401
|
Baselga M, Alba JJ, Schuhmacher AJ. Impact of needle-point bipolar ionization system in the reduction of bioaerosols in collective transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158965. [PMID: 36162581 PMCID: PMC9500091 DOI: 10.1016/j.scitotenv.2022.158965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain
| | - Juan J Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain.
| |
Collapse
|
402
|
Nishandar SR, He Y, Princevac M, Edwards RD. Fate of Exhaled Droplets From Breathing and Coughing in Supermarket Checkouts and Passenger Cars. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302221148274. [PMID: 36644342 PMCID: PMC9834932 DOI: 10.1177/11786302221148274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The global pandemic of COVID-19 has highlighted the importance of understanding the role that exhaled droplets play in virus transmission in community settings. Computational Fluid Dynamics (CFD) enables systematic examination of roles the exhaled droplets play in the spread of SARS-CoV-2 in indoor environments. This analysis uses published exhaled droplet size distributions combined with terminal aerosol droplet size based on measured peak concentrations for SARS-CoV-2 RNA in aerosols to simulate exhaled droplet dispersion, evaporation, and deposition in a supermarket checkout area and rideshare car where close proximity with other individuals is common. Using air inlet velocity of 2 m/s in the passenger car and ASHRAE recommendations for ventilation and comfort in the supermarket, simulations demonstrate that exhaled droplets <20 μm that contain the majority of viral RNA evaporated leaving residual droplet nuclei that remain aerosolized in the air. Subsequently ~ 70% of these droplet nuclei deposited in the supermarket and the car with the reminder vented from the space. The maximum surface deposition of droplet nuclei/m2 for speaking and coughing were 2 and 819, 18 and 1387 for supermarket and car respectively. Approximately 15% of the total exhaled droplets (aerodynamic diameters 20-700 µm) were deposited on surfaces in close proximity to the individual. Due to the non-linear distribution of viral RNA across droplet sizes, however, these larger exhaled droplets that deposit on surfaces have low viral content. Maximum surface deposition of viral RNA was 70 and 1.7 × 103 virions/m2 for speaking and 2.3 × 104 and 9.3 × 104 virions/m2 for coughing in the supermarket and car respectively while the initial airborne concentration of viral RNA was 7 × 106 copies per ml. Integrating the droplet size distributions with viral load distributions, this study helps explain the apparent importance of inhalation exposures compared to surface contact observed in the pandemic.
Collapse
Affiliation(s)
- Sanika Ravindra Nishandar
- Department of Mechanical Engineering,
Bourns College of Engineering, University of California, Riverside, CA, USA
| | - Yucheng He
- Department of Mechanical Engineering,
Bourns College of Engineering, University of California, Riverside, CA, USA
| | - Marko Princevac
- Department of Mechanical Engineering,
Bourns College of Engineering, University of California, Riverside, CA, USA
| | - Rufus D Edwards
- Department of Epidemiology, Program in
Public Health, University of California Irvine, CA, USA
| |
Collapse
|
403
|
Glasser JW, Feng Z, Vo M, Jones JN, Clarke KEN. Analysis of serological surveys of antibodies to SARS-CoV-2 in the United States to estimate parameters needed for transmission modeling and to evaluate and improve the accuracy of predictions. J Theor Biol 2023; 556:111296. [PMID: 36208669 PMCID: PMC9532270 DOI: 10.1016/j.jtbi.2022.111296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022]
Abstract
Seroprevalence studies can estimate proportions of the population that have been infected or vaccinated, including infections that were not reported because of the lack of symptoms or testing. Based on information from studies in the United States from mid-summer 2020 through the end of 2021, we describe proportions of the population with antibodies to SARS-CoV-2 as functions of age and time. Slices through these surfaces at arbitrary times provide initial and target conditions for simulation modeling. They also provide the information needed to calculate age-specific forces of infection, attack rates, and - together with contact rates - age-specific probabilities of infection on contact between susceptible and infectious people. We modified the familiar Susceptible-Exposed-Infectious-Removed (SEIR) model to include features of the biology of COVID-19 that might affect transmission of SARS-CoV-2 and stratified by age and location. We consulted the primary literature or subject matter experts for contact rates and other parameter values. Using time-varying Oxford COVID-19 Government Response Tracker assessments of US state and DC efforts to mitigate the pandemic and compliance with non-pharmaceutical interventions (NPIs) from a YouGov survey fielded in the US during 2020, we estimate that the efficacy of social-distancing when possible and mask-wearing otherwise at reducing susceptibility or infectiousness was 31% during the fall of 2020. Initialized from seroprevalence among people having commercial laboratory tests for purposes other than SARS-CoV-2 infection assessments on 7 September 2020, our age- and location-stratified SEIR population model reproduces seroprevalence among members of the same population on 25 December 2020 quite well. Introducing vaccination mid-December 2020, first of healthcare and other essential workers, followed by older adults, people who were otherwise immunocompromised, and then progressively younger people, our metapopulation model reproduces seroprevalence among blood donors on 4 April 2021 less well, but we believe that the discrepancy is due to vaccinations being under-reported or blood donors being disproportionately vaccinated, if not both. As experimenting with reliable transmission models is the best way to assess the indirect effects of mitigation measures, we determined the impact of vaccination, conditional on NPIs. Results indicate that, during this period, vaccination substantially reduced infections, hospitalizations and deaths. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics."
Collapse
Affiliation(s)
- John W Glasser
- National Center for Immunization and Respiratory Diseases, CDC, USA.
| | - Zhilan Feng
- Department of Mathematics, Purdue University, USA; Division of Mathematical Sciences, NSF, USA
| | - MyVan Vo
- Department of Mathematics, Purdue University, USA
| | | | - Kristie E N Clarke
- Center For Surveillance, Epidemiology, and Laboratory Services, CDC, USA
| |
Collapse
|
404
|
Gu Z, Han J, Zhang L, Wang H, Luo X, Meng X, Zhang Y, Niu X, Lan Y, Wu S, Cao J, Lichtfouse E. Unanswered questions on the airborne transmission of COVID-19. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:725-739. [PMID: 36628267 PMCID: PMC9816530 DOI: 10.1007/s10311-022-01557-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.
Collapse
Affiliation(s)
- Zhaolin Gu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Liyuan Zhang
- School of Water and Environment, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Hongliang Wang
- Health Science Center, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Xiangzhao Meng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yue Zhang
- School of Architecture, Chang’an University, Xi’an, 710064 People’s Republic of China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yang Lan
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Shaowei Wu
- School of Public Health, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
- CNRS, IRD, INRAE, CEREGE, Aix-Marseille University, 13100, Aix-en-Provence, France
| |
Collapse
|
405
|
Zhang Z, Li X, Lyu K, Zhao X, Zhang F, Liu D, Zhao Y, Gao F, Hu J, Xu D. Exploring the Transmission Path, Influencing Factors and Risk of Aerosol Transmission of SARS-CoV-2 at Xi'an Xianyang International Airport. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:865. [PMID: 36613187 PMCID: PMC9820134 DOI: 10.3390/ijerph20010865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 genetic sequence results collected from native COVID-19 cases who waited or saw relatives off at Xi'an Xianyang International Airport were highly consistent with the imported cases. In order to explore the routes of transmission and influencing factors that may cause the transmission of SARS-CoV-2 at the airport, a field simulation experiment of aerosol diffusion was adopted based on epidemiological survey data and a detailed field investigation of airport structure and ventilation. The results showed that the inbound passengers waited for approximately 3 h in the rest area on the first level of the international arrival area (Zone E). During the period, masks were removed for eating and drinking, resulting in the viral aerosols rising from the first level to the second level with hot air. After deplaning, the inbound passengers handled the relevant procedures and passed through the corridor on the second floor. The local side wall of the corridor adopted fan coil air conditioning, combined with fresh air supply and personnel walking, resulting in airflow flowing to Zone E. After merging with diffused air containing virus aerosol from the first floor, it continued to spread upward to the connected third-layer area. There was a local suspended ceiling on the top of the third floor, but it was approximately 4 m high and connected to the corridor from Terminal 2 to Terminal 3. When the virus aerosol diffused above the Terminal 2-Terminal 3 corridor, where the temperature was low and the air diffused downward, it could cause an infection risk for people passing through the corridor. In addition, the investigation found that the exhaust pipes of the nucleic acid sampling rooms at the international arrival corridor were directly discharged outdoors without treatment. Only one exhaust pipe and poor ventilation in the bathroom in Zone E had a risk of viral aerosol diffusion. Therefore, the international arrival area should be set up alone or separated from the other areas by hard isolation to avoid the existence of communication between different areas that could cause viral aerosols to diffuse with airflow. The toilet ventilation should be increased to avoid the accumulation of viral aerosols at high concentrations. The exhaust pipes of the toilet and the nucleic acid sampling rooms should be equipped with disinfection and efficient filtration devices, and high-altitude emission should be adopted to reduce the risk of virus aerosol diffusion.
Collapse
Affiliation(s)
- Zhuona Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xia Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Keyang Lyu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoning Zhao
- Division of Chemical Analysis, Biology and Medicine, Beijing Institute of Metrology, Beijing 100012, China
| | - Feng Zhang
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Dong Liu
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Yonggang Zhao
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Fan Gao
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Jian Hu
- Xi’an Center for Disease Control and Prevention, Xi’an 710054, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
406
|
Negishi N, Yamano R, Hori T, Koura S, Maekawa Y, Sato T. Development of a high-speed bioaerosol elimination system for treatment of indoor air. BUILDING AND ENVIRONMENT 2023; 227:109800. [PMID: 36407015 PMCID: PMC9651995 DOI: 10.1016/j.buildenv.2022.109800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/12/2023]
Abstract
We developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 μm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period. The proposed system can be used to eliminate viruses in aerosols by forcibly depositing aerosols in a high-speed airflow onto a photocatalyst placed inside the system through inertial force and turbulent diffusion. Because the main component of the deposited bioaerosol is water, it evaporates after colliding with the photocatalyst, and the nonvolatile virus remains on the photocatalytic channel wall. The residual virus on the photocatalytic channel wall is mineralized via photocatalytic oxidation with UVA-LED irradiation in the channel. When this system was operated in a 4.5 m3 aerosol chamber, over 99.8% aerosols in the size range of 1-10 μm were removed within 15 min. The system continued delivering such performance with the continuous introduction of aerosols. Because this system exhibits excellent aerosol removal ability at a flow velocity of 5 m/s or higher, it is more suitable than other reactive air purification systems for treating large-volume spaces.
Collapse
Key Words
- AOP, advanced oxidation process
- Bioaerosol
- CFD, computational fluid dynamics
- COVID-19, coronavirus disease 2019
- DES, detached eddy simulation
- HEPA, high-efficiency particulate absorbing
- ISO, International Standard Organization
- Indoor air
- LES, Large eddy simulation
- RANS, Reynolds-averaged Navier–Stokes
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SCDLP, soya casein-digested lecithin polysorbate
- TiO2 photocatalyst
- UV, ultraviolet
- UVA, ultraviolet-A
- UVC, ultraviolet-C
- Windspeed
Collapse
Affiliation(s)
- Nobuaki Negishi
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Ryo Yamano
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Tomoko Hori
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Setsuko Koura
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Yuji Maekawa
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| | - Taro Sato
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| |
Collapse
|
407
|
Muacevic A, Adler JR, Virk J, Parikh T, Gopalakrishnan Ravikumar NP, Goti AM, Goyal L, Yashi K. The 2022 Monkeypox Epidemic and What Has Led to the Current State of the Disease in the US: A Systematic Review. Cureus 2023; 15:e33515. [PMID: 36779102 PMCID: PMC9904802 DOI: 10.7759/cureus.33515] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Monkeypox virus (MPOX) is a zoonotic disease in humans. It is similar genetically to its virus family member, smallpox. This virus has been studied since the 1970s. The virus remains endemic to the Congo and West African regions, but non-endemic spreads have been cited. The most recent non-endemic outbreak in the spring of 2022 amidst the current COVID-19 pandemic is of interest due to its impact on global medical, economic, and societal climates. This literature review aims to highlight the virology, clinical signs and symptoms, diagnosis, prevention, and treatment of MPOX and discuss the social implications of the recent 2022 outbreak. We hope this review can pinpoint important clinical pearls of the MPOX virus and its societal impacts to further promote important discussion of this virus and its disease.
Collapse
|
408
|
Hernaez B, Muñoz-Gómez A, Sanchiz A, Orviz E, Valls-Carbo A, Sagastagoitia I, Ayerdi O, Martín R, Puerta T, Vera M, Cabello N, Vergas J, Prieto C, Pardo-Figuerez M, Negredo A, Lagarón JM, del Romero J, Estrada V, Alcamí A. Monitoring monkeypox virus in saliva and air samples in Spain: a cross-sectional study. THE LANCET. MICROBE 2023; 4:e21-e28. [PMID: 36436538 PMCID: PMC9691259 DOI: 10.1016/s2666-5247(22)00291-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND The transmission of monkeypox virus occurs through direct contact, but transmission through saliva or exhaled droplets and aerosols has not yet been investigated. We aimed to assess the presence of monkeypox virus DNA and infectious virus in saliva samples and droplets and aerosols exhaled from patients infected with monkeypox virus. METHODS We did a cross-sectional study in patients with monkeypox confirmed by PCR who attended two health centres in Madrid, Spain. For each patient, we collected samples of saliva, exhaled droplets within a mask, and aerosols captured by air filtration through newly developed nanofiber filters. We evaluated the presence of monkeypox virus in the samples by viral DNA detection by quantitative PCR (qPCR) and isolation of infectious viruses in cell cultures. FINDINGS Between May 18 and July 15, 2022, 44 patients with symptomatic monkeypox attended two health centres in Madrid and were included in the study. All were cisgender men, with a median age of 35·0 years (IQR 11·3). We identified high loads of monkeypox virus DNA by qPCR in 35 (85%) of 41 saliva samples. Infectious monkeypox virus was recovered from 22 (67%) of 33 saliva samples positive for monkeypox virus DNA. We also found a significant association between the number of affected cutaneous areas or general symptoms and the viral load present in saliva samples. Droplets exhaled from patients with monkeypox, detected inside a mask, contained monkeypox virus DNA in 32 (71%) of 45 samples, with two of the 32 positive samples showing the presence of the infectious virus. Monkeypox virus DNA in aerosols, collected from the medical consultation room, were detected in 27 (64%) of 42 samples, despite patients wearing an FFP2 mask during the visit. Infectious virus was not recovered from aerosol samples. High levels of monkeypox virus DNA were identified in aerosols collected from a hospital isolation room housing a patient with monkeypox. INTERPRETATION The identification of high viable monkeypox virus loads in saliva in most patients with monkeypox and the finding of monkeypox virus DNA in droplets and aerosols warrants further epidemiological studies to evaluate the potential relevance of the respiratory route of infection in the 2022 monkeypox virus outbreak. FUNDING EU, Consejo Superior de Investigaciones Científicas, and Ciberinfec.
Collapse
Affiliation(s)
- Bruno Hernaez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Africa Sanchiz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Eva Orviz
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | | | - Iñigo Sagastagoitia
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain,Ciber de Enfermedades Infecciosas, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Teresa Puerta
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Mar Vera
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Noemi Cabello
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain,Ciber de Enfermedades Infecciosas, Madrid, Spain
| | - Jorge Vergas
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Cristina Prieto
- Instituto de Agroquímica y Tecnología de Alimentos, Valencia, Spain
| | | | - Anabel Negredo
- Ciber de Enfermedades Infecciosas, Madrid, Spain,Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jorge del Romero
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain
| | - Vicente Estrada
- Centro Sandoval and Hospital Universitario Clínico de San Carlos, IdISSC, Madrid, Spain; Ciber de Enfermedades Infecciosas, Madrid, Spain.
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
409
|
Ratliff KM, Oudejans L, Archer J, Calfee W, Gilberry JU, Hook DA, Schoppman WE, Yaga RW, Brooks L, Ryan S. Large-scale evaluation of microorganism inactivation by bipolar ionization and photocatalytic devices. BUILDING AND ENVIRONMENT 2023; 227:109804. [PMID: 36407013 PMCID: PMC9652099 DOI: 10.1016/j.buildenv.2022.109804] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has raised awareness in the spread of disease via airborne transmission. As a result, there has been increasing interest in technologies that claim to reduce concentrations of airborne pathogens in indoor environments. The efficacy of many of these emerging technologies is not fully understood, and the testing that has been done is often conducted at a small scale and not representative of applied settings. There is currently no standard test method for evaluating air treatment technologies, making it difficult to compare results across studies or technology types. Here, a consistent testing approach in an operational-scale test chamber with a mock recirculating heating, ventilation, and air conditioning (HVAC) system was used to evaluate the efficacy of bipolar ionization and photocatalytic devices against the non-enveloped bacteriophage MS2 in the air and on surfaces. Statistically significant differences between replicate sets of technology tests and control tests (without technologies active) are apparent after 1 h, ranging to a maximum of 0.88 log10 reduction for the bipolar ionization tests and 1.8 log10 reduction for the photocatalytic device tests. It should be noted that ozone concentrations were elevated above background concentrations in the test chamber during the photocatalytic device testing. No significant differences were observed between control and technology tests in terms of the amount of MS2 deposited or inactivated on surfaces during testing. A standardized, large-scale testing approach, with replicate testing and time-matched control conditions, is necessary for contextualizing laboratory efficacy results, translating them to real-world conditions, and for facilitating technology comparisons.
Collapse
Affiliation(s)
- Katherine M Ratliff
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lukas Oudejans
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - John Archer
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Worth Calfee
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | - Robert W Yaga
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - Lance Brooks
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shawn Ryan
- Center for Environmental Solutions and Emergency Response, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
410
|
Lee I, Jeon E, Lee J. On-site bioaerosol sampling and detection in microfluidic platforms. Trends Analyt Chem 2023; 158:116880. [PMID: 36514783 PMCID: PMC9731818 DOI: 10.1016/j.trac.2022.116880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
As the recent coronavirus disease (COVID-19) pandemic and several severe illnesses such as Middle East respiratory syndrome coronavirus (MERS-CoV), Influenza A virus (IAV) flu, and severe acute respiratory syndrome (SARS) have been found to be airborne, the importance of monitoring bioaerosols for the control and prevention of airborne epidemic diseases outbreaks is increasing. However, current aerosol collection and detection technologies may be limited to on-field use for real-time monitoring because of the relatively low concentrations of targeted bioaerosols in air samples. Microfluidic devices have been used as lab-on-a-chip platforms and exhibit outstanding capabilities in airborne particulate collection, sample processing, and target molecule analysis, thereby highlighting their potential for on-site bioaerosol monitoring. This review discusses the measurement of airborne microorganisms from air samples, including sources and transmission of bioaerosols, sampling strategies, and analytical methodologies. Recent advancements in microfluidic platforms have focused on bioaerosol sample preparation strategies, such as sorting, concentrating, and extracting, as well as rapid and field-deployable detection methods for analytes on microfluidic chips. Furthermore, we discuss an integrated platform for on-site bioaerosol analyses. We believe that our review significantly contributes to the literature as it assists in bridging the knowledge gaps in bioaerosol monitoring using microfluidic platforms.
Collapse
Affiliation(s)
- Inae Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
| | - Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, South Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
411
|
Schuchmann P, Scheuch G, Naumann R, Keute M, Lücke T, Zielen S, Brinkmann F. Exhaled aerosols among PCR-confirmed SARS-CoV-2-infected children. Front Pediatr 2023; 11:1156366. [PMID: 37152322 PMCID: PMC10160682 DOI: 10.3389/fped.2023.1156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Background Available data on aerosol emissions among children and adolescents during spontaneous breathing are limited. Our aim was to gain insight into the role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and whether aerosol measurements among children can be used to help detect so-called superspreaders-infected individuals with extremely high numbers of exhaled aerosol particles. Methods In this prospective study, the aerosol concentrations of SARS-CoV-2 PCR-positive and SARS-CoV-2 PCR-negative children and adolescents (2-17 years) were investigated. All subjects were asked about their current health status and medical history. The exhaled aerosol particle counts of PCR-negative and PCR-positive subjects were measured using the Resp-Aer-Meter (Palas GmbH, Karlsruhe, Germany) and compared using linear regression. Results A total of 250 children and adolescents were included in this study, 105 of whom were SARS-CoV-2 positive and 145 of whom were SARS-CoV-2 negative. The median age in both groups was 9 years (IQR 7-11 years). A total of 124 (49.6%) participants were female, and 126 (50.4%) participants were male. A total of 81.9% of the SARS-CoV-2-positive group had symptoms of viral infection. The median particle count of all individuals was 79.55 particles/liter (IQR 44.55-141.15). There was a tendency for older children to exhale more particles (1-5 years: 79.54 p/L; 6-11 years: 77.96 p/L; 12-17 years: 98.63 p/L). SARS-CoV-2 PCR status was not a bivariate predictor (t = 0.82, p = 0.415) of exhaled aerosol particle count; however, SARS-CoV-2 status was shown to be a significant predictor in a multiple regression model together with age, body mass index (BMI), COVID-19 vaccination, and past SARS-CoV-2 infection (t = 2.81, p = 0.005). COVID-19 vaccination status was a highly significant predictor of exhaled aerosol particles (p < .001). Conclusion During SARS-CoV-2 infection, children and adolescents did not have elevated aerosol levels. In addition, no superspreaders were found.
Collapse
Affiliation(s)
- Pia Schuchmann
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
- Pediatric Practice (Dr. Voigt, Dr. Heier), Stadtbergen, Germany
- Correspondence: Pia Schuchmann
| | - Gerhard Scheuch
- GS Bio-Inhalation GmbH, Headquarters & Logistics, Gemuenden, Germany
| | | | - Marius Keute
- Independent Statistical Consultant, Warendorf, Germany
| | - Thomas Lücke
- Department of Children and Adolescents, University Children’s Hospital, Ruhr University of Bochum, Bochum, Germany
| | - Stefan Zielen
- Department for Children and Adolescents, Allergology, Pulmonology and Cystic Fibrosis, University Hospital, Goethe University, Frankfurt, Germany
| | - Folke Brinkmann
- Department of Pediatric Pneumology, University Children's Hospital, Ruhr University of Bochum, Bochum, Germany
- Department of Pediatric Pneumology and Allergology, University Children’s Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
412
|
Thomberg T, Bulgarin H, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Flores March NM, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. The anti SARS-CoV-2 activity of nanofibrous filter materials activated with metal clusters. ATMOSPHERIC ENVIRONMENT: X 2023; 17:100212. [PMID: 36915669 PMCID: PMC9984305 DOI: 10.1016/j.aeaoa.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Nanofibrous filter materials were prepared by electrospinning a solution of 28 wt% poly(vinylidene fluoride) in N,N-dimethylacetamide with and without the addition of 2 wt% AgNO3, Cu(NO3)2·2.5H2O or ZnCl2. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, inductively coupled plasma mass spectroscopy, thermogravimetric analysis, contact angle measurement, nitrogen sorption, and mercury intrusion porosimetry methods were used for the characterization of physical structure as well as the chemical composition of the electrospun materials. Particle filtration efficiency and antiviral activity against the SARS-CoV-2 alpha variant were tested in order to estimate the suitability of the prepared electrospun filter materials for application as indoor air filtration systems with virucidal properties. All filter materials prepared with salts demonstrated very high particle filtration efficiency (≥98.0%). The best antiviral activity was demonstrated by a material containing Cu(NO3)2·2.5H2O in the spinning solution, which displayed the decrease in the number of infectious virions by three orders of magnitude after a contact time of 12 h. Materials with the addition of AgNO3 and ZnCl2 decreased the number of infectious virions after the same contact time by only ∼8 and ∼11 times, respectively.
Collapse
Affiliation(s)
- T Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - H Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - A Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - J Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - T Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - R Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - M Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - N M Flores March
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - H Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411, Tartu, Estonia
| | - M Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - P Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - K Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - M Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - L Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - A Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - E Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
413
|
He Y, Chen J, Shi W, Shi J, Ma T, Wang X. Can nonvolatile tastants be smelled during food oral processing? Chem Senses 2023; 48:bjad028. [PMID: 37590987 PMCID: PMC10516591 DOI: 10.1093/chemse/bjad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 08/19/2023] Open
Abstract
While accumulating evidence implied the involvement of retro-nasal sensation in the consumption of nonvolatile taste compounds, it is still unclear whether it was caused by the taste compounds themselves, and if so, how can they migrate from the oral to nasal cavity. At first, we proposed aerosol particles as an alternative oral-nasal mass transfer mechanism. The high-speed camera approved that aerosol particles could be generated by the typical oral and pharynx actions during food oral processing; while the narrow-band imaging of nasal cleft and mass spectrometry of nostril-exhaled air approved the migration of aerosol within the oral-nasal route. Then, the "smelling" of taste compounds within the aerosol particles was testified. The four-alternative forced choices (4AFC) approved that the potential volatile residues or contaminants within the headspace air of pure taste solution cannot arouse significant smell, while the taste compounds embedded in the in vitro prepared aerosol particles can be "smelled" via the ortho route. The "smell" of sucrose is very different from its taste and the "smell" of quinine, implying its actual olfaction. The sweetness intensity of sucrose solution was also reduced when the volunteers' noses were clipped, indicating the involvement of retro-nasal sensation during its drinking. At last, the efficiency of aerosol as a mechanism of oral-nasal mass transfer was demonstrated to be comparable with the volatile molecules under the experimental condition, giving it the potential to be a substantial and unique source of retro-nasal sensation during food oral processing.
Collapse
Affiliation(s)
- Yue He
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jianshe Chen
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Weiyao Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Jingang Shi
- EPC Natural Products Co., Ltd., Beijing, China
| | - Tian Ma
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xinmiao Wang
- Laboratory of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
414
|
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, Russo J, Oliveira S, Morris C, Bogetti A, Trifan A, Brace A, Sztain T, Clyde A, Ma H, Chennubhotla C, Lee H, Turilli M, Khalid S, Tamayo-Mendoza T, Welborn M, Christensen A, Smith DG, Qiao Z, Sirumalla SK, O'Connor M, Manby F, Anandkumar A, Hardy D, Phillips J, Stern A, Romero J, Clark D, Dorrell M, Maiden T, Huang L, McCalpin J, Woods C, Gray A, Williams M, Barker B, Rajapaksha H, Pitts R, Gibbs T, Stone J, Zuckerman DM, Mulholland AJ, Miller T, Jha S, Ramanathan A, Chong L, Amaro RE. #COVIDisAirborne: AI-enabled multiscale computational microscopy of delta SARS-CoV-2 in a respiratory aerosol. THE INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS 2023; 37:28-44. [PMID: 36647365 PMCID: PMC9527558 DOI: 10.1177/10943420221128233] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Russo
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | - Anda Trifan
- Argonne National Laboratory, Lemont, IL, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexander Brace
- Argonne National Laboratory, Lemont, IL, USA
- University of Chicago, Chicago, IL, USA
| | - Terra Sztain
- UC San Diego, La Jolla, CA, USA
- Freie Universitat Berlin
| | - Austin Clyde
- Argonne National Laboratory, Lemont, IL, USA
- University of Chicago, Chicago, IL, USA
| | - Heng Ma
- Argonne National Laboratory, Lemont, IL, USA
| | | | - Hyungro Lee
- Brookhaven National Lab and Rutgers University
| | | | | | | | | | | | | | - Zhuoran Qiao
- California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Anima Anandkumar
- California Institute of Technology, Pasadena, CA, USA
- NVIDIA Corp, Santa Clara, CA, USA
| | - David Hardy
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Phillips
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | - Tom Maiden
- Pittsburgh Supercomputing Center, Pittsburgh, PA, USA
| | - Lei Huang
- Texas Advanced Computing Center, Austin, TX, USA
| | | | | | | | | | | | | | | | | | - John Stone
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
- NVIDIA Corp, Santa Clara, CA, USA
| | | | | | - Thomas Miller
- Entos, Inc., San Diego, CA, USA
- California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | |
Collapse
|
415
|
Hayden M, Morrow B, Yang W, Wang J. Quantifying the role of airborne transmission in the spread of COVID-19. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:587-612. [PMID: 36650780 DOI: 10.3934/mbe.2023027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is an ongoing debate on the different transmission modes of SARS-CoV-2 and their relative contributions to the pandemic. In this paper, we employ a simple mathematical model, which incorporates both the human-to-human and environment-to-human transmission routes, to study the transmission dynamics of COVID-19. We focus our attention on the role of airborne transmission in the spread of the disease in a university campus setting. We conduct both mathematical analysis and numerical simulation, and incorporate published experimental data for the viral concentration in the air to fit model parameters. Meanwhile, we compare the outcome to that of the standard SIR model, utilizing a perturbation analysis in the presence of multiple time scales. Our data fitting and numerical simulation results show that the risk of airborne transmission for SARS-CoV-2 strongly depends on how long the virus can remain viable in the air. If the time for this viability is short, the airborne transmission route would be inconsequential in shaping the overall transmission risk and the total infection size. On the other hand, if the infectious virus can persist in aerosols beyond a few hours, then airborne transmission could play a much more significant role in the spread of COVID-19.
Collapse
Affiliation(s)
- Matthew Hayden
- Department of Mathematics, Indiana University, Bloomington, IN 47405, USA
| | - Bryce Morrow
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Wesley Yang
- Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jin Wang
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| |
Collapse
|
416
|
Cilloniz C, Luna CM, Hurtado JC, Marcos MÁ, Torres A. Respiratory viruses: their importance and lessons learned from COVID-19. Eur Respir Rev 2022; 31:220051. [PMID: 36261158 PMCID: PMC9724808 DOI: 10.1183/16000617.0051-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory virus infection can cause severe illnesses capable of inducing acute respiratory failure that can progress rapidly to acute respiratory distress syndrome (ARDS). ARDS is related to poor outcomes, especially in individuals with a higher risk of infection, such as the elderly and those with comorbidities, i.e. obesity, asthma, diabetes mellitus and chronic respiratory or cardiovascular disease. Despite this, effective antiviral treatments available for severe viral lung infections are scarce. The coronavirus disease 2019 (COVID-19) pandemic demonstrated that there is also a need to understand the role of airborne transmission of respiratory viruses. Robust evidence supporting this exists, but better comprehension could help implement adequate measures to mitigate respiratory viral infections. In severe viral lung infections, early diagnosis, risk stratification and prognosis are essential in managing patients. Biomarkers can provide reliable, timely and accessible information possibly helpful for clinicians in managing severe lung viral infections. Although respiratory viruses highly impact global health, more research is needed to improve care and prognosis of severe lung viral infections. In this review, we discuss the epidemiology, diagnosis, clinical characteristics, management and prognosis of patients with severe infections due to respiratory viruses.
Collapse
Affiliation(s)
- Catia Cilloniz
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| | - Carlos M Luna
- Pneumology Division, Hospital of Clínicas, Faculty of Medicine, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Carlos Hurtado
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - María Ángeles Marcos
- Dept of Microbiology, Hospital Clinic, Universitat de Barcelona, ISGlobal, Barcelona, Spain
| | - Antoni Torres
- Pneumology Dept, Respiratory Institute, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (Ciberes), Barcelona, Spain
| |
Collapse
|
417
|
del Álamo C, Vázquez-Calvo Á, Sanchiz Á, Rodríguez-Caravaca G, Martín R, Hernáez B, Méndez-Vigo-Carranza P, Sánchez García-Casarrubios J, Alcamí A, Pérez-Díaz JL. Fast Air-to-Liquid Sampler Detects Surges in SARS-CoV-2 Aerosol Levels in Hospital Rooms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:576. [PMID: 36612897 PMCID: PMC9819203 DOI: 10.3390/ijerph20010576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
The COVID-19 pandemic highlighted the dangers of airborne pathogen transmission. SARS-CoV-2 is known to be transmitted through aerosols; however, little is known about the dynamics of these aerosols in real environments, the conditions, and the minimum viral load required for infection. Efficiently measuring and capturing pathogens present in the air would help to understand the infection process. Air samplers usually take several hours to obtain an air sample. In this work a fast (1-2 min) method for capturing bioaerosols into a liquid medium has been tested in hospital rooms with COVID-19 patients. This fast sampling allows detecting transient levels of aerosols in the air. SARS-CoV-2 RNA is detected in aerosols from several hospital rooms at different levels. Interestingly, there are sudden boosts of the SARS-CoV-2 load in the air, suggesting that SARS-CoV-2 could be released abundantly at certain moments. These results show that the distribution of SARS-CoV-2-containing aerosols is not homogeneous in the hospital room. This technology is a fast and effective tool for capturing airborne matter in a very short time, which allows for fast decision-making any kind of hazard in the air is detected. It is also useful for a better understanding of aerosols dynamics.
Collapse
Affiliation(s)
- Cristina del Álamo
- Escuela Politécnica, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
| | - Ángela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - África Sanchiz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Preventive Medicine Service, Hospital Universitario Fundación Alcorcón, 28922 Alcorcón, Madrid, Spain
- Department of Medical Specialities and Public Health, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | | | | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
418
|
Semi-automated contact tracing and management of contact precautions during the COVID-19 pandemic within a tertiary hospital. Infect Prev Pract 2022; 5:100266. [PMID: 36575771 PMCID: PMC9780020 DOI: 10.1016/j.infpip.2022.100266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background Evaluation of a spreadsheet-based COVID-19 contact-tracing tool (CTT) and determination of risk factors for SARS-CoV-2 transmission among hospital staff members. Design Observational descriptive study on the application and acceptance of the CTT. Retrospective case-control study for SARS-CoV-2 transmission risk factor determination and for evaluation of the CTT's risk stratification algorithm. Setting: Tertiary hospital in Germany. Participants 3514 contacts of hospital staff members to 322 SARS-CoV-2-positive cases. Methods A case-control study was performed to identify risk factors for SARS-CoV-2 transmission and for unprotected contacts among staff members. To evaluate strengths and weaknesses of the CTT performance statistics were analyzed and users completed a questionnaire measuring satisfaction and acceptance of the tool. Results In 2021, the CTT was used for the algorithm-based semi-automated management of 3514 in-hospital contacts. The tool determined the risk category of individual contacts and generated messages for the information of the local public health department, the in-hospital SARS-CoV-2 test center and all staff members who had contact to the index case. Staff members without regular contacts to patients had significantly (P<0.005) more unprotected contacts to other staff members (25.5% vs. 9.6%) and more SARS-CoV-2 transmissions per contact (4.9% vs. 0.6%) than staff members with frequent contacts to patients. The profession "nurse or medical technical service" was associated with significantly (P<0.005) more unprotected contacts between staff members (11.0% vs. 2.6%) compared to the profession "physician". Conclusions Digital tools can increase the efficiency of in-hospital contact tracing. The CTT enable a timely systematic analysis of risk factors among staff members.
Collapse
|
419
|
Gao L, Konomi S. Indoor Spatiotemporal Contact Analytics Using Landmark-Aided Pedestrian Dead Reckoning on Smartphones. SENSORS (BASEL, SWITZERLAND) 2022; 23:113. [PMID: 36616711 PMCID: PMC9823719 DOI: 10.3390/s23010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the prevalence of COVID-19, providing safe environments and reducing the risks of virus exposure play pivotal roles in our daily lives. Contact tracing is a well-established and widely-used approach to track and suppress the spread of viruses. Most digital contact tracing systems can detect direct face-to-face contact based on estimated proximity, without quantifying the exposed virus concentration. In particular, they rarely allow for quantitative analysis of indirect environmental exposure due to virus survival time in the air and constant airborne transmission. In this work, we propose an indoor spatiotemporal contact awareness framework (iSTCA), which explicitly considers the self-containing quantitative contact analytics approach with spatiotemporal information to provide accurate awareness of the virus quanta concentration in different origins at various times. Smartphone-based pedestrian dead reckoning (PDR) is employed to precisely detect the locations and trajectories for distance estimation and time assessment without the need to deploy extra infrastructure. The PDR technique we employ calibrates the accumulative error by identifying spatial landmarks automatically. We utilized a custom deep learning model composed of bidirectional long short-term memory (Bi-LSTM) and multi-head convolutional neural networks (CNNs) for extracting the local correlation and long-term dependency to recognize landmarks. By considering the spatial distance and time difference in an integrated manner, we can quantify the virus quanta concentration of the entire indoor environment at any time with all contributed virus particles. We conducted an extensive experiment based on practical scenarios to evaluate the performance of the proposed system, showing that the average positioning error is reduced to less than 0.7 m with high confidence and demonstrating the validity of our system for the virus quanta concentration quantification involving virus movement in a complex indoor environment.
Collapse
Affiliation(s)
- Lulu Gao
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shin’ichi Konomi
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
420
|
Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases. BIOSENSORS 2022; 13:12. [PMID: 36671847 PMCID: PMC9855565 DOI: 10.3390/bios13010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, respiratory diseases have increasingly become a global concern, largely due to the outbreak of Coronavirus Disease 2019 (COVID-19). This inevitably causes great attention to be given to the development of highly efficient and minimal or non-invasive methods for the diagnosis of respiratory diseases. And electrochemical biosensors based on carbon nanomaterials show great potential in fulfilling the requirement, not only because of the superior performance of electrochemical analysis, but also given the excellent properties of the carbon nanomaterials. In this paper, we review the most recent advances in research, development and applications of electrochemical biosensors based on the use of carbon nanomaterials for diagnosis of human respiratory diseases in the last 10 years. We first briefly introduce the characteristics of several common human respiratory diseases, including influenza, COVID-19, pulmonary fibrosis, tuberculosis and lung cancer. Then, we describe the working principles and fabrication of various electrochemical biosensors based on carbon nanomaterials used for diagnosis of these respiratory diseases. Finally, we summarize the advantages, challenges, and future perspectives for the currently available electrochemical biosensors based on carbon nanomaterials for detecting human respiratory diseases.
Collapse
|
421
|
Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, Cheng Y, Wang Z, Li WJ, Chen J, Leung MKH, Yang Z. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun 2022; 13:7835. [PMID: 36539426 PMCID: PMC9768124 DOI: 10.1038/s41467-022-35521-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Electrostatic adsorption is an important complement to the mechanical filtration for high-efficiency air filtering. However, the electrostatic charge decays with time, especially in humid conditions. In this work, a self-charging air filter is presented to capture airborne particles in an efficient and long-lasting manner without the need of external power sources. Leveraging the triboelectric effect between the electrospun poly(vinylidene fluoride) nanofiber film and nylon fabric, the self-charging air filter-based mask excited by breathing can continuously replenish electrostatic charges. As a result, its effective lifespan is up to 60 hours (including 30 hours of wearing), with a minimum filtration efficiency of 95.8% for 0.3-μm particles. The filtration efficiency and lifespan are significantly higher than those of a commercial surgical mask. Furthermore, we uncover the quantitative relation between filtration efficiency and surface electrostatic potential. This work provides an effective strategy to significantly prolong the electrostatic adsorption efficacy for high-performance air-filtering masks.
Collapse
Affiliation(s)
- Zehua Peng
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
| | - Jihong Shi
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ying Hong
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuemu Li
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
| | - Weiwei Zhang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
| | - Yongliang Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Zuankai Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wen Jung Li
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael K H Leung
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
422
|
Knobloch JK, Pfefferle S, Lütgehetmann M, Nörz D, Klupp EM, Belmar Campos CE, Kluge S, Aepfelbacher M, Knobling B, Franke G. Infectivity of SARS-CoV-2 on Inanimate Surfaces: Don't Trust Ct Value. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17074. [PMID: 36554950 PMCID: PMC9779331 DOI: 10.3390/ijerph192417074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 RNA is frequently identified in patient rooms and it was speculated that the viral load quantified by PCR might correlate with infectivity of surfaces. To evaluate Ct values for the prediction of infectivity, we investigated contaminated surfaces and Ct-value changes after disinfection. Viral RNA was detected on 37 of 143 investigated surfaces of an ICU. However, virus isolation failed for surfaces with a high viral RNA load. Also, SARS-CoV-2 could not be cultivated from surfaces artificially contaminated with patient specimens. In order to evaluate the significance of Ct values more precisely, we used surrogate enveloped bacteriophage Φ6. A strong reduction in Φ6 was achieved by three different disinfection methods. Despite a strong reduction in viability almost no change in the Ct values was observed for UV-C and alcoholic surface disinfectant. Disinfection using ozone resulted in a lack of Φ6 recovery as well as a detectable shift in Ct values indicating strong degradation of the viral RNA. The observed lack of significant effects on the detectable viral RNA after effective disinfection suggest that quantitative PCR is not suitable for predicting the infectivity of SARS-CoV-2 on inanimate surfaces. Ct values should therefore not be considered as markers for infectivity in this context.
Collapse
Affiliation(s)
- Johannes K. Knobloch
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Susanne Pfefferle
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Dominik Nörz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Eva M. Klupp
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Cristina E. Belmar Campos
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Birte Knobling
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gefion Franke
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
423
|
Santos ACF, Martel F, Freire CSR, Ferreira BJML. Polymeric Materials as Indispensable Tools to Fight RNA Viruses: SARS-CoV-2 and Influenza A. Bioengineering (Basel) 2022; 9:816. [PMID: 36551022 PMCID: PMC9816944 DOI: 10.3390/bioengineering9120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Towards the end of 2019 in Wuhan, suspicions of a new dangerous virus circulating in the air began to arise. It was the start of the world pandemic coronavirus disease 2019 (COVID-19). Since then, considerable research data and review papers about this virus have been published. Hundreds of researchers have shared their work in order to achieve a better comprehension of this disease, all with the common goal of overcoming this pandemic. The coronavirus is structurally similar to influenza A. Both are RNA viruses and normally associated with comparable infection symptoms. In this review, different case studies targeting polymeric materials were appraised to highlight them as an indispensable tool to fight these RNA viruses. In particular, the main focus was how polymeric materials, and their versatile features could be applied in different stages of viral disease, i.e., in protection, detection and treatment.
Collapse
Affiliation(s)
- Ariana C. F. Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Martel
- Biochemistry Unit, Biomedicine Department, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S-Institute of Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Carmen S. R. Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bárbara J. M. L. Ferreira
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
424
|
Kapoor NR, Kumar A, Kumar A, Zebari DA, Kumar K, Mohammed MA, Al-Waisy AS, Albahar MA. Event-Specific Transmission Forecasting of SARS-CoV-2 in a Mixed-Mode Ventilated Office Room Using an ANN. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16862. [PMID: 36554744 PMCID: PMC9779012 DOI: 10.3390/ijerph192416862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The emerging novel variants and re-merging old variants of SARS-CoV-2 make it critical to study the transmission probability in mixed-mode ventilated office environments. Artificial neural network (ANN) and curve fitting (CF) models were created to forecast the R-Event. The R-Event is defined as the anticipated number of new infections that develop in particular events occurring over the course of time in any defined space. In the spring and summer of 2022, real-time data for an office environment were collected in India in a mixed-mode ventilated office space in a composite climate. The performances of the proposed CF and ANN models were compared with respect to traditional statistical indicators, such as the correlation coefficient, RMSE, MAE, MAPE, NS index, and a20-index, in order to determine the merit of the two approaches. Thirteen input features, namely the indoor temperature (TIn), indoor relative humidity (RHIn), area of opening (AO), number of occupants (O), area per person (AP), volume per person (VP), CO2 concentration (CO2), air quality index (AQI), outer wind speed (WS), outdoor temperature (TOut), outdoor humidity (RHOut), fan air speed (FS), and air conditioning (AC), were selected to forecast the R-Event as the target. The main objective was to determine the relationship between the CO2 level and R-Event, ultimately producing a model for forecasting infections in office building environments. The correlation coefficients for the CF and ANN models in this case study were 0.7439 and 0.9999, respectively. This demonstrates that the ANN model is more accurate in R-Event prediction than the curve fitting model. The results show that the proposed ANN model is reliable and significantly accurate in forecasting the R-Event values for mixed-mode ventilated offices.
Collapse
Affiliation(s)
- Nishant Raj Kapoor
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Ashok Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Architecture and Planning Department, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Anuj Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Building Energy Efficiency Division, CSIR-Central Building Research Institute, Roorkee 247667, India
| | - Dilovan Asaad Zebari
- Department of Computer Science, College of Science, Nawroz University, Duhok 42001, Iraq
| | - Krishna Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology, Roorkee 247667, India
| | - Mazin Abed Mohammed
- College of Computer Science and Information Technology, University of Anbar, Anbar 31001, Iraq
| | - Alaa S. Al-Waisy
- Computer Technologies Engineering Department, Information Technology College, Imam Ja’afar Al-Sadiq University, Baghdad 10064, Iraq
| | - Marwan Ali Albahar
- School of Computer Science, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| |
Collapse
|
425
|
Buonanno G, Ricolfi L, Morawska L, Stabile L. Increasing ventilation reduces SARS-CoV-2 airborne transmission in schools: A retrospective cohort study in Italy's Marche region. Front Public Health 2022; 10:1087087. [PMID: 36568748 PMCID: PMC9787545 DOI: 10.3389/fpubh.2022.1087087] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction While increasing the ventilation rate is an important measure to remove inhalable virus-laden respiratory particles and lower the risk of infection, direct validation in schools with population-based studies is far from definitive. Methods We investigated the strength of association between ventilation and SARS-CoV-2 transmission reported among the students of Italy's Marche region in more than 10,000 classrooms, of which 316 were equipped with mechanical ventilation. We used ordinary and logistic regression models to explore the relative risk associated with the exposure of students in classrooms. Results and discussion For classrooms equipped with mechanical ventilation systems, the relative risk of infection of students decreased at least by 74% compared with a classroom with only natural ventilation, reaching values of at least 80% for ventilation rates >10 L s-1 student-1. From the regression analysis we obtained a relative risk reduction in the range 12%15% for each additional unit of ventilation rate per person. The results also allowed to validate a recently developed predictive theoretical approach able to estimate the SARS-CoV-2 risk of infection of susceptible individuals via the airborne transmission route. We need mechanical ventilation systems to protect students in classrooms from airborne transmission; the protection is greater if ventilation rates higher than the rate needed to ensure indoor air quality (>10 L s-1 student-1) are adopted. The excellent agreement between the results from the retrospective cohort study and the outcome of the predictive theoretical approach makes it possible to assess the risk of airborne transmission for any indoor environment.
Collapse
Affiliation(s)
- Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Ricolfi
- Department of Psychology, University of Turin, Turin, Italy
- David Hume Foundation, Turin, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| |
Collapse
|
426
|
Grillenzoni C. Robust time-series analysis of the effects of environmental factors on the CoViD-19 pandemic in the area of Milan (Italy) in the years 2020-21. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100026. [PMID: 37520076 PMCID: PMC9458756 DOI: 10.1016/j.heha.2022.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 08/01/2023]
Abstract
The effects of environmental factors on the spread of the CoViD-19 pandemic have been widely debated in the scientific literature. The results are important for understanding the outbreak dynamics and for defining health measures of prevention and containment. Using multivariate autoregressive (AR) models and robust statistics of causality, this paper analyzes the effect of 19 time series (10 physical and 9 social) on 3 daily CoViD-19 series (infected, hospitalized, deaths) in the Milan area for about 16 months. Robust M-estimation shows the weak effect of climatic and pollution factors, while authority restrictions, people mobility, smart working and vaccination rate have a significant impact. In particular, the vaccination campaign is important for reducing hospitalizations and deaths.
Collapse
|
427
|
Qiu G, Spillmann M, Tang J, Zhao Y, Tao Y, Zhang X, Geschwindner H, Saleh L, Zingg W, Wang J. On-Site Quantification and Infection Risk Assessment of Airborne SARS-CoV-2 Virus Via a Nanoplasmonic Bioaerosol Sensing System in Healthcare Settings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204774. [PMID: 36310114 PMCID: PMC9762303 DOI: 10.1002/advs.202204774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Indexed: 05/31/2023]
Abstract
On-site quantification and early-stage infection risk assessment of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high spatiotemporal resolution is a promising approach for mitigating the spread of coronavirus disease 2019 (COVID-19) pandemic and informing life-saving decisions. Here, a condensation (hygroscopic growth)-assisted bioaerosol collection and plasmonic photothermal sensing (CAPS) system for on-site quantitative risk analysis of SARS-CoV-2 virus-laden aerosols is presented. The CAPS system provided rapid thermoplasmonic biosensing results after an aerosol-to-hydrosol sampling process in COVID-19-related environments including a hospital and a nursing home. The detection limit reached 0.25 copies/µL in the complex aerosol background without further purification. More importantly, the CAPS system enabled direct measurement of the SARS-CoV-2 virus exposures with high spatiotemporal resolution. Measurement and feedback of the results to healthcare workers and patients via a QR-code are completed within two hours. Based on a dose-responseµ model, it is used the plasmonic biosensing signal to calculate probabilities of SARS-CoV-2 infection risk and estimate maximum exposure durations to an acceptable risk threshold in different environmental settings.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
- Laboratory for Advanced Analytical TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Martin Spillmann
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
| | - Jiukai Tang
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
- Laboratory for Advanced Analytical TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Yi‐Bo Zhao
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
- Laboratory for Advanced Analytical TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| | - Yile Tao
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
| | - Xiaole Zhang
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
| | - Heike Geschwindner
- Nursing Research and ScienceSenior Health Centres of the City of ZurichZurichSwitzerland
| | - Lanja Saleh
- Institute of Clinical ChemistryUniversity Hospital ZurichUniversity of ZurichZurich8091Switzerland
| | - Walter Zingg
- Clinic for Infectious Diseases and Hospital HygieneUniversity Hospital of ZurichZurich8091Switzerland
| | - Jing Wang
- Institute of Environmental EngineeringETH ZürichZürich8093Switzerland
- Laboratory for Advanced Analytical TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyDübendorf8600Switzerland
| |
Collapse
|
428
|
Winters M, Malik AA, Omer SB. Attitudes towards Monkeypox vaccination and predictors of vaccination intentions among the US general public. PLoS One 2022; 17:e0278622. [PMID: 36454991 PMCID: PMC9714903 DOI: 10.1371/journal.pone.0278622] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Amidst an unprecedented Monkeypox outbreak, we aimed to measure knowledge, attitudes, practices and Monkeypox vaccination intentions among the U.S. adult population. We conducted an online cross-sectional survey, representative of the U.S. adult general public in June 2022. We asked participants whether they would receive a Monkeypox vaccine, if they were recommended to do so. Participants also answered questions on their self-assessed level of Monkeypox knowledge, risk perception, perceived exaggeration of the threat, and self-efficacy around Monkeypox. Furthermore, we asked about their trusted sources of information, COVID-19 vaccination status and administered the 6-item Vaccine Trust Indicator (VTI). Survey weights were created based on age, gender and race. We analyzed predictors of Monkeypox vaccination intentions using logistic regression, adjusted for education, age, race and ethnicity. A total of 856 respondents completed the survey, of which 51% (n = 436) were female and 41% (n = 348) had a college degree or higher. If recommended, 46% of respondents intended to get vaccinated against Monkeypox, 29% would not get vaccinated and 25% did not know. Almost half the respondents (47%) found their own knowledge level about Monkeypox poor or very poor. The most trusted sources of information about the outbreak were healthcare professionals and officials, but also known doctors and researchers with a large online following. Only 24% indicated that the U.S. Centers for Disease Control and Prevention should be in charge of the outbreak response. Being vaccinated against COVID-19 was a strong predictor of intention to receive a Monkeypox if recommended (adjusted Odds Ratio (aOR) 29.2, 95% Confidence Interval (CI) 13.1-65.3). Increased risk perception was positively associated with vaccination intentions (aOR 2.6, 95% CI 1.8-3.6), scoring high on the VTI as well (5.4, 95% CI (3.2-9.1). The low levels of self-assessed knowledge, vaccination intentions and influence of COVID-19 vaccination status point to a lack of clear communication.
Collapse
Affiliation(s)
- Maike Winters
- Yale Institute for Global Health, New Haven, Connecticut, United States of America
- Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amyn A Malik
- Yale Institute for Global Health, New Haven, Connecticut, United States of America
- Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Saad B Omer
- Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale School of Nursing, Orange, Connecticut, United States of America
| |
Collapse
|
429
|
Analysis of occupants’ exposure risk of cough-expelled droplets in the workspace with various mixing ventilation layouts. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2022; 4:389-398. [PMID: 35999894 PMCID: PMC9388357 DOI: 10.1007/s42757-022-0142-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
This study numerically investigated the transport characteristics of the cough-expelled droplets and their corresponding exposure risk of each occupant under various mixing ventilation layouts. Transient simulations were conducted in a conference room, while pathogen-bearing droplets were released by a standing speaker. The results showed that droplet residues (< 40 μm) had a high potential to reach occupant’s breathing zone, among which the number fraction of aerosol residues (< 10 μm) could be nearly doubled compared with that of the rest droplet residues in the breathing zone. Occupants’ exposure risks were found very sensitive to the ventilation layouts. The strong ventilated flow could significantly promote droplet dispersions when those inlets were closely located to the infectious speaker, resulting in all occupants exposed to a considerable fraction of aerosols and droplets within a given exposure time of 300 s. The mixing ventilation layout did not have a consistent performance on restricting the pathogen spread and controlling the occupant’s exposure risk in an enclosed workspace. Its performance could be highly sensitive to the location of the infectious agent. Centralized vent layouts could provide relatively more consistent performance on removing droplets, whilst some local airflow recirculation with locked droplets were noticed.
Collapse
|
430
|
Joseph J, Baby HM, Zhao S, Li X, Cheung K, Swain K, Agus E, Ranganathan S, Gao J, Luo JN, Joshi N. Role of bioaerosol in virus transmission and material-based countermeasures. EXPLORATION (BEIJING, CHINA) 2022; 2:20210038. [PMID: 37324804 PMCID: PMC10190935 DOI: 10.1002/exp.20210038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/15/2022] [Indexed: 06/17/2023]
Abstract
Respiratory pathogens transmit primarily through particles such as droplets and aerosols. Although often overlooked, the resuspension of settled droplets is also a key facilitator of disease transmission. In this review, we discuss the three main mechanisms of aerosol generation: direct generation such as coughing and sneezing, indirect generation such as medical procedures, and resuspension of settled droplets and aerosols. The size of particles and environmental factors influence their airborne lifetime and ability to cause infection. Specifically, humidity and temperature are key factors controlling the evaporation of suspended droplets, consequently affecting the duration in which particles remain airborne. We also suggest material-based approaches for effective prevention of disease transmission. These approaches include electrostatically charged virucidal agents and surface coatings, which have been shown to be highly effective in deactivating and reducing resuspension of pathogen-laden aerosols.
Collapse
Affiliation(s)
- John Joseph
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Helna Mary Baby
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Spencer Zhao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Xiang‐Ling Li
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Krisco‐Cheuk Cheung
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Kabir Swain
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Eli Agus
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Sruthi Ranganathan
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Jingjing Gao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - James N Luo
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Nitin Joshi
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
431
|
Rodríguez D, Urbieta IR, Velasco Á, Campano-Laborda MÁ, Jiménez E. Assessment of indoor air quality and risk of COVID-19 infection in Spanish secondary school and university classrooms. BUILDING AND ENVIRONMENT 2022; 226:109717. [PMID: 36313012 PMCID: PMC9595429 DOI: 10.1016/j.buildenv.2022.109717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Despite the risk of transmission of SARS-CoV-2, Spanish educational centers were reopened after six months of lockdown. Ventilation was mostly adopted as a preventive measure to reduce the transmission risk of the virus. However, it could also affect indoor air quality (IAQ). Therefore, here we evaluate the ventilation conditions, COVID-19 risk, and IAQ in secondary school and university classrooms in Toledo (central Spain) from November 2020 to June 2021. Ventilation was examined by monitoring outdoor and indoor CO2 levels. CO2, occupancy and hygrothermal parameters, allowed estimating the relative transmission risk of SARS-CoV-2 (Alpha and Omicron BA.1), H r, under different scenarios, using the web app COVID Risk airborne . Additionally, the effect of ventilation on IAQ was evaluated by measuring indoor/outdoor (I/O) concentration ratios of O3, NO2, and suspended particulate matter (PM). University classrooms, particularly the mechanically ventilated one, presented better ventilation conditions than the secondary school classrooms, as well as better thermal comfort conditions. The estimated H r for COVID-19 ranged from intermediate (with surgical masks) to high (no masks, teacher infected). IAQ was generally good in all classrooms, particularly at the university ones, with I/O below unity, implying an outdoor origin of gaseous pollutants, while the source of PM was heterogeneous. Consequently, controlled mechanical ventilation systems are essential in educational spaces, as well as wearing well-fitting FFP2-N95 masks indoors is also highly recommended to minimize the transmission risk of COVID-19 and other airborne infectious diseases.
Collapse
Affiliation(s)
- Diana Rodríguez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Itziar R Urbieta
- Departamento de Ciencias Ambientales, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Ángel Velasco
- Departamento de Ciencias Ambientales, Facultad de Ciencias Ambientales y Bioquímica, UCLM, Avenida Carlos III s/n, 45071, Toledo, Spain
| | - Miguel Ángel Campano-Laborda
- Instituto Universitario de Arquitectura y Ciencias de la Construcción, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, UCLM, Avda. Camilo José Cela 1B, 13071, Ciudad Real, Spain
| |
Collapse
|
432
|
Wei HY, Chang CP, Liu MT, Mu JJ, Lin YJ, Dