401
|
Itzhak Y, Martin JL, Ali SF. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice. Synapse 1999; 34:305-12. [PMID: 10529724 DOI: 10.1002/(sici)1098-2396(19991215)34:4<305::aid-syn6>3.0.co;2-#] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Y Itzhak
- Department of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
402
|
Lin HC, Kang BH, Wong CS, Mao SP, Wan FJ. Systemic administration of D-amphetamine induced a delayed production of nitric oxide in the striatum of rats. Neurosci Lett 1999; 276:141-4. [PMID: 10612625 DOI: 10.1016/s0304-3940(99)00805-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) is a free-radical gas with a role in various signal transduction processes. In the CNS, NO acts as an important central nervous messenger, but in excess it may be neurotoxic. Chronic or high dose administration of D-amphetamine (AMPH) has been shown to induce striatal neurotoxicity in rodents and primates. In this study, we studied whether AMPH given systemically elicits NO formation in the striatum of rats and determined the relationship between NO formation and striatal DAergic terminal damage. Our results demonstrated that a single large dose administration of AMPH with desipramine elicited a delayed production of NO and concomitant long-term DA loss in the striatum. These phenomena were blocked by treatment with either the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) or the glutamate N-methyl-D-aspartate antagonist MK-801. It appears that AMPH-induced NO formation is critical for development of long-lasting DAergic terminal toxicity in the striatum of rats.
Collapse
Affiliation(s)
- H C Lin
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
403
|
Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. J Biol Chem 1999; 274:34621-8. [PMID: 10574926 DOI: 10.1074/jbc.274.49.34621] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is implicated in the death of dopaminergic neurons in Parkinson's disease and in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) model of Parkinson's disease. Oxidative species that might mediate this damage include hydroxyl radical, tyrosyl radical, or reactive nitrogen species such as peroxynitrite. In mice, we showed that MPTP markedly increased levels of o, o'-dityrosine and 3-nitrotyrosine in the striatum and midbrain but not in brain regions resistant to MPTP. These two stable compounds indicate that tyrosyl radical and reactive nitrogen species have attacked tyrosine residues. In contrast, MPTP failed to alter levels of ortho-tyrosine in any brain region we studied. This marker accumulates when hydroxyl radical oxidizes protein-bound phenylalanine residues. We also showed that treating whole-brain proteins with hydroxyl radical markedly increased levels of ortho-tyrosine in vitro. Under identical conditions, tyrosyl radical, produced by the heme protein myeloperoxidase, selectively increased levels of o,o'-dityrosine, whereas peroxynitrite increased levels of 3-nitrotyrosine and, to a lesser extent, of ortho-tyrosine. These in vivo and in vitro findings implicate reactive nitrogen species and tyrosyl radical in MPTP neurotoxicity but argue against a deleterious role for hydroxyl radical in this model. They also show that reactive nitrogen species and tyrosyl radical (and consequently protein oxidation) represent an early and previously unidentified biochemical event in MPTP-induced brain injury. This finding may be significant for understanding the pathogenesis of Parkinson's disease and developing neuroprotective therapies.
Collapse
Affiliation(s)
- S Pennathur
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
404
|
Abstract
This paper reviews the work related to nitric oxide (NO) done by the author and his postgraduates and colleagues in the past 7 years in the National University of Singapore. Our work shows that (i) NADPH-d and NO synthase (NOS) are often but not always identical; (ii) NO (as indicated by NADPH-d histochemistry and NOS immunohistochemistry) is generated in some endocrine (thyroid, parathyroid and ultimobranchial glands) and immune (thymus and bursa of Fabricius) organs and the cochlea. It is noted from the above studies that NO could possibly regulate blood flow through the various organs via its presence in the vascular endothelial cells and also via nitrergic neurons innervating the blood vessels. It could also regulate the activity of the secretary cells of these organs by being present in them, as well as acting through nitrergic neurons closely related to them. The paper also examines the Janus-faced nature of NO as a neuroprotective and neurodestructive agent, and the apparent noninvolvement of peroxynitrite and inducible NOS in neuronal death occurring in the red nucleus and nucleus dorsalis after spinal cord hemisection.
Collapse
Affiliation(s)
- S K Leong
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore
| |
Collapse
|
405
|
Kuhn DM, Aretha CW, Geddes TJ. Peroxynitrite inactivation of tyrosine hydroxylase: mediation by sulfhydryl oxidation, not tyrosine nitration. J Neurosci 1999; 19:10289-94. [PMID: 10575026 PMCID: PMC6782408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Tyrosine hydroxylase (TH) is the initial and rate-limiting enzyme in the biosynthesis of dopamine (DA). TH activity is significantly diminished in Parkinson's disease (PD) and by the neurotoxic amphetamines, thereby accentuating the reductions in DA associated with these conditions. Reactive oxygen and nitrogen species have been implicated in the damage to DA neurons seen in PD and in reaction to amphetamine drugs of abuse, so we investigated the hypothesis that peroxynitrite (ONOO(-)) could interfere with TH catalytic function. ONOO(-) caused a concentration-dependent inactivation of TH. The inactivation was associated with tyrosine nitration (maximum of four tyrosine residues nitrated per TH monomer) and extensive sulfhydryl oxidation. Tetranitromethane, which causes sulfhydryl oxidation at pH 6 and 8 but which nitrates tyrosines only at pH 8, inactivated TH equally at either pH. Bicarbonate protected TH from ONOO(-)-induced inactivation and sulfhydryl oxidation but increased significantly tyrosine nitration. PNU-101033 blocked ONOO(-)-induced tyrosine nitration in TH but could not prevent enzyme inactivation or sulfhydryl oxidation. Together, these results indicate that the inactivation of TH by ONOO(-) is mediated by sulfhydryl oxidation. The coincident nitration of tyrosine residues appears to exert little influence over TH catalytic function.
Collapse
Affiliation(s)
- D M Kuhn
- Department of Psychiatry, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
406
|
Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999; 5:1403-9. [PMID: 10581083 DOI: 10.1038/70978] [Citation(s) in RCA: 818] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.
Collapse
Affiliation(s)
- G T Liberatore
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
407
|
Abstract
Modern molecular biology has revealed vast numbers of large and complex proteins and genes that regulate body function. By contrast, discoveries over the past ten years indicate that crucial features of neuronal communication, blood vessel modulation and immune response are mediated by a remarkably simple chemical, nitric oxide (NO). Endogenous NO is generated from arginine by a family of three distinct calmodulin- dependent NO synthase (NOS) enzymes. NOS from endothelial cells (eNOS) and neurons (nNOS) are both constitutively expressed enzymes, whose activities are stimulated by increases in intracellular calcium. Immune functions for NO are mediated by a calcium-independent inducible NOS (iNOS). Expression of iNOS protein requires transcriptional activation, which is mediated by specific combinations of cytokines. All three NOS use NADPH as an electron donor and employ five enzyme cofactors to catalyze a five-electron oxidation of arginine to NO with stoichiometric formation of citrulline. The highest levels of NO throughout the body are found in neurons, where NO functions as a unique messenger molecule. In the autonomic nervous system NO functions NO functions as a major non-adrenergic non-cholinergic (NANC) neurotransmitter. This NANC pathway plays a particularly important role in producing relaxation of smooth muscle in the cerebral circulation and the gastrointestinal, urogenital and respiratory tracts. Dysregulation of NOS activity in autonomic nerves plays a major role in diverse pathophysiological conditions including migraine headache, hypertrophic pyloric stenosis and male impotence. In the brain, NO functions as a neuromodulator and appears to mediate aspects of learning and memory. Although endogenous NO was originally appreciated as a mediator of smooth muscle relaxation, NO also plays a major role in skeletal muscle. Physiologically muscle-derived NO regulates skeletal muscle contractility and exercise-induced glucose uptake. nNOS occurs at the plasma membrane of skeletal muscle which facilitates diffusion of NO to the vasculature to regulate muscle perfusion. nNOS protein occurs in the dystrophin complex in skeletal muscle and NO may therefore participate in the pathophysiology of muscular dystrophy. NO signalling in excitable tissues requires rapid and controlled delivery of NO to specific cellular targets. This tight control of NO signalling is largely regulated at the level of NO biosynthesis. Acute control of nNOS activity is mediated by allosteric enzyme regulation, by posttranslational modification and by subcellular targeting of the enzyme. nNOS protein levels are also dynamically regulated by changes in gene transcription, and this affords long-lasting changes in tissue NO levels. While NO normally functions as a physiological neuronal mediator, excess production of NO mediates brain injury. Overactivation of glutamate receptors associated with cerebral ischemia and other excitotoxic processes results in massive release of NO. As a free radical, NO is inherently reactive and mediates cellular toxicity by damaging critical metabolic enzymes and by reacting with superoxide to form an even more potent oxidant, peroxynitrite. Through these mechanisms, NO appears to play a major role in the pathophysiology of stroke, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- D S Bredt
- Department of Physiology, University of California at San Francisco School of Medicine, 94143-0444, USA.
