-establishes protein tyrosine nitration patterns that are almost identical to the pattern that occurs before hypoxia-anoxia, with nitration levels that depend on the duration of hypoxia-anoxia. The identified mitochondrial targets of this process are critical for energy and antioxidant homeostasis and, therefore, cell and tissue viability. This cycle of protein nitration and denitration shows analogies to protein phosphorylation, and we demonstrate that the cycle meets most of the criteria for a cellular signaling mechanism. Taken together, our data reveal that protein tyrosine nitration in mitochondria can be controlled, is target-selective and rapid, and is dynamic enough to serve as a nitrative regulatory signaling process that likely affects cellular energy, redox homeostasis, and pathological conditions when these features become disturbed.
Collapse
Affiliation(s)
- Thomas Koeck
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | |
Collapse
|
428
|
Abstract
Mitochondrial content, a chief determinant of aerobic capacity, varies widely among muscle types and species. Mitochondrial enzyme levels in vertebrate skeletal muscles vary more than 100-fold, from fish white muscle to bird flight muscles. Recent studies have shed light on the transcriptional regulators that control mitochondrial gene expression in muscle fiber differentiation and development, and in the context of pathological conditions such as neuromuscular disease and obesity. While the transcriptional co-activator PGC-1alpha (peroxisome proliferator-activated receptor gamma co-activator 1) has emerged as a master controller of mitochondrial gene expression, it is important to consider other mechanisms by which coordinated changes in mitochondrial content could arise. These studies, largely using biomedical models, provide important information for comparative biologists interested in the mechanistic basis of inter-species variation in muscle aerobic capacity.
Collapse
Affiliation(s)
- Christopher D Moyes
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
429
|
Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K, Clayton DA, Wibom R, Larsson NG. A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci U S A 2004; 101:3136-41. [PMID: 14978272 PMCID: PMC365756 DOI: 10.1073/pnas.0308710100] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed global gene expression analyses in mouse hearts with progressive respiratory chain deficiency and found a metabolic switch at an early disease stage. The tissue-specific mitochondrial transcription factor A (Tfam) knockout mice of this study displayed a progressive heart phenotype with depletion of mtDNA and an accompanying severe decline of respiratory chain enzyme activities along with a decreased mitochondrial ATP production rate. These characteristics were observed after 2 weeks of age and became gradually more severe until the terminal stage occurred at 10-12 weeks of age. Global gene expression analyses with microarrays showed that a metabolic switch occurred early in the progression of cardiac mitochondrial dysfunction. A large number of genes encoding critical enzymes in fatty acid oxidation showed decreased expression whereas several genes encoding glycolytic enzymes showed increased expression. These alterations are consistent with activation of a fetal gene expression program, a well-documented phenomenon in cardiac disease. An increase in mitochondrial mass was not observed until the disease had reached an advanced stage. In contrast to what we have earlier observed in respiratory chain-deficient skeletal muscle, the increased mitochondrial biogenesis in respiratory chain-deficient heart muscle did not increase the overall mitochondrial ATP production rate. The observed switch in metabolism is unlikely to benefit energy homeostasis in the respiratory chain-deficient hearts and therefore likely aggravates the disease. It can thus be concluded that at least some of the secondary gene expression alterations in mitochondrial cardiomyopathy do not compensate but rather directly contribute to heart failure progression.
Collapse
Affiliation(s)
- Anna Hansson
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Nicole Hance
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Eric Dufour
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Anja Rantanen
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Kjell Hultenby
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - David A. Clayton
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Rolf Wibom
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
| | - Nils-Göran Larsson
- Departments of Medical Nutrition and Biosciences and Laboratory Medicine and Clinical Research Center, Karolinska Institutet, Novum, Karolinska University Hospital, S-141 86 Stockholm, Sweden; and Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
430
|
Sikora S, Godzik A. Combination of multiple alignment analysis and surface mapping paves a way for a detailed pathway reconstruction--the case of VHL (von Hippel-Lindau) protein and angiogenesis regulatory pathway. Protein Sci 2004; 13:786-96. [PMID: 14767077 PMCID: PMC2286736 DOI: 10.1110/ps.03454904] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using the tumor suppressor VHL protein as an example, we show that detailed analysis of conservation versus variation pattern in the multiple alignment can be coupled with the genomic pathway/complex conservation analysis to provide a more complete picture of the entire interaction/regulatory network. Results from the present study have allowed us to hypothesize that two additional proteins are involved in the VHL-mediated regulation of angiogenesis. Detailed modeling also has led to a prediction of the possible interaction mode between the known and the proposed parts of the VHL complex. To aid in an analysis of the VHL protein regulation of HIF-1 alpha degradation, an important and only partially understood process that directly influences angiogenesis, we performed a comprehensive search for the orthologs of the VHL as well as for VHL-interacting proteins in all the available eukaryotic genomes. Analysis of a multiple alignment of thus identified VHL orthologs reveals an unusually high degree of conservation of the surface amino acid residues that almost exactly correspond to positions mutated in the VHL disease-associated tumors. In addition, these positions form well-defined clusters in three-dimensional space, and presence or absence of individual clusters correlates with the presence or absence of pathway elements in different genomes. We have also shown that relation trees derived from the multiple sequence alignment, functional surface-mapping, and HIF-1 alpha degradation pathway structure are in complete agreement, linking the functional and structural evolution of the VHL protein and VHL-dependent HIF-1 alpha degradation complex.
Collapse
Affiliation(s)
- Sergey Sikora
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
431
|
Liu T, Lu B, Lee I, Ondrovicová G, Kutejová E, Suzuki CK. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J Biol Chem 2004; 279:13902-10. [PMID: 14739292 DOI: 10.1074/jbc.m309642200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-dependent Lon protease belongs to a unique group of proteases that bind DNA. Eukaryotic Lon is a homo-oligomeric ring-shaped complex localized to the mitochondrial matrix. In vitro, human Lon binds specifically to a single-stranded GT-rich DNA sequence overlapping the light strand promoter of human mitochondrial DNA (mtDNA). We demonstrate that Lon binds GT-rich DNA sequences found throughout the heavy strand of mtDNA and that it also interacts specifically with GU-rich RNA. ATP inhibits the binding of Lon to DNA or RNA, whereas the presence of protein substrate increases the DNA binding affinity of Lon 3.5-fold. We show that nucleotide inhibition and protein substrate stimulation coordinately regulate DNA binding. In contrast to the wild type enzyme, a Lon mutant lacking both ATPase and protease activity binds nucleic acid; however, protein substrate fails to stimulate binding. These results suggest that conformational changes in the Lon holoenzyme induced by nucleotide and protein substrate modulate the binding affinity for single-stranded mtDNA and RNA in vivo. Co-immunoprecipitation experiments show that Lon interacts with mtDNA polymerase gamma and the Twinkle helicase, which are components of mitochondrial nucleoids. Taken together, these results suggest that Lon participates directly in the metabolism of mtDNA.
Collapse
Affiliation(s)
- Tong Liu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
432
|
García-Rodríguez S, Argüelles S, Llopis R, Murillo ML, Machado A, Carreras O, Ayala A. Effect of prenatal exposure to ethanol on hepatic elongation factor-2 and proteome in 21 d old rats: protective effect of folic acid. Free Radic Biol Med 2003; 35:428-37. [PMID: 12899944 DOI: 10.1016/s0891-5849(03)00321-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this article, we study the effects of ethanol intake during pregnancy and lactation on hepatic and pancreatic elongation factor-2 (EF-2) of 21 d old progeny. At the same time, the effect of ethanol on the level of other relevant hepatic proteins was determined using proteomic analysis. The results show that ethanol not only produces a general increase of protein oxidation, but also produces an important depletion of EF-2 and several other proteins. Among the hepatic proteins affected by ethanol, the concomitant supplementation with folic acid to alcoholic mother rats prevented EF-2, RhoGDI-1, ER-60 protease, and gelsolin depletion. This protective effect of folic acid may be related to its antioxidant properties and suggests that this vitamin may be useful in minimizing the effect of ethanol in the uterus and lactation exposure of the progeny.
Collapse
Affiliation(s)
- S García-Rodríguez
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
433
|
Bailey SM. A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction. Free Radic Res 2003; 37:585-96. [PMID: 12868485 DOI: 10.1080/1071576031000091711] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Our understanding of the mechanisms involved in the development of alcohol-induced liver disease has increased substantially in recent years. Specifically, reactive oxygen and nitrogen species have been identified as key components in initiating and possibly sustaining the pathogenic pathways responsible for the progression from alcohol-induced fatty liver to alcoholic hepatitis and cirrhosis. Ethanol has been demonstrated to increase the production of reactive oxygen and nitrogen species and decrease several antioxidant mechanisms in liver. However, the relative contribution of the proposed sites of ethanol-induced reactive species production within the liver is still not clear. It has been proposed that chronic ethanol-elicited alterations in mitochondria structure and function might result in increased production of reactive species at the level of the mitochondrion in liver from ethanol consumers. This in turn might result in oxidative modification and inactivation of mitochondrial macromolecules, thereby contributing further to mitochondrial dysfunction and a loss in hepatic energy conservation. Moreover, ethanol-related increases in reactive species may shift the balance between pro- and anti-apoptotic factors such that there is activation of the mitochondrial permeability transition, which would lead to increased cell death in the liver after chronic alcohol consumption. This article will examine the critical role of these reactive species in ethanol-induced liver injury with specific emphasis on how chronic ethanol-associated alterations to mitochondria influence the production of reactive oxygen and nitrogen species and how their production may disrupt hepatic energy conservation in the chronic alcohol abuser.
Collapse
Affiliation(s)
- Shannon M Bailey
- Department of Environmental Health Sciences and Center for Free Radical Biology, School of Public Health, The University of Alabama at Birmingham, 1530 3rd Avenue South, Ryals Building, Room 623, Birmingham, AL 35294, USA.
| |
Collapse
|
434
|
Bakala H, Delaval E, Hamelin M, Bismuth J, Borot-Laloi C, Corman B, Friguet B. Changes in rat liver mitochondria with aging. Lon protease-like reactivity and N(epsilon)-carboxymethyllysine accumulation in the matrix. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2295-302. [PMID: 12752449 DOI: 10.1046/j.1432-1033.2003.03598.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is accompanied by a gradual deterioration of cell functions. Mitochondrial dysfunction and accumulation of protein damage have been proposed to contribute to this process. The present study was carried out to examine the effects of aging in mitochondrial matrix isolated from rat liver. The activity of Lon protease, an enzyme implicated in the degradation of abnormal matrix proteins, was measured and the accumulation of oxidation and glycoxidation (Nepsilon-carboxymethyllysine, CML) products was monitored using immunochemical assays. The function of isolated mitochondria was assessed by measuring respiratory chain activity. Mitochondria from aged (27 months) rats exhibited the same rate of oxygen consumption as those from adult (10 months) rats without any change in coupling efficiency. At the same time, the ATP-stimulated Lon protease activity, measured as fluorescent peptides released, markedly decreased from 10-month-old rats (1.15 +/- 0.15 FU x micro g protein-1 x h-1) to 27-month-old-rats (0.59 +/- 0.08 FU x micro g protein-1 x h-1). In parallel with this decrease in activity, oxidized proteins accumulated in the matrix upon aging while the CML-modified protein content assessed by ELISA significantly increased by 52% from 10 months (11.71 +/- 0.61 pmol CML x micro g protein-1) to 27 months (17.81 +/- 1.83 pmol CML x micro g protein-1). These results indicate that the accumulation of deleterious oxidized and carboxymethylated proteins in the matrix concomitant with loss of the Lon protease activity may affect the ability of aging mitochondria to respond to additional stress.
Collapse
Affiliation(s)
- Hilaire Bakala
- Laboratoire de Biologie et Biochimie Cellulaire du Vieillissement, Université Paris7-Denis Diderot, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
435
|
Lu B, Liu T, Crosby JA, Thomas-Wohlever J, Lee I, Suzuki CK. The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 2003; 306:45-55. [PMID: 12657466 DOI: 10.1016/s0378-1119(03)00403-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ATP-dependent Lon protease is a multi-functional enzyme that is conserved from archae to mammalian mitochondria, which not only degrades protein substrates but also binds DNA. As a starting point toward understanding Lon function in development, the mouse Lon cDNA was cloned and the encoded protein was characterized in cultured mammalian cells, in yeast and in vitro. Mouse Lon shows 87, 40 and 33% amino acid similarity with the human, yeast and bacterial homologs, respectively. Expression of a single mouse Lon transcript is detected in liver>heart>kidney>testis and is present during early embryonic development. Endogenous as well as transiently overexpressed mouse Lon co-localize with mitochondrial markers and have half-lives greater than 24 h as determined by pulse-chase studies. Enzymatically active mouse Lon that hydrolyses ATP and degrades protein and peptide substrates in an ATP-dependent manner also specifically binds to single-stranded but not to double-stranded DNA oligonucleotides. We propose that binding to TG-rich DNA sequences has been conserved between the mouse and human proteins. In addition, the evolutionary conservation of mitochondrial Lon function is demonstrated by the ability of mouse Lon to substitute for the yeast protein in vivo.
Collapse
Affiliation(s)
- Bin Lu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
436
|
Bota DA, Van Remmen H, Davies KJA. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 2002; 532:103-6. [PMID: 12459471 DOI: 10.1016/s0014-5793(02)03638-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared Lon protease expression in murine skeletal muscle of young and old, wild-type and Sod2(-/+) heterozygous mice, and studied Lon involvement in the accumulation of damaged (oxidized) proteins. Lon protease protein levels were lower in old and oxidatively challenged animals, and this Lon deficiency was associated with increased levels of carbonylated proteins. We identified one of these proteins as aconitase, and another as an aconitase fragmentation product, which we can also generate in vitro by treating purified aconitase with H(2)O(2). These results imply that aging and oxidative stress down-regulate Lon protease expression which, in turn, may be responsible for the accumulation of damaged proteins, such as aconitase, within mitochondria.
Collapse
Affiliation(s)
- Daniela A Bota
- Ethel Percy Andrus Gerontology Center, 3715 McClintock Avenue, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|