401
|
Li H, Ding Y, Shi Y, Zhang X, Zhang S, Gong Z, Yang S. MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Dev Cell 2017; 43:630-642.e4. [PMID: 29056553 DOI: 10.1016/j.devcel.2017.09.025] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/02/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Low temperatures affect plant growth, development, productivity, and ecological distribution. Expression of the C-repeat-binding factor (CBF) transcription factors is induced by cold stress, which in turn activates downstream cold-responsive (COR) genes that are required for the acquisition of freezing tolerance. Inducer of CBF expression 1 (ICE1) is a master regulator of CBFs, and ICE1 stability is crucial for its function. However, the regulation of ICE1 is not well understood. Here, we report that mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ICE1, which reduces its stability and transcriptional activity. Consistently, the mpk3 and mpk6 single mutants and the mpk3 mpk6 double mutants show enhanced freezing tolerance, whereas MPK3/MPK6 activation attenuates freezing tolerance. Phosphor-inactive mutations of ICE1 complement freezing sensitivity in the ice1-2 mutant. These combined results indicate that MPK3/MPK6 phosphorylate and destabilize ICE1, which negatively regulates CBF expression and freezing tolerance in plants.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuqun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
402
|
Song S, Huang H, Wang J, Liu B, Qi T, Xie D. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1752-1763. [PMID: 29017003 DOI: 10.1093/pcp/pcx112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Jasmonates (JAs), lipid-derived phytohormones, regulate plant growth, development and defenses against biotic stresses. CORONATINE INSENSITIVE1 perceives bioactive JA and recruits JASMONATE ZIM-DOMAIN (JAZ) proteins for ubiquitination and subsequent degradation via the 26S proteasome, which de-represses JAZ-targeted transcription factors that regulate diverse JA responses. Recent studies showed that the Arabidopsis basic helix-loop-helix transcription factor MYC5 interacts with JAZs and regulates stamen development. However, whether MYC5 mediates other JA responses is unclear. Here, we show that MYC5 functions redundantly with MYC2, MYC3 and MYC4 to modulate JA-regulated root growth inhibition and plant defenses against insect attack and pathogen infection, and that it positively regulates JA-induced leaf senescence. Our findings define MYC5 as an important regulator that is essential for diverse JA responses.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
403
|
Chen L, Xiang S, Chen Y, Li D, Yu D. Arabidopsis WRKY45 Interacts with the DELLA Protein RGL1 to Positively Regulate Age-Triggered Leaf Senescence. MOLECULAR PLANT 2017; 10:1174-1189. [PMID: 28735023 DOI: 10.1016/j.molp.2017.07.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 05/22/2023]
Abstract
Leaf senescence can be triggered and promoted by various environmental stressors, developmental cues, and endogenous hormone signals. Several lines of evidence have suggested the involvement of WRKY transcription factors in regulating leaf senescence, but the underlying mechanisms and signaling pathways involved remain elusive. In this study, we identified Arabidopsis thaliana WRKY DNA-binding protein 45 (WRKY45) as a positive regulator of age-triggered leaf senescence. Loss of WRKY45 function resulted in increased leaf longevity in age-triggered senescence, whereas overexpression of WRKY45 significantly accelerated age-triggered leaf senescence. Consistently, expression of SENESCENCE-ASSOCIATED GENEs (SAGs) was significantly reduced in wrky45 mutants but markedly enhanced in transgenic plants overexpressing WRKY45. Chromatin immunoprecipitation assays revealed that WRKY45 directly binds the promoters of several SAGs such as SAG12, SAG13, SAG113, and SEN4. Both in vivo and in vitro biochemical analyses demonstrated that WRKY45 interacts with the DELLA protein RGA-LIKE1 (RGL1), a repressor of the gibberellin (GA) signaling pathway. We found that RGL1 repressed the transcription activation function of WRKY45, thereby attenuating the expression of its regulon. Consistent with this finding, overexpression of RGL1 resulted in significantly increased leaf longevity in age-triggered senescence. Taken together, our results provide compelling evidence that WRKY45 functions as a critical component of the GA-mediated signaling pathway to positively regulate age-triggered leaf senescence.
Collapse
Affiliation(s)
- Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengyuan Xiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daibo Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
404
|
Lei R, Li X, Ma Z, Lv Y, Hu Y, Yu D. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:962-976. [PMID: 28635025 DOI: 10.1111/tpj.13619] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/13/2017] [Accepted: 06/02/2017] [Indexed: 05/20/2023]
Abstract
Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis.
Collapse
Affiliation(s)
- Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhenbing Ma
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yan Lv
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
405
|
Sarwat M, Tuteja N. Hormonal signaling to control stomatal movement during drought stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
406
|
Khan TA, Fariduddin Q, Yusuf M. Low-temperature stress: is phytohormones application a remedy? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21574-21590. [PMID: 28831664 DOI: 10.1007/s11356-017-9948-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 08/11/2017] [Indexed: 05/11/2023]
Abstract
Among the various abiotic stresses, low temperature is one of the major environmental constraints that limit the plant development and crop productivity. Plants are able to adapt to low-temperature stress through the changes in membrane composition and activation of reactive oxygen scavenging systems. The genetic pathway induced due to temperature downshift is based on C-repeat-binding factors (CBF) which activate promoters through the C-repeat (CRT) cis-element. Calcium entry is a major signalling event occurring immediately after a downshift in temperature. The increase in the level of cytosolic calcium activates many enzymes, such as phospholipases and calcium dependent-protein kinases. MAP-kinase module has been shown to be involved in the cold response. Ultimately, the activation of these signalling pathways leads to changes in the transcriptome. Several phytohormones, such as abscisic acid, brassinosteroids, auxin, salicylic acid, gibberellic acid, cytokinins and jasmonic acid, have been shown to play key roles in regulating the plant development under low-temperature stress. These phytohormones modulate important events involved in tolerance to low-temperature stress in plants. Better understanding of these events and genes controlling these could open new strategies for improving tolerance mediated by phytohormones.
Collapse
Affiliation(s)
- Tanveer Alam Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Yusuf
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
407
|
Li R, Wang M, Wang Y, Schuman MC, Weinhold A, Schäfer M, Jiménez-Alemán GH, Barthel A, Baldwin IT. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. Proc Natl Acad Sci U S A 2017; 114:E7205-E7214. [PMID: 28784761 PMCID: PMC5576791 DOI: 10.1073/pnas.1703463114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated. We used Nicotiana attenuata, an ecological model plant with well-characterized herbivore interactions to characterize defense responses in flowers. Early floral stages constitutively accumulate greater amounts of two well-characterized defensive compounds, the volatile (E)-α-bergamotene and trypsin proteinase inhibitors (TPIs), which are also found in herbivore-induced leaves. Plants rendered deficient in JA biosynthesis or perception by RNA interference had significantly attenuated floral accumulations of defensive compounds known to be regulated by JA in leaves. By RNA-seq, we found a JAZ gene, NaJAZi, specifically expressed in early-stage floral tissues. Gene silencing revealed that NaJAZi functions as a flower-specific jasmonate repressor that regulates JAs, (E)-α-bergamotene, TPIs, and a defensin. Flowers silenced in NaJAZi are more resistant to tobacco budworm attack, a florivore. When the defensin was ectopically expressed in leaves, performance of Manduca sexta larvae, a folivore, decreased. NaJAZi physically interacts with a newly identified NINJA-like protein, but not the canonical NINJA. This NINJA-like recruits the corepressor TOPLESS that contributes to the suppressive function of NaJAZi on floral defenses. This study uncovers the defensive function of JA signaling in flowers, which includes components that tailor JA signaling to provide flower-specific defense.
Collapse
Affiliation(s)
- Ran Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Yang Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Andrea Barthel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
408
|
Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 2017; 18:533. [PMID: 28716048 PMCID: PMC5512810 DOI: 10.1186/s12864-017-3864-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/14/2023] Open
Abstract
Background The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Results Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1–1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. Conclusion FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Keller
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Karen X Chan
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Megan M Gessel
- Chemistry Department, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA, 98416, USA.
| |
Collapse
|
409
|
Valenzuela JL, Manzano S, Palma F, Carvajal F, Garrido D, Jamilena M. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions. Int J Mol Sci 2017; 18:ijms18071467. [PMID: 28698472 PMCID: PMC5535958 DOI: 10.3390/ijms18071467] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.
Collapse
Affiliation(s)
- Juan Luis Valenzuela
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| | - Susana Manzano
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| | - Francisco Palma
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Fátima Carvajal
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Dolores Garrido
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Granada, Fuente Nueva s/n, 18071 Granada, Spain.
| | - Manuel Jamilena
- Departamento de Biología y Geología, Campus of International Excellence (ceiA3), CIAIMBITAL, Universidad de Almería, 04120 Almería, Spain.
| |
Collapse
|
410
|
Nham NT, Macnish AJ, Zakharov F, Mitcham EJ. 'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:8-18. [PMID: 28554478 DOI: 10.1016/j.plantsci.2017.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Low temperature (LT) treatments enhance ethylene production and ripening rate in the European pear (Pyrus communis L.). However, the underlying molecular mechanisms are not well understood. This study aims to identify genes responsible for ripening enhancement by LT. To this end, the transcriptome of 'Bartlett' pears treated with LT (0°C or 10°C for up to 14 d), which results in faster ripening, and control pears without conditioning treatment was analyzed. LT conditioned pears reached eating firmness (18N) in 6 d while control pears took about 12 d when left to ripen at 20°C. We identified 8,536 differentially expressed (DE) genes between the 0°C-treated and control fruit, and 7,938 DE genes between the 10°C-treated and control fruit. In an attempt to differentiate temperature-induced vs. ethylene-responsive pathways, we also monitored gene expression in fruit sequentially treated with 1-MCP then exposed to low temperature. This analysis revealed that genes associated with jasmonic acid biosynthesis and signaling, as well as the transcription factors TCP9a, TCP9b, CBF1, CBF4, AGL24, MYB1R1, and HsfB2b could be involved in the LT-mediated enhancement of ripening independently or upstream of ethylene.
Collapse
Affiliation(s)
- Ngoc T Nham
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Elizabeth J Mitcham
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
411
|
Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:62-70. [PMID: 28483054 DOI: 10.1016/j.plantsci.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
412
|
Yao W, Wang L, Wang J, Ma F, Yang Y, Wang C, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. VpPUB24, a novel gene from Chinese grapevine, Vitis pseudoreticulata, targets VpICE1 to enhance cold tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2933-2949. [PMID: 28486617 DOI: 10.1093/jxb/erx136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ubiquitination system plays important roles in the degradation and modification of substrate proteins. In this study, we characterize a putative U-box type E3 ubiquitin ligase gene, VpPUB24 (plant U-box protein 24), from Chinese wild grapevine, Vitis pseudoreticulata accession Baihe-35-1. We show that VpPUB24 is induced by a number of stresses, especially cold treatment. Real-time PCR analysis indicated that the PUB24 transcripts were increased after cold stress in different grapevine species, although the relative expression level was different. In grapevine protoplasts, we found that VpPUB24 was expressed at a low level at 22 °C but accumulated rapidly following cold treatment. A yeast two-hybrid assay revealed that VpPUB24 interacted physically with VpICE1. Further experiments indicated that VpICE1 is targeted for degradation via the 26S proteasome and that the degradation is accelerated by VpHOS1, and not by VpPUB24. Immunoblot analyses indicated that VpPUB24 promotes the accumulation of VpICE1 and suppresses the expression of VpHOS1 to regulate the abundance of VpICE1. Furthermore, VpICE1 promotes transcription of VpPUB24 at low temperatures. We also found that VpPUB24 interacts with VpHOS1 in a yeast two-hybrid assay. Additionally, over-expression of VpPUB24 in Arabidopsis thaliana enhanced cold tolerance. Collectively, our results suggest that VpPUB24 interacts with VpICE1 to play a role in cold stress.
Collapse
Affiliation(s)
- Wenkong Yao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jie Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fuli Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yazhou Yang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chen Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Weihuo Tong
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
413
|
Deng C, Ye H, Fan M, Pu T, Yan J. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1316442. [PMID: 28414264 PMCID: PMC5501220 DOI: 10.1080/15592324.2017.1316442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 05/18/2023]
Abstract
Cold stress is one of the major constraints for crop yield. Plants have in turn evolved highly sophisticated mechanisms involving altered physiologic and biochemical processes to cope with the cold stress. Previous studies have revealed that the INDUCER OF CBF EXPRESSION 1 (ICE1), a basic helix-loop-helix (bHLH) transcription factor, directly binds and activates the expression of C-Repeat Binding Factor/Dehydration-Responsive-Element-Binding protein (CBF/DREB1) to regulate the cold-response pathway in Arabidopsis thaliana. However, the function of AtICE1 orthologues in rice is largely unknown. Here we identified that OsICE1 and OsICE2 in rice shared highly conserved amino acid sequence with AtICE1 in Arabidopsis. Overexpression of OsICE1 and OsICE2 in Arabidopsis significantly enhanced the cold tolerance of Arabidopsis seedlings and improved the expression of cold-response genes. Furthermore, we showed that both OsICE1 and OsICE2 physically interact with OsMYBS3, a single DNA-binding repeat MYB transcription factor that is essential for cold adaptation in rice, suggesting that OsICE1/OsICE2 and OsMYBS3 probably act through specific signal transduction mechanisms to coordinate cold tolerance in rice. These results demonstrated that the 2 OsICEs are orthologues of AtICE1 and play positive regulators in activation of cold-response genes to regulate the cold tolerance.
Collapse
Affiliation(s)
- Cuiyun Deng
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Haiyan Ye
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Meng Fan
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
| | - Tongliang Pu
- School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Jianbin Yan
- School of Life Sciences, Tsinghua University, Beijing, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
- CONTACT Jianbin Yan , School of Life Science, Tsinghua University, Renhuan Building, Room 404, Beijing,100084, China
| |
Collapse
|
414
|
Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S. BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis. MOLECULAR PLANT 2017; 10:545-559. [PMID: 28089951 DOI: 10.1016/j.molp.2017.01.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Cold stress is a major environmental factor that adversely affects plant growth and development. The C-repeat binding factor/DRE binding factor 1 (CBF/DREB1) transcriptional regulatory cascade has been shown to play important roles in plant response to cold. Here we demonstrate that two key components of brassinosteroid (BR) signaling modulate freezing tolerance of Arabidopsis plants. The loss-of-function mutant of the GSK3-like kinases involved in BR signaling, bin2-3 bil1 bil2, showed increased freezing tolerance, whereas overexpression of BIN2 resulted in hypersensitivity to freezing stress under both non-acclimated and acclimated conditions. By contrast, gain-of-function mutants of the transcription factors BZR1 and BES1 displayed enhanced freezing tolerance, and consistently cold treatment could induce the accumulation of dephosphorylated BZR1. Biochemical and genetic analyses showed that BZR1 acts upstream of CBF1 and CBF2 to directly regulate their expression. Moreover, we found that BZR1 also regulated other COR genes uncoupled with CBFs, such as WKRY6, PYL6, SOC1, JMT, and SAG21, to modulate plant response to cold stress. Consistently, wrky6 mutants showed decreased freezing tolerance. Taken together, our results indicate that BZR1 positively modulates plant freezing tolerance through CBF-dependent and CBF-independent pathways.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Keyi Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
415
|
Tchagang AB, Fauteux F, Tulpan D, Pan Y. Bioinformatics identification of new targets for improving low temperature stress tolerance in spring and winter wheat. BMC Bioinformatics 2017; 18:174. [PMID: 28302069 PMCID: PMC5356398 DOI: 10.1186/s12859-017-1596-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
Background Phenotypic studies in Triticeae have shown that low temperature-induced protective mechanisms are developmentally regulated and involve dynamic acclimation processes. Understanding these mechanisms is important for breeding cold-resistant wheat cultivars. In this study, we combined three computational techniques for the analysis of gene expression data from spring and winter wheat cultivars subjected to low temperature treatments. Our main objective was to construct a comprehensive network of cold response transcriptional events in wheat, and to identify novel cold tolerance candidate genes in wheat. Results We assigned novel cold stress-related roles to 35 wheat genes, uncovered novel transcription (TF)-gene interactions, and identified 127 genes representing known and novel candidate targets associated with cold tolerance in wheat. Our results also show that delays in terms of activation or repression of the same genes across wheat cultivars play key roles in phenotypic differences among winter and spring wheat cultivars, and adaptation to low temperature stress, cold shock and cold acclimation. Conclusions Using three computational approaches, we identified novel putative cold-response genes and TF-gene interactions. These results provide new insights into the complex mechanisms regulating the expression of cold-responsive genes in wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1596-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alain B Tchagang
- Information and Communications Technologies, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - François Fauteux
- Information and Communications Technologies, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Dan Tulpan
- Information and Communications Technologies, National Research Council Canada, Moncton, NB, E1A 7R1, Canada
| | - Youlian Pan
- Information and Communications Technologies, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
416
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
417
|
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1361-1369. [PMID: 28201612 DOI: 10.1093/jxb/erx004] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
418
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
419
|
Liu X, Shi W, Yin W, Wang J. Distinct cold responsiveness of a StInvInh2 gene promoter in transgenic potato tubers with contrasting resistance to cold-induced sweetening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:77-84. [PMID: 27915175 DOI: 10.1016/j.plaphy.2016.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/18/2016] [Accepted: 11/26/2016] [Indexed: 05/19/2023]
Abstract
Potato (Solanum tuberosum L.) vacuolar invertase (β-fructofuranosidase; EC 3.2.1.26) inhibitor 2 (StInvInh2) plays an important role in cold-induced sweetening (CIS) of potato tubers. The transcript levels of StInvInh2 were increased by prolonged cold in potato tubers with CIS-resistance but decreased in potato tubers with CIS-sensitivity. However, the transcript regulation mechanisms of StInvInh2 responding to prolonged cold are largely unclear in CIS-resistant and CIS-sensitive genotypes. In the present study, the 5'-flanking sequence of the StInvInh2 was cloned, and cis-acting elements were predicted. No informative differences in StInvInh2 promoter structure between resistant and sensitive-CIS potato genotypes were observed. Histochemical assay showed that the promoter of StInvInh2 mainly governed β-glucuronidase (GUS) expression in potato microtubers. Quantitative analysis of GUS expression suggested that StInvInh2 promoter activity was enhanced by prolonged cold in CIS-resistant genotype tubers but suppressed in CIS-sensitive tubers. These findings provide essential information regarding transcriptional regulatory mechanisms of StInvInh2 in cold-stored tubers contrasting CIS capacity.
Collapse
Affiliation(s)
- Xun Liu
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| | - Weiling Shi
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Wang Yin
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China
| | - Jichun Wang
- Key Open Laboratory of Southwest Crop Genetic Improvement and Breeding, Ministry of Agriculture, Southwest University, Chongqing 400075, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400075, China.
| |
Collapse
|
420
|
Lv Y, Yang M, Hu D, Yang Z, Ma S, Li X, Xiong L. The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression. PLANT PHYSIOLOGY 2017; 173:1475-1491. [PMID: 28062835 PMCID: PMC5291022 DOI: 10.1104/pp.16.01725] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/03/2017] [Indexed: 05/17/2023]
Abstract
Cold stress is one of the major limiting factors for rice (Oryza sativa) productivity. Several MYB transcriptional factors have been reported as important regulators in the cold stress response, but the molecular mechanisms are largely unknown. In this study, we characterized a cold-responsive R2R3-type MYB gene, OsMYB30, for its regulatory function in cold tolerance in rice. Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the osmyb30 knockout mutant showed increased cold tolerance. Microarray and quantitative real-time polymerase chain reaction analyses revealed that a few β-amylase (BMY) genes were down-regulated by OsMYB30. The BMY activity and maltose content, which were decreased and increased in the OsMYB30 overexpression and osmyb30 knockout mutant, respectively, were correlated with the expression patterns of the BMY genes. OsMYB30 was shown to bind to the promoters of the BMY genes. These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes. In addition, application of maltose had a protective effect for cell membranes under cold stress conditions. Furthermore, we identified an OsMYB30-interacting protein, OsJAZ9, that had a significant effect in suppressing the transcriptional activation of OsMYB30 and in the repression of BMY genes mediated by OsMYB30. These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine-tune the starch breakdown and the content of maltose, which might contribute to the cold tolerance as a compatible solute.