| |
Collapse
|
408
|
LaVoie MJ, Hastings TG. Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J Neurochem 1999; 73:2546-54. [PMID: 10582617 DOI: 10.1046/j.1471-4159.1999.0732546.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increased nitric oxide (NO) production has been implicated in many examples of neuronal injury such as the selective neurotoxicity of methamphetamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to dopaminergic cells, presumably through the generation of the potent oxidant peroxynitrite (ONOO). Dopamine (DA) is a reactive molecule that, when oxidized to DA quinone, can bind to and inactivate proteins through the sulfhydryl group of the amino acid cysteine. In this study, we sought to determine if ONOO could oxidize DA and participate in this process of protein modification. We measured the oxidation of the catecholamine by following the binding of [3H]DA to the sulfhydryl-rich protein alcohol dehydrogenase. Results showed that ONOO oxidized DA in a concentration- and pH-dependent manner. We confirmed that the resulting DA-protein conjugates were predominantly 5-cysteinyl-DA residues. In addition, it was observed that ONOO decomposition products such as nitrite were also effective at oxidizing DA. These data suggest that the generation of NO and subsequent formation of ONOO or nitrite may contribute to the selective vulnerability of dopaminergic neurons through the oxidation of DA and modification of protein.
Collapse
Affiliation(s)
- M J LaVoie
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
409
|
Donovan DM, Miner LL, Perry MP, Revay RS, Sharpe LG, Przedborski S, Kostic V, Philpot RM, Kirstein CL, Rothman RB, Schindler CW, Uhl GR. Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 73:37-49. [PMID: 10581396 DOI: 10.1016/s0169-328x(99)00235-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polygenic factors play important roles in animal models of substance abuse and susceptibility to dopaminergic neurodegeneration. Genetic factors are also likely to contribute to the etiology of human drug abuse disorders, and may alter human vulnerabilities to Parkinsonian neurodegeneration. The dopamine transporter (DAT; SLC6A3) is densely expressed by the dopaminergic midbrain neurons that play central roles in drug reward and is believed to be a primary site of action for cocaine reward. This transporter is necessary for the action of selective dopaminergic neurotoxins, and is uniquely expressed on neurons that are the primary targets of Parkinsonian neurodegeneration. To study possible influences of variant DAT expression on these processes, we have constructed transgenic mice (THDAT) in which tyrosine hydroxylase (TH) promoter sequences drive expression of a rat DAT cDNA variant, increase striatal DAT expression by 20-30%, and provide modest alterations in striatal levels of dopamine and its metabolites. THDAT mice habituate more rapidly to a novel environment than wildtype littermates. These animals display enhanced reward conferred by cocaine, as measured by conditioned place preference. However, locomotor responses to cocaine administration are similar to those of wildtype mice, except at high cocaine doses. THDAT mice display more than 50% greater losses of dopaminergic neurons following a course of MPTP treatment than do wildtype control mice. These results document a model for allelic variation at a gene locus that can exert significant effects in murine models of human substance abuse vulnerability and dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- D M Donovan
- Molecular Neurobiology, Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 20857, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
410
|
Abstract
There is an increasing number of data by in vitro and in vivo experiments, indicating that (-)-deprenyl is neuroprotective to dopamine neurons, even though detailed mechanism remains to be clarified. In this paper neuroprotection by (-)-deprenyl and structurally related compounds was examined in concern with the suppression of apoptosis induced by a reactive oxygen species, peroxynitrite generated from SIN-1. The apoptotic DNA damage was quantitatively determined using dopaminergic SH-SYSY cells and by a single cell gel electrophoresis (comet) assay. DNA damage induced by peroxynitrite was proved to be apoptotic by prevention of the damage by cycloheximide or actinomycin-D. (-)-Deprenyl and other propargylamines protected the cells from apoptosis in a dose-dependent way. (-)-Deprenyl protected the cells even after it was washed out, suggesting that it may initiate the intracellular process to repress the apoptotic death program. The study on the structure-activity relationship of (-)-deprenyl analogues revealed that a N-propargyl residue with adequate size of hydrophobic structure is essentially required for the anti-apoptotic activity. These results suggest that (-)-deprenyl and related compounds may protect neurons from apoptosis and be applicable to delay the deterioration of neurons during advancing ageing and in neurodegenerative disorders.
Collapse
Affiliation(s)
- W Maruyama
- Department of Basic Gerontology, National Institute for Longevity Sciences, Obu, Japan.
| | | |
Collapse
|
411
|
Barthwal MK, Srivastava N, Shukla R, Nag D, Seth PK, Srimal RC, Dikshit M. Polymorphonuclear leukocyte nitrite content and antioxidant enzymes in Parkinson's disease patients. Acta Neurol Scand 1999; 100:300-4. [PMID: 10536916 DOI: 10.1111/j.1600-0404.1999.tb00400.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The present study was undertaken to evaluate the alteration in the peripheral neuronal nitric oxide synthase (NOS) activity in Parkinson's disease patients. Therefore, basal nitrite content in PMNs, platelets and in the plasma of PD and control Indian population were evaluated. MATERIALS AND METHODS We estimated nitrite, the nitric oxide (NO) metabolite, in neutrophils (PMNs), platelets and in plasma of control and in L-dopa treated Parkinson's disease (PD) patients. We also measured the activity of catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the PMNs. RESULTS We observed a significant increase in the basal nitrite content in PMNs of PD patients without any alteration in the plasma and platelets. Thus, the change was specific to PMNs. Catalase activity was significantly less in the PMNs of PD patients, but SOD and GPx remained unaltered. CONCLUSION Results obtained in the PD patients exhibit an increase in the NOS activity in PMNs. Thus, involvement of NO is suggested in PD.
Collapse
Affiliation(s)
- M K Barthwal
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
412
|
Kuhn DM, Geddes TJ. Peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Coincident nitration of enzyme tyrosyl residues has minimal impact on catalytic activity. J Biol Chem 1999; 274:29726-32. [PMID: 10514446 DOI: 10.1074/jbc.274.42.29726] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tryptophan hydroxylase, the initial and rate-limiting enzyme in serotonin biosynthesis, is inactivated by peroxynitrite in a concentration-dependent manner. This effect is prevented by molecules that react directly with peroxynitrite such as dithiothreitol, cysteine, glutathione, methionine, tryptophan, and uric acid but not by scavengers of superoxide (superoxide dismutase), hydroxyl radical (Me(2)SO, mannitol), and hydrogen peroxide (catalase). Assuming simple competition kinetics between peroxynitrite scavengers and the enzyme, a second-order rate constant of 3.4 x 10(4) M(-1) s(-1) at 25 degrees C and pH 7.4 was estimated. The peroxynitrite-induced loss of enzyme activity was accompanied by a concentration-dependent oxidation of protein sulfhydryl groups. Peroxynitrite-modified tryptophan hydroxylase was resistant to reduction by arsenite, borohydride, and dithiothreitol, suggesting that sulfhydryls were oxidized beyond sulfenic acid. Peroxynitrite also caused the nitration of tyrosyl residues in tryptophan hydroxylase, with a maximal modification of 3.8 tyrosines/monomer. Sodium bicarbonate protected tryptophan hydroxylase from peroxynitrite-induced inactivation and lessened the extent of sulfhydryl oxidation while causing a 2-fold increase in tyrosine nitration. Tetranitromethane, which oxidizes sulfhydryls at pH 6 or 8, but which nitrates tyrosyl residues at pH 8 only, inhibited tryptophan hydroxylase equally at either pH. Acetylation of tyrosyl residues with N-acetylimidazole did not alter tryptophan hydroxylase activity. These data suggest that peroxynitrite inactivates tryptophan hydroxylase via sulfhydryl oxidation. Modification of tyrosyl residues by peroxynitrite plays a relatively minor role in the inhibition of tryptophan hydroxylase catalytic activity.
