401
|
Knudsen JG, Gudiksen A, Bertholdt L, Overby P, Villesen I, Schwartz CL, Pilegaard H. Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise. PLoS One 2017; 12:e0189301. [PMID: 29253016 PMCID: PMC5734691 DOI: 10.1371/journal.pone.0189301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism.
Collapse
Affiliation(s)
- Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| | - Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Overby
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Villesen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Camilla L. Schwartz
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JGK); (HP)
| |
Collapse
|
402
|
Miyake CNH, Gualano B, Dantas WS, Pereira RT, Neves W, Zambelli VO, Shinjo SK, Pereira RM, Silva ER, Sá-Pinto AL, Borba E, Roschel H, Bonfá E, Benatti FB. Increased Insulin Resistance and Glucagon Levels in Mild/Inactive Systemic Lupus Erythematosus Patients Despite Normal Glucose Tolerance. Arthritis Care Res (Hoboken) 2017; 70:114-124. [DOI: 10.1002/acr.23237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/14/2017] [Indexed: 01/17/2023]
|
403
|
Zhu M, Wei Y, Geißler C, Abschlag K, Corbalán Campos J, Hristov M, Möllmann J, Lehrke M, Karshovska E, Schober A. Hyperlipidemia-Induced MicroRNA-155-5p Improves β-Cell Function by Targeting Mafb. Diabetes 2017; 66:3072-3084. [PMID: 28970282 DOI: 10.2337/db17-0313] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022]
Abstract
A high-fat diet increases bacterial lipopolysaccharide (LPS) in the circulation and thereby stimulates glucagon-like peptide 1 (GLP-1)-mediated insulin secretion by upregulating interleukin-6 (IL-6). Although microRNA-155-5p (miR-155-5p), which increases IL-6 expression, is upregulated by LPS and hyperlipidemia and patients with familial hypercholesterolemia less frequently develop diabetes, the role of miR-155-5p in the islet stress response to hyperlipidemia is unclear. In this study, we demonstrate that hyperlipidemia-associated endotoxemia upregulates miR-155-5p in murine pancreatic β-cells, which improved glucose metabolism and the adaptation of β-cells to obesity-induced insulin resistance. This effect of miR-155-5p is because of suppression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B, which promotes β-cell function through IL-6-induced GLP-1 production in α-cells. Moreover, reduced GLP-1 levels are associated with increased obesity progression, dyslipidemia, and atherosclerosis in hyperlipidemic Mir155 knockout mice. Hence, induction of miR-155-5p expression in β-cells by hyperlipidemia-associated endotoxemia improves the adaptation of β-cells to insulin resistance and represents a protective mechanism in the islet stress response.
Collapse
Affiliation(s)
- Mengyu Zhu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuanyuan Wei
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudia Geißler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kathrin Abschlag
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Judit Corbalán Campos
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Ela Karshovska
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
404
|
Tan X, Chapman CD, Cedernaes J, Benedict C. Association between long sleep duration and increased risk of obesity and type 2 diabetes: A review of possible mechanisms. Sleep Med Rev 2017; 40:127-134. [PMID: 29233612 DOI: 10.1016/j.smrv.2017.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
For the last two decades research has revealed an alarming association between short sleep duration and metabolic disorders. In tandem, the hormonal, behavioral, and genetic mechanisms underlying this relationship have been extensively investigated and reviewed. However, emerging evidence is revealing that excessive sleep duration has remarkably similar deleterious effects. Unfortunately, to date there has been little attention to what drives this connection. This narrative review therefore aims to summarize existing epidemiological findings, experimental work, and most importantly putative molecular and behavioral mechanisms connecting excessive sleep duration with both obesity and type 2 diabetes mellitus. It will also address recent findings suggesting a worrisome bidirectional effect such that metabolic disorders create a positive feedback loop which further perpetuates excessive sleep.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden.
| | - Colin D Chapman
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Jonathan Cedernaes
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Christian Benedict
- Department of Neuroscience, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
405
|
Traub S, Meier DT, Schulze F, Dror E, Nordmann TM, Goetz N, Koch N, Dalmas E, Stawiski M, Makshana V, Thorel F, Herrera PL, Böni-Schnetzler M, Donath MY. Pancreatic α Cell-Derived Glucagon-Related Peptides Are Required for β Cell Adaptation and Glucose Homeostasis. Cell Rep 2017; 18:3192-3203. [PMID: 28355570 DOI: 10.1016/j.celrep.2017.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/22/2017] [Accepted: 03/01/2017] [Indexed: 02/04/2023] Open
Abstract
Pancreatic α cells may process proglucagon not only to glucagon but also to glucagon-like peptide-1 (GLP-1). However, the biological relevance of paracrine GLP-1 for β cell function remains unclear. We studied effects of locally derived insulin secretagogues on β cell function and glucose homeostasis using mice with α cell ablation and with α cell-specific GLP-1 deficiency. Normally, intestinal GLP-1 compensates for the lack of α cell-derived GLP-1. However, upon aging and metabolic stress, glucose tolerance is impaired. This was partly rescued with the DPP-4 inhibitor sitagliptin, but not with glucagon administration. In isolated islets from these mice, glucose-stimulated insulin secretion was heavily impaired and exogenous GLP-1 or glucagon rescued insulin secretion. These data highlight the importance of α cell-derived GLP-1 for glucose homeostasis during metabolic stress and may impact on the clinical use of systemic GLP-1 agonists versus stabilizing local α cell-derived GLP-1 by DPP-4 inhibitors in type 2 diabetes.
Collapse
Affiliation(s)
- Shuyang Traub
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Erez Dror
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Thierry M Nordmann
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nicole Goetz
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Norina Koch
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Elise Dalmas
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marc Stawiski
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Valmir Makshana
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; Centre facultaire du diabète, University of Geneva, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; Centre facultaire du diabète, University of Geneva, 1211 Geneva, Switzerland
| | - Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital Basel, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
406
|
Sancho V, Daniele G, Lucchesi D, Lupi R, Ciccarone A, Penno G, Bianchi C, Dardano A, Miccoli R, Del Prato S. Metabolic regulation of GLP-1 and PC1/3 in pancreatic α-cell line. PLoS One 2017; 12:e0187836. [PMID: 29121068 PMCID: PMC5679617 DOI: 10.1371/journal.pone.0187836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
Background and aims An intra-islet incretin system has been recently suggested to operate through modulation of the expression and activity of proconvertase 1/3 and 2 (PC1/3, PC2) in pancreatic alpha-cell accounting for local release of GLP-1. Little is known, whether this alpha-cell activity can be affected by the metabolic alterations occurring in type 2 diabetes, such as hyperglycemia, hyperlipidemia or hyperglucagonemia. Materials and methods AlphaTC1/6 cells from a mice pancreatic cell line were incubated in the presence of two glucose (G) concentration (5.5 and 16.7 mM) for 16 h with or without free fatty acid, IL6 or glucagon. GLP-1 secretion was measured by ELISA and expression of PC1/3 and PC2 by RT-PCR and western blot; cell viability was determined by MTT method, Reactive Oxygen Species generation (ROS) by H2DCFDA fluorescence and apoptosis by Annexin staining and Propidium Iodine (PI) fluorescence. Results Upon 16.7G incubation, GLP-1 secretion (total and active) was significantly increased in parallel with a significant increment in PC1/3 expression, a slight increase in cell viability and ROS generation and by a decrement in PC2 expression with no change in cell apoptosis. When cells were incubated at 5.5mM glucose with FFA, also an increment in GLP-1 secretion and PC1/3 expression was observed together an increment in ROS generation, a decrement in cell viability, and a modest increment in apoptosis. When incubated with 16.7mM glucose with FFA, the increment in GLP-1 secretion was reduced to basal, accompanied by an increment in apoptosis and ROS generation. This was also observed with IL-6, but in this case, no modification in ROS generation or apoptosis was observed when compared to 16.7mM glucose. The presence of glucagon did not modify any of the parameters studied. Conclusion These data suggest that under hyperglycemic, hyperlipidemia or inflammatory conditions, alpha cells can increase expression PC1/3 and activate GLP-1 secretion, which may contribute protecting both alpha and beta-cells from glucose and lipotoxicity, while this effect seems to be lost in the presence of both pathophysiological conditions.
Collapse
Affiliation(s)
- Veronica Sancho
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Giuseppe Daniele
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Daniela Lucchesi
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Roberto Lupi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero–Universitaria Pisana, Cisanello Hospital, Pisa, Italy
| | - Annamaria Ciccarone
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero–Universitaria Pisana, Cisanello Hospital, Pisa, Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero–Universitaria Pisana, Cisanello Hospital, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Roberto Miccoli
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, University of Pisa – Cisanello Hospital, Pisa, Italy
- * E-mail:
| |
Collapse
|
407
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
408
|
Glass LL, Calero-Nieto FJ, Jawaid W, Larraufie P, Kay RG, Göttgens B, Reimann F, Gribble FM. Single-cell RNA-sequencing reveals a distinct population of proglucagon-expressing cells specific to the mouse upper small intestine. Mol Metab 2017; 6:1296-1303. [PMID: 29031728 PMCID: PMC5641633 DOI: 10.1016/j.molmet.2017.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. METHODS We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. RESULTS PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. CONCLUSIONS Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Leslie L Glass
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fernando J Calero-Nieto
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Wajid Jawaid
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Pierre Larraufie
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Richard G Kay
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Berthold Göttgens
- Wellcome Trust and MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0XY, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
409
|
Zhang Y, Fava GE, Wu M, Htun W, Klein T, Fonseca VA, Wu H. Effects of Linagliptin on Pancreatic α Cells of Type 1 Diabetic Mice. J Endocr Soc 2017; 1:1224-1234. [PMID: 29264448 PMCID: PMC5686619 DOI: 10.1210/js.2017-00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
The dipeptidyl peptidase-4 inhibitor linagliptin promotes β-cell survival and insulin secretion by prolonging endogenous glucagon-like peptide 1 (GLP-1) action and therefore helps to maintain normoglycemia in diabetic patients. The effect of linagliptin on glucagon-producing α cells, however, was not clear. In this study, we investigated whether linagliptin had any effects on α cells with regard to their proliferation and hormonal production using type 1 diabetes mouse models, including streptozotocin-induced and nonobese diabetes mice. After diabetes development, the mice were either untreated or treated with linagliptin or insulin for up to 6 weeks. Our results showed that linagliptin significantly increased circulating GLP-1 levels in both type 1 diabetes models, but therapeutic benefit was detected in nonobese diabetes mice only. Circulating C-peptide and glucagon levels (nonfasting) were not significantly altered by linagliptin treatment in either model. In addition, we found that linagliptin did not increase α-cell proliferation compared with the untreated or insulin-treated controls as assessed by in vivo 5-bromo-2'-deoxyuridine labeling assay. Finally, we examined whether linagliptin treatment altered GLP-1 vs glucagon expression in pancreatic α cells. Immunohistochemistry assays showed that linagliptin treatment resulted in detection of GLP-1 in more α cells than in control groups, suggesting linagliptin was able to increase intraislet GLP-1 presence, presumably by inhibiting GLP-1 degradation. In summary, this study indicates that linagliptin would not confer adverse effect on α cells, such as causing α cell hyperplasia, and instead may facilitate a blood glucose-lowering effect by increasing GLP-1 presence in α cells.