Collapse
Affiliation(s)
- Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
421
|
Penfield S, MacGregor DR. Effects of environmental variation during seed production on seed dormancy and germination. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:819-825. [PMID: 27940467 DOI: 10.1093/jxb/erw436] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The environment during seed production has major impacts on the behaviour of progeny seeds. It can be shown that for annual plants temperature perception over the whole life history of the mother can affect the germination rate of progeny, and instances have been documented where these affects cross whole generations. Here we discuss the current state of knowledge of signal transduction pathways controlling environmental responses during seed production, focusing both on events that take place in the mother plant and those that occur directly as a result of environmental responses in the developing zygote. We show that seed production environment effects are complex, involving overlapping gene networks active independently in fruit, seed coat, and zygotic tissues that can be deconstructed using careful physiology alongside molecular and genetic experiments.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwick, NR4 7UH, UK
| | - Dana R MacGregor
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwick, NR4 7UH, UK
| |
Collapse
|
422
|
Liu C, Zhang T. Expansion and stress responses of the AP2/EREBP superfamily in cotton. BMC Genomics 2017; 18:118. [PMID: 28143399 PMCID: PMC5282909 DOI: 10.1186/s12864-017-3517-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/26/2017] [Indexed: 11/24/2022] Open
Abstract
Background The allotetraploid cotton originated from one hybridization event between an extant progenitor of Gosssypium herbaceum (A1) or G. arboreum (A2) and another progenitor, G. raimondii Ulbrich (D5) 1–1.5 million years ago (Mya). The APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plants. They are characterized by their AP2 domain, which comprises 60–70 amino acids, and are classified into four main subfamilies: the APETALA2 (AP2), Related to ABI3/VP1 (RAV), Dehydration-Responsive Element Binding protein (DREB) and Ethylene-Responsive Factor (ERF) subfamilies. The AP2/EREBP genes play crucial roles in plant growth, development and biotic and abiotic stress responses. Hence, understanding the molecular characteristics of cotton stress tolerance and gene family expansion would undoubtedly facilitate cotton resistance breeding and evolution research. Results A total of 269 AP2/EREBP genes were identified in the G. raimondii (D5) cotton genome. The protein domain architecture and intron/exon structure are simple and relatively conserved within each subfamily. They are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem duplication. We identified 73 tandem duplicated genes and 221 segmental duplicated gene pairs which contributed to the expansion of AP2/EREBP superfamily. Of them, tandem duplication was the most important force of the expansion of the B3 group. Transcriptome analysis showed that 504 AP2/EREBP genes were expressed in at least one tested G. hirsutum TM-1 tissues. In G. hirsutum, 151 non-repeated genes of the DREB and ERF subfamily genes were responsive to different stresses: 132 genes were induced by cold, 63 genes by drought and 94 genes by heat. qRT-PCR confirmed that 13 GhDREB and 15 GhERF genes were induced by cold and/or drought. No transcripts detected for 53 of the 111 tandem duplicated genes in TM-1. In addition, some homoeologous genes showed biased expression toward either A-or D-subgenome. Conclusions The AP2/EREBP genes were obviously expanded in Gossypium. The GhDREB and GhERF genes play crucial roles in cotton stress responses. Our genome-wide analysis of AP2/EREBP genes in cotton provides valuable information for characterizing the molecular functions of AP2/EREBP genes and reveals insights into their evolution in polyploid plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3517-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunxiao Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
423
|
Zhou M, Chen H, Wei D, Ma H, Lin J. Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. Sci Rep 2017; 7:39819. [PMID: 28051152 PMCID: PMC5209670 DOI: 10.1038/srep39819] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 11/28/2016] [Indexed: 11/09/2022] Open
Abstract
The C-repeat binding factor (CBF) is crucial for regulation of cold response in higher plants. In Arabidopsis, the mechanism of CBF3-caused growth retardation is still unclear. Our present work shows that CBF3 shares the similar repression of bioactive gibberellin (GA) as well as upregulation of DELLA proteins with CBF1 and -2. Genetic analysis reveals that DELLAs play an essential role in growth reduction mediated by CBF1, -2, -3 genes. The in vivo and in vitro evidences demonstrate that GA2-oxidase 7 gene is a novel CBF3 regulon. Meanwhile, DELLAs contribute to cold induction of CBF1, -2, -3 genes through interaction with jasmonate (JA) signaling. We conclude that CBF3 promotes DELLAs accumulation through repressing GA biosynthesis and DELLAs positively regulate CBF3 involving JA signaling. CBFs and DELLAs collaborate to retard plant growth in response to low temperature.
Collapse
Affiliation(s)
- Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Hu Chen
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Donghui Wei
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
424
|
Yuan HM, Sheng Y, Chen WJ, Lu YQ, Tang X, Ou-Yang M, Huang X. Overexpression of Hevea brasiliensis HbICE1 Enhances Cold Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1462. [PMID: 28878797 PMCID: PMC5572258 DOI: 10.3389/fpls.2017.01462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/07/2017] [Indexed: 05/02/2023]
Abstract
Rubber trees (Hevea brasiliensis) were successfully introduced to south China in the 1950s on a large-scale; however, due to the climate, are prone to cold injury during the winter season. Increased cold tolerance is therefore an important goal, yet the mechanism underlying rubber tree responses to cold stress remains unclear. This study carried out functional characterization of HbICE1 (Inducer of CBF Expression 1) from H. brasiliensis. A nucleic protein with typical features of ICEs, HbICE1 was able to bind to MYC recognition sites and had strong transactivation activity. HbICE1 was constitutively expressed in all tested tissues, with highest levels in the bark, and was up-regulated when subjected to various stresses including cold, dehydration, salinity and wounding. When overexpressed in Arabidopsis, 35S::HbICE1 plants showed enhanced cold resistance with increased proline content, reduced malondialdehyde (MDA) metabolism and electrolyte leakage, and decreased reactive oxygen species (ROS) accumulation. Expression of the cold responsive genes (COR15A, COR47, RD29A, and KIN1) was also significantly promoted in 35S::HbICE1 compared to wild-type plants under cold stress. Differentially expressed genes (DEGs) analysis showed that cold treatment changed genes expression profiles involved in many biological processes and phytohormones perception and transduction. Ethylene, JA, ABA, as well as ICE-CBF signaling pathways might work synergistically to cope with cold tolerance in rubber tree. Taken together, these findings suggest that HbICE1 is a member of the ICE gene family and a positive regulator of cold tolerance in H. brasiliensis.