Collapse
Affiliation(s)
- D M Kuhn
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
413
|
Ibi M, Sawada H, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A. Depletion of intracellular glutathione increases susceptibility to nitric oxide in mesencephalic dopaminergic neurons. J Neurochem 1999; 73:1696-703. [PMID: 10501217 DOI: 10.1046/j.1471-4159.1999.731696.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using primary neuronal cultures, we investigated the effects of GSH depletion on the cytotoxic effects of glutamate and NO in dopaminergic neurons. Intracellular GSH was depleted by 24-h exposure to L-buthionine-[S,R]-sulfoximine (BSO), an irreversible inhibitor of GSH synthase. BSO exposure caused concentration-dependent reduction of the viability of both dopaminergic and nondopaminergic neurons. In contrast, 24-h exposure of cultures to glutamate or NOC18, an NO-releasing agent, significantly reduced the viability of nondopaminergic neurons without affecting that of dopaminergic neurons. Pretreatment with N-acetyl-L-cysteine for 24 h ameliorated the NOC18-induced toxicity in nondopaminergic neurons. In dopaminergic neurons, sublethal concentrations of BSO reduced intracellular GSH content and markedly potentiated glutamate- and NOC18-induced toxicity. These results suggested that glutamate toxicity was enhanced in dopaminergic neurons by suppression of defense mechanisms against NO toxicity under conditions of GSH depletion. Under such conditions, free iron plays an important role because BSO-enhanced NO toxicity was ameliorated by the iron-chelating agent, deferoxamine. These results suggest that GSH plays an important role in the expression of NO-mediated glutamate cytotoxicity in dopaminergic neurons. Free iron may be related to enhanced NO cytotoxicity under GSH depletion.
Collapse
Affiliation(s)
- M Ibi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
414
|
Abstract
Parkinson's disease (PD) is the only neurodegenerative disorder in which pharmacological intervention has resulted in a marked decrease in morbidity and a significant delay in mortality. The discovery of striatal dopamine deficiency as the neurochemical basis of PD in 1960 was a pivotal event that led to the era of levodopa therapy. Although levodopa produces dramatic improvements in patients' symptoms, it is also associated with adverse effects that can be disabling. Some of these are felt to be related to fluctuating levels of levodopa in the plasma and brain, and as a result, research has focused on drugs that can provide more continuous dopamine receptor stimulation. Dopamine agonists and catechol-O-methyl-transferase (COMT) inhibitors have been valuable adjuncts to levodopa, but until now levodopa has remained the cornerstone of therapy. Recent studies indicate that the newer dopamine agonists may be assuming greater importance in the control of symptoms. Other drugs, such as nicotinic acetylcholine receptor agonists, neurotrophic factors and adenosine receptor antagonists are under investigation. Efforts are being concentrated on understanding the causes and mechanisms involved in the death of dopaminergic neurones in the substantia nigra. Overactivity of the subthalamic nucleus and glutamate-mediated excitotoxicity might play key roles in the genesis of the disease. Therapeutic approaches aimed at correcting these abnormalities may lead to neuroprotective therapy that can inhibit or prevent the relentless progression of nigral neuronal loss. Well- controlled clinical trials using positron emission tomography (PET) and single photon emission computerised tomography (SPECT) will assist in assessing the putative neuroprotective properties attributed to various agents.
Collapse
|
415
|
Royland JE, Delfani K, Langston JW, Janson AM, Di Monte DA. 7-Nitroindazole prevents 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-induced ATP loss in the mouse striatum. Brain Res 1999; 839:41-8. [PMID: 10482797 DOI: 10.1016/s0006-8993(99)01689-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is dependent upon the MAO-B (monoamine oxidase type B)-catalyzed production of 1-methyl-4-phenylpyridinium ion (MPP(+)) and is likely to involve a perturbation of energy metabolism. Protection against MPTP neurotoxicity has been shown by treating mice with 7-nitroindazole (7-NI), a reversible inhibitor of both MAO-B and neuronal nitric oxide synthase (nNOS) activity. The objective of the present study was to evaluate (i) the relationship between the neuroprotective effect of 7-NI and MPTP-induced energy deficiency, and (ii) the role of nitric oxide production as a potential mechanism for energy perturbation after MPTP exposure. Maximum protection against striatal dopamine depletion and nigral neuronal loss was achieved when 7-NI (50 mg/kg, i.p.) was administered to C57BL/6 mice immediately before and after MPTP (50 mg/kg, s.c.). This short-term regimen of 7-NI administration parallels the time when MPTP exposure causes energy failure. 7-NI also completely prevented the loss of striatal ATP that occurs in mice during the initial hours after MPTP administration. In contrast, N(G)-nitro-L-arginine (two injections of 50 mg/kg each, given i.p. 20 and 4 h prior to MPTP), another NOS inhibitor, failed to affect MPTP-induced ATP depletion. Taken together, data indicate that (i) a temporal and causal relationship exists between the neuroprotective effect of 7-NI and its ability to counteract ATP reduction, and (ii) MAO-B rather than NOS inhibition is the mechanism by which 7-NI counteracts MPTP-induced ATP depletion.
Collapse
Affiliation(s)
- J E Royland
- The Parkinson's Institute, 1170 Morse Avenue, Sunnyvale, CA, USA
| | | | | | | | | |
Collapse
|
416
|
Imam SZ, Crow JP, Newport GD, Islam F, Slikker W, Ali SF. Methamphetamine generates peroxynitrite and produces dopaminergic neurotoxicity in mice: protective effects of peroxynitrite decomposition catalyst. Brain Res 1999; 837:15-21. [PMID: 10433983 DOI: 10.1016/s0006-8993(99)01663-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Methamphetamine (METH)-induced dopaminergic neurotoxicity is believed to be produced by oxidative stress and free radical generation. The present study was undertaken to investigate if METH generates peroxynitrite and produces dopaminergic neurotoxicity. We also investigated if this generation of peroxynitrite can be blocked by a selective peroxynitrite decomposition catalyst, 5, 10,15, 20-tetrakis(N-methyl-4'-pyridyl)porphyrinato iron III (FeTMPyP) and protect against METH-induced dopaminergic neurotoxicity. Administration of METH resulted in the significant formation of 3-nitrotyrosine (3-NT), an in vivo marker of peroxynitrite generation, in the striatum and also caused a significant increase in the body temperature. METH injection also caused a significant decrease in the concentration of dopamine (DA), 3, 4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) by 76%, 53% and 40%, respectively, in the striatum compared with the control group. Treatment with FeTMPyP blocked the formation of 3-NT by 66% when compared with the METH group. FeTMPyP treatment also provided significant protection against the METH-induced hyperthermia and depletion of DA, DOPAC and HVA. Administration of FeTMPyP alone neither resulted in 3-NT formation nor had any significant effect on DA or its metabolite concentrations. These findings indicate that peroxynitrite plays a role in METH-induced dopaminergic neurotoxicity and also suggests that peroxynitrite decomposition catalysts may be beneficial for the management of psychostimulant abuse.
Collapse
Affiliation(s)
- S Z Imam
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | | | | | | | | | | |
Collapse
|
417
|
Almer G, Vukosavic S, Romero N, Przedborski S. Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 1999; 72:2415-25. [PMID: 10349851 DOI: 10.1046/j.1471-4159.1999.0722415.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS.
Collapse
Affiliation(s)
- G Almer
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
418
|
Facchinetti F, Sasaki M, Cutting FB, Zhai P, MacDonald JE, Reif D, Beal MF, Huang PL, Dawson TM, Gurney ME, Dawson VL. Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis. Neuroscience 1999; 90:1483-92. [PMID: 10338314 DOI: 10.1016/s0306-4522(98)00492-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A subset of familial cases of amyotrophic lateral sclerosis are linked to missense mutations in copper/zinc superoxide dismutase type 1. Patients with missense mutations in copper/zinc superoxide dismutase type 1 develop a paralytic disease indistinguishable from sporadic amyotrophic lateral sclerosis through an unknown toxic gain of function. Nitric oxide reacts with the superoxide anion to form the strong oxidant, peroxynitrite, which participates in neuronal injury in a variety of model systems. Peroxynitrite is an alternate substrate for copper/zinc superoxide dismutase type 1, causing catalytic nitration of tyrosine residues in other proteins. Mutations in copper/zinc superoxide dismutase type 1 may disrupt the active site of the enzyme and permit greater access of peroxynitrite to copper, leading to increased nitration by peroxynitrite of critical cellular targets. To investigate whether neuronal-derived nitric oxide plays a role in the pathogenesis of familial amyotrophic lateral sclerosis, we examined the effects of three different nitric oxide synthase inhibitors: a non-selective nitric oxide synthase inhibitor, nitro-L-arginine methyl ester; a relatively selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole; and a novel highly selective neuronal nitric oxide synthase inhibitor, AR-R 17,477, in transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 (Gly-->Ala at position 93; G93A) containing a high transgene copy number and a low transgene copy number. AR-R 17,477, but not nitro-L-arginine methyl ester or 7-nitroindazole, significantly prolonged survival in both the high and low transgene transgenic mice. To determine whether neuronal nitric oxide synthase is involved in the pathogenesis resulting from the familial amyotrophic lateral sclerosis copper/zinc superoxide dismutase type 1 mutation, we produced mice with the copper/zinc superoxide dismutase type 1 mutation which lack the neuronal nitric oxide synthase gene. The transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 on neuronal nitric oxide synthase null background do not live significantly longer than transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1. Western blot analysis indicates the presence of two neuronal nitric oxide synthase-like immunoreactive bands in spinal cord homogenates of the neuronal nitric oxide synthase null mice, and residual neuronal nitric oxide synthase catalytic activity ( > 7%) is detected in the spinal cord of the transgenic mice expressing a familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 on neuronal nitric oxide synthase null background. This amount of residual activity probably does not account for lack of protection afforded by the disrupted neuronal nitric oxide synthase gene in the familial amyotrophic lateral sclerosis-linked mutant human copper/zinc superoxide dismutase type 1 mice. Immunological nitric oxide synthase is not detected in the copper/zinc superoxide dismutase type 1 mutant mice at several different ages, thus excluding immunological nitric oxide synthase as a contributor to the pathogenesis of familial amyotrophic lateral sclerosis. Levels of neuronal nitric oxide synthase as well as Ca2+-dependent nitric oxide synthase catalytic activity in the copper/zinc superoxide dismutase type 1 mutant mice do not differ from wild type mice. Endothelial nitric oxide synthase levels may be decreased in the copper/zinc superoxide dismutase type 1 mutant mice. Together, these results do not support a significant role for neuronal-derived nitric oxide in the pathogenesis of familial amyotrophic lateral sclerosis transgenic mice.