Collapse
Affiliation(s)
- Yanqing Zhang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Genevieve E. Fava
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Meifen Wu
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Wynn Htun
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Thomas Klein
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach 88597, Germany
| | - Vivian A. Fonseca
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Hongju Wu
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| |
Collapse
|
410
|
Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep 2017; 21:1160-1168. [DOI: 10.1016/j.celrep.2017.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
|
411
|
Grønhøj MH, Clausen BH, Fenger CD, Lambertsen KL, Finsen B. Beneficial potential of intravenously administered IL-6 in improving outcome after murine experimental stroke. Brain Behav Immun 2017; 65:296-311. [PMID: 28587928 DOI: 10.1016/j.bbi.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with neuroprotective properties. Still, the therapeutic potential of IL-6 after experimental stroke has not yet been investigated in a clinically relevant way. Here, we investigated the therapeutic use of intravenously administered IL-6 and the soluble IL-6 receptor (sIL-6R) alone or in combination, early after permanent middle cerebral artery occlusion (pMCAo) in mice. IL-6 did not affect the infarct volume in C57BL/6 mice, at neither 24 nor 72h after pMCAo but reduced the infarct volume in IL-6 knockout mice at 24h after pMCAo. Assessment of post-stroke behavior showed an improved grip strength after a single IL-6 injection and also improved rotarod endurance after two injections, in C57BL/6 mice at 24h. An improved grip strength and a better preservation of sensory functions was also observed in IL-6 treated IL-6 knockout mice 24h after pMCAo. Co-administration of IL-6 and sIL-6R increased the infarct volume, the number of infiltrating polymorphonuclear leukocytes and impaired the rotarod endurance of C57BL/6 mice 24h after pMCAo. IL-6 administration to naïve C57BL/6 mice lead after 45min to increased plasma-levels of CXCL1 and IL-10, whereas IL-6 administration to C57BL/6 mice lead to a reduction in the ischemia-induced increase in IL-6 and CXCL1 at both mRNA and protein level in brain, and of IL-6 and CXCL1 in serum. We also investigated the expression of IL-6 and IL-6R after pMCAo and found that cortical neurons upregulated IL-6 mRNA and protein, and upregulated IL-6R after pMCAo. In conclusion, the results show a complex but potentially beneficial effect of intravenously administered IL-6 in experimental stroke.
Collapse
Affiliation(s)
- Mads Hjortdal Grønhøj
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurosurgery, Odense University Hospital, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Christina Dühring Fenger
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; Department of Neurology, Odense University Hospital, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Denmark; BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
412
|
Chimerel C, Riccio C, Murison K, Gribble FM, Reimann F. Optogenetic Analysis of Depolarization-Dependent Glucagonlike Peptide-1 Release. Endocrinology 2017; 158:3426-3434. [PMID: 28938466 PMCID: PMC5659701 DOI: 10.1210/en.2017-00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022]
Abstract
Incretin hormones play an important role in the regulation of food intake and glucose homeostasis. Glucagonlike peptide-1 (GLP-1)-secreting cells have been demonstrated to be electrically excitable and to fire action potentials (APs) with increased frequency in response to nutrient exposure. However, nutrients can also be metabolized or activate G-protein-coupled receptors, thus potentially stimulating GLP-1 secretion independent of their effects on the plasma membrane potential. Here we used channelrhodopsins to manipulate the membrane potential of GLUTag cells, a well-established model of GLP-1-secreting enteroendocrine L cells. Using channelrhodopsins with fast or slow on/off kinetics (CheTA and SSFO, respectively), we found that trains of light pulses could trigger APs and calcium elevation in GLUTag cells stably expressing either CheTA or SSFO. Tetrodotoxin reduced light-triggered AP frequency but did not impair calcium responses, whereas further addition of the calcium-channel blockers nifedipine and ω-conotoxin GVIA abolished both APs and calcium transients. Light pulse trains did not trigger GLP-1 secretion from CheTA-expressing cells under basal conditions but were an effective stimulus when cyclic adenosine monophosphate (cAMP) concentrations were elevated by forskolin plus 3-isobutyl 1-methylxanthine. In SSFO-expressing cells, light-stimulated GLP-1 release was observed at resting and elevated cAMP concentrations and was blocked by nifedipine plus ω-conotoxin GVIA but not tetrodotoxin. We conclude that cAMP elevation or cumulative membrane depolarization triggered by SSFO enhances the efficiency of light-triggered action potential firing, voltage-gated calcium entry, and GLP-1 secretion.
Collapse
Affiliation(s)
- Catalin Chimerel
- Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Cristian Riccio
- Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Keir Murison
- Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Fiona M. Gribble
- Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Diseases Unit, Wellcome Trust–MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
413
|
Stojakovic A, Espinosa EP, Farhad OT, Lutfy K. Effects of nicotine on homeostatic and hedonic components of food intake. J Endocrinol 2017; 235:R13-R31. [PMID: 28814527 PMCID: PMC5578410 DOI: 10.1530/joe-17-0166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Mitochondrial Neurobiology and Therapeutics LaboratoryMayo Clinic, Rochester, Minnesota, USA
| | - Enma P Espinosa
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
- Faculty of MedicineSchool of Clinica Biochemistry, Pontifical Catholic University of Ecuador (PUCE), Quito, Ecuador
| | - Osman T Farhad
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| | - Kabirullah Lutfy
- Department of Pharmaceutical SciencesCollege of Pharmacy, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
414
|
Gillies NA, Pendharkar SA, Singh RG, Windsor JA, Bhatia M, Petrov MS. Fasting levels of insulin and amylin after acute pancreatitis are associated with pro-inflammatory cytokines. Arch Physiol Biochem 2017; 123:238-248. [PMID: 28426339 DOI: 10.1080/13813455.2017.1308382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of metabolic diseases continues to rise worldwide, with a growing recognition of metabolic dysregulation after acute inflammatory diseases such as acute pancreatitis (AP). Adipokines and cytokines play an important role in metabolism and the course of AP, but there is a paucity of research investigating their relationship with pancreatic hormones after AP. This study aimed to explore associations between pancreatic hormones and adipokines as well as cytokines to provide insights into the pathophysiology of altered pancreatic hormone secretion following AP [corrected]. METHODS A total of 83 patients previously diagnosed with AP and no prior diabetes or pre-diabetes were recruited into this cross-sectional follow up study. Fasting venous blood samples were collected to analyse a panel of pancreatic hormones and derivatives (amylin, C-peptide, glucagon, insulin, pancreatic polypeptide, somatostatin), adipokines (adiponectin, leptin, retinol binding protein-4, and resistin), and cytokines (interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumour necrosis factor-α (TNF-α)). Linear regression analyses were used, and potential confounders were adjusted for in multivariate analyses. RESULTS Insulin was significantly associated with IL-6 in both unadjusted and adjusted models (p = .029 and p = .040, respectively). Amylin was significantly associated with MCP-1 in the unadjusted model (p = .046), and TNF-α in unadjusted and adjusted models (p = .025 and p = .027, respectively). CONCLUSIONS Insulin and amylin have a strong positive association with pro-inflammatory cytokines in patients following an episode of AP. These associations have possible relevance in the development of diabetes associated with diseases of the exocrine pancreas, providing the opportunity to develop novel treatment paradigms.
Collapse
Affiliation(s)
- Nicola A Gillies
- a Department of Surgery , University of Auckland , Auckland , New Zealand
| | | | - Ruma G Singh
- a Department of Surgery , University of Auckland , Auckland , New Zealand
| | - John A Windsor
- a Department of Surgery , University of Auckland , Auckland , New Zealand
| | - Madhav Bhatia
- b Department of Pathology , Otago University , Christchurch , New Zealand
| | - Maxim S Petrov
- a Department of Surgery , University of Auckland , Auckland , New Zealand
| |
Collapse
|
415
|
Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2633-2644. [PMID: 28219767 PMCID: PMC5563481 DOI: 10.1016/j.bbadis.2017.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
A severe burn can trigger a hypermetabolic state which lasts for years following the injury, to the detriment of the patient. The drastic increase in metabolic demands during this phase renders it difficult to meet the body's nutritional requirements, thus increasing muscle, bone and adipose catabolism and predisposing the patient to a host of disorders such as multi-organ dysfunction and sepsis, or even death. Despite advances in burn care over the last 50 years, due to the multifactorial nature of the hypermetabolic phenomenon it is difficult if not impossible to precisely identify and pharmacologically modulate the biological mediators contributing to this substantial metabolic derangement. Here, we discuss biomarkers and molecules which play a role in the induction and mediation of the hypercatabolic condition post-thermal injury. Furthermore, this thorough review covers the development of the factors released after burns, how they induce cellular and metabolic dysfunction, and how these factors can be targeted for therapeutic interventions to restore a more physiological metabolic phenotype after severe thermal injuries. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Osai Samadi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
416
|
Kasper P, Vohlen C, Dinger K, Mohr J, Hucklenbruch-Rother E, Janoschek R, Köth J, Matthes J, Appel S, Dötsch J, Alejandre Alcazar MA. Renal Metabolic Programming Is Linked to the Dynamic Regulation of a Leptin-Klf15 Axis and Akt/AMPKα Signaling in Male Offspring of Obese Dams. Endocrinology 2017; 158:3399-3415. [PMID: 28938412 DOI: 10.1210/en.2017-00489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 12/27/2022]
Abstract
Childhood obesity is associated with renal diseases. Maternal obesity is a risk factor linked to increased adipocytokines and metabolic disorders in the offspring. Therefore, we studied the impact of maternal obesity on renal-intrinsic insulin and adipocytokine signaling and on renal function and structure. To induce maternal obesity, female mice were fed a high-fat diet (HFD) or a standard diet (SD; control group) prior to mating, during gestation, and throughout lactation. A third group of dams was fed HFD only during lactation (HFD-Lac). After weaning at postnatal day (P)21, offspring of all groups received SD. Clinically, HFD offspring were overweight and insulin resistant at P21. Although no metabolic changes were detected at P70, renal sodium excretion was reduced by 40%, and renal matrix deposition increased in the HFD group. Mechanistically, two stages were differentiated. In the early stage (P21), compared with the control group, HFD showed threefold increased white adipose tissue, impaired glucose tolerance, hyperleptinemia, and hyperinsulinemia. Renal leptin/Stat3-signaling was activated. In contrast, the Akt/ AMPKα cascade and Krüppel-like factor 15 expression were decreased. In the late stage (P70), although no metabolic differences were detected in HFD when compared with the control group, leptin/Stat3-signaling was reduced, and Akt/AMPKα was activated in the kidneys. This effect was linked to an increase of proliferative (cyclinD1/D2) and profibrotic (ctgf/collagen IIIα1) markers, similar to leptin-deficient mice. HFD-Lac mice exhibited metabolic changes at P21 similar to HFD, but no other persistent changes. This study shows a link between maternal obesity and metabolic programming of renal structure and function and intrinsic-renal Stat3/Akt/AMPKα signaling in the offspring.
