401
|
Marshall DJ, Burgess SC, Connallon T. Global change, life-history complexity and the potential for evolutionary rescue. Evol Appl 2016; 9:1189-1201. [PMID: 27695526 PMCID: PMC5039331 DOI: 10.1111/eva.12396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/17/2016] [Indexed: 01/17/2023] Open
Abstract
Most organisms have complex life cycles, and in marine taxa, larval life‐history stages tend to be more sensitive to environmental stress than adult (reproductive) life‐history stages. While there are several models of stage‐specific adaptation across the life history, the extent to which differential sensitivity to environmental stress (defined here as reductions in absolute fitness across the life history) affects the tempo of adaptive evolution to change remains unclear. We used a heuristic model to explore how commonly observed features associated with marine complex life histories alter a population's capacity to cope with environmental change. We found that increasing the complexity of the life history generally reduces the evolutionary potential of taxa to cope with environmental change. Our model also predicted that genetic correlations in stress tolerance between stages, levels of genetic variance in each stage, and the relative plasticity of different stages, all interact to affect the maximum rate of environmental change that will permit species persistence. Our results suggest that marine organisms with complex life cycles are particularly vulnerable to anthropogenic global change, but we lack empirical estimates of key parameters for most species.
Collapse
Affiliation(s)
- Dustin J Marshall
- Centre for Geometric Biology Monash University Melbourne Vic.Australia; School of Biological Sciences Monash University Melbourne Vic. Australia
| | - Scott C Burgess
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Tim Connallon
- School of Biological Sciences Monash University Melbourne Vic. Australia
| |
Collapse
|
402
|
Pezaro N, Doody JS, Thompson MB. The ecology and evolution of temperature-dependent reaction norms for sex determination in reptiles: a mechanistic conceptual model. Biol Rev Camb Philos Soc 2016; 92:1348-1364. [DOI: 10.1111/brv.12285] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Nadav Pezaro
- School of Life and Environmental Sciences, School of Biological Sciences (A08); University of Sydney; Sydney NSW 2006 Australia
- Institute of Evolution, Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences; University of Haifa; Haifa 3498838 Israel
| | - J. Sean Doody
- Department of Ecology and Evolutionary Biology; University of Tennessee; Knoxville TN 37996-1610 U.S.A
| | - Michael B. Thompson
- School of Life and Environmental Sciences, School of Biological Sciences (A08); University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
403
|
Manenti T, Sørensen JG, Moghadam NN, Loeschcke V. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes. Heredity (Edinb) 2016; 117:149-54. [PMID: 27273321 DOI: 10.1038/hdy.2016.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/14/2016] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
Laboratory selection in thermal regimes that differed in the amplitude and the predictability of daily fluctuations had a marked effect on stress resistance and life history traits in Drosophila simulans. The observed evolutionary changes are expected to be the result of both direct and correlated responses to selection. Thus, a given trait might not evolve independently from other traits because of genetic correlations among these traits. Moreover, different test environments can induce novel genetic correlations because of the activation of environmentally dependent genes. To test whether and how genetic correlations among stress resistance and life history traits constrain evolutionary adaptation, we used three populations of D. simulans selected for 20 generations in constant, predictable and unpredictable daily fluctuating thermal regimes and tested each of these selected populations in the same three thermal regimes. We explored the relationship between genetic correlations between traits and the evolutionary potential of D. simulans by comparing genetic correlation matrices in flies selected and tested in different thermal test regimes. We observed genetic correlations mainly between productivity, body size, starvation and desiccation tolerance, suggesting that adaptation to the three thermal regimes was affected by correlations between these traits. We also found that the correlations between some traits such as body size and productivity or starvation tolerance and productivity were determined by test regime rather than selection regime that is expected to limit genetic adaptation to thermal regimes in these traits. The results of this study suggest that several traits and several environments are needed to explore adaptive responses, as genetic and environmentally induced correlations between traits as results obtained in one environment cannot be used to predict the response of the same population in another environment.