Collapse
Affiliation(s)
- F Facchinetti
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
419
|
Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 1999; 39:191-220. [PMID: 10331082 DOI: 10.1146/annurev.pharmtox.39.1.191] [Citation(s) in RCA: 445] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) regulates numerous physiological processes, including neurotransmission, smooth muscle contractility, platelet reactivity, and the cytotoxic activity of immune cells. Because of the ubiquitous nature of NO, inappropriate release of this mediator has been linked to the pathogenesis of a number of disease states. This provides the rationale for the design of therapies that modulate NO concentrations selectively. A well-characterized family of compounds are the inhibitors of NO synthase, the enzyme responsible for the generation of NO; such agents are potentially beneficial in the treatment of conditions associated with an overproduction of NO, including septic shock, neurodegenerative disorders, and inflammation. This article provides an overview of NO synthase inhibitors, focusing on agents that prevent binding of substrate L-arginine.
Collapse
Affiliation(s)
- A J Hobbs
- Wolfson Institute for Biomedical Research, University College London, Rayne Institute, United Kingdom.
| | | | | |
Collapse
|
420
|
Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 1999; 96:5774-9. [PMID: 10318960 PMCID: PMC21936 DOI: 10.1073/pnas.96.10.5774] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes parkinsonism in humans and nonhuman animals, and its use has led to greater understanding of the pathogenesis of Parkinson's disease. However, its molecular targets have not been defined. We show that mice lacking the gene for poly(ADP-ribose) polymerase (PARP), which catalyzes the attachment of ADP ribose units from NAD to nuclear proteins after DNA damage, are dramatically spared from MPTP neurotoxicity. MPTP potently activates PARP exclusively in vulnerable dopamine containing neurons of the substantia nigra. MPTP elicits a novel pattern of poly(ADP-ribosyl)ation of nuclear proteins that completely depends on neuronally derived nitric oxide. Thus, NO, DNA damage, and PARP activation play a critical role in MPTP-induced parkinsonism and suggest that inhibitors of PARP may have protective benefit in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- A S Mandir
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
421
|
FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999. [PMID: 10212304 DOI: 10.1523/jneurosci.19-09-03440.1999] [Citation(s) in RCA: 292] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is thought to be involved in the mechanism of nerve cell death in Parkinson's disease (PD). Among several toxic oxidative species, nitric oxide (NO) has been proposed as a key element on the basis of the increased density of glial cells expressing inducible nitric oxide synthase (iNOS) in the substantia nigra (SN) of patients with PD. However, the mechanism of iNOS induction in the CNS is poorly understood, especially under pathological conditions. Because cytokines and FcepsilonRII/CD23 antigen have been implicated in the induction of iNOS in the immune system, we investigated their role in glial cells in vitro and in the SN of patients with PD and matched control subjects. We show that, in vitro, interferon-gamma (IFN-gamma) together with interleukin-1beta (Il-1beta) and tumor necrosis factor-alpha (TNF-alpha) can induce the expression of CD23 in glial cells. Ligation of CD23 with specific antibodies resulted in the induction of iNOS and the subsequent release of NO. The activation of CD23 also led to an upregulation of TNF-alpha production, which was dependent on NO release. In the SN of PD patients, a significant increase in the density of glial cells expressing TNF-alpha, Il-1beta, and IFN-gamma was observed. Furthermore, although CD23 was not detectable in the SN of control subjects, it was found in both astroglial and microglial cells in parkinsonian patients. Altogether, these data demonstrate the existence of a cytokine/CD23-dependent activation pathway of iNOS and of proinflammatory mediators in glial cells and their involvement in the pathophysiology of PD.
Collapse
|
422
|
Abstract
Nitric oxide (NO) has several essential roles in mammals, but unregulated NO production can cause cell death through oxidative stress, disrupted energy metabolism, DNA damage, activation of poly(ADP-ribose) polymerase, or dysregulation of cytosolic calcium. Such disturbances can lead to either apoptotic or necrotic cell death, depending on the severity and context of the damage. Here I review the mechanisms by which NO kills cells and discuss how NO thereby contributes to ischaemia-reperfusion injury and neurodegeneration.
Collapse
Affiliation(s)
- M P Murphy
- Department of Biochemistry, University of Otago, Box 56, Dunedin, New Zealand.
| |
Collapse
|
423
|
Gatto EM, Riobó NA, Carreras MC, Schöpfer FJ, Pargament GA, Poderoso JJ. Circulating plasma factors in Parkinson's disease enhance nitric oxide release of normal human neutrophils. J Neurol Sci 1999; 165:66-70. [PMID: 10426150 DOI: 10.1016/s0022-510x(99)00079-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nitric oxide (*NO)-mediated toxicity has been involved in neurodegenerative diseases, including Parkinson's disease (PD). We have recently reported an increase of about 50% in *NO production rate in PMA-activated polymorphonuclear leukocytes (PMN) from either newly diagnosed or chronically treated PD patients. As humoral factors in sera from PD patients could inhibit cell dopaminergic activity, the aim of this study was to determine whether a plasma circulating factor from PD patients could modify *NO metabolism in PMN from healthy control subjects. To this purpose, we determined simultaneously the maximal production rate of *NO and hydrogen peroxide (H2O2) of PMA-activated PMN isolated from healthy control subjects in the presence of aliquots of plasma of PD patients. The results showed that, after 30 min incubation, plasma from newly diagnosed (n=4) or from L-Dopa chronically treated (n=7) PD patients enhanced *NO release in neutrophils isolated from healthy controls by about 50% and 47% respectively, with respect to non-parkinsonian control plasma (n = 10); in the same condition, H2O2 production did not differ among the groups. These data suggest that an overproduction of *NO related to plasma circulating factors, already detected at initial stages of the disease, participates in the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- E M Gatto
- Laboratory of Oxygen Metabolism, University Hospital, School of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
424
|
Itzhak Y, Martin JL, Black MD, Ali SF. Effect of the dopaminergic neurotoxin MPTP on cocaine-induced locomotor sensitization. Pharmacol Biochem Behav 1999; 63:101-7. [PMID: 10340529 DOI: 10.1016/s0091-3057(98)00246-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The blockade of dopamine (DA) uptake via the dopamine transporter (DAT) in the nucleus accumbens (NAC) and striatum by cocaine has a major role in the reinforcing and psychomotor stimulating effects of the drug. Here we investigated the effect of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the expression and induction of sensitization to the locomotor stimulating effect of cocaine. MPTP (20 mg/kg x 4) caused 72 and 76% depletion of DAT sites in the NAC and striatum, respectively, in C57BL/6 mice. The magnitude of this depletion 3 and 19 days after MPTP administration was the same. To determine the effect of MPTP on the expression of the sensitized response to cocaine, cocaine-experienced mice (20 mg/kg for 5 days) received MPTP 3 days before a challenge cocaine injection was given on day 15. Cocaine/MPTP mice were significantly more sensitive to the challenge cocaine injection than the cocaine/saline-pretreated mice. To determine whether depletion of NAC and striatal DAT affects the induction of sensitization to cocaine, mice were pretreated with MPTP 3 days before the administration of cocaine (20 mg/kg for 5 days). The magnitude of the sensitized response of MPTP/cocaine-pretreated mice to cocaine challenge was the same as the sensitized response of mice treated with saline/cocaine, while the number of DAT binding sites in the MPTP/cocaine group was significantly lower than the saline/cocaine group. The present study indicates that MPTP exacerbates the expression of locomotor sensitization to cocaine, but it had no effect on the induction of sensitization. We conclude that the expression, but not the induction, of locomotor sensitization to cocaine may be dependent on the level of DAT binding sites.