Collapse
Affiliation(s)
- Hong-Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
- *Correspondence: Hong-Mei Yuan
| | - Ying Sheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Wei-Jie Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
| | - Yu-Qing Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
| | - Xiao Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
| | - Mo Ou-Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
| | - Xi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan UniversityHaikou, China
- Xi Huang
| |
Collapse
|
425
|
Bolt S, Zuther E, Zintl S, Hincha DK, Schmülling T. ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. PLANT, CELL & ENVIRONMENT 2017; 40:108-120. [PMID: 27723941 DOI: 10.1111/pce.12838] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/21/2023]
Abstract
Understanding the response to cold temperature stress is relevant for both basic biology and application. Here we report on ERF105, which is a novel cold-regulated transcription factor gene of Arabidopsis that makes a significant contribution to freezing tolerance and cold acclimation. The expression of cold-responsive genes in erf105 mutants suggests that its action is linked to the CBF regulon mediating cold responses.
Collapse
Affiliation(s)
- Sylvia Bolt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Stefanie Zintl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195, Berlin, Germany
| |
Collapse
|
426
|
Li A, Zhou M, Wei D, Chen H, You C, Lin J. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors. FRONTIERS IN PLANT SCIENCE 2017; 8:1647. [PMID: 28983312 PMCID: PMC5613223 DOI: 10.3389/fpls.2017.01647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.
Collapse
|
427
|
Fan ZQ, Chen JY, Kuang JF, Lu WJ, Shan W. The Banana Fruit SINA Ubiquitin Ligase MaSINA1 Regulates the Stability of MaICE1 to be Negatively Involved in Cold Stress Response. FRONTIERS IN PLANT SCIENCE 2017; 8:995. [PMID: 28659946 PMCID: PMC5467002 DOI: 10.3389/fpls.2017.00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/26/2017] [Indexed: 05/07/2023]
Abstract
The regulation of ICE1 protein stability is important to ensure effective cold stress response, and is extensively studied in Arabidopsis. Currently, how ICE1 stability in fruits under cold stress is controlled remains largely unknown. Here, we reported the possible involvement of a SEVEN IN ABSENTIA (SINA) ubiquitin ligase MaSINA1 from banana fruit in affecting MaICE1 stability. MaSINA1 was identified based on a yeast two-hybrid screening using MaICE1 as bait. Further yeast two-hybrid, pull-down, bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (CoIP) assays confirmed that MaSINA1 interacted with MaICE1. The expression of MaSINA1 was repressed by cold stress. Subcellular localization analysis in tobacco leaves showed that MaSINA1 was localized predominantly in the nucleus. In vitro ubiquitination assay showed that MaSINA1 possessed E3 ubiquitin ligase activity. More importantly, in vitro and semi-in vivo experiments indicated that MaSINA1 can ubiquitinate MaICE1 for the 26S proteasome-dependent degradation, and therefore suppressed the transcriptional activation of MaICE1 to MaNAC1, an important regulator of cold stress response of banana fruit. Collectively, our data reveal a mechanism in banana fruit for control of the stability of ICE1 and for the negative regulation of cold stress response by a SINA E3 ligase via the ubiquitin proteasome system.
Collapse
|
428
|
Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum. Sci Rep 2016; 6:38436. [PMID: 27922095 PMCID: PMC5138846 DOI: 10.1038/srep38436] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022] Open
Abstract
Cotton is an economically important crop, essential for the agriculture and textile industries. Through integrating transcriptomic data, we discovered that multi-dimensional co-expression network analysis was powerful for predicting cotton gene functions and functional modules. Here, the recently available transcriptomic data on Gossypium arboreum, including data on multiple growth stages of tissues and stress treatment samples were applied to construct a co-expression network exploring multi-dimensional expression (development and stress) through multi-layered approaches. Based on differential gene expression and network analysis, a fibre development regulatory module of the gene GaKNL1 was found to regulate the second cell wall through repressing the activity of REVOLUTA, and a tissue-selective module of GaJAZ1a was examined in response to water stress. Moreover, comparative genomics analysis of the JAZ1-related regulatory module revealed high conservation across plant species. In addition, 1155 functional modules were identified through integrating the co-expression network, module classification and function enrichment tools, which cover functions such as metabolism, stress responses, and transcriptional regulation. In the end, an online platform was built for network analysis (http://structuralbiology.cau.edu.cn/arboreum), which could help to refine the annotation of cotton gene function and establish a data mining system to identify functional genes or modules with important agronomic traits.
Collapse
|
429
|
RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 2016; 6:36463. [PMID: 27819341 PMCID: PMC5098223 DOI: 10.1038/srep36463] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
Camellia is a well-known ornamental flower native to Southeast of Asia, including regions such as Japan, Korea and South China. However, most species in the genus Camellia are cold sensitive. To elucidate the cold stress responses in camellia plants, we carried out deep transcriptome sequencing of 'Jiangxue', a cold-tolerant cultivar of Camellia japonica, and approximately 1,006 million clean reads were generated using Illumina sequencing technology. The assembly of the clean reads produced 367,620 transcripts, including 207,592 unigenes. Overall, 28,038 differentially expressed genes were identified during cold acclimation. Detailed elucidation of responses of transcription factors, protein kinases and plant hormone signalling-related genes described the interplay of signal that allowed the plant to fine-tune cold stress responses. On the basis of global gene regulation of unsaturated fatty acid biosynthesis- and jasmonic acid biosynthesis-related genes, unsaturated fatty acid biosynthesis and jasmonic acid biosynthesis pathways were deduced to be involved in the low temperature responses in C. japonica. These results were supported by the determination of the fatty acid composition and jasmonic acid content. Our results provide insights into the genetic and molecular basis of the responses to cold acclimation in camellia plants.
Collapse
|
430
|
Sen S, Kundu S, Dutta SK. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:79-89. [PMID: 27423073 DOI: 10.1016/j.plaphy.2016.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) signaling pathway in plants is activated against various developmental processes as well as biotic and abiotic stresses. The Jasmonate ZIM-domain (JAZ) protein family, the key regulator of plant JA signaling pathway, also participates in phytohormone crosstalk. This is the first study revealing the in vivo interactions of finger millet (Eleusine coracana (L.) Gaertn.) JAZ protein (EcJAZ) under methyl jasmonate (MJ) treatment. The aim of the study was to explore not only the JA signaling pathway but also the phytohormone signaling crosstalk of finger millet, a highly important future crop. From the MJ-treated finger millet seedlings, the EcJAZ interacting proteins were purified by affinity chromatography with the EcJAZ-matrix. Twenty-one proteins of varying functionalities were successfully identified by MALDI-TOF-TOF Mass spectrometry. Apart from the previously identified JAZ binding proteins, most prominently, EcJAZ was found to interact with transcription factors like NAC, GATA and also with Cold responsive protein (COR), etc. that might have extended the range of functionalities of JAZ proteins. Moreover, to evaluate the interactions of EcJAZ in the JA-co-receptor complex, we generated ten in-silico models containing the EcJAZ degron and the COI1-SKP1 of five monocot cereals viz., rice, wheat, maize, Sorghum and Setaria with JA-Ile or coronatine. Our results indicated that the EcJAZ protein of finger millet could act as the signaling hub for the JA and other phytohormone signaling pathways, in response to a diverse set of stressors and developmental cues to provide survival fitness to the plant.