Collapse
Affiliation(s)
- T Manenti
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - J G Sørensen
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - N N Moghadam
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - V Loeschcke
- Section for Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
404
|
Seebacher F, Webster MM, James RS, Tallis J, Ward AJW. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). ROYAL SOCIETY OPEN SCIENCE 2016; 3:160316. [PMID: 27429785 PMCID: PMC4929920 DOI: 10.1098/rsos.160316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Local specialization can be advantageous for individuals and may increase the resilience of the species to environmental change. However, there may be trade-offs between morphological responses and physiological performance and behaviour. Our aim was to test whether habitat-specific morphology of stickleback (Gasterosteus aculeatus) interacts with physiological performance and behaviour at different salinities. We rejected the hypothesis that deeper body shape of fish from habitats with high predation pressure led to decreases in locomotor performance. However, there was a trade-off between deeper body shape and muscle quality. Muscle of deeper-bodied fish produced less force than that of shallow-bodied saltmarsh fish. Nonetheless, saltmarsh fish had lower swimming performance, presumably because of lower muscle mass overall coupled with smaller caudal peduncles and larger heads. Saltmarsh fish performed better in saline water (20 ppt) relative to freshwater and relative to fish from freshwater habitats. However, exposure to salinity affected shoaling behaviour of fish from all habitats and shoals moved faster and closer together compared with freshwater. We show that habitat modification can alter phenotypes of native species, but local morphological specialization is associated with trade-offs that may reduce its benefits.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia
| | | | - Rob S. James
- Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry CV1 5FB, UK
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences A08, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
405
|
Engen S, Sæther BE. Phenotypic evolution by distance in fluctuating environments: The contribution of dispersal, selection and random genetic drift. Theor Popul Biol 2016; 109:16-27. [DOI: 10.1016/j.tpb.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/15/2022]
|
406
|
Brennan RS, Hwang R, Tse M, Fangue NA, Whitehead A. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comp Biochem Physiol A Mol Integr Physiol 2016; 196:11-19. [DOI: 10.1016/j.cbpa.2016.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
|
407
|
Holt RD. A meditation on life, death, and meaning. Isr J Ecol Evol 2016. [DOI: 10.1080/15659801.2016.1233690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
408
|
Hadfield JD. The spatial scale of local adaptation in a stochastic environment. Ecol Lett 2016; 19:780-8. [PMID: 27188689 DOI: 10.1111/ele.12614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 01/17/2023]
Abstract
The distribution of phenotypes in space will be a compromise between adaptive plasticity and local adaptation increasing the fit of phenotypes to local conditions and gene flow reducing that fit. Theoretical models on the evolution of quantitative characters on spatially explicit landscapes have only considered scenarios where optimum trait values change as deterministic functions of space. Here, these models are extended to include stochastic spatially autocorrelated aspects to the environment, and consequently the optimal phenotype. Under these conditions, the regression of phenotype on the environmental variable becomes steeper as the spatial scale on which populations are sampled becomes larger. Under certain deterministic models - such as linear clines - the regression is constant. The way in which the regression changes with spatial scale is informative about the degree of phenotypic plasticity, the relative scale of effective gene flow and the environmental dependency of selection. Connections to temporal models are discussed.
Collapse
Affiliation(s)
- Jarrod D Hadfield
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
409
|
Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2016; 113:E2812-21. [PMID: 27140640 DOI: 10.1073/pnas.1517456113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.
Collapse
|
410
|
Ortiz‐Medrano A, Scantlebury DP, Vázquez‐Lobo A, Mastretta‐Yanes A, Piñero D. Morphological and niche divergence of pinyon pines. Ecol Evol 2016; 6:2886-96. [PMID: 27092235 PMCID: PMC4803999 DOI: 10.1002/ece3.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 02/01/2023] Open
Abstract
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.
Collapse
Affiliation(s)
- Alejandra Ortiz‐Medrano
- Departamento de EcologíaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoAP 70‐275Mexico CityMéxico
- Present address: Universidad del Medio AmbienteCamino al Castellano 4Valle de BravoMéxico
| | | | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| | - Alicia Mastretta‐Yanes
- CONACYT Research Fellow assigned to CONABIOCoordinación de Análisis de Riesgo y BioseguridadDirección General de Análisis de PrioridadesComisión Nacional para el conocimiento y uso de la BiodiversidadMexico CityMexico
| | - Daniel Piñero
- Departamento de EcologíaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoAP 70‐275Mexico CityMéxico
| |
Collapse
|
411
|
Gunderson AR, Stillman JH. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc Biol Sci 2016; 282:20150401. [PMID: 25994676 DOI: 10.1098/rspb.2015.0401] [Citation(s) in RCA: 443] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.
Collapse
Affiliation(s)
- Alex R Gunderson
- Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA
| | - Jonathon H Stillman
- Romberg Tiburon Center, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA
| |
Collapse
|
412
|
Ehrenreich IM, Pfennig DW. Genetic assimilation: a review of its potential proximate causes and evolutionary consequences. ANNALS OF BOTANY 2016; 117:769-79. [PMID: 26359425 PMCID: PMC4845796 DOI: 10.1093/aob/mcv130] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/07/2015] [Accepted: 06/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensitivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. SCOPE This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimilation, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered. Next, the potential causes of phenotypic plasticity generally and genetic assimilation specifically are examined at the genetic, molecular and physiological levels and approaches that can improve our understanding of these mechanisms are described. The review concludes by outlining major challenges for future work. CONCLUSIONS Identifying and characterizing the proximate mechanisms involved in phenotypic plasticity and genetic assimilation promises to help advance our basic understanding of evolutionary innovation and diversification.
Collapse
Affiliation(s)
- Ian M Ehrenreich
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
413
|
Oomen RA, Hutchings JA. Genetic variation in plasticity of life-history traits between Atlantic cod (Gadus morhua) populations exposed to contrasting thermal regimes. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We employed common-garden experiments to test for genetic variation in responses of larval life-history traits to temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3, 7, 11 °C), consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes to determine to what extent responses to projected changes in climate will differ among populations.
Collapse
Affiliation(s)
- Rebekah A. Oomen
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Jeffrey A. Hutchings
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| |
Collapse
|
414
|
Abley K, Locke JCW, Leyser HMO. Developmental mechanisms underlying variable, invariant and plastic phenotypes. ANNALS OF BOTANY 2016; 117:733-48. [PMID: 27072645 PMCID: PMC4845803 DOI: 10.1093/aob/mcw016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. SCOPE Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. CONCLUSION In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner.
Collapse
Affiliation(s)
- Katie Abley
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - H M Ottoline Leyser
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
415
|
Gulisija D, Kim Y, Plotkin JB. Phenotypic Plasticity Promotes Balanced Polymorphism in Periodic Environments by a Genomic Storage Effect. Genetics 2016; 202:1437-48. [PMID: 26857626 PMCID: PMC4905538 DOI: 10.1534/genetics.115.185702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/29/2016] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity is known to evolve in perturbed habitats, where it alleviates the deleterious effects of selection. But the effects of plasticity on levels of genetic polymorphism, an important precursor to adaptation in temporally varying environments, are unclear. Here we develop a haploid, two-locus population-genetic model to describe the interplay between a plasticity modifier locus and a target locus subject to periodically varying selection. We find that the interplay between these two loci can produce a "genomic storage effect" that promotes balanced polymorphism over a large range of parameters, in the absence of all other conditions known to maintain genetic variation. The genomic storage effect arises as recombination allows alleles at the two loci to escape more harmful genetic backgrounds and associate in haplotypes that persist until environmental conditions change. Using both Monte Carlo simulations and analytical approximations we quantify the strength of the genomic storage effect across a range of selection pressures, recombination rates, plasticity modifier effect sizes, and environmental periods.
Collapse
Affiliation(s)
- Davorka Gulisija
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yuseob Kim
- Department of Life Science and Division of EcoScience, Ewha Womans University, Seoul, Korea 120-750
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
416
|
Mizoguchi BA, Valenzuela N. Ecotoxicological Perspectives of Sex Determination. Sex Dev 2016; 10:45-57. [DOI: 10.1159/000444770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
|
417
|
Lee JT, Taylor MB, Shen A, Ehrenreich IM. Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait. PLoS Genet 2016; 12:e1005929. [PMID: 26990313 PMCID: PMC4798298 DOI: 10.1371/journal.pgen.1005929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/21/2016] [Indexed: 01/24/2023] Open
Abstract
Determining how genetic variation alters the expression of heritable phenotypes across conditions is important for agriculture, evolution, and medicine. Central to this problem is the concept of genotype-by-environment interaction (or 'GxE'), which occurs when segregating genetic variation causes individuals to show different phenotypic responses to the environment. While many studies have sought to identify individual loci that contribute to GxE, obtaining a deeper understanding of this phenomenon may require defining how sets of loci collectively alter the relationship between genotype, environment, and phenotype. Here, we identify combinations of alleles at seven loci that control how a mutationally induced colony phenotype is expressed across a range of temperatures (21, 30, and 37 °C) in a panel of yeast recombinants. We show that five predominant multi-locus genotypes involving the detected loci result in trait expression with varying degrees of temperature sensitivity. By comparing these genotypes and their patterns of trait expression across temperatures, we demonstrate that the involved alleles contribute to temperature sensitivity in different ways. While alleles of the transcription factor MSS11 specify the potential temperatures at which the trait can occur, alleles at the other loci modify temperature sensitivity within the range established by MSS11 in a genetic background- and/or temperature-dependent manner. Our results not only represent one of the first characterizations of GxE at the resolution of multi-locus genotypes, but also provide an example of the different roles that genetic variants can play in altering trait expression across conditions.
Collapse
Affiliation(s)
- Jonathan T. Lee
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Matthew B. Taylor
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Amy Shen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Ian M. Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
418
|
Zhang Q, Hong Y, Zou F, Zhang M, Lee TM, Song X, Rao J. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications. Sci Rep 2016; 6:22344. [PMID: 26929387 PMCID: PMC4772112 DOI: 10.1038/srep22344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/10/2016] [Indexed: 11/09/2022] Open
Abstract
The extent to which species’ traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.,Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Yongmi Hong
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.,Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Fasheng Zou
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.,Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Min Zhang
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.,Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Tien Ming Lee
- Woodrow Wilson School of International and Public Affairs, Princeton University, Princeton NJ 08544, USA
| | - Xiangjin Song
- Guangdong Chebaling National Reserve, Shixing 512500, China
| | - Jiteng Rao
- Guangdong Chebaling National Reserve, Shixing 512500, China
| |
Collapse
|
419
|
Lancaster LT, Dudaniec RY, Chauhan P, Wellenreuther M, Svensson EI, Hansson B. Gene expression under thermal stress varies across a geographical range expansion front. Mol Ecol 2016; 25:1141-56. [DOI: 10.1111/mec.13548] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Lesley T. Lancaster
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | | | - Maren Wellenreuther
- Department of Biology; Lund University; Lund Sweden
- Institute of Plant and Food Research; Auckland New Zealand
| | | | | |
Collapse
|
420
|
Langenhof MR, Apperloo R, Komdeur J. Small Variations in Early-Life Environment Can Affect Coping Behaviour in Response to Foraging Challenge in the Three-Spined Stickleback. PLoS One 2016; 11:e0147000. [PMID: 26862908 PMCID: PMC4749203 DOI: 10.1371/journal.pone.0147000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/28/2015] [Indexed: 11/18/2022] Open
Abstract
CONTEXT An increasing concern in the face of human expansion throughout natural habitats is whether animal populations can respond adaptively when confronted with challenges like environmental change and novelty. Behavioural flexibility is an important factor in estimating the adaptive potential of both individuals and populations, and predicting the degree to which they can cope with change. STUDY DESIGN This study on the three-spined stickleback (Gasterosteus aculeatus) is an empiric illustration of the degree of behavioural variation that can emerge between semi-natural systems within only a single generation. Wild-caught adult sticklebacks (P, N = 400) were randomly distributed in equal densities over 20 standardized semi-natural environments (ponds), and one year later offspring (F1, N = 652) were presented with repeated behavioural assays. Individuals were challenged to reach a food source through a novel transparent obstacle, during which exploration, activity, foraging, sociability and wall-biting behaviours were recorded through video observation. We found that coping responses of individuals from the first generation to this unfamiliar foraging challenge were related to even relatively small, naturally diversified variation in developmental environment. All measured behaviours were correlated with each other. Especially exploration, sociability and wall-biting were found to differ significantly between ponds. These differences could not be explained by stickleback density or the turbidity of the water. FINDINGS Our findings show that a) differences in early-life environment appear to affect stickleback feeding behaviour later in life; b) this is the case even when the environmental differences are only small, within natural parameters and diversified gradually; and c) effects are present despite semi-natural conditions that fluctuate during the year. Therefore, in behaviourally plastic animals like the stickleback, the adaptive response to human-induced habitat disturbance may occur rapidly (within one generation) and vary strongly based on the system's (starting) conditions. This has important implications for the variability in animal behaviour, which may be much larger than expected from studying laboratory systems, as well as for the validity of predictions of population responses to change.
Collapse
Affiliation(s)
- M. Rohaa Langenhof
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- * E-mail:
| | - Rienk Apperloo
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
421
|
Savković U, ĐorĐević M, Šešlija Jovanović D, Lazarević J, Tucić N, Stojković B. Experimentally induced host-shift changes life-history strategy in a seed beetle. J Evol Biol 2016; 29:837-47. [DOI: 10.1111/jeb.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Uroš Savković
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Mirko ĐorĐević
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Darka Šešlija Jovanović
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Jelica Lazarević
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Nikola Tucić
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
| | - Biljana Stojković
- Institute for Biological Research “Siniša Stanković”; University of Belgrade; Belgrade Serbia
- Faculty of Biology; University of Belgrade; Belgrade Serbia
| |
Collapse
|
422
|
Dey S, Proulx SR, Teotónio H. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects. PLoS Biol 2016; 14:e1002388. [PMID: 26910440 PMCID: PMC4766184 DOI: 10.1371/journal.pbio.1002388] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 01/27/2023] Open
Abstract
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than randomizing maternal effects.
Collapse
Affiliation(s)
- Snigdhadip Dey
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| | - Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| |
Collapse
|
423
|
Evolution of Plasticity: Mechanistic Link between Development and Reversible Acclimation. Trends Ecol Evol 2016; 31:237-249. [PMID: 26846962 DOI: 10.1016/j.tree.2016.01.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022]
Abstract
Phenotypic characteristics of animals can change independently from changes in the genetic code. These plastic phenotypic responses are important for population persistence in changing environments. Plasticity can be induced during early development, with persistent effects on adult phenotypes, and it can occur reversibly throughout life (acclimation). These manifestations of plasticity have been viewed as separate processes. Here we argue that developmental conditions not only change mean trait values but also modify the capacity for acclimation. Acclimation counteracts the potentially negative effects of phenotype-environment mismatches resulting from epigenetic modifications during early development. Developmental plasticity is therefore also beneficial when environmental conditions change within generations. Hence, the evolution of reversible acclimation can no longer be viewed as independent from developmental processes.
Collapse
|
424
|
Harvey BP, McKeown NJ, Rastrick SPS, Bertolini C, Foggo A, Graham H, Hall-Spencer JM, Milazzo M, Shaw PW, Small DP, Moore PJ. Individual and population-level responses to ocean acidification. Sci Rep 2016; 6:20194. [PMID: 26822220 PMCID: PMC4731747 DOI: 10.1038/srep20194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023] Open
Abstract
Ocean acidification is predicted to have detrimental effects on many marine organisms and ecological processes. Despite growing evidence for direct impacts on specific species, few studies have simultaneously considered the effects of ocean acidification on individuals (e.g. consequences for energy budgets and resource partitioning) and population level demographic processes. Here we show that ocean acidification increases energetic demands on gastropods resulting in altered energy allocation, i.e. reduced shell size but increased body mass. When scaled up to the population level, long-term exposure to ocean acidification altered population demography, with evidence of a reduction in the proportion of females in the population and genetic signatures of increased variance in reproductive success among individuals. Such increased variance enhances levels of short-term genetic drift which is predicted to inhibit adaptation. Our study indicates that even against a background of high gene flow, ocean acidification is driving individual- and population-level changes that will impact eco-evolutionary trajectories.
Collapse
Affiliation(s)
- Ben P Harvey
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Niall J McKeown
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Samuel P S Rastrick
- Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.,Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, UK
| | - Camilla Bertolini
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Andy Foggo
- Marine Biology and Ecology Research Centre, School of Marine Science &Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Helen Graham
- Uni Research Environment, P.O. Box 7810, 5020 Bergen, Norway.,School of Marine Science and Technology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, School of Marine Science &Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Marco Milazzo
- Dipartimento di Scienze della Terra e del Mare, CoNISMa, University of Palermo, via Archirafi 28, 90123 Palermo, Italy
| | - Paul W Shaw
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Daniel P Small
- Biology Department, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Pippa J Moore
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.,Centre for Marine Ecosystems Research, Edith Cowan University, Perth, Australia, 6027
| |
Collapse
|
425
|
Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2016. [DOI: 10.1016/j.actao.2015.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
426
|
Stoks R, Govaert L, Pauwels K, Jansen B, De Meester L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water fleaDaphnia magna. Ecol Lett 2015; 19:180-190. [DOI: 10.1111/ele.12551] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/18/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Kevin Pauwels
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Bastiaan Jansen
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Ch. Deberiotstraat 32 B-3000 Leuven Belgium
| |
Collapse
|
427
|
Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054030] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Theories of how species evolve in changing environments mostly consider single species in isolation or pairs of interacting species. Yet all organisms live in diverse communities containing many hundreds of species. This review discusses how species interactions influence the evolution of constituent species across whole communities. When species interactions are weak or inconsistent, evolutionary dynamics should be predictable by factors identified by single-species theory. Stronger species interactions, however, can alter evolutionary outcomes and either dampen or promote evolution of constituent species depending on the number of species and the distribution of interaction strengths across the interaction network. Genetic interactions, such as horizontal gene transfer, might also affect evolutionary outcomes. These evolutionary mechanisms in turn affect whole-community properties, such as the level of ecosystem functioning. Successful management of both ecosystems and focal species requires new understanding of evolutionary interactions across whole communities.