Collapse
Affiliation(s)
- Y Itzhak
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | |
Collapse
|
425
|
Matthews RT, Klivenyi P, Mueller G, Yang L, Wermer M, Thomas CE, Beal MF. Novel free radical spin traps protect against malonate and MPTP neurotoxicity. Exp Neurol 1999; 157:120-6. [PMID: 10222114 DOI: 10.1006/exnr.1999.7045] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both malonate and 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) are neurotoxins which cause energy depletion, secondary excitotoxicity, and free radical generation. Malonate is a reversible inhibitor of succinate dehydrogenase, while MPTP is metabolized to 1-methyl-4-phenylpyridinium, an inhibitor of mitochondrial complex I. We examined the effects of pretreatment with the cyclic nitrone free radical spin trap MDL 101,002 on malonate and MPTP neurotoxicity. MDL 101,002 produced dose-dependent neuroprotection against malonate-induced striatal lesions. MDL 101, 002 produced significant protection against MPTP induced depletions of dopamine and its metabolites. MDL 101,002 also significantly attenuated MPTP-induced increases in striatal 3-nitrotyrosine concentrations. The free radical spin trap tempol also produced significant protection against MPTP neurotoxicity. These findings provide further evidence that free radical spin traps produce neuroprotective effects in vivo and suggest that they may be useful in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- R T Matthews
- Neurology Service, Massachusetts General Hospital, Harvard Medical School, 32 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | |
Collapse
|
426
|
Hunot S, Dugas N, Faucheux B, Hartmann A, Tardieu M, Debré P, Agid Y, Dugas B, Hirsch EC. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci 1999; 19:3440-7. [PMID: 10212304 PMCID: PMC6782235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Oxidative stress is thought to be involved in the mechanism of nerve cell death in Parkinson's disease (PD). Among several toxic oxidative species, nitric oxide (NO) has been proposed as a key element on the basis of the increased density of glial cells expressing inducible nitric oxide synthase (iNOS) in the substantia nigra (SN) of patients with PD. However, the mechanism of iNOS induction in the CNS is poorly understood, especially under pathological conditions. Because cytokines and FcepsilonRII/CD23 antigen have been implicated in the induction of iNOS in the immune system, we investigated their role in glial cells in vitro and in the SN of patients with PD and matched control subjects. We show that, in vitro, interferon-gamma (IFN-gamma) together with interleukin-1beta (Il-1beta) and tumor necrosis factor-alpha (TNF-alpha) can induce the expression of CD23 in glial cells. Ligation of CD23 with specific antibodies resulted in the induction of iNOS and the subsequent release of NO. The activation of CD23 also led to an upregulation of TNF-alpha production, which was dependent on NO release. In the SN of PD patients, a significant increase in the density of glial cells expressing TNF-alpha, Il-1beta, and IFN-gamma was observed. Furthermore, although CD23 was not detectable in the SN of control subjects, it was found in both astroglial and microglial cells in parkinsonian patients. Altogether, these data demonstrate the existence of a cytokine/CD23-dependent activation pathway of iNOS and of proinflammatory mediators in glial cells and their involvement in the pathophysiology of PD.
Collapse
Affiliation(s)
- S Hunot
- Institut National de la Santé et de la Recherche Médicale, Unité 289, Mécanismes et Conséquences de la Mort Neuronale, Hôpital de la Salpêtrière, F-75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
427
|
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder that affects approximately 1 million persons in the United States. It is characterized by resting tremor, rigidity, bradykinesia or slowness, gait disturbance, and postural instability. Pathological features include degeneration of dopaminergic neurons in the substantia nigra pars compacta coupled with intracytoplasmic inclusions known as Lewy bodies. Neurodegeneration and Lewy bodies can also be found in the locus ceruleus, nucleus basalis, hypothalamus, cerebral cortex, cranial nerve motor nuclei, and central and peripheral components of the autonomic nervous system. Current treatment consists of a dopamine replacement strategy using primarily the dopamine precursor levodopa. While levodopa provides benefit to virtually all PD patients, after 5-10 years of treatment the majority of patients develop adverse events in the form of dyskinesia (involuntary movements) and fluctuations in motor response. Further, disease progression is associated with the development of dementia, autonomic dysfunction, and postural instability, which do not respond to levodopa therapy. Accordingly, research efforts have been directed toward understanding the etiology and pathogenesis of PD in the hope of developing a more effective therapy that will slow or halt the natural progression of PD. This paper reviews recent advances.
Collapse
Affiliation(s)
- C W Olanow
- Department of Neurology, Mount Sinai Medical Center, New York, New York 10029, USA
| | | |
Collapse
|
428
|
Tanji H, Araki T, Nagasawa H, Itoyama Y. Differential vulnerability of dopamine receptors in the mouse brain treated with MPTP. Brain Res 1999; 824:224-31. [PMID: 10196452 DOI: 10.1016/s0006-8993(99)01209-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We investigated the chronological changes of dopamine D1 and D2 receptors and dopamine uptake sites in the striatum and substantia nigra of mouse brain treated with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) by quantitative autoradiography using [3H]SCH23390, [3H]raclopride and [3H]mazindol, respectively. The mice received i.p. injections of MPTP (10 mg/kg) four times at intervals of 60 min, the brains were analyzed at 6 h and 1, 3, 7 and 21 days after the last the injection. Dopamine D2 receptor binding activity was significantly decreased in the substantia nigra from 7 to 21 days after MPTP administration, whereas such binding activity was significantly increased in the medial part of the striatum at 21 days. There was no alteration of dopamine D1 receptor binding activity in either the striatum or the substantia nigra for the 21 days. The number of dopamine uptake sites gradually decreased in the striatum and the substantia nigra, starting at 6 h after MPTP administration, and the lowest levels of binding activity were observed at 3 and 7 days in the striatum (18% of the control values in the medial part and 30% in the lateral part) and at 1 day in the substantia nigra (20% of the control values). These results indicate that severe functional damage to the dopamine uptake sites occurs in the striatum and the substantia nigra, starting at an early stage after MPTP treatment. Our findings also demonstrate the compensatory up-regulation in dopamine D2 receptors, but not dopamine D1 receptors, in the striatum after MPTP treatment. Furthermore, our results support the existence of dopamine D2 receptors, but not dopamine D1 receptors, on the nigral neurons. The present findings suggest that there are differential vulnerabilities to MPTP toxicity in the nigrostriatal dopaminergic receptor systems of mouse brain.
Collapse
Affiliation(s)
- H Tanji
- Department of Neurology, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | |
Collapse
|
429
|
Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 1999; 19:351-69. [PMID: 10197505 DOI: 10.1097/00004647-199904000-00001] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- G Fiskum
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
430
|
Ferrante RJ, Hantraye P, Brouillet E, Beal MF. Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Res 1999; 823:177-82. [PMID: 10095024 DOI: 10.1016/s0006-8993(99)01166-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces clinical, biochemical and neuropathologic changes reminiscent of those which occur in idiopathic Parkinson's disease. 7-Nitroindazole (7-NI) is a relatively selective inhibitor of the neuronal isoform of nitric oxide synthase. We previously demonstrated that administration of 7-NI is effective in blocking MPTP toxicity in both mice and baboons. This was suggested to be due to inhibition of the generation of peroxynitrite which can nitrate tyrosines. In the present study we found increased 3-nitrotyrosine immunoreactivity in the substantia nigra of MPTP treated baboons, which was blocked by coadministration of 7-NI. These findings provide further evidence that peroxynitrite may play a role in MPTP induced parkinsonism in baboons.
Collapse
Affiliation(s)
- R J Ferrante
- Neurology, Pathology, and Psychiatry Departments, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
431
|
Abstract
Oxidative stress is thought to contribute to dopaminergic cell death in Parkinson's disease (PD). The neurotoxin 6-hydroxydopamine (6-OHDA), which is easily oxidized to reactive oxygen species (ROS), appears to induce neuronal death by a free radical-mediated mechanism, whereas the involvement of free radicals in N-methyl-4-phenylpyridinium (MPP+) toxicity is less clear. Using free radical-sensitive fluorophores and vital dyes with post hoc identification of tyrosine hydroxylase-positive neurons, we monitored markers of apoptosis and the production of ROS in dopaminergic neurons treated with either 6-OHDA or MPP+. Annexin-V staining suggested that 6-OHDA but not MPP+-mediated cell death was apoptotic. In accordance with this assignment, the general caspase inhibitor Boc-(Asp)-fluoromethylketone only blocked 6-OHDA neurotoxicity. Both toxins exhibited an early, sustained rise in ROS, although only 6-OHDA induced a collapse in mitochondrial membrane potential temporally related to the increase in ROS. Recently, derivatives of buckminsterfullerene (C60) molecules have been shown to act as potent antioxidants in several models of oxidative stress (Dugan et al., 1997). Significant, dose-dependent levels of protection were also seen in these in vitro models of PD using the C3 carboxyfullerene derivative. Specifically, C3 was fully protective in the 6-OHDA paradigm, whereas it only partially rescued dopaminergic neurons from MPP+-induced cell death. In either model, it was more effective than glial-derived neurotrophic factor. These data suggest that cell death in response to 6-OHDA and MPP+ may progress through different mechanisms, which can be partially or entirely saved by carboxyfullerenes.