Collapse
Affiliation(s)
- Philipp Kasper
- Translational Experimental Pediatrics, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Christina Vohlen
- Translational Experimental Pediatrics, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Katharina Dinger
- Translational Experimental Pediatrics, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jasmine Mohr
- Translational Experimental Pediatrics, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Eva Hucklenbruch-Rother
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Ruth Janoschek
- Metabolism and Perinatal Programming, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jessica Köth
- Department of Pharmacology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jan Matthes
- Department of Pharmacology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Sarah Appel
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Jörg Dötsch
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Translational Experimental Pediatrics, University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
- University Hospital for Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
417
|
Yabe D, Seino Y, Seino Y. Incretin concept revised: The origin of the insulinotropic function of glucagon-like peptide-1 - the gut, the islets or both? J Diabetes Investig 2017; 9:21-24. [PMID: 28746743 PMCID: PMC5754537 DOI: 10.1111/jdi.12718] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023] Open
Abstract
Incretins comprise a pair of gut hormones, glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1), which are secreted in response to food ingestion and enhance glucose‐dependent insulin secretion from pancreatic β‐cells. Immediately after secretion, GLP‐1 is degraded by dipeptidyl peptidase‐4 more rapidly than GIP, and circulating levels of biologically intact GLP‐1 are substantially lower than those of biologically intact GIP. Therefore, there has been a debate on how the gut‐derived GLP‐1 exerts insulinotropic actions. Recent publications have revealed two novel mechanisms by which GLP‐1 exerts insulinotropic actions: (i) the gut‐derived GLP‐1 activates receptors expressed in nodose ganglions, thereby potentiating glucose‐dependent insulin secretion through the vagus nerves; and (ii) the pancreatic α‐cell‐derived GLP‐1 activates receptors expressed in β‐cells in a paracrine manner. While the relative contributions of the two mechanisms under normal and pathological conditions remain unknown and mechanisms regulating GLP‐1 secretion from α‐cells need to be investigated, the available data strongly indicate that the effects of GLP‐1 on insulin secretion are far more complex than previously believed, and the classical incretin concept regarding GLP‐1 should be revised.
Collapse
Affiliation(s)
- Daisuke Yabe
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Seino
- Departments of Endocrinology and Diabetes Metabolic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kansai Electric Power Medical Research Institute, Kobe, Japan.,Center for Diabetes, Endocrinology and Metabolism, Kansai Electric Power Hospital, Osaka, Japan
| |
Collapse
|
418
|
Millar P, Pathak N, Parthsarathy V, Bjourson AJ, O'Kane M, Pathak V, Moffett RC, Flatt PR, Gault VA. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J Endocrinol 2017; 234:255-267. [PMID: 28611211 DOI: 10.1530/joe-17-0263] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/24/2022]
Abstract
This study assessed the metabolic and neuroprotective actions of the sodium glucose cotransporter-2 inhibitor dapagliflozin in combination with the GLP-1 agonist liraglutide in dietary-induced diabetic mice. Mice administered low-dose streptozotocin (STZ) on a high-fat diet received dapagliflozin, liraglutide, dapagliflozin-plus-liraglutide (DAPA-Lira) or vehicle once-daily over 28 days. Energy intake, body weight, glucose and insulin concentrations were measured at regular intervals. Glucose tolerance, insulin sensitivity, hormone and biochemical analysis, dual-energy X-ray absorptiometry densitometry, novel object recognition, islet and brain histology were examined. Once-daily administration of DAPA-Lira resulted in significant decreases in body weight, fat mass, glucose and insulin concentrations, despite no change in energy intake. Similar beneficial metabolic improvements were observed regarding glucose tolerance, insulin sensitivity, HOMA-IR, HOMA-β, HbA1c and triglycerides. Plasma glucagon, GLP-1 and IL-6 levels were increased and corticosterone concentrations decreased. DAPA-Lira treatment decreased alpha cell area and increased insulin content compared to dapagliflozin monotherapy. Recognition memory was significantly improved in all treatment groups. Brain histology demonstrated increased staining for doublecortin (number of immature neurons) in dentate gyrus and synaptophysin (synaptic density) in stratum oriens and stratum pyramidale. These data demonstrate that combination therapy of dapagliflozin and liraglutide exerts beneficial metabolic and neuroprotective effects in diet-induced diabetic mice. Our results highlight important personalised approach in utilising liraglutide in combination with dapagliflozin, instead of either agent alone, for further clinical evaluation in treatment of diabetes and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Paul Millar
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Nupur Pathak
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Vadivel Parthsarathy
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Anthony J Bjourson
- Northern Ireland Centre for Stratified MedicineUniversity of Ulster, C-TRIC Building, Altnagelvin Hospital, Northern Ireland, UK
| | - Maurice O'Kane
- Northern Ireland Centre for Stratified MedicineUniversity of Ulster, C-TRIC Building, Altnagelvin Hospital, Northern Ireland, UK
- Clinical Chemistry LaboratoryWestern Health and Social Care Trust, Altnagelvin Hospital, Northern Ireland, UK
| | - Varun Pathak
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - R Charlotte Moffett
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and DiabetesSchool of Biomedical Sciences, University of Ulster, Northern Ireland, UK
| |
Collapse
|
419
|
Stolarczyk E. Adipose tissue inflammation in obesity: a metabolic or immune response? Curr Opin Pharmacol 2017; 37:35-40. [PMID: 28843953 DOI: 10.1016/j.coph.2017.08.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Adipose tissue is not only a reservoir for energy, but also an immune organ. In the context of obesity, the development of insulin resistance is now recognised to be initiated by inflammation of the adipose tissue. However, the primary events triggering this inflammation are still unclear, as a complex combination of endocrine and immune factors act to regulate this adipose tissue microenvironment. Below we discuss the different factors involved and how they affect the biology of the adipose tissue in obesity.
Collapse
Affiliation(s)
- Emilie Stolarczyk
- Division of Diabetes, Endocrinology and Metabolism, Hammersmith Campus, Imperial College London, London, UK.
| |
Collapse
|
420
|
Suidasari S, Uragami S, Yanaka N, Kato N. Dietary vitamin B6 modulates the gene expression of myokines, Nrf2-related factors, myogenin and HSP60 in the skeletal muscle of rats. Exp Ther Med 2017; 14:3239-3246. [PMID: 28912874 DOI: 10.3892/etm.2017.4879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/24/2017] [Indexed: 12/27/2022] Open
Abstract
Previous studies have suggested that vitamin B6 is an ergogenic factor. However, the role of dietary vitamin B6 in skeletal muscle has not been widely researched. The aim of the present study was to investigate the effects of dietary vitamin B6 on the gene expression of 19 myokines, 14 nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated factors, 8 myogenesis-related factors and 4 heat shock proteins (HSPs), which may serve important roles in skeletal muscles. Rats were fed a diet containing 1 (marginal vitamin B6 deficiency), 7 (recommended dietary level) or 35 mg/kg of pyridoxine (PN) HCl/ for 6 weeks. Gene expressions were subsequently analysed using reverse transcription-quantitative polymerase chain reaction. Food intake and growth were unaffected by this dietary treatment. The rats in the 7 and 35 mg/kg PN HCl groups exhibited a significant increase in the concentration of pyridoxal 5'-phosphate in the gastrocnemius muscle compared with the 1 mg/kg PN HCl diet (P<0.01). The expressions of myokines, such as IL-7, IL-8, secreted protein acidic and rich in cysteine, IL-6, growth differentiation factor 11, myonectin, leukaemia inhibitory factor, apelin and retinoic acid receptor responder (tazarotene induced) 1, the expression of Nrf2 and its regulated factors, such as heme oxygenase 1, superoxide dismutase 2, glutathione peroxidase 1 and glutathione S-transferase, and the expression of myogenin and HSP60 were significantly elevated in the 7 mg/kg PN HCl group compared with the 1 mg/kg PN HCl diet (P<0.05). No significant differences in levels of these genes were observed between the 35 and 1 mg/kg PN HCl, with the exception of GDF11 and myonectin, whose expressions were significantly increased in the 35 mg/kg PN HCl (P<0.05). Notably, the majority of gene expressions that were affected responded to dietary supplemental vitamin B6 in a similar manner. The results suggest that compared with the marginal vitamin B6 deficiency, the recommended dietary intake of vitamin B6 upregulates the gene expression of a number of factors that promote the growth and repair of skeletal muscle.