Collapse
Affiliation(s)
- Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom
| |
Collapse
|
428
|
Lee CE. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system. Evol Appl 2015; 9:248-70. [PMID: 27087851 PMCID: PMC4780390 DOI: 10.1111/eva.12334] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/19/2015] [Indexed: 01/06/2023] Open
Abstract
The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V‐type H+ATPase, Na+, K+‐ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through ‘beneficial reversal of dominance’ in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High‐food concentration increases low‐salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Center of Rapid Evolution (CORE) University of Wisconsin Madison WI USA
| |
Collapse
|
429
|
De Kort H, Vander Mijnsbrugge K, Vandepitte K, Mergeay J, Ovaskainen O, Honnay O. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa. J Evol Biol 2015; 29:253-64. [DOI: 10.1111/jeb.12777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022]
Affiliation(s)
- H. De Kort
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| | - K. Vander Mijnsbrugge
- Research Institute for Nature and Forest; Geraardsbergen Belgium
- Agency for Nature and Forest; Brussels Belgium
| | - K. Vandepitte
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| | - J. Mergeay
- Research Institute for Nature and Forest; Geraardsbergen Belgium
| | - O. Ovaskainen
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - O. Honnay
- Plant Conservation and Population Biology; Biology Department; University of Leuven; Heverlee Belgium
| |
Collapse
|
430
|
Bailey LD, van de Pol M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J Anim Ecol 2015; 85:85-96. [PMID: 26433114 DOI: 10.1111/1365-2656.12451] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/04/2015] [Indexed: 11/30/2022]
Abstract
Extreme climatic events (ECEs) are predicted to become more frequent as the climate changes. A rapidly increasing number of studies - though few on animals - suggest that the biological consequences of ECEs can be severe. However, ecological research on the impacts of ECEs has been limited by a lack of cohesiveness and structure. ECEs are often poorly defined and have often been confusingly equated with climatic variability, making comparison between studies difficult. In addition, a focus on short-term studies has provided us with little information on the long-term implications of ECEs, and the descriptive and anecdotal nature of many studies has meant it is still unclear what the key research questions are. Synthesizing the current state of work is essential to identify ways to make progress. We conduct a synthesis of the literature and discuss conceptual and practical challenges faced by research on ECEs. We consider three steps to advance research. First, we discuss the importance of choosing an ECE definition and identify the pros and cons of 'climatological' and 'biological' definitions of ECEs. Secondly, we advocate research beyond short-term descriptive studies to address questions concerning the long-term implications of ECEs, focussing on selective pressures and phenotypically plastic responses and how they might differ from responses to a changing climatic mean. Finally, we encourage a greater focus on multi-event studies that help us understand the implications of changing patterns of ECEs, through the combined use of modelling, experimental and observational field studies. This study aims to open a discussion on the definitions, questions and methods currently used to study ECEs, which will lead to a more cohesive approach to future ECE research.
Collapse
Affiliation(s)
- Liam D Bailey
- Division of Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, 0200, ACT, Australia
| | - Martijn van de Pol
- Division of Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, 0200, ACT, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
431
|
Egizi A, Fefferman NH, Fonseca DM. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0136. [PMID: 25688024 DOI: 10.1098/rstb.2014.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.
Collapse
Affiliation(s)
- Andrea Egizi
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Nina H Fefferman
- Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
432
|
Nunney L. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity. J Hered 2015; 107:15-24. [DOI: 10.1093/jhered/esv084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/06/2015] [Indexed: 01/22/2023] Open
|
433
|
Nonaka E, Svanbäck R, Thibert-Plante X, Englund G, Brännström Å. Mechanisms by Which Phenotypic Plasticity Affects Adaptive Divergence and Ecological Speciation. Am Nat 2015; 186:E126-43. [DOI: 10.1086/683231] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
434
|
Gienapp P, Reed TE, Visser ME. Why climate change will invariably alter selection pressures on phenology. Proc Biol Sci 2015; 281:rspb.2014.1611. [PMID: 25165771 DOI: 10.1098/rspb.2014.1611] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.
Collapse
Affiliation(s)
- Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Thomas E Reed
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Republic of Ireland
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
435
|
Santiso X, Retuerto R. Low among-provenance differences in structural and functional plasticity in response to nutrients in saplings of the circum-Mediterranean tree Arbutus unedo L. TREE PHYSIOLOGY 2015; 35:1118-1128. [PMID: 26377872 DOI: 10.1093/treephys/tpv081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
The Mediterranean region is an area of special interest for conservation where the incidence of multiple drivers of global change is expected to increase. One of the factors predicted to change is soil-nutrient availability, an essential factor for plant growth. Thus, study of the effects of variation in this parameter is especially relevant in species with a circum-Mediterranean distribution, such as Arbutus unedo L., in which the different provenances grow in different habitats, which must differ in nutritional conditions. We aimed to determine the effect of provenance on plasticity, to establish whether structural and morphological traits differ in the level of plasticity and to assess how nutrients affect the photosynthetic light response. In a common garden experiment, we studied seven provenances from the circum-Mediterranean range of A. unedo and established two nutrient treatments (low and high nutrient availability). We measured physiological and structural traits in 1-year-old sapling and determined a phenotypic plasticity index (PPI) to quantify the level of plasticity, whereas the radiation effects were tested by construction and analysis of light response curves. Interestingly, provenance did not explain a significant amount of variance, but the plasticity was four times higher for the structural traits than for the physiological traits. Therefore, the plasticity to nutrient availability will not favour or prevent the expansion or contraction of the range of any of these provenances of A. unedo. Furthermore, the structural plasticity demonstrated the ability of the strawberry tree to optimize resource allocation, whereas the physiology remained stable, thus avoiding extra expenditure. The study findings also suggest that increased availability of nutrients would improve the performance of the species during the Mediterranean summer, characterized by high irradiance. These abilities will be key to the survival of saplings of the species under the future scenario of changes in nutrient availability.
Collapse
Affiliation(s)
- Xabier Santiso
- Área de Ecología, Facultad de Biología, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rubén Retuerto
- Área de Ecología, Facultad de Biología, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
436
|
Aubret F. Island colonisation and the evolutionary rates of body size in insular neonate snakes. Heredity (Edinb) 2015; 115:349-56. [PMID: 25074570 PMCID: PMC4815452 DOI: 10.1038/hdy.2014.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/27/2014] [Accepted: 06/04/2014] [Indexed: 11/09/2022] Open
Abstract
Island colonisation by animal populations is often associated with dramatic shifts in body size. However, little is known about the rates at which these evolutionary shifts occur, under what precise selective pressures and the putative role played by adaptive plasticity on driving such changes. Isolation time played a significant role in the evolution of body size in island Tiger snake populations, where adaptive phenotypic plasticity followed by genetic assimilation fine-tuned neonate body and head size (hence swallowing performance) to prey size. Here I show that in long isolated islands (>6000 years old) and mainland populations, neonate body mass and snout-vent length are tightly correlated with the average prey body mass available at each site. Regression line equations were used to calculate body size values to match prey size in four recently isolated populations of Tiger snakes. Rates of evolution in body mass and snout-vent length, calculated for seven island snake populations, were significantly correlated with isolation time. Finally, rates of evolution in body mass per generation were significantly correlated with levels of plasticity in head growth rates. This study shows that body size evolution occurs at a faster pace in recently isolated populations and suggests that the level of adaptive plasticity for swallowing abilities may correlate with rates of body mass evolution. I hypothesise that, in the early stages of colonisation, adaptive plasticity and directional selection may combine and generate accelerated evolution towards an 'optimal' phenotype.
Collapse
Affiliation(s)
- F Aubret
- Station d'Ecologie Expérimentale du CNRS à Moulis, Saint-Girons, France
| |
Collapse
|
437
|
Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JH, Klinger T, Milazzo M, Munday PL, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG. Ocean acidification through the lens of ecological theory. Ecology 2015; 96:3-15. [PMID: 26236884 DOI: 10.1890/14-0802.1] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification'and the ecological changes it portends.
Collapse
|
438
|
Lachapelle J, Bell G, Colegrave N. Experimental adaptation to marine conditions by a freshwater alga. Evolution 2015; 69:2662-75. [PMID: 26299442 DOI: 10.1111/evo.12760] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 08/10/2015] [Indexed: 12/24/2022]
Abstract
The marine-freshwater boundary has been suggested as one of the most difficult to cross for organisms. Salt is a major ecological factor and provides an unequalled range of ecological opportunity because marine habitats are much more extensive than freshwater habitats, and because salt strongly affects the structure of microbial communities. We exposed experimental populations of the freshwater alga Chlamydomonas reinhardtii to steadily increasing concentrations of salt. About 98% of the lines went extinct. The ones that survived now thrive in growth medium with 36 g⋅L(-1) NaCl, and in seawater. Our results indicate that adaptation to marine conditions proceeded first through genetic assimilation of an inducible response to relatively low salt concentrations that was present in the ancestors, and subsequently by the evolution of an enhanced inducible response to high salt concentrations. These changes appear to have evolved through reversible and irreversible modifications, respectively. The evolution of marine from freshwater lineages is an example that clearly indicates the possibility of studying certain aspects of major ecological transitions in the laboratory.
Collapse
Affiliation(s)
- Josianne Lachapelle
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom.
| | - Graham Bell
- Biology Department, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Nick Colegrave
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
439
|
Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet 2015; 16:611-22. [PMID: 26370902 DOI: 10.1038/nrg3982] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The integration of research from developmental biology and ecology into evolutionary theory has given rise to a relatively new field, ecological evolutionary developmental biology (Eco-Evo-Devo). This field integrates and organizes concepts such as developmental symbiosis, developmental plasticity, genetic accommodation, extragenic inheritance and niche construction. This Review highlights the roles that developmental symbiosis and developmental plasticity have in evolution. Developmental symbiosis can generate particular organs, can produce selectable genetic variation for the entire animal, can provide mechanisms for reproductive isolation, and may have facilitated evolutionary transitions. Developmental plasticity is crucial for generating novel phenotypes, facilitating evolutionary transitions and altered ecosystem dynamics, and promoting adaptive variation through genetic accommodation and niche construction. In emphasizing such non-genomic mechanisms of selectable and heritable variation, Eco-Evo-Devo presents a new layer of evolutionary synthesis.
Collapse
|
440
|
Chevin LM, Lande R. Evolution of environmental cues for phenotypic plasticity. Evolution 2015; 69:2767-75. [DOI: 10.1111/evo.12755] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Luis-Miguel Chevin
- UMR 5175 CEFE; CNRS - Université Montpellier - Université P. Valéry - EPHE; 1919 route de Mende 34293 Montpellier Cedex 5 France
- Department of Life Sciences; Imperial College London; Silwood Park Campus, Ascot Berkshire SL5 7PY United Kingdom
| | - Russell Lande
- Department of Life Sciences; Imperial College London; Silwood Park Campus, Ascot Berkshire SL5 7PY United Kingdom
| |
Collapse
|
441
|
Kavembe GD, Franchini P, Irisarri I, Machado-Schiaffino G, Meyer A. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth’s Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. J Mol Evol 2015; 81:90-109. [DOI: 10.1007/s00239-015-9696-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/29/2015] [Indexed: 11/29/2022]
|
442
|
Manenti T, Loeschcke V, Moghadam NN, Sørensen JG. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments. J Evol Biol 2015; 28:2078-87. [PMID: 26299271 DOI: 10.1111/jeb.12735] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 11/30/2022]
Abstract
The selective past of populations is presumed to affect the levels of phenotypic plasticity. Experimental evolution at constant temperatures is generally expected to lead to a decreased level of plasticity due to presumed costs associated with phenotypic plasticity when not needed. In this study, we investigated the effect of experimental evolution in constant, predictable and unpredictable daily fluctuating temperature regimes on the levels of phenotype plasticity in several life history and stress resistance traits in Drosophila simulans. Contrary to the expectation, evolution in the different regimes did not affect the levels of plasticity in any of the traits investigated even though the populations from the different thermal regimes had evolved different stress resistance and fitness trait means. Although costs associated with phenotypic plasticity are known, our results suggest that the maintenance of phenotypic plasticity might come at low and negligible costs, and thus, the potential of phenotypic plasticity to evolve in populations exposed to different environmental conditions might be limited.
Collapse
Affiliation(s)
- T Manenti
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - V Loeschcke
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - N N Moghadam
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - J G Sørensen
- Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
443
|
Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 2015; 525:372-5. [PMID: 26331546 DOI: 10.1038/nature15256] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 08/03/2015] [Indexed: 01/06/2023]
Abstract
Phenotypic plasticity is the capacity for an individual genotype to produce different phenotypes in response to environmental variation. Most traits are plastic, but the degree to which plasticity is adaptive or non-adaptive depends on whether environmentally induced phenotypes are closer or further away from the local optimum. Existing theories make conflicting predictions about whether plasticity constrains or facilitates adaptive evolution. Debate persists because few empirical studies have tested the relationship between initial plasticity and subsequent adaptive evolution in natural populations. Here we show that the direction of plasticity in gene expression is generally opposite to the direction of adaptive evolution. We experimentally transplanted Trinidadian guppies (Poecilia reticulata) adapted to living with cichlid predators to cichlid-free streams, and tested for evolutionary divergence in brain gene expression patterns after three to four generations. We find 135 transcripts that evolved parallel changes in expression within the replicated introduction populations. These changes are in the same direction exhibited in a native cichlid-free population, suggesting rapid adaptive evolution. We find 89% of these transcripts exhibited non-adaptive plastic changes in expression when the source population was reared in the absence of predators, as they are in the opposite direction to the evolved changes. By contrast, the remaining transcripts exhibiting adaptive plasticity show reduced population divergence. Furthermore, the most plastic transcripts in the source population evolved reduced plasticity in the introduction populations, suggesting strong selection against non-adaptive plasticity. These results support models predicting that adaptive plasticity constrains evolution, whereas non-adaptive plasticity potentiates evolution by increasing the strength of directional selection. The role of non-adaptive plasticity in evolution has received relatively little attention; however, our results suggest that it may be an important mechanism that predicts evolutionary responses to new environments.
Collapse
|
444
|
Poisbleau M, Dehnhard N, Demongin L, Quillfeldt P, Eens M. Two eggs, two different constraints: a potential explanation for the puzzling intraclutch egg size dimorphism in Eudyptes penguins. Ecol Evol 2015; 5:2827-38. [PMID: 26306169 PMCID: PMC4541988 DOI: 10.1002/ece3.1543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022] Open
Abstract
Phenotypic plasticity and phenotypic stability are major components of the adaptive evolution of organisms to environmental variation. The invariant two-egg clutch size of Eudyptes penguins has recently been proposed to be a unique example of a maladaptive phenotypic stability, while their egg mass is a plastic trait. We tested whether this phenotypic plasticity during reproduction might result from constraints imposed by migration (migratory carry-over effect) and breeding (due to the depletion of female body reserves). For the first time, we examined whether these constraints differ between eggs within clutches and between egg components (yolk and albumen). The interval between colony return and clutch initiation positively influenced the yolk mass, the albumen mass, and the subsequent total egg mass of first-laid eggs. This time interval had only a slight negative influence on the yolk mass of second-laid eggs and no influence on their albumen and subsequent total masses. For both eggs, female body mass at laying positively influenced albumen and total egg masses. Female investment into the entire clutch was not related to the time in the colony before laying but increased with female body mass. These novel results suggest that the unique intraclutch egg size dimorphism exhibited in Eudyptes penguins, with first-laid eggs being consistently smaller than second-laid eggs, might be due to a combination of constraints: a migratory carry-over effect on the first-laid egg and a body reserve depletion effect on the second-laid egg. Both these constraints might explain why the timing of reproduction, especially egg formation, is narrow in migratory capital breeders.
Collapse
Affiliation(s)
- Maud Poisbleau
- Department of Biology - Ethology, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium ; Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1 78315, Radolfzell, Germany ; Department of Biology, University of Konstanz 78457, Konstanz, Germany
| | - Nina Dehnhard
- Department of Biology - Ethology, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium ; Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1 78315, Radolfzell, Germany ; Department of Biology, University of Konstanz 78457, Konstanz, Germany
| | - Laurent Demongin
- Department of Biology - Ethology, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
| | - Petra Quillfeldt
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1 78315, Radolfzell, Germany ; Department of Biology, University of Konstanz 78457, Konstanz, Germany ; Department of Animal Ecology & Systematics, Justus-Liebig University Gießen Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Marcel Eens
- Department of Biology - Ethology, University of Antwerp Campus Drie Eiken, Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium
| |
Collapse
|
445
|
Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Biol Sci 2015; 282:20151019. [PMID: 26246559 PMCID: PMC4632619 DOI: 10.1098/rspb.2015.1019] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/09/2015] [Indexed: 12/15/2022] Open
Abstract
Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the 'extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism-environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology.
Collapse
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Tobias Uller
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK Department of Biology, University of Lund, Lund, Sweden
| | - Marcus W Feldman
- Department of Biology, Stanford University, Herrin Hall, Stanford, CA 94305, USA
| | - Kim Sterelny
- School of Philosophy, Australian National University, Canberra, Australia School of History, Philosophy, Political Science and International Relations, Victoria University of Wellington, Wellington, New Zealand
| | - Gerd B Müller
- Department of Theoretical Biology, University of Vienna, Vienna, Austria
| | - Armin Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405-7107, USA
| | - Eva Jablonka
- Cohn Institute for the History of Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
446
|
Chevin LM, Visser ME, Tufto J. Estimating the variation, autocorrelation, and environmental sensitivity of phenotypic selection. Evolution 2015; 69:2319-32. [DOI: 10.1111/evo.12741] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Affiliation(s)
| | - Marcel E. Visser
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Post Office Box 50 6700AB Wageningen Netherlands
| | - Jarle Tufto
- Centre for Biodiversity Dynamics/Department of Mathematical Sciences; Norwegian University of Science and Technology; 7491 Trondheim Norway
| |
Collapse
|
447
|
Tufto J. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model. Evolution 2015; 69:2034-49. [PMID: 26140293 DOI: 10.1111/evo.12716] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations.
Collapse
Affiliation(s)
- Jarle Tufto
- Centre for Biodiversity Dynamics/Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
448
|
Eierman LE, Hare MP. Reef-Specific Patterns of Gene Expression Plasticity in Eastern Oysters (Crassostrea virginica). J Hered 2015; 107:90-100. [DOI: 10.1093/jhered/esv057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/10/2015] [Indexed: 12/30/2022] Open
|
449
|
Moczek AP, Sears KE, Stollewerk A, Wittkopp PJ, Diggle P, Dworkin I, Ledon-Rettig C, Matus DQ, Roth S, Abouheif E, Brown FD, Chiu CH, Cohen CS, Tomaso AWD, Gilbert SF, Hall B, Love AC, Lyons DC, Sanger TJ, Smith J, Specht C, Vallejo-Marin M, Extavour CG. The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evol Dev 2015; 17:198-219. [PMID: 25963198 DOI: 10.1111/ede.12125] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - Karen E Sears
- School of Integrative Biology and Institute for Genomic Biology, University of Illinois, 505 South Goodwin Avenue, Urbana, IL, 61801, USA
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Pamela Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Ian Dworkin
- Department of Biology, McMaster University, 1280 Main St. West Hamilton, Ontario, L8S 4K1, Canada
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 East 3rd Street, Bloomington, IN 47405, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, 412 Life Sciences Building, Stony Brook, NY, 11794-5215, USA
| | - Siegfried Roth
- University of Cologne, Institute of Developmental Biology, Biocenter, Zülpicher Straße 47b, D-50674, Cologne, Germany
| | - Ehab Abouheif
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal Québec, H3A 1B1, Canada
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, Rua do Matão, Travessa 14, no. 101, 05508-090, São Paulo, Brazil
| | - Chi-Hua Chiu
- Department of Biological Sciences, Kent State University, OH, USA
| | - C Sarah Cohen
- Biology Department, Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3150 Paradise Drive, Tiburon, CA, 94920, USA
| | | | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA and Biotechnology Institute, University of Helsinki, 00014, Helsinki, Finland
| | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CA, B3H 4R2, USA
| | - Alan C Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, USA
| | - Deirdre C Lyons
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, P.O. Box 103610, Gainesville, FL, 32610, USA
| | - Joel Smith
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Chelsea Specht
- Plant and Microbial Biology, Department of Integrative Biology, University and Jepson Herbaria, University of California, Berkeley, CA, USA
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Scotland, UK
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, BioLabs 4103, Cambridge, MA, 02138, USA
| |
Collapse
|
450
|
Turner KG, Fréville H, Rieseberg LH. Adaptive plasticity and niche expansion in an invasive thistle. Ecol Evol 2015; 5:3183-97. [PMID: 26357544 PMCID: PMC4559060 DOI: 10.1002/ece3.1599] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 01/14/2023] Open
Abstract
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro-evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade-off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life-history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade-off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, "general-purpose" genotypes with broad environmental tolerances.
Collapse
Affiliation(s)
- Kathryn G Turner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
| | - Hélène Fréville
- UMR 1334 AGAP INRA2 place Pierre Viala, Montpellier Cedex 2, 34060, France
- UMR 5175 CEFE CNRS1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| |
Collapse
|