Collapse
|
432
|
Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 1999; 19:1284-93. [PMID: 9952406 PMCID: PMC6786015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Oxidative stress is thought to contribute to dopaminergic cell death in Parkinson's disease (PD). The neurotoxin 6-hydroxydopamine (6-OHDA), which is easily oxidized to reactive oxygen species (ROS), appears to induce neuronal death by a free radical-mediated mechanism, whereas the involvement of free radicals in N-methyl-4-phenylpyridinium (MPP+) toxicity is less clear. Using free radical-sensitive fluorophores and vital dyes with post hoc identification of tyrosine hydroxylase-positive neurons, we monitored markers of apoptosis and the production of ROS in dopaminergic neurons treated with either 6-OHDA or MPP+. Annexin-V staining suggested that 6-OHDA but not MPP+-mediated cell death was apoptotic. In accordance with this assignment, the general caspase inhibitor Boc-(Asp)-fluoromethylketone only blocked 6-OHDA neurotoxicity. Both toxins exhibited an early, sustained rise in ROS, although only 6-OHDA induced a collapse in mitochondrial membrane potential temporally related to the increase in ROS. Recently, derivatives of buckminsterfullerene (C60) molecules have been shown to act as potent antioxidants in several models of oxidative stress (Dugan et al., 1997). Significant, dose-dependent levels of protection were also seen in these in vitro models of PD using the C3 carboxyfullerene derivative. Specifically, C3 was fully protective in the 6-OHDA paradigm, whereas it only partially rescued dopaminergic neurons from MPP+-induced cell death. In either model, it was more effective than glial-derived neurotrophic factor. These data suggest that cell death in response to 6-OHDA and MPP+ may progress through different mechanisms, which can be partially or entirely saved by carboxyfullerenes.
Collapse
Affiliation(s)
- J Lotharius
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
433
|
Schapira AH. Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:159-70. [PMID: 10076024 DOI: 10.1016/s0005-2728(98)00164-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Respiratory chain dysfunction has been identified in several neurodegenerative disorders. In Friedreich's ataxia (FA) and Huntington's disease (HD), where the respective mutations are in nuclear genes encoding non-respiratory chain mitochondrial proteins, the defects in oxidative phosphorylation are clearly secondary. In Parkinson's disease (PD) the situation is less clear, with some evidence for a primary role of mitochondrial DNA in at least a proportion of patients. The pattern of the respiratory chain defect may provide some clue to its cause; in PD there appears to be a selective complex I deficiency; in HD and FA the deficiencies are most severe in complex II/III with a less severe defect in complex IV. Aconitase activity in HD and FA is severely decreased in brain and muscle, respectively, but appears to be normal in PD brain. Free radical generation is thought to be of importance in both HD and FA, via excitotoxicity in HD and abnormal iron handling in FA. The oxidative damage observed in PD may be secondary to the mitochondrial defect. Whatever the cause(s) and sequence of events, respiratory chain deficiencies appear to play an important role in the pathogenesis of neurodegeneration. The mitochondrial abnormalities induced may converge on the function of the mitochondrion in apoptosis. This mode of cell death is thought to play an important role in neurodegenerative diseases and it is tempting to speculate that the observed mitochondrial defects in PD, HD and FA result directly in apoptotic cell death, or in the lowering of a cell's threshold to undergo apoptosis. Clarifying the role of mitochondria in pathogenesis may provide opportunities for the development of treatments designed to reverse or prevent neurodegeneration.
Collapse
Affiliation(s)
- A H Schapira
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF,
| |
Collapse
|
434
|
Abstract
Nitric oxide (NO) is a unique biological messenger molecule which mediates diverse physiologic roles. NO mediates blood vessel relaxation by endothelium, immune activity of macrophages and neurotransmission of central and peripheral neurons. NO is produced from three NO Synthase (NOS) isoforms: Neuronal NOS (nNOS), endothelial NOS, and inducible NOS (iNOS). In the central nervous system, NO may play important roles in neurotransmitter release, neurotransmitter reuptake, neurodevelopment, synaptic plasticity, and regulation of gene expression. However, excessive production of NO following a pathologic insult can lead to neurotoxicity. NO plays a role in mediating neurotoxicity associated with a variety of neurologic disorders, including stroke, Parkinson's Disease, and HIV dementia.
Collapse
Affiliation(s)
- V L Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
435
|
Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 1999. [PMID: 9870933 DOI: 10.1523/jneurosci.19-01-00010.1999] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The major pathological lesion of Parkinson's disease (PD) is the selective cell death of dopaminergic (DA) neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to DA cell death underlying the PD process remain elusive, brain-derived neurotrophic factor (BDNF) is thought to exert neuroprotective as well as neurotrophic roles for the survival and differentiation of DA neurons in SN. Addressing molecular mechanisms of BDNF action in both primary embryonic mesencephalic cultures and in vivo animal models has been technically difficult because DA neurons in SN are relatively rare and present with many heterogeneous cell populations in midbrain. We have developed and characterized a DA neuronal cell line of embryonic SN origin that is more accessible to molecular analysis and can be used as an in vitro model system for studying SN DA neurons. A clonal SN DA neuronal progenitor cell line SN4741, arrested at an early DA developmental stage, was established from transgenic mouse embryos containing the targeted expression of the thermolabile SV40Tag in SN DA neurons. The phenotypic and morphological differentiation of the SN4741 cells could be manipulated by environmental cues in vitro. Exogenous BDNF treatment produced significant neuroprotection against 1-methyl-4-phenylpyridinium, glutamate, and nitric oxide-induced neurotoxicity in the SN4741 cells. Simultaneous phosphorylation of receptor tyrosine kinase B accompanied the neuroprotection. This SN DA neuronal cell line provides a unique model system to circumvent the limitations associated with primary mesencephalic cultures for the elucidation of molecular mechanisms of BDNF action on DA neurons of the SN.
Collapse
|
436
|
Lancelot E, Beal MF. Glutamate toxicity in chronic neurodegenerative disease. PROGRESS IN BRAIN RESEARCH 1999; 116:331-47. [PMID: 9932386 DOI: 10.1016/s0079-6123(08)60446-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- E Lancelot
- Department of Neurology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
437
|
Abstract
Although the aetiology of Parkinson's disease (PD) and related neurodegenerative disorders is still unknown, recent evidence from human and experimental animal models suggests that a misregulation of iron metabolism, iron-induced oxidative stress and free radical formation are major pathogenic factors. These factors trigger a cascade of deleterious events leading to neuronal death and the ensuing biochemical disturbances of clinical relevance. A review of the available data in PD provides the following evidence in support of this hypothesis: (i) an increase of iron in the brain, which in PD selectively involves neuromelanin in substantia nigra (SN) neurons; (ii) decreased availability of glutathione (GSH) and other antioxidant substances; (iii) increase of lipid peroxidation products and reactive oxygen (O2)species (ROS); and (iv) impaired mitochondrial electron transport mechanisms. Most of these changes appear to be closely related to interactions between iron and neuromelanin, which result in accumulation of iron and a continuous production of cytotoxic species leading to neuronal death. Some of these findings have been reproduced in animal models using 6-hydroxydopamine, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), iron loading and beta-carbolines, although none of them is an accurate model for PD in humans. Although it is not clear whether iron accumulation and oxidative stress are the initial events causing cell death or consequences of the disease process, therapeutic efforts aimed at preventing or at least delaying disease progression by reducing the overload of iron and generation of ROS may be beneficial in PD and related neurodegenerative disorders. Current pharmacotherapy of PD, in addition to symptomatic levodopa treatment, includes 'neuroprotective' strategies with dopamine agonists, monoamine oxidase-B inhibitors (MAO-B), glutamate antagonists, catechol O-methyltransferase inhibitors and other antioxidants or free radical scavengers. In the future, these agents could be used in combination with, or partly replaced by, iron chelators and lazaroids that prevent iron-induced generation of deleterious substances. Although experimental and preclinical data suggest the therapeutic potential of these drugs, their clinical applicability will be a major challenge for future research.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Vienna, Austria.
| |
Collapse
|
438
|
Cassarino DS, Parks JK, Parker WD, Bennett JP. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1453:49-62. [PMID: 9989245 DOI: 10.1016/s0925-4439(98)00083-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson's disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP(+)-induced swelling and release of cytochrome c. The MPP(+)-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP(+)-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.
Collapse
Affiliation(s)
- D S Cassarino
- Neuroscience Program, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
439
|
Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 1999; 19:10-20. [PMID: 9870933 PMCID: PMC6782395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1998] [Revised: 10/08/1998] [Accepted: 10/15/1998] [Indexed: 02/09/2023] Open
Abstract
The major pathological lesion of Parkinson's disease (PD) is the selective cell death of dopaminergic (DA) neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to DA cell death underlying the PD process remain elusive, brain-derived neurotrophic factor (BDNF) is thought to exert neuroprotective as well as neurotrophic roles for the survival and differentiation of DA neurons in SN. Addressing molecular mechanisms of BDNF action in both primary embryonic mesencephalic cultures and in vivo animal models has been technically difficult because DA neurons in SN are relatively rare and present with many heterogeneous cell populations in midbrain. We have developed and characterized a DA neuronal cell line of embryonic SN origin that is more accessible to molecular analysis and can be used as an in vitro model system for studying SN DA neurons. A clonal SN DA neuronal progenitor cell line SN4741, arrested at an early DA developmental stage, was established from transgenic mouse embryos containing the targeted expression of the thermolabile SV40Tag in SN DA neurons. The phenotypic and morphological differentiation of the SN4741 cells could be manipulated by environmental cues in vitro. Exogenous BDNF treatment produced significant neuroprotection against 1-methyl-4-phenylpyridinium, glutamate, and nitric oxide-induced neurotoxicity in the SN4741 cells. Simultaneous phosphorylation of receptor tyrosine kinase B accompanied the neuroprotection. This SN DA neuronal cell line provides a unique model system to circumvent the limitations associated with primary mesencephalic cultures for the elucidation of molecular mechanisms of BDNF action on DA neurons of the SN.
Collapse
Affiliation(s)
- J H Son
- Department of Neurology and Neuroscience, Cornell University Medical College and Laboratory of Molecular Neurobiology, The W. M. Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | |
Collapse
|
440
|
Cassarino DS, Bennett JP. An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:1-25. [PMID: 9974149 DOI: 10.1016/s0165-0173(98)00046-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is mounting evidence for mitochondrial involvement in neurodegenerative diseases including Alzheimer's and Parkinson's disease and amyotrophic lateral sclerosis. Mitochondrial DNA mutations, whether inherited or acquired, lead to impaired electron transport chain (ETC) functioning. Impaired electron transport, in turn, leads to decreased ATP production, formation of damaging free-radicals, and altered calcium handling. These toxic consequences of ETC dysfunction lead to further mitochondrial damage including oxidation of mitochondrial DNA, proteins, and lipids, and opening of the mitochondrial permeability transition pore, an event linked to cell death in numerous model systems. Although protective nuclear responses such as antioxidant enzymes and bcl-2 may be induced to combat these pathological changes, such a vicious cycle of increasing oxidative damage may insidiously damage neurons over a period of years, eventually leading to neuronal cell death. This hypothesis, a synthesis of the mitochondrial mutations and oxidative stress hypotheses of neurodegeneration, is readily tested experimentally, and clearly points out many potential therapeutic targets for preventing or ameliorating these diseases.
Collapse
Affiliation(s)
- D S Cassarino
- Medical Scientist Training Program, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
441
|
Abstract
1. Free radicals may play an important role in several pathological conditions of the central nervous system (CNS) where they directly injure tissue and where their formation may also be a consequence of tissue injury. 2. Free radicals produce tissue damage through multiple mechanisms, including excito-toxicity, metabolic dysfunction, and disturbance of intracellular homeostasis of calcium. 3. Oxidative stress can significantly worsen acute insults, such as ischemia, as well as chronic neurodegenerative disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease. 4. For instance, recent findings suggest a causal role for chronic oxidative stress in familial ALS, as this disease is linked to missence mutations of the copper/zinc superoxide dismutase (SOD). 5. Thus, therapeutic approaches which limit oxidative stress may be potentially beneficial in several neurological diseases.
Collapse
Affiliation(s)
- F Facchinetti
- Department of Neurology, Neuroscience and Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
442
|
Abstract
Nitric oxide (NO), generated by endothelial (e) NO synthase (NOS) and neuronal (n) NOS, plays a ubiquitous role in the body in controlling the function of almost every, if not every, organ system. Bacterial and viral products, such as bacterial lipopolysaccharide (LPS), induce inducible (i) NOS synthesis that produces massive amounts of NO toxic to the invading viruses and bacteria, but also host cells by inactivation of enzymes leading to cell death. The actions of all forms of NOS are mediated not only by the free radical oxidant properties of this soluble gas, but also by its activation of guanylate cyclase (GC), leading to the production of cyclic guanosine monophosphate (cGMP) that mediates many of its physiological actions. In addition, NO activates cyclooxygenase and lipoxygenase, leading to the production of physiologically relevant quantities of prostaglandin E2 (PGE2) and leukotrienes. In the case of iNOS, the massive release of NO, PGE2, and leukotrienes produces toxic effects. Systemic injection of LPS causes induction of interleukin (IL)-1 beta mRNA followed by IL-beta synthesis that induces iNOS mRNA with a latency of two and four hours, respectively, in the anterior pituitary and pineal glands, meninges, and choroid plexus, regions outside the blood-brain barrier, and shortly thereafter, in hypothalamic regions, such as the temperature-regulating centers, paraventricular nucleus containing releasing and inhibiting hormone neurons, and the arcuate nucleus, a region containing these neurons and axons bound for the median eminence. We are currently determining if LPS similarly activates cytokine and iNOS production in the cardiovascular system and the gonads. Our hypothesis is that recurrent infections over the life span play a significant role in producing aging changes in all systems outside the blood-brain barrier via release of toxic quantities of NO. NO may be a major factor in the development of coronary heart disease (CHD). Considerable evidence has accrued indicating a role for infections in the induction of CHD and, indeed, patients treated with a tetracycline derivative had 10 times less complications of CHD than their controls. Stress, inflammation, and infection have all been shown to cause induction of iNOS in rats, and it is likely that this triad of events is very important in progression of coronary arteriosclerosis leading to coronary occlusion. Aging of the anterior pituitary and pineal with resultant decreased secretion of pituitary hormones and the pineal hormone, melatonin, respectively, may be caused by NO. The induction of iNOS in the temperature-regulating centers by infections may cause the decreased febrile response in the aged by loss of thermosensitive neurons. iNOS induction in the paraventricular nucleus may cause the decreased nocturnal secretion of growth hormone (GH) and prolactin that occurs with age, and its induction in the arcuate nucleus may destroy luteinizing hormone-releasing hormone (LHRH) neurons, thereby leading to decreased release of gonadotropins. Recurrent infections may play a role in aging of other parts of the brain, because there are increased numbers of astrocytes expressing IL-1 beta throughout the brain in aged patients. IL-1 and products of NO activity accumulate around the plaques of Alzheimer's, and may play a role in the progression of the disease. Early onset Parkinsonism following flu encephalitis during World War I was possibly due to induction of iNOS in cells adjacent to substantia nigra dopaminergic neurons leading to death of these cells, which, coupled with ordinary aging fall out, led to Parkinsonism. The central nervous system (CNS) pathology in AIDS patients bears striking resemblance to aging changes, and may also be largely caused by the action of iNOS. Antioxidants, such as melatonin, vitamin C, and vitamin E, probably play an important acute and chronic role in reducing or eliminating the oxidant damage produced by NO.
Collapse
Affiliation(s)
- S M McCann
- Pennington Biomedical Research Center (LSU), Baton Rouge 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|
443
|
Abstract
The proto-oncogene Bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that Bcl-2 protects against free radicals and that it increases mitochondrial calcium-buffering capacity. The neurotoxicity of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyride (MPTP) is thought to involve both mitochondrial dysfunction and free radical generation. We therefore investigated MPTP neurotoxicity in both Bcl-2 overexpressing mice and littermate controls. MPTP-induced depletion of dopamine and loss of [3H]mazindol binding were significantly attenuated in Bcl-2 overexpressing mice. Protection was more profound with an acute dosing regimen than with daily MPTP administration over 5 d. 1-Methyl-4-phenylpyridinium (MPP+) levels after MPTP administration were similar in Bcl-2 overexpressing mice and littermates. Bcl-2 blocked MPP+-induced activation of caspases. MPTP-induced increases in free 3-nitrotyrosine levels were blocked in Bcl-2 overexpressing mice. These results indicate that Bcl-2 overexpression protects against MPTP neurotoxicity by mechanisms that may involve both antioxidant activity and inhibition of apoptotic pathways.
Collapse
|
444
|
Yang L, Matthews RT, Schulz JB, Klockgether T, Liao AW, Martinou JC, Penney JB, Hyman BT, Beal MF. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J Neurosci 1998; 18:8145-52. [PMID: 9763461 PMCID: PMC6792836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The proto-oncogene Bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that Bcl-2 protects against free radicals and that it increases mitochondrial calcium-buffering capacity. The neurotoxicity of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyride (MPTP) is thought to involve both mitochondrial dysfunction and free radical generation. We therefore investigated MPTP neurotoxicity in both Bcl-2 overexpressing mice and littermate controls. MPTP-induced depletion of dopamine and loss of [3H]mazindol binding were significantly attenuated in Bcl-2 overexpressing mice. Protection was more profound with an acute dosing regimen than with daily MPTP administration over 5 d. 1-Methyl-4-phenylpyridinium (MPP+) levels after MPTP administration were similar in Bcl-2 overexpressing mice and littermates. Bcl-2 blocked MPP+-induced activation of caspases. MPTP-induced increases in free 3-nitrotyrosine levels were blocked in Bcl-2 overexpressing mice. These results indicate that Bcl-2 overexpression protects against MPTP neurotoxicity by mechanisms that may involve both antioxidant activity and inhibition of apoptotic pathways.
Collapse
Affiliation(s)
- L Yang
- Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
445
|
Klivenyi P, St Clair D, Wermer M, Yen HC, Oberley T, Yang L, Flint Beal M. Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol Dis 1998; 5:253-8. [PMID: 9848095 DOI: 10.1006/nbdi.1998.0191] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is substantial evidence implicating mitochondrial dysfunction and free radical generation in the neurotoxicity of MPTP. Manganese superoxide dismutase (MnSOD) is the primary antioxidant enzyme protecting against superoxide radicals produced within mitochondria. Overexpression of human MnSOD in transgenic mice resulted in increased MnSOD localized to mitochondria in neurons and a 50% increase in total MnSOD activity in brain homogenates. We found that MPTP toxicity was significantly attenuated in the MnSOD transgenic mice which overexpress the human manganese superoxide dismutase gene, with these mice showing threefold greater dopamine levels than controls following MPTP. There were no alterations in MPP+ levels, suggesting that the effects were not due to altered metabolism of MPTP. A significant increase in 3-nitrotyrosine levels was seen in littermate controls but not in transgenic mice overexpressing human MnSOD. These results provide further evidence implicating mitochondrial dysfunction and oxidative damage in the pathogenesis of MPTP neurotoxicity.
Collapse
Affiliation(s)
- P Klivenyi
- Neurochemistry Laboratory, Massachusetts General Hospital, Boston, USA
| | | | | | | | | | | | | |
Collapse
|
446
|
Sterneck E, Paylor R, Jackson-Lewis V, Libbey M, Przedborski S, Tessarollo L, Crawley JN, Johnson PF. Selectively enhanced contextual fear conditioning in mice lacking the transcriptional regulator CCAAT/enhancer binding protein delta. Proc Natl Acad Sci U S A 1998; 95:10908-13. [PMID: 9724803 PMCID: PMC27994 DOI: 10.1073/pnas.95.18.10908] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/1997] [Accepted: 06/29/1998] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer binding protein delta (C/EBPdelta) is a transcriptional regulator implicated in the hepatic acute phase response and in adipogenic and myeloid cell differentiation. We found that C/EBPdelta is widely expressed in the peripheral and central nervous systems, including neurons of the hippocampal formation, indicating a role in neural functions. To examine the role of C/EBPdelta in vivo, we generated mice with a targeted deletion of the C/EBPdelta gene. This mutation does not interfere with normal embryonic and postnatal development. Performance in a battery of behavioral tests indicates that basic neurological functions are normal. Furthermore, performance in a Morris water maze task suggests that C/EBPdelta mutant mice have normal spatial learning. However, in the contextual and auditory-cue-conditioned fear task, C/EBPdelta null mice displayed significantly more conditioned freezing to the test context than did wild-type controls, but equivalent conditioning to the auditory cue. These data demonstrate a selectively enhanced contextual fear response in mice carrying a targeted genomic mutation and implicate C/EBPdelta in the regulation of a specific type of learning and memory.
Collapse
Affiliation(s)
- E Sterneck
- Eukaryotic Transcriptional Regulation Section, Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
447
|
Murphy MP, Packer MA, Scarlett JL, Martin SW. Peroxynitrite: a biologically significant oxidant. GENERAL PHARMACOLOGY 1998; 31:179-86. [PMID: 9688457 DOI: 10.1016/s0306-3623(97)00418-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Peroxynitrite is a short-lived and damaging oxidant that forms rapidly from the reaction of superoxide with nitric oxide. 2. In 1990, Joseph Beckman proposed that peroxynitrite contributed significantly to pathological oxidative stress in living tissues, and subsequent evidence strongly supports this proposal. 3. In this review, we outline the properties of peroxynitrite and discuss how it can affect biological systems and contribute to human pathologies.
Collapse
Affiliation(s)
- M P Murphy
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
448
|
Przedborski S, Jackson-Lewis V. Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr Opin Neurol 1998; 11:335-9. [PMID: 9725079 DOI: 10.1097/00019052-199808000-00009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Free radicals have been implicated in the pathogenesis of movement disorders such as Parkinson's disease and Huntington's disease. Some basic aspects about free radicals as they relate to oxidative stress in neurodegeneration are summarized. Old and new experimental findings pertinent to oxidative damage in movement disorders are reviewed. Finally, the degree to which toxin-induced and genetically engineered experimental models have been useful in delineating parts of the mechanisms involved in the cascade of events that lead to neuronal death is emphasized.
Collapse
Affiliation(s)
- S Przedborski
- Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
449
|
Mitsumoto Y, Watanabe A, Mori A, Koga N. Spontaneous regeneration of nigrostriatal dopaminergic neurons in MPTP-treated C57BL/6 mice. Biochem Biophys Res Commun 1998; 248:660-3. [PMID: 9703982 DOI: 10.1006/bbrc.1998.8986] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spontaneous recovery of nigrostriatal dopaminergic neurons was quantitatively analyzed with tyrosine hydroxylase (TH)-immunocytochemistry in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 young mice. A substantial reduction of striatal dopamine (DA) level was observed until 24 days following MPTP treatment. The TH-immunoreactive (IR) fibers and number of TH-positive cell bodies were also markedly reduced at 3 days after the toxin treatment. Thereafter, TH-IR fiber densities showed to progressively recover through the examining period. The number of TH-positive cell bodies in substantia nigra pars compacta were not changed during the recovery period. These results indicate that MPTP-treated mice have a potential for spontaneous regenerative sprouting in nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Y Mitsumoto
- Tokushima New Drug Research Institute, Otsuka Pharmaceutical Co., Ltd., Japan
| | | | | | | |
Collapse
|
450
|
Cutillas B, Espejo M, Ambrosio S. 7-Nitroindazole prevents dopamine depletion caused by low concentrations of MPP+ in rat striatal slices. Neurochem Int 1998; 33:35-40. [PMID: 9694040 DOI: 10.1016/s0197-0186(05)80006-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A significant loss of dopamine was found in rat striatal slices incubated with 1-methyl-4-phenylpyridinium ion (MPP+) at a concentration of 2 microM or higher. The addition of 7-nitroindazole, a specific inhibitor of neuronal nitric oxide synthase (nNOS), prevented this effect on dopamine when the concentration of MPP+ was between 2-5 microM, but not at higher concentrations. This protection was reproduced with other less specific NOS-inhibitors, such as nitro-arginine and nitro-arginine methylester. 7-nitroindazole did not protect against the dopamine depletion caused by the non-specific mitochondrial chain blocker rotenone. Neither MPP- nor rotenone significantly increased the nitrite concentration in striatal slices, measured as an index of nitric oxide production. The basal production of nitric oxide may be enough to trigger the dopamine depletion at very low concentrations of MPP+, probably acting synergistically with cytosolic calcium increase. Higher concentrations of MPP+ are toxic by themselves without the mediation of nitric oxide. The inhibition of nNOS may protect against dopamine loss at early stages of a neurodegenerative process, and it could then be considered in the treatment or prevention of neurodegenerative human processes such as Parkinson's disease.
Collapse
Affiliation(s)
- B Cutillas
- Unitat de Bioquímica, Escola d'Infermeria, Universitat de Barcelona, Spain
| | | | | |
Collapse
|