Collapse
Affiliation(s)
- Sofya Suidasari
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Shinji Uragami
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Norihisa Kato
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
421
|
Brandão BB, Guerra BA, Mori MA. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol 2017; 12:82-102. [PMID: 28214707 PMCID: PMC5312655 DOI: 10.1016/j.redox.2017.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022] Open
Abstract
Metabolic diseases such as type 2 diabetes are a major public health issue worldwide. These diseases are often linked to a dysfunctional adipose tissue. Fat is a large, heterogenic, pleiotropic and rather complex tissue. It is found in virtually all cavities of the human body, shows unique plasticity among tissues, and harbors many cell types in addition to its main functional unit - the adipocyte. Adipose tissue function varies depending on the localization of the fat depot, the cell composition of the tissue and the energy status of the organism. While the white adipose tissue (WAT) serves as the main site for triglyceride storage and acts as an important endocrine organ, the brown adipose tissue (BAT) is responsible for thermogenesis. Beige adipocytes can also appear in WAT depots to sustain heat production upon certain conditions, and it is becoming clear that adipose tissue depots can switch phenotypes depending on cell autonomous and non-autonomous stimuli. To maintain such degree of plasticity and respond adequately to changes in the energy balance, three basic processes need to be properly functioning in the adipose tissue: i) adipogenesis and adipocyte turnover, ii) metabolism, and iii) signaling. Here we review the fundamental role of small non-coding RNAs (sncRNAs) in these processes, with focus on microRNAs, and demonstrate their importance in adipose tissue function and whole body metabolic control in mammals.
Collapse
Affiliation(s)
- Bruna B Brandão
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Beatriz A Guerra
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Program in Molecular Biology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas, Campinas, Brazil; Program in Genetics and Molecular Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
422
|
Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 2017; 47:600-611. [PMID: 28722106 DOI: 10.1111/eci.12781] [Citation(s) in RCA: 396] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Persistent inflammation is involved in the pathogenesis of chronic diseases such as type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). AIMS The aim of this review was to provide the reader with an update of the mechanisms whereby exercise-induced cytokines may impact cardiometabolic diseases. RESULTS Evidence exists that interleukin (IL)-1β is involved in pancreatic β-cell damage, whereas TNF-α is a key molecule in peripheral insulin resistance. In addition, TNF-α appears to be involved in the pathogenesis of atherosclerosis and heart failure. A marked increase in IL-6 and IL-10 is provoked by exercise and exerts direct anti-inflammatory effects by an inhibition of TNF-α and by stimulating IL-1ra, thereby limiting IL-1β signalling. Moreover, muscle-derived IL-6 appears to have direct anti-inflammatory effects and serves as a mechanism to improve glucose tolerance. In addition, indirect anti-inflammatory effects of long-term exercise are mediated via improvements in body composition. CONCLUSION Physical activity represents a natural, strong anti-inflammatory strategy with minor side effects and should be integrated in the management of patients with cardiometabolic diseases.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
423
|
Roepke TA, Yasrebi A, Villalobos A, Krumm EA, Yang JA, Mamounis KJ. Loss of ERα partially reverses the effects of maternal high-fat diet on energy homeostasis in female mice. Sci Rep 2017; 7:6381. [PMID: 28743985 PMCID: PMC5526977 DOI: 10.1038/s41598-017-06560-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/13/2017] [Indexed: 11/18/2022] Open
Abstract
Maternal high-fat diet (HFD) alters hypothalamic developmental programming and disrupts offspring energy homeostasis in rodents. 17β-estradiol (E2) also influences hypothalamic programming through estrogen receptor (ER) α. Therefore, we hypothesized that females lacking ERα would be more susceptible to maternal HFD. To address this question, heterozygous ERα knockout (WT/KO) dams were fed a control breeder chow diet (25% fat) or a semi-purified HFD (45% fat) 4 weeks prior to mating with WT/KO males or heterozygous males with an ERα DNA-binding domain mutation knocked in (WT/KI) to produce WT, ERα KO, or ERα KIKO females lacking ERE-dependent ERα signaling. Maternal HFD increased body weight in WT and KIKO, in part, due to increased adiposity and daytime carbohydrate utilization in WT and KIKO, while increasing nighttime fat utilization in KO. Maternal HFD also increased plasma leptin, IL-6, and MCP-1 in WT and increased arcuate expression of Kiss1 and Esr1 (ERα) and liver expression of G6pc and Pepck in WT and KIKO. Contrary to our hypothesis, these data suggest that loss of ERα signaling blocks the influence of maternal HFD on energy homeostasis, inflammation, and hypothalamic and liver gene expression and that restoration of ERE-independent ERα signaling partially reestablishes susceptibility to maternal HFD.
Collapse
Affiliation(s)
- Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA. .,New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Alejandra Villalobos
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Reproductive Medicine, University of California, San Diego, San Diego, CA 92103, USA
| | - Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
424
|
A system model of the effects of exercise on plasma Interleukin-6 dynamics in healthy individuals: Role of skeletal muscle and adipose tissue. PLoS One 2017; 12:e0181224. [PMID: 28704555 PMCID: PMC5507524 DOI: 10.1371/journal.pone.0181224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
Abstract
Interleukin-6 (IL-6) has been recently shown to play a central role in glucose homeostasis, since it stimulates the production and secretion of Glucagon-like Peptide-1 (GLP-1) from intestinal L-cells and pancreas, leading to an enhanced insulin response. In resting conditions, IL-6 is mainly produced by the adipose tissue whereas, during exercise, skeletal muscle contractions stimulate a marked IL-6 secretion as well. Available mathematical models describing the effects of exercise on glucose homeostasis, however, do not account for this IL-6 contribution. This study aimed at developing and validating a system model of exercise’s effects on plasma IL-6 dynamics in healthy humans, combining the contributions of both adipose tissue and skeletal muscle. A two-compartment description was adopted to model plasma IL-6 changes in response to oxygen uptake’s variation during an exercise bout. The free parameters of the model were estimated by means of a cross-validation procedure performed on four different datasets. A low coefficient of variation (<10%) was found for each parameter and the physiologically meaningful parameters were all consistent with literature data. Moreover, plasma IL-6 dynamics during exercise and post-exercise were consistent with literature data from exercise protocols differing in intensity, duration and modality. The model successfully emulated the physiological effects of exercise on plasma IL-6 levels and provided a reliable description of the role of skeletal muscle and adipose tissue on the dynamics of plasma IL-6. The system model here proposed is suitable to simulate IL-6 response to different exercise modalities. Its future integration with existing models of GLP-1-induced insulin secretion might provide a more reliable description of exercise’s effects on glucose homeostasis and hence support the definition of more tailored interventions for the treatment of type 2 diabetes.
Collapse
|
425
|
Islam H, Townsend LK, McKie GL, Medeiros PJ, Gurd BJ, Hazell TJ. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J Appl Physiol (1985) 2017; 123:614-623. [PMID: 28684587 PMCID: PMC5625078 DOI: 10.1152/japplphysiol.00218.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023] Open
Abstract
This study examines the involvement of two potential mechanisms (lactate and IL-6) that may explain the intensity-dependent effects of acute exercise on appetite-related parameters. Our findings support a clear intensity-dependent paradigm for appetite-regulation following exercise, as highlighted by the change in acylated ghrelin and the suppression of appetite and energy intake after vigorous exercise (continuous and intermittent). Further, our findings extend previous work in animal/cell models by providing evidence for the potential role of lactate and IL-6 in mediating changes in appetite-related parameters following exercise in humans. High-intensity exercise suppresses appetite partly through changes in peripheral appetite-regulating hormones. Lactate and IL-6 mediate the release of these hormones in animal/cell models and may provide a mechanistic link between exercise intensity and appetite regulation. The current study examined changes in appetite-regulating hormones, lactate, and IL-6 after different intensities of running. Eight males completed four experimental sessions: 1) moderate-intensity continuous training (MICT; 65% V̇o2max); 2) vigorous-intensity continuous training (VICT; 85% V̇o2max); 3) sprint interval training (SIT; repeated “all-out” sprints); and 4) Control (CTRL; no exercise). Acylated ghrelin, active glucagon-like peptide-1 (GLP-1), total peptide YY (PYY), lactate, IL-6, and appetite perceptions were measured pre-, immediately postexercise, 30 min postexercise, and 90 min postexercise. Energy intake was recorded over 3 days. VICT and SIT suppressed ghrelin (P < 0.001), although SIT elicited a greater (P = 0.016 vs. MICT) and more prolonged (P < 0.001 vs. all sessions) response. GLP-1 increased immediately after MICT (P < 0.001) and 30 min after VICT (P < 0.001) and SIT (P < 0.002), while VICT elicited a greater postexercise increase in PYY vs. MICT (P = 0.027). Postexercise changes in blood lactate and IL-6 correlated with the area under the curve values for ghrelin (r = −0.60, P < 0.001) and GLP-1 (r = 0.42, P = 0.017), respectively. Appetite was suppressed after exercise (P < 0.001), although more so after VICT (P < 0.027) and SIT (P < 0.001) vs. MICT, and energy intake was reduced on the day after VICT (P < 0.017 vs. MICT and CTRL) and SIT (P = 0.049 vs. MICT). These findings support an intensity-dependent paradigm for appetite regulation following exercise and highlight the potential involvement of lactate and IL-6. NEW & NOTEWORTHY This study examines the involvement of two potential mechanisms (lactate and IL-6) that may explain the intensity-dependent effects of acute exercise on appetite-related parameters. Our findings support a clear intensity-dependent paradigm for appetite regulation following exercise, as highlighted by the change in acylated ghrelin and the suppression of appetite and energy intake after vigorous exercise (continuous and intermittent). Further, our findings extend previous work in animal/cell models by providing evidence for the potential role of lactate and IL-6 in mediating changes in appetite-related parameters following exercise in humans.
Collapse
Affiliation(s)
- Hashim Islam
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Logan K Townsend
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Greg L McKie
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Philip J Medeiros
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada; and
| | - Brendon J Gurd
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, Ontario, Canada;
| |
Collapse
|
426
|
Codella R, Terruzzi I, Luzi L. Why should people with type 1 diabetes exercise regularly? Acta Diabetol 2017; 54:615-630. [PMID: 28289908 DOI: 10.1007/s00592-017-0978-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation.
Collapse
Affiliation(s)
- Roberto Codella
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.
| | - Ileana Terruzzi
- Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Livio Luzi
- Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy
- Metabolism Research Center, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
427
|
Lebherz C, Schlieper G, Möllmann J, Kahles F, Schwarz M, Brünsing J, Dimkovic N, Koch A, Trautwein C, Flöge J, Marx N, Tacke F, Lehrke M. GLP-1 Levels Predict Mortality in Patients with Critical Illness as Well as End-Stage Renal Disease. Am J Med 2017; 130:833-841.e3. [PMID: 28366423 DOI: 10.1016/j.amjmed.2017.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 03/07/2017] [Accepted: 03/13/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Glucagon-like peptide 1 (GLP-1) is an incretin hormone, which stimulates glucose-dependent insulin secretion from the pancreas and holds immune-regulatory properties. A marked increase of GLP-1 has been found in critically ill patients. This study was performed to elucidate the underlying mechanism and evaluate its prognostic value. METHODS GLP-1 plasma levels were determined in 3 different patient cohorts: 1) critically ill patients admitted to our intensive care unit (n = 215); 2) patients with chronic kidney disease on hemodialysis (n = 173); and 3) a control group (no kidney disease, no acute inflammation, n = 105). In vitro experiments were performed to evaluate GLP-1 secretion in response to human serum samples from the above-described cohorts. RESULTS Critically ill patients presented with 6.35-fold higher GLP-1 plasma level in comparison with the control group. There was a significant correlation of GLP-1 levels with markers for the severity of inflammation, but also kidney function. Patients with end-stage renal disease displayed 4.46-fold higher GLP-1 concentrations in comparison with the control group. In vitro experiments revealed a strong GLP-1-inducing potential of serum from critically ill patients, while serum from hemodialysis patients only modestly increased GLP-1 secretion. GLP-1 levels independently predicted mortality in critically ill patients and patients with end-stage renal disease. CONCLUSIONS Chronic and acute inflammatory processes like sepsis or chronic kidney disease increase circulating GLP-1 levels. This most likely reflects a sum effect of increased GLP-1 secretion and decreased GLP-1 clearance. GLP-1 plasma levels independently predict the outcome of critically ill and end-stage renal disease patients.
Collapse
Affiliation(s)
- Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Georg Schlieper
- Department of Internal Medicine II, University Hospital Aachen, Germany
| | - Julia Möllmann
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Florian Kahles
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Marvin Schwarz
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Jan Brünsing
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Nada Dimkovic
- Center for Renal Diseases, Zvezdara University, Medical Center, Belgrade, Serbia
| | - Alexander Koch
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | | | - Jürgen Flöge
- Department of Internal Medicine II, University Hospital Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Germany.
| |
Collapse
|
428
|
Reichetzeder C, von Websky K, Tsuprykov O, Mohagheghi Samarin A, Falke LG, Dwi Putra SE, Hasan AA, Antonenko V, Curato C, Rippmann J, Klein T, Hocher B. Head-to-head comparison of structurally unrelated dipeptidyl peptidase 4 inhibitors in the setting of renal ischemia reperfusion injury. Br J Pharmacol 2017; 174:2273-2286. [PMID: 28423178 PMCID: PMC5481645 DOI: 10.1111/bph.13822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 01/17/2023] Open
Abstract
Background and Purpose Results regarding protective effects of dipeptidyl peptidase 4 (DPP4) inhibitors in renal ischaemia–reperfusion injury (IRI) are conflicting. Here we have compared structurally unrelated DPP4 inhibitors in a model of renal IRI. Experimental Approach IRI was induced in uninephrectomized male rats by renal artery clamping for 30 min. The sham group was uninephrectomized but not subjected to IRI. DPP4 inhibitors or vehicle were given p.o. once daily on three consecutive days prior to IRI: linagliptin (1.5 mg·kg−1·day−1), vildagliptin (8 mg·kg−1·day−1) and sitagliptin (30 mg·kg−1·day−1). An additional group received sitagliptin until study end (before IRI: 30 mg·kg−1·day−1; after IRI: 15 mg·kg−1·day−1). Key Results Plasma‐active glucagon‐like peptide type 1 (GLP‐1) increased threefold to fourfold in all DPP4 inhibitor groups 24 h after IRI. Plasma cystatin C, a marker of GFR, peaked 48 h after IRI. Compared with the placebo group, DPP4 inhibition did not reduce increased plasma cystatin C levels. DPP4 inhibitors ameliorated histopathologically assessed tubular damage with varying degrees of drug‐specific efficacies. Renal osteopontin expression was uniformly reduced by all DPP4 inhibitors. IRI‐related increased renal cytokine expression was not decreased by DPP4 inhibition. Renal DPP4 activity at study end was significantly inhibited in the linagliptin group, but only numerically reduced in the prolonged/dose‐adjusted sitagliptin group. Active GLP‐1 plasma levels at study end were increased only in the prolonged/dose‐adjusted sitagliptin treatment group. Conclusions and Implications In rats with renal IRI, DPP4 inhibition did not alter plasma cystatin C, a marker of glomerular function, but may protect against tubular damage.
Collapse
Affiliation(s)
- Christoph Reichetzeder
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karoline von Websky
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Oleg Tsuprykov
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany
| | - Azadeh Mohagheghi Samarin
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institute of Aquaculture, University of South Bohemia, České Budějovice, Czech Republic
| | - Luise Gabriele Falke
- Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sulistyo Emantoko Dwi Putra
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia
| | - Ahmed Abdallah Hasan
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Viktoriia Antonenko
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Caterina Curato
- German Rheumatism Research Center (DRFZ), Berlin, Germany.,Cluster of Excellence NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Rippmann
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Thomas Klein
- Cardio Metabolic Diseases, Boehringer-Ingelheim Pharma GmbH&Co KG, Biberach, Germany
| | - Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Institut für Laboratoriumsmedizin, Berlin, Germany.,Department of Basic Medicine, Medical College of Hunan Normal University, Changsha, China
| |
Collapse
|
429
|
Uemura H, Katsuura-Kamano S, Yamaguchi M, Bahari T, Ishizu M, Fujioka M, Arisawa K. Relationships of serum high-sensitivity C-reactive protein and body size with insulin resistance in a Japanese cohort. PLoS One 2017; 12:e0178672. [PMID: 28575103 PMCID: PMC5456096 DOI: 10.1371/journal.pone.0178672] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/17/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Impacts of chronic systemic inflammation and body size and their interaction effect on insulin resistance in Asian populations, in whom obesity is less common, are not fully understood. This study evaluated combined relationships of systemic inflammation and body size with insulin resistance in a Japanese cohort. METHODS We analyzed cross-sectional data from 1,074 eligible subjects (536 men and 538 women) aged 35-69 years who participated in the baseline survey of a cohort study in Tokushima Prefecture, Japan. Systemic inflammation level was assessed by serum high-sensitivity C-reactive protein (hs-CRP), and the degree of insulin resistance and beta-cell function were evaluated by the homeostasis model assessment insulin resistance (HOMA-IR) and beta-cell function (HOMA-β), respectively. Overweight and obesity were defined as a body mass index (BMI) of 23.0-24.9 kg/m2 and ≥25.0 kg/m2, respectively. Associations between serum hs-CRP (assessed as quartiles and additionally continuous values after log-transformation) and indices of glucose homeostasis were analysed adjusting for probable covariates, including BMI (quartiles). Combined associations of serum hs-CRP (≤median, >median) and body size (normal, overweight, obese) with insulin resistance as well as their interaction effect on insulin resistance were also evaluated. RESULTS Serum hs-CRP was dose-dependently associated with HOMA-IR, but not HOMA-β, after adjustment for probable covariates, including BMI. Subjects with obesity and elevated serum hs-CRP (>median) showed a high multivariable-adjusted HOMA-IR value of 1.32 (95% confidence interval (CI) 1.23, 1.41) compared with subjects with normal BMI and low serum hs-CRP (≤median) whose multivariable-adjusted HOMA-IR value was 1.14 (95% CI 1.06, 1.21). The interaction effect between body size (normal, overweight, obese) and serum hs-CRP (≤median, >median) on HOMA-IR was significant (P for interaction <0.001). CONCLUSIONS Our study suggests that elevated systemic inflammation is dose-dependently associated with increased insulin resistance, independent of the known risk factors, in a Japanese population. Concomitant obesity and elevated systemic inflammation may synergistically contribute to increased insulin resistance.
Collapse
Affiliation(s)
- Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Miwa Yamaguchi
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Tirani Bahari
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Masashi Ishizu
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Miho Fujioka
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Japan
| |
Collapse
|
430
|
Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 2017; 34:49-55. [PMID: 28605657 PMCID: PMC5808999 DOI: 10.1016/j.coph.2017.05.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023]
Abstract
Skeletal muscle cells are highly abundant and metabolically active and are known to 'communicate' their energy demands to other organs through active secretion. Muscle-derived secretory proteins include a variety of cytokines and peptides collectively referred to as 'myokines' that exert autocrine, paracrine or endocrine effects. Analyses of the skeletal muscle secretome revealed that numerous myokines are secreted in response to contraction or strength training, and that these factors not only regulate energy demand but also contribute to the broad beneficial effects of exercise on cardiovascular, metabolic, and mental health. Herein we review recent studies on the myokines that regulate muscle function and those that mediate cross talk between skeletal muscle and other organs including adipose tissue, liver, pancreas, the cardiovascular system, brain, bones, and skin.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Joan M Taylor
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
431
|
Harada K, Kitaguchi T, Kamiya T, Aung KH, Nakamura K, Ohta K, Tsuboi T. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells. J Biol Chem 2017; 292:10855-10864. [PMID: 28533434 DOI: 10.1074/jbc.m117.788653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Indexed: 01/07/2023] Open
Abstract
The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca2+ concentrations ([Ca2+] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca2+] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of Gq and G12/13 signaling pathways in the LPI-induced increased [Ca2+] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca2+] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca2+] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by Gq and G12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation.
Collapse
Affiliation(s)
- Kazuki Harada
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore.,Comprehensive Research Organization, Waseda University, Tokyo 162-0041, Japan, and
| | - Taichi Kamiya
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kyaw Htet Aung
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuaki Nakamura
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kunihiro Ohta
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Tsuboi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan,
| |
Collapse
|
432
|
Eda H, Fukui H, Uchiyama R, Kitayama Y, Hara K, Yang M, Kodani M, Tomita T, Oshima T, Watari J, Tsutsui H, Miwa H. Effect of Helicobacter pylori infection on the link between GLP-1 expression and motility of the gastrointestinal tract. PLoS One 2017; 12:e0177232. [PMID: 28545056 PMCID: PMC5436696 DOI: 10.1371/journal.pone.0177232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Background Although Helicobacter pylori (H. pylori) infection is closely associated with the development of peptic ulcer, its involvement in pathophysiology in the lower intestinal tract and gastrointestinal (GI) motility remains unclear. Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the lower intestinal tract and involved in GI motility. Here, we investigated the effect of H. pylori infection on the link between GLP-1 expression and motility of the GI tract. Methods C57BL/6 mice were inoculated with a H. pylori strain. Twelve weeks later, the H. pylori-infected mice underwent H. pylori eradication treatment. GI tissues were obtained from the mice at various time intervals, and evaluated for the severity of gastric inflammatory cell infiltration and immunohistochemical expression of GLP-1 and PAX6 in the colonic mucosa. Gastrointestinal transit time (GITT) was measured by administration of carmine-red solution. Results GLP-1 was expressed in the endocrine cells of the colonic mucosa, and PAX6 immunoreactivity was co-localized in such cells. The numbers of GLP-1- and PAX6-positive cells in the colon were significantly increased at 12 weeks after H. pylori infection and showed a positive correlation with each other. The GITT was significantly longer in H. pylori-infected mice than in non-infected controls and showed a positive correlation with GLP-1 expression. When H. pylori-infected mice underwent H. pylori eradication, GITT and PAX6/GLP-1 expression did not differ significantly from those in untreated H. pylori-infected mice. Conclusions H. pylori infection may impair GI motility by enhancing the colonic GLP-1/PAX6 expression.
Collapse
Affiliation(s)
- Hirotsugu Eda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- * E-mail:
| | - Ryosuke Uchiyama
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ken Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mo Yang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Mio Kodani
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
433
|
Dubé C, Aguer C, Adamo K, Bainbridge S. A role for maternally derived myokines to optimize placental function and fetal growth across gestation. Appl Physiol Nutr Metab 2017; 42:459-469. [DOI: 10.1139/apnm-2016-0446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise during pregnancy is associated with improved health outcomes for both mother and baby, including a reduced risk of future obesity and susceptibility to chronic diseases. Overwhelming evidence demonstrates a protective effect of maternal exercise against fetal birth weight extremes, reducing the rates of both large- and small-for-gestational-age infants. It is speculated that this protective effect is mediated in part through exercise-induced regulation of maternal physiology and placental development and function. However, the specific mechanisms through which maternal exercise regulates these changes remain to be discovered. We hypothesize that myokines, a collection of peptides and cytokines secreted from contracting skeletal muscles during exercise, may be an important missing link in the story. Myokines are known to reduce inflammation, improve metabolism and enhance macronutrient transporter expression and activity in various tissues of nonpregnant individuals. Little research to date has focused on the specific roles of the myokine secretome in the context of pregnancy; however, it is likely that myokines secreted from exercising skeletal muscles may modulate the maternal milieu and directly impact the vital organ of pregnancy—the placenta. In the current review, data in strong support of this potential role of myokines will be presented, suggesting myokine secretion as a key mechanism through which maternal exercise optimizes fetal growth trajectories. It is clear that further research is warranted in this area, as knowledge of the biological roles of myokines in the context of pregnancy would better inform clinical recommendations for exercise during pregnancy and contribute to the development of important therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Dubé
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Céline Aguer
- Institut de recherche de l’Hôpital Montfort, Ottawa, ON K1K 0T1, Canada
- Biochemistry, Microbiology and Immunology department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kristi Adamo
- School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 1A2, Canada
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shannon Bainbridge
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
434
|
Timper K, Denson JL, Steculorum SM, Heilinger C, Engström-Ruud L, Wunderlich CM, Rose-John S, Wunderlich FT, Brüning JC. IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 trans-Signaling. Cell Rep 2017; 19:267-280. [PMID: 28402851 DOI: 10.1016/j.celrep.2017.03.043] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-6 engages similar signaling mechanisms to leptin. Here, we find that central application of IL-6 in mice suppresses feeding and improves glucose tolerance. In contrast to leptin, whose action is attenuated in obesity, the ability of IL-6 to suppress feeding is enhanced in obese mice. IL-6 suppresses feeding in the absence of neuronal IL-6-receptor (IL-6R) expression in hypothalamic or all forebrain neurons of mice. Conversely, obese mice exhibit increased soluble IL-6R levels in the cerebrospinal fluid. Blocking IL-6 trans-signaling in the CNS abrogates the ability of IL-6 to suppress feeding. Furthermore, gp130 expression is enhanced in the paraventricular nucleus of the hypothalamus (PVH) of obese mice, and deletion of gp130 in the PVH attenuates the beneficial central IL-6 effects on metabolism. Collectively, these experiments indicate that IL-6 trans-signaling is enhanced in the CNS of obese mice, allowing IL-6 to exert its beneficial metabolic effects even under conditions of leptin resistance.
Collapse
Affiliation(s)
- Katharina Timper
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Jesse Lee Denson
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sophie Marie Steculorum
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christian Heilinger
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Linda Engström-Ruud
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | | | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
435
|
Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep 2017; 7:46750. [PMID: 28429777 PMCID: PMC5399448 DOI: 10.1038/srep46750] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml−1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.
Collapse
|
436
|
Volkov P, Bacos K, Ofori JK, Esguerra JLS, Eliasson L, Rönn T, Ling C. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes 2017; 66:1074-1085. [PMID: 28052964 DOI: 10.2337/db16-0996] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 11/13/2022]
Abstract
Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology. Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome at a single nucleotide resolution, in pancreatic islets from donors with T2D and control subjects without diabetes. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function, e.g., PDX1, TCF7L2, and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions, and different histone marks were enriched in the T2D-associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2, and SOCS2, that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured β-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e., protein coding, noncoding, and pseudogenes) was associated with islet expression levels. Our study provides a comprehensive picture of the islet DNA methylome in individuals with and without diabetes and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D pathogenesis.
Collapse
Affiliation(s)
- Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
437
|
Kim Y, Keogh JB, Clifton PM. Effects of Two Different Dietary Patterns on Inflammatory Markers, Advanced Glycation End Products and Lipids in Subjects without Type 2 Diabetes: A Randomised Crossover Study. Nutrients 2017; 9:nu9040336. [PMID: 28353655 PMCID: PMC5409675 DOI: 10.3390/nu9040336] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 01/11/2023] Open
Abstract
Epidemiological studies suggest that consumption of red and processed meat and refined grains are associated with type 2 diabetes and metabolic syndrome and increased inflammatory and fibrinolytic markers. We hypothesised that a diet high in red and processed meat and refined grains (HMD) would increase inflammatory markers and advanced glycation end products (AGEs) compared with a diet high in dairy, whole grains, nuts and legumes (HWD). We performed a randomised crossover study of two four-week interventions in 51 participants without type 2 diabetes (15 men and 36 women aged 35.1 ± 15.6 years; body mass index: 27.7 ± 6.9 kg/m2). No baseline measurements were performed. Plasma fluorescent AGEs, carboxymethyllysine, glucose, insulin, lipids, hs-CRP, interleukin 6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) were analysed after four weeks on each diet. IL-6, hs-CRP, AGEs and carboxymethyllysine were not different between diets but PAI-1 was higher after the HMD than after HWD ((median and interquartile range) 158, 81 vs. 121, 53 ng/mL p < 0.001). PAI-1 on the HWD diet was inversely correlated with whole grains intake (p = 0.007). PAI-1 was inversely correlated with insulin sensitivity index (r = −0.45; p = 0.001) and positively correlated with serum total cholesterol (r = 0.35; p = 0.012) and serum triglyceride (r = 0.32; p = 0.021) on HMD. This trial was registered with the Australian New Zealand Clinical Trials Registry (ACTRN12614000519651).
Collapse
Affiliation(s)
- Yoona Kim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Jennifer B Keogh
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| | - Peter M Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA 5001, Australia.
| |
Collapse
|
438
|
Shirakawa J, De Jesus DF, Kulkarni RN. Exploring inter-organ crosstalk to uncover mechanisms that regulate β-cell function and mass. Eur J Clin Nutr 2017; 71:896-903. [PMID: 28294170 DOI: 10.1038/ejcn.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Impaired β-cell function and insufficient β-cell mass compensation are twin pathogenic features that underlie type 2 diabetes (T2D). Current therapeutic strategies continue to evolve to improve treatment outcomes in different ethnic populations and include approaches to counter insulin resistance and improve β-cell function. Although the effects of insulin secretion on metabolic organs such as liver, skeletal muscle and adipose is directly relevant for improving glucose uptake and reduce hyperglycemia, the ability of pancreatic β-cells to crosstalk with multiple non-metabolic tissues is providing novel insights into potential opportunities for improving β-cell function and/or mass that could have beneficial effects in patients with diabetes. For example, the role of the gastrointestinal system in the regulation of β-cell biology is well recognized and has been exploited clinically to develop incretin-related antidiabetic agents. The microbiome and the immune system are emerging as important players in regulating β-cell function and mass. The rich innervation of islet cells indicates it is a prime organ for regulation by the nervous system. In this review, we discuss the potential implications of signals from these organ systems as well as those from bone, placenta, kidney, thyroid, endothelial cells, reproductive organs and adrenal and pituitary glands that can directly impact β-cell biology. An added layer of complexity is the limited data regarding the relative relevance of one or more of these systems in different ethnic populations. It is evident that better understanding of this paradigm would provide clues to enhance β-cell function and/or mass in vivo in the long-term goal of treating or curing patients with diabetes.
Collapse
Affiliation(s)
- J Shirakawa
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - D F De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - R N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
439
|
Minematsu A, Hanaoka T, Takeshita D, Takada Y, Okuda S, Imagita H, Sakata S. Long-term wheel-running can prevent deterioration of bone properties in diabetes mellitus model rats. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:433-443. [PMID: 28250247 PMCID: PMC5383771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the effects of long-term wheel-running on tibia bone properties in T2DM Otsuka Long-Evans Tokushima Fatty (OLETF) rats. METHODS Ten five-week-old male OLETF rats were used as experimental animals and 5 Long-Evans Tokushima Otsuka (LETO) rats as controls. Half of OLETF rats performed daily voluntary wheel-running for 17 months (OLETF-EXE), while neither the remainder of OLETF nor LETO rats had exercise. At the end of experiment, in addition to serum biochemical and bone formation/resorption marker analyses, bone mass, trabecular bone microarchitecture and cortical bone geometry were analyzed in left tibia, and bone mechanical strength of right tibia was measured. RESULTS Tibia bone mass, trabecular bone microarchitecture, cortical bone geometry and bone mechanical strength deteriorated in diabetic OLETF rats. However, such deterioration was obviously attenuated in OLETF-EXE rats, which maintained normal levels of blood glucose, HbA1c and blood urea nitrogen. CONCLUSIONS Daily wheel-running could prevent the deterioration of bone properties in OLETF rats. This would be induced mainly by suppressing the development of T2DM. Regular physical exercise may be a potent strategy for preventing not only the development of diabetes but also the deterioration of bone properties in patients with chronic T2DM.
Collapse
Affiliation(s)
- A. Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University,Corresponding author: A. Minematsu, Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, Nara 635-0832, Japan E-mail:
| | - T. Hanaoka
- Division of Health Science, Graduate School of Health Science, Kio University, Nara, Japan
| | - D. Takeshita
- Department of Artificial Organs, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Y. Takada
- Division of Health Science, Graduate School of Health Science, Kio University, Nara, Japan
| | - S. Okuda
- Department of Modern Education, Faculty of Education, Kio University, Nara, Japan
| | - H. Imagita
- Department of Physical Therapy, Faculty of Health Science, Kio University
| | - S. Sakata
- Department of Physiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
440
|
Campbell JE, D'Alessio DA. DREADDing proglucagon neurons: a fresh look at metabolic regulation by the brain. J Clin Invest 2017; 127:793-795. [PMID: 28218623 DOI: 10.1172/jci92845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucagon-like peptide 1 receptor (GLP-1R) signaling in the CNS has been linked to reduced food intake, lower body weight, improved glucose homeostasis, and activation of CNS stress axes. GLP-1 is produced by cells that express proglucagon (GCG); however, the stimuli that activate GCG+ neurons are not well known, which has made understanding the role of this neuronal population in the CNS a challenge. In this issue of the JCI, Gaykema et al. use designer receptors exclusively activated by designer drugs (DREADD) technology to specifically activate GCG+ neurons in mouse models. While activation of GCG+ neurons did reduce food intake, and variably decreased hepatic glucose production, other GLP-1-associated effects were not observed - e.g., activation of stress axes or stimulation of insulin secretion - in response to GCG+ neuron activation. The authors have provided a valuable model to study this set of neurons in vivo, and their results provide new insights into the function of GCG+ neural activity in the brain and raise questions that will move research on this clinically relevant neural system forward.
Collapse
|
441
|
The Effect of Exercise Intensity on Total PYY and GLP-1 in Healthy Females: A Pilot Study. J Nutr Metab 2017; 2017:4823102. [PMID: 28286674 PMCID: PMC5327759 DOI: 10.1155/2017/4823102] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/04/2016] [Accepted: 01/19/2017] [Indexed: 12/28/2022] Open
Abstract
We compared the acute response of anorexigenic signals (total PYY and GLP-1) in response to submaximal and supramaximal exercise. Nine females completed three sessions: (1) moderate-intensity continuous training (MICT; 30 min; 65% VO2max); (2) sprint interval training (SIT; 6 × 30 sec "all-out" cycling sprints with 4 min recovery); or (3) control (CTRL; no exercise). PYY and GLP-1 were measured via blood samples drawn before, immediately after, and 90 min after exercise. Perceptions of hunger were rated using a visual analogue scale at all blood sampling time points. There was a session × time interaction for GLP-1 (p = 0.004) where SIT and MICT (p < 0.015 and p < 0.001) were higher compared to CTRL both immediately and 90 min after exercise. There was a main effect of time for PYY where 90 min after exercise it was decreased versus before and immediately after exercise. There was a session × time interaction for hunger with lower ratings following SIT versus MICT (p = 0.027) and CTRL (p = 0.031) 90 min after exercise. These results suggest that though GLP-1 is elevated after exercise in women, it is not affected by exercise intensity though hunger was lower 90 min after exercise with SIT. As the sample size is small further study is needed to confirm these findings.
Collapse
|
442
|
Hogan MF, Liu AW, Peters MJ, Willard JR, Rabbani Z, Bartholomew EC, Ottley A, Hull RL. Markers of Islet Endothelial Dysfunction Occur in Male B6.BKS(D)-Leprdb/J Mice and May Contribute to Reduced Insulin Release. Endocrinology 2017; 158:293-303. [PMID: 27870582 PMCID: PMC5413084 DOI: 10.1210/en.2016-1393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022]
Abstract
Islet endothelial cells produce paracrine factors that support β-cell function and growth. Endothelial dysfunction underlies diabetic microvascular complications; thus, we hypothesized that in diabetes, islet endothelial cells become dysfunctional, which may contribute to β-cell secretory dysfunction. Islets/islet endothelial cells were isolated from diabetic B6.BKS(D)-Leprdb/J male (db/db) mice, treated with or without the glucose-lowering agent phlorizin, or from C57BL/6J mice fed a high-fat diet for 18 weeks and appropriate controls. Messenger RNA (mRNA) and/or the protein levels of the cell adhesion molecule E-selectin (Sele), proinflammatory cytokine interleukin-6 (Il6), vasoconstrictor endothelin-1 (Edn1), and endothelial nitric oxide synthase (Nos3; Nos3) were evaluated, along with advanced glycation end product immunoreactivity. Furthermore, an islet endothelial cell line (MS-1) was exposed to diabetic factors (glucose, palmitate, insulin, and tumor necrosis factor-α) for six days. Conditioned media were collected from these cells, incubated with isolated islets, and glucose-stimulated insulin secretion and insulin content were assessed. Islet endothelial cells from db/db mice exhibited increased Sele, Il6, and Edn1 mRNA levels, decreased Nos3 protein, and accumulation of advanced glycation end products. Phlorizin treatment significantly increased Nos3 protein levels but did not alter expression of the other markers. High-fat feeding in C57BL/6J mice resulted in increased islet Sele, Il6, and Edn1 but no change in Nos3. Exposure of islets to conditioned media from MS-1 cells cultured in diabetic conditions resulted in a 50% decrease in glucose-stimulated insulin secretion and 30% decrease in insulin content. These findings demonstrate that, in diabetes, islet endothelial cells show evidence of a dysfunctional phenotype, which may contribute to loss of β-cell function.
Collapse
Affiliation(s)
- Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amy W Liu
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Michael J Peters
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Joshua R Willard
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
| | - Zaheen Rabbani
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | | | - Adam Ottley
- Department of Medicine, University of Washington, Seattle, Washington
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
443
|
Yasrebi A, Rivera JA, Krumm EA, Yang JA, Roepke TA. Activation of Estrogen Response Element-Independent ERα Signaling Protects Female Mice From Diet-Induced Obesity. Endocrinology 2017; 158:319-334. [PMID: 27901601 PMCID: PMC5413076 DOI: 10.1210/en.2016-1535] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/29/2016] [Indexed: 01/22/2023]
Abstract
17β-estradiol (E2) regulates central and peripheral mechanisms that control energy and glucose homeostasis predominantly through estrogen receptor α (ERα) acting via receptor binding to estrogen response elements (EREs). ERα signaling is also involved in mediating the effects of E2 on diet-induced obesity (DIO), although the roles of ERE-dependent and -independent ERα signaling in reducing the effects of DIO remain largely unknown. We hypothesize that ERE-dependent ERα signaling is necessary to ameliorate the effects of DIO. We addressed this question using ERα knockout (KO) and ERα knockin/knockout (KIKO) female mice, the latter expressing an ERα that lacks a functional ERE binding domain. Female mice were ovariectomized, fed a low-fat diet (LFD) or a high-fat diet (HFD), and orally dosed with vehicle or estradiol benzoate (EB) (300 μg/kg). After 9 weeks, body composition, glucose and insulin tolerance, peptide hormone and inflammatory cytokine levels, and hypothalamic arcuate nucleus and liver gene expression were assessed. EB reduced body weight and body fat in wild-type (WT) female mice, regardless of diet, and in HFD-fed KIKO female mice, in part by reducing energy intake and feeding efficiency. EB reduced fasting glucose levels in KIKO mice fed both diets but augmented glucose tolerance only in HFD-fed KIKO female mice. Plasma insulin and interleukin 6 were elevated in KIKO and KO female mice compared with LFD-fed WT female mice. Expression of arcuate neuropeptide and receptor genes and liver fatty acid biosynthesis genes was altered by HFD and by EB through ERE-dependent and -independent mechanisms. Therefore, ERE-independent signaling mechanisms in both the brain and peripheral organs mediate, in part, the effects of E2 during DIO.
Collapse
Affiliation(s)
- Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences,
- Graduate Program in Endocrinology and Animal Biosciences, and
| | - Janelle A. Rivera
- Department of Animal Sciences, School of Environmental and Biological Sciences,
| | - Elizabeth A. Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences,
- Graduate Program in Endocrinology and Animal Biosciences, and
| | - Jennifer A. Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences,
- Graduate Program in Endocrinology and Animal Biosciences, and
| | - Troy A. Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences,
- Graduate Program in Endocrinology and Animal Biosciences, and
- New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901
| |
Collapse
|
444
|
Guo B, Zhang ZK, Liang C, Li J, Liu J, Lu A, Zhang BT, Zhang G. Molecular Communication from Skeletal Muscle to Bone: A Review for Muscle-Derived Myokines Regulating Bone Metabolism. Calcif Tissue Int 2017; 100:184-192. [PMID: 27830278 DOI: 10.1007/s00223-016-0209-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/01/2016] [Indexed: 01/26/2023]
Abstract
Besides the mechanical loading-dependent paradigm, skeletal muscle also serves as an endocrine organ capable of secreting cytokines to modulate bone metabolism. In this review, we focused on reviewing the myokines involved in communication from skeletal muscle to bone, i.e. (1) myostatin and myostatin-binding proteins including follistatin and decorin, (2) interleukins including interleukin-6 (IL-6), interleukin-7 (IL-7) and interleukin-15 (IL-15), (3) insulin-like growth factor 1 (IGF-1) and its binding proteins, (4) other myokines including PGC-1α-irisin system and osteoglycin (OGN). To better understand the molecular communication from skeletal muscle to bone, we have summarized the recent advances in muscle-derived cytokines regulating bone metabolism in this review.
Collapse
Affiliation(s)
- Baosheng Guo
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Liang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jie Li
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
445
|
Tanabe K, Amo-Shiinoki K, Hatanaka M, Tanizawa Y. Interorgan Crosstalk Contributing to β-Cell Dysfunction. J Diabetes Res 2017; 2017:3605178. [PMID: 28168202 PMCID: PMC5266810 DOI: 10.1155/2017/3605178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from pancreatic β-cell failure in the setting of insulin resistance. In the early stages of this disease, pancreatic β-cells meet increased insulin demand by both enhancing insulin-secretory capacity and increasing β-cell mass. As the disease progresses, β-cells fail to maintain these compensatory responses. This involves both extrinsic signals and mediators intrinsic to β-cells, which adversely affect β-cells by impairing insulin secretion, decreasing proliferative capacities, and ultimately causing apoptosis. In recent years, it has increasingly been recognized that changes in circulating levels of various factors from other organs play roles in β-cell dysfunction and cellular loss. In this review, we discuss current knowledge of interorgan communications underlying β-cell failure during the progression of T2DM.
Collapse
Affiliation(s)
- Katsuya Tanabe
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- *Katsuya Tanabe:
| | - Kikuko Amo-Shiinoki
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masayuki Hatanaka
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tanizawa
- Division of Endocrinology, Metabolism, Hematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| |
Collapse
|
446
|
Eshghi SR, Fletcher K, Myette-Côté É, Durrer C, Gabr RQ, Little JP, Senior P, Steinback C, Davenport MH, Bell GJ, Brocks DR, Boulé NG. Glycemic and Metabolic Effects of Two Long Bouts of Moderate-Intensity Exercise in Men with Normal Glucose Tolerance or Type 2 Diabetes. Front Endocrinol (Lausanne) 2017; 8:154. [PMID: 28744255 PMCID: PMC5504214 DOI: 10.3389/fendo.2017.00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The glycemic and insulinemic responses following 30-60 min of exercise have been extensively studied, and a dose-response has been proposed between exercise duration, or volume, and improvements in glucose tolerance or insulin sensitivity. However, few studies have examined the effects of longer bouts of exercise in type 2 diabetes (T2D). Longer bouts may have a greater potential to affect glucagon, interleukin-6 (IL-6) and incretin hormones [i.e., glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP)]. AIM To examine the effect of two bouts of long-duration, moderate-intensity exercise on incretins, glucagon, and IL-6 responses before and after exercise, as well as in response to an oral glucose tolerance test (OGTT) conducted the following day. METHODS Twelve men, six with and six without T2D, participated in two separate conditions (i.e., exercise vs. rest) according to a randomized crossover design. On day 1, participants either rested or performed two 90 min bouts of treadmill exercise (separated by 3.5 h) at 80% of their ventilatory threshold. All participants received standardized meals on day 1. On day 2 of each condition, glucose and hormonal responses were measured during a 4-h OGTT. RESULTS On day 1, exercise increased IL-6 at the end of the first bout of exercise (exercise by time interaction p = 0.03) and GIP overall (main effect of exercise p = 0.004). Glucose was reduced to a greater extent in T2D following exercise (exercise by T2D interaction p = 0.03). On day 2, GIP and active GLP-1 were increased in the fasting state (p = 0.05 and p = 0.03, respectively), while plasma insulin and glucagon concentrations were reduced during the OGTT (p = 0.01 and p = 0.02, respectively) in the exercise compared to the rest condition for both healthy controls and T2D. Postprandial glucose was elevated in T2D compared to healthy control (p < 0.05) but was not affected by exercise. CONCLUSION Long-duration, moderate-intensity aerobic exercise can increase IL-6. On the day following exercise, fasting incretins remained increased but postprandial insulin and glucagon were decreased without affecting postprandial glucose. This long duration of exercise may not be appropriate for some people, and further research should investigate why next day glucose tolerance was unchanged.
Collapse
Affiliation(s)
- Saeed Reza Eshghi
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kevin Fletcher
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Étienne Myette-Côté
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Cody Durrer
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Raniah Q. Gabr
- National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Peter Senior
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Craig Steinback
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Margie H. Davenport
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Gordon J. Bell
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Dion R. Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Normand G. Boulé
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Normand G. Boulé,
| |
Collapse
|
447
|
Mizgier ML, Cataldo LR, Gutierrez J, Santos JL, Casas M, Llanos P, Contreras-Ferrat AE, Moro C, Bouzakri K, Galgani JE. Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion. J Diabetes Res 2017; 2017:1328573. [PMID: 28286777 PMCID: PMC5329672 DOI: 10.1155/2017/1328573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/01/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
Abstract
Fasting to postprandial transition requires a tight adjustment of insulin secretion to its demand, so tissue (e.g., skeletal muscle) glucose supply is assured while hypo-/hyperglycemia are prevented. High muscle glucose disposal after meals is pivotal for adapting to increased glycemia and might drive insulin secretion through muscle-released factors (e.g., myokines). We hypothesized that insulin influences myokine secretion and then increases glucose-stimulated insulin secretion (GSIS). In conditioned media from human myotubes incubated with/without insulin (100 nmol/L) for 24 h, myokines were qualitatively and quantitatively characterized using an antibody-based array and ELISA-based technology, respectively. C57BL6/J mice islets and Wistar rat beta cells were incubated for 24 h with control and conditioned media from noninsulin- and insulin-treated myotubes prior to GSIS determination. Conditioned media from insulin-treated versus nontreated myotubes had higher RANTES but lower IL6, IL8, and MCP1 concentration. Qualitative analyses revealed that conditioned media from noninsulin- and insulin-treated myotubes expressed 32 and 23 out of 80 myokines, respectively. Islets incubated with conditioned media from noninsulin-treated myotubes had higher GSIS versus control islets (p < 0.05). Meanwhile, conditioned media from insulin-treated myotubes did not influence GSIS. In beta cells, GSIS was similar across conditions. In conclusion, factors being present in noninsulin-stimulated muscle cell-derived media appear to influence GSIS in mice islets.
Collapse
Affiliation(s)
- Maria L. Mizgier
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis R. Cataldo
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Gutierrez
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José L. Santos
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paola Llanos
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Ariel E. Contreras-Ferrat
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Cedric Moro
- INSERM UMR1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université Paul Sabatier, Toulouse, France
| | - Karim Bouzakri
- Departement de Génétique et Développement, CMU, Université de Genève, Genève, Switzerland
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Jose E. Galgani
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- UDA-Ciencias de la Salud, Carrera de Nutrición y Dietética, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Jose E. Galgani:
| |
Collapse
|
448
|
Hernández-Ochoa EO, Llanos P, Lanner JT. The Underlying Mechanisms of Diabetic Myopathy. J Diabetes Res 2017; 2017:7485738. [PMID: 29238729 PMCID: PMC5697129 DOI: 10.1155/2017/7485738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, USA
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
449
|
Galgani JE, Gómez C, Mizgier ML, Gutierrez J, Santos JL, Olmos P, Mari A. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion. PLoS One 2016; 11:e0168352. [PMID: 28002466 PMCID: PMC5176173 DOI: 10.1371/journal.pone.0168352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022] Open
Abstract
Background Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. Aim To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Methods Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Results Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Conclusion Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion.
Collapse
Affiliation(s)
- Jose E. Galgani
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- UDA-Ciencias de la Salud, Carrera de Nutrición y Dietética, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| | - Carmen Gómez
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria L. Mizgier
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Gutierrez
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose L. Santos
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Olmos
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Mari
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Padova, Italy
| |
Collapse
|
450
|
Herder C, Færch K, Carstensen-Kirberg M, Lowe GD, Haapakoski R, Witte DR, Brunner EJ, Roden M, Tabák AG, Kivimäki M, Vistisen D. Biomarkers of subclinical inflammation and increases in glycaemia, insulin resistance and beta-cell function in non-diabetic individuals: the Whitehall II study. Eur J Endocrinol 2016; 175:367-77. [PMID: 27491375 DOI: 10.1530/eje-16-0528] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Higher systemic levels of pro-inflammatory biomarkers and low adiponectin are associated with increased risk of type 2 diabetes, but their associations with changes in glycaemic deterioration before onset of diabetes are poorly understood. We aimed to study whether inflammation-related biomarkers are associated with 5-year changes in glucose and insulin, HbA1c, insulin sensitivity and beta-cell function before the diagnosis of type 2 diabetes and whether these associations may be bidirectional. DESIGN AND METHODS We used multiple repeat measures (17 891 person-examinations from 7683 non-diabetic participants) from the Whitehall II study to assess whether circulating high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL6), IL1 receptor antagonist (IL1Ra) and adiponectin are associated with subsequent changes in glycaemia, insulin, insulin resistance and beta-cell function (based on oral glucose tolerance tests). We examined bidirectionality by testing if parameters of glucose metabolism at baseline are associated with changes in inflammation-related biomarkers. RESULTS Higher hsCRP and IL6 were associated with increases in fasting insulin, insulin resistance and, for IL6, with beta-cell function after adjustment for confounders. Higher adiponectin was associated with decreases in fasting glucose, HbA1c, fasting insulin, insulin resistance and beta-cell function. The reverse approach showed that 2-h glucose and insulin sensitivity were associated with changes in IL1Ra. Fasting insulin and insulin resistance showed inverse associations with changes in adiponectin. CONCLUSIONS Subclinical inflammation is associated with development of increased glycaemia, insulin resistance and beta-cell function in non-diabetic individuals. These findings are consistent with the hypothesis that inflammation-related processes may increase insulin resistance and lead to a compensatory upregulation of beta-cell function.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany
| | | | - Maren Carstensen-Kirberg
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany
| | - Gordon D Lowe
- Institute of Cardiovascular and Medical SciencesUniversity of Glasgow, Glasgow, UK
| | - Rita Haapakoski
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | - Daniel R Witte
- Department of Public HealthAarhus University, Aarhus, Denmark Danish Diabetes AcademyOdense, Denmark
| | - Eric J Brunner
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | - Michael Roden
- Institute for Clinical DiabetologyGerman Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany German Center for Diabetes ResearchMünchen-Neuherberg, Germany Department of Endocrinology and DiabetologyMedical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adam G Tabák
- Department of Epidemiology and Public HealthUniversity College London, London, UK First Department of MedicineFaculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mika Kivimäki
- Department of Epidemiology and Public HealthUniversity College London, London, UK
| | | |
Collapse
|