Collapse
Affiliation(s)
- Saswati Sen
- Drug Development/Diagnostics and Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India.
| | - Sangeeta Kundu
- Structural Biology and Bioinformatics Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Samir Kr Dutta
- Drug Development/Diagnostics and Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700 032, India
| |
Collapse
|
431
|
Horton MW, Willems G, Sasaki E, Koornneef M, Nordborg M. The genetic architecture of freezing tolerance varies across the range of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2016; 39:2570-2579. [PMID: 27487257 DOI: 10.1111/pce.12812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The capacity to tolerate freezing temperatures limits the geographical distribution of many plants, including several species of agricultural importance. However, the genes involved in freezing tolerance remain largely unknown. Here, we describe the variation in constitutive freezing tolerance that occurs among worldwide accessions of Arabidopsis thaliana. We found that although plants from high latitudes tend to be more freezing tolerant than plants from low latitudes, the environmental factors that shape cold adaptation differ across the species range. Consistent with this, we found that the genetic architecture of freezing tolerance also differs across its range. Conventional genome-wide association studies helped identify a priori and other promising candidate genes. However, simultaneously modelling climate variables and freezing tolerance together pinpointed other excellent a priori candidate genes. This suggests that if the selective factor underlying phenotypic variation is known, multi-trait mixed models may aid in identifying the genes that underlie adaptation.
Collapse
Affiliation(s)
- Matthew W Horton
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria.
- Department of Plant and Microbial Biology, University of Zurich, CH-8008, Zurich, Switzerland.
| | - Glenda Willems
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eriko Sasaki
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, D-50892, Cologne, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Vienna Biocenter (VBC), Austrian Academy of Sciences, Vienna, 1030, Austria
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
432
|
Yang L, Li J, Ji J, Li P, Yu L, Abd_Allah EF, Luo Y, Hu L, Hu X. High Temperature Induces Expression of Tobacco Transcription Factor NtMYC2a to Regulate Nicotine and JA Biosynthesis. Front Physiol 2016; 7:465. [PMID: 27833561 PMCID: PMC5081390 DOI: 10.3389/fphys.2016.00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Environmental stress elevates the level of jasmonic acid (JA) and activates the biosynthesis of nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) by up-regulating the expression of putrescine N-methyltransferase 1 (NtPMT1), which encodes a putrescine N-methyl transferase that catalyzes nicotine formation. The JA signal suppressor JASMONATE ZIM DOMAIN 1 (NtJAZ1) and its target protein, NtMYC2a, also regulate nicotine biosynthesis; however, how these proteins interact to regulate abiotic-induced nicotine biosynthesis is poorly understood. In this study, we found that high-temperature (HT) treatment activated transcription of NtMYC2a, which subsequently stimulated the transcription of genes associated with JA biosynthesis, including Lipoxygenase (LOX), Allene oxide synthase (AOS), Allene oxide cyclase (AOC), and 12-oxophytodienodate reductase (OPR). Overexpression of NtMYC2a increased nicotine biosynthesis by enhancing its binding to the promoter of NtPMT1. Overexpression of either NtJAZ1 or proteasome-resistant NtJAZ1ΔC suppressed nicotine production under normal conditions, but overexpression only of the former resulted in low levels of nicotine under HT treatment. These data suggest that HT induces NtMYC2a accumulation through increased transcription to activate nicotine synthesis; meanwhile, HT-induced NtMYC2a can activate JA synthesis to promote additional NtMYC2a activity by degrading NtJAZ1 at the post-transcriptional level.
Collapse
Affiliation(s)
- Liming Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
- Department of Plant Pathology, University of GeorgiaTifton, GA, USA
| | - Junying Li
- Department of Agronomy, Yunnan Academy of Tobacco Agricultural SciencesKunming, China
| | - Jianhui Ji
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| | - Elsayed F. Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Seed Pathology Department, Plant Pathology Research Institute, Agriculture Research CenterGiza, Egypt
| | - Yuming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environment Protection, Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal UniversityHuaian, China
| | - Liwei Hu
- Laboratory of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of CNTCZhengzhou, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai UniversityShanghai, China
| |
Collapse
|
433
|
Xu S, Jiang Y, Wang N, Xia B, Jiang Y, Li X, Zhang Z, Li Y, Wang R. Identification and differential regulation of microRNAs in response to methyl jasmonate treatment in Lycoris aurea by deep sequencing. BMC Genomics 2016; 17:789. [PMID: 27724902 PMCID: PMC5057397 DOI: 10.1186/s12864-016-2645-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/22/2016] [Indexed: 11/16/2022] Open
Abstract
Background Lycoris aurea is a medicine-valuable and ornamental herb widely distributed in China. Former studied have showed that methyl jasmonate (MJ) treatment could increase the content of glanthamine-a worldwide medicine for symptomatic treatment of Alzheimer’s disease in genus Lycoris plants. To explore the possible role of miRNAs in the regulation of jasmonic acid signaling pathway and uncover their potential correlations, we investigated the expression profiles of small RNAs (sRNAs) and their targets in Lycoris aurea, with MJ treatment by using next-generation deep sequencing. Results A total of 365 miRNAs were identified, comprising 342 known miRNAs (representing 60 miRNA families) and 23 novel miRNAs. Among them, 143 known and 11 novel miRNAs were expressed differently under MJ treatment. Quantitative real-time PCR of eight selected miRNAs validated the expression pattern of these loci in response to MJ treatment. In addition, degradome sequencing analysis showed that 32 target genes were validated to be targeted by the 49 miRNAs, respectively. Gene function and pathway analyses showed that these targets such as auxin response factors (ARFs), squamosa promoter-binding like (SPL) proteins, basic helix-loop-helix (bHLH) proteins, and ubiquitin-conjugating enzyme E2 are involved in different plant processes, indicating miRNAs mediated regulation might play important roles in L. aurea response to MJ treatment. Furthermore, several L. aurea miRNAs associated with their target genes that might be involved in Amaryllidaceae alkloids biosynthehsis were also analyzed. Conclusions A number of miRNAs with diverse expression patterns, and complex relationships between expression of miRNAs and targets were identified. This study represents the first transcriptome-based analysis of miRNAs in Lycoris and will contribute to understanding the potential roles of miRNAs involved in regulation of MJ response. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2645-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yumei Jiang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ning Wang
- National Center for Soybean Improvement/Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Xia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yilong Jiang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiaodan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhengzhi Zhang
- National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Yikui Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
434
|
Liu W, Wang H, Chen Y, Zhu S, Chen M, Lan X, Chen G, Liao Z. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnol Appl Biochem 2016; 64:305-314. [DOI: 10.1002/bab.1493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Wanhong Liu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) College of Bioengineering; Chongqing University; Chongqing People's Republic of China
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
- School of Chemistry and Chemical Engineering; Chongqing University of Science and Technology; Chongqing People's Republic of China
| | - Huanyan Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Yupei Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Shunqin Zhu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Min Chen
- SWU-TAAHC Medicinal Plant Joint R&D Centre; College of Pharmaceutical Sciences; Southwest University; Chongqing People's Republic of China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre; Agricultural and Animal Husbandry College; Tibet University; Nyingchi of Tibe People's Republic of China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) College of Bioengineering; Chongqing University; Chongqing People's Republic of China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| |
Collapse
|
435
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
436
|
Zhang Z, Hu X, Zhang Y, Miao Z, Xie C, Meng X, Deng J, Wen J, Mysore KS, Frugier F, Wang T, Dong J. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression. PLANT PHYSIOLOGY 2016; 172:1306-1323. [PMID: 27578551 PMCID: PMC5047070 DOI: 10.1104/pp.16.00051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/29/2016] [Indexed: 05/07/2023]
Abstract
Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula.
Collapse
Affiliation(s)
- Zhenqian Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Xiaona Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Yunqin Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Zhenyan Miao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Can Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Xiangzhao Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Jiangqi Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Kirankumar S Mysore
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Florian Frugier
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China (Z.Z., X.H., Y.Z., Z.M. C.X., X.M., J.D., T.W., J.D.);Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401 (J.W., K.S.M.); andInstitute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Universite Paris-Sud, Universite Paris-Diderot, Universite d'Evry, Universite Paris-Saclay, Gif-sur-Yvette 91190, France (F.F.)
| |
Collapse
|
437
|
Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D. The DELLA-CONSTANS Transcription Factor Cascade Integrates Gibberellic Acid and Photoperiod Signaling to Regulate Flowering. PLANT PHYSIOLOGY 2016; 172:479-88. [PMID: 27406167 PMCID: PMC5074646 DOI: 10.1104/pp.16.00891] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 05/18/2023]
Abstract
Gibberellin (GA) and photoperiod pathways have recently been demonstrated to collaboratively modulate flowering under long days (LDs). However, the molecular mechanisms underlying this collaboration remain largely unclear. In this study, we found that GA-induced expression of FLOWERING LOCUS T (FT) under LDs was dependent on CONSTANS (CO), a critical transcription factor positively involved in photoperiod signaling. Mechanistic investigation revealed that DELLA proteins, a group of crucial repressors in GA signaling, physically interacted with CO. The DELLA-CO interactions repressed the transcriptional function of CO protein. Genetic analysis demonstrated that CO acts downstream of DELLA proteins to regulate flowering. Disruption of CO rescued the earlier flowering phenotype of the gai-t6 rga-t2 rgl1-1 rgl2-1 mutant (dellap), while a gain-of-function mutation in GA INSENSITIVE (GAI, a member of the DELLA gene) repressed the earlier flowering phenotype of CO-overexpressing plants. In addition, the accumulation of DELLA proteins and mRNAs was rhythmic, and REPRESSOR OF GA1-3 protein was noticeably decreased in the long-day afternoon, a time when CO protein is abundant. Collectively, these results demonstrate that the DELLA-CO cascade inhibits CO/FT-mediated flowering under LDs, which thus provide evidence to directly integrate GA and photoperiod signaling to synergistically modulate flowering under LDs.
Collapse
Affiliation(s)
- Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Dengji Lou
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| |
Collapse
|
438
|
Lourenço TF, Serra TS, Cordeiro AM, Swanson SJ, Gilroy S, Saibo NJM, Oliveira MM. Rice root curling, a response to mechanosensing, is modulated by the rice E3-ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (OsHOS1). PLANT SIGNALING & BEHAVIOR 2016; 11:e1208880. [PMID: 27467198 PMCID: PMC5022415 DOI: 10.1080/15592324.2016.1208880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Plant development depends on the perception of external cues, such as light, gravity, touch, wind or nutrients, among others. Nevertheless, little is known regarding signal transduction pathways integrating these stimuli. Recently, we have reported the involvement of a rice E3-ubiquitin ligase (OsHOS1, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1), previously associated with abiotic stress response, in root responses to mechanical stimuli. We showed that OsHOS1 is involved in the regulation of root curling after mechanosensing and that RNAi::OsHOS1 plants failed to exhibit the root curling phenotype observed in WT. Interestingly, the straight root phenotype of these transgenics correlated with the up-regulation of rice ROOT MEANDER CURLING (OsRMC, a negative regulator of rice root curling) and was reverted by the exogenous application of jasmonic acid. Altogether, our results highlight the role of the proteasome modulating plant responses to mechanical stimuli and suggest that OsHOS1 is a hub integrating environmental and hormonal signaling into plant growth and development.
Collapse
Affiliation(s)
- T. F. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - T. S. Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - A. M. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - S. J. Swanson
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - S. Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, USA
| | - N. J. M. Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M. M. Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Genomics of Plant Stress, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
439
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
440
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:673-89. [PMID: 27086135 DOI: 10.1007/s11103-016-0480-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/09/2016] [Indexed: 05/20/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
441
|
Jiang Y, Yu D. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance. PLANT PHYSIOLOGY 2016; 171:2771-82. [PMID: 27268959 PMCID: PMC4972294 DOI: 10.1104/pp.16.00747] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/06/2016] [Indexed: 05/18/2023]
Abstract
Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense.
Collapse
Affiliation(s)
- Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
442
|
Abstract
Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.
Collapse
|
443
|
Hao Y, Yu F, Lv R, Ma C, Zhang Z, Rui Y, Liu L, Cao W, Xing B. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations. PLoS One 2016; 11:e0157264. [PMID: 27284692 PMCID: PMC4902202 DOI: 10.1371/journal.pone.0157264] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice roots after treatments with CNTs, and all three types of CNTs had the same effects on the C:N ratio. Interestingly, the increase in the C:N ratio in roots was largely because of decreased N content, indicating that the CNTs significantly decreased N assimilation. Analyses of the Fe and Co contents in plant tissues, transmission electron microscope (TEM) observations and energy dispersive X-ray spectroscopy (EDS) analysis proved that the CNTs could penetrate the cell wall and the cell membrane, and then enter the root cells. According to the author's knowledge, this is the first time to study the relationship between carbon nanotubes and carbon nitrogen ratio and plant hormones.
Collapse
Affiliation(s)
- Yi Hao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing100093, People's Republic of China
| | - Feifan Yu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ruitao Lv
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chuanxin Ma
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Zetian Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing100093, People's Republic of China
| | - Yukui Rui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing100093, People's Republic of China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States of America
- * E-mail: ;
| | - Liming Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing100093, People's Republic of China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Beijing 100081, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States of America
| |
Collapse
|
444
|
Nosenko T, Böndel KB, Kumpfmüller G, Stephan W. Adaptation to low temperatures in the wild tomato species Solanum chilense. Mol Ecol 2016; 25:2853-69. [PMID: 27037798 DOI: 10.1111/mec.13637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/07/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
Molecular adaptation to abiotic stresses in plants is a complex process based mainly on the modifications of gene transcriptional activity and the alteration of protein-protein interactions. We used a combination of population genetic, comparative transcriptomic and plant physiology approaches to investigate the mechanisms of adaptation to low temperatures in Solanum chilense populations distributed along Andean altitudinal gradients. We found that plants from all populations have high chilling tolerance, which does not correlate with temperatures in their native habitats. In contrast, tolerance to freezing shows a significant association with altitude and temperature variables. We also observed the differences in expression patterns of cold-response genes between plants from high- and low-altitude populations. These results suggest that genetic adaptations to low temperatures evolved in high-altitude populations of S. chilense. At the transcriptional level, these adaptations may include high levels of constitutive expression of the genes encoding ICE1, the key transcription factor of the cold signalling pathway, and chloroplast ω-3 fatty acid desaturase FAD7. At the sequence level, a signature of selection associated with the adaptation to high altitudes was detected at the C-terminal part of ICE1 encoding the ACT regulatory domain.
Collapse
Affiliation(s)
- Tetyana Nosenko
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Katharina B Böndel
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9, 3FL, UK
| | - Gabriele Kumpfmüller
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, Ludwig-Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany.,Museum für Naturkunde Berlin, Invalidenstr. 4, Berlin, 10115, Germany
| |
Collapse
|
445
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
446
|
Zhao N, Lin H, Lan S, Jia Q, Chen X, Guo H, Chen F. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:125-32. [PMID: 26934101 DOI: 10.1016/j.plaphy.2016.02.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 05/10/2023]
Abstract
The known members of plant methyl esterase (MES) family catalyze the hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated VvMES1-15. In this report, VvMES5 was selected for molecular, biochemical and structural studies. VvMES5 is most similar to tomato methyl jasmonate esterase. E. coli-expressed recombinant VvMES5 displayed methyl jasmonate (MeJA) esterase activity, it was renamed VvMJE1. Under steady-state conditions, VvMJE1 exhibited an apparent Km value of 92.9 μM with MeJA. VvMJE1 was also shown to have lower activity with methyl salicylate (MeSA), another known substrate of the MES family, and only at high concentrations of the substrate. To understand the structural basis of VvMJE1 in discriminating MeJA and MeSA, a homolog model of VvMJE1 was made using the X-ray structure of tobacco SABP2, which encodes for methyl salicylate esterase, as a template. Interestingly, two bulky residues at the binding site and near the surface of tobacco SABP2 are replaced by relatively small residues in VvMJE1. Such a change enables the accommodation of a larger substrate MeJA in VvMJE1. The expression of VvMJE1 was compared in control grape plants and grape plants treated with one of the three stresses: heat, cold and UV-B. While the expression of VvMJE1 was not affected by heat treatment, its expression was significantly up-regulated by cold treatment and UV-B treatment. This result suggests that VvMJE1 has a role in response of grape plants to these two abiotic stresses.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | - Hong Lin
- USDA Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA
| | - Suque Lan
- USDA Agricultural Research Service, Crop Diseases, Pests and Genetics Research Unit, 9611 S. Riverbend Avenue, Parlier, CA 93648, USA; Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qidong Jia
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
447
|
Xu Q, Truong TT, Barrero JM, Jacobsen JV, Hocart CH, Gubler F. A role for jasmonates in the release of dormancy by cold stratification in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3497-508. [PMID: 27140440 PMCID: PMC4892733 DOI: 10.1093/jxb/erw172] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydration at low temperatures, commonly referred to as cold stratification, is widely used for releasing dormancy and triggering germination in a wide range of species including wheat. However, the molecular mechanism that underlies its effect on germination has largely remained unknown. Our previous studies showed that methyl-jasmonate, a derivative of jasmonic acid (JA), promotes dormancy release in wheat. In this study, we found that cold-stimulated germination of dormant grains correlated with a transient increase in JA content and expression of JA biosynthesis genes in the dormant embryos after transfer to 20 (o)C. The induction of JA production was dependent on the extent of cold imbibition and precedes germination. Blocking JA biosynthesis with acetylsalicylic acid (ASA) inhibited the cold-stimulated germination in a dose-dependent manner. In addition, we have explored the relationship between JA and abscisic acid (ABA), a well-known dormancy promoter, in cold regulation of dormancy. We found an inverse relationship between JA and ABA content in dormant wheat embryos following stratification. ABA content decreased rapidly in response to stratification, and the decrease was reversed by addition of ASA. Our results indicate that the action of JA on cold-stratified grains is mediated by suppression of two key ABA biosynthesis genes, TaNCED1 and TaNCED2.
Collapse
Affiliation(s)
- Qian Xu
- Shandong Agricultural University, College of Agronomy, Taian, Shandong, China CSIRO Agriculture, Canberra ACT 2601, Australia
| | - Thy T Truong
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | | | | | - Charles H Hocart
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | | |
Collapse
|
448
|
Chen X, Zhang X, Jia A, Xu G, Hu H, Hu X, Hu L. Jasmonate mediates salt-induced nicotine biosynthesis in tobacco ( Nicotiana tabacum L.). PLANT DIVERSITY 2016; 38:118-123. [PMID: 30159455 PMCID: PMC6112126 DOI: 10.1016/j.pld.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 05/09/2023]
Abstract
Jasmonate (JA), as an important signal, plays a key role in multiple processes of plant growth, development and stress response. Nicotine and related pyridine alkaloids in tobacco (Nicotiana tabacum L.) are essential secondary metabolites. Whether environmental factors control nicotine biosynthesis and the underlying mechanism remains previously unreported. Here, we applied physiological and biochemical approaches to investigate how salt stress affects nicotine biosynthesis in tobacco. We found that salt stress induced the biosynthesis of JA, which subsequently triggered the activation of JA-responsive gene expression and, ultimately, nicotine synthesis. Bioinformatics analysis revealed the existence of many NtMYC2a-recognized G-box motifs in the promoter regions of NtLOX, NtAOS, NtAOC and NtOPR genes. Applying exogenous JA increased nicotine content, while suppressing JA biosynthesis reduced nicotine biosynthesis. Salt treatment could not efficiently induce nicotine biosynthesis in transgenic anti-COI1 tobacco plants. These results demonstrate that JA acts as the essential signal which triggers nicotine biosynthesis in tobacco after salt stress.
Collapse
Affiliation(s)
- Xiaodong Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoming Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqun Jia
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gang Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangyang Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Liwei Hu
- Laboratory of Tobacco Agriculture, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| |
Collapse
|
449
|
Hu Z, Fan J, Chen K, Amombo E, Chen L, Fu J. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature. PHOTOSYNTHESIS RESEARCH 2016; 128:59-72. [PMID: 26497139 DOI: 10.1007/s11120-015-0199-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/17/2015] [Indexed: 05/19/2023]
Abstract
The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jibiao Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Ke Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
450
|
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2519-2532. [PMID: 26931169 PMCID: PMC4809300 DOI: 10.1093/jxb/erw071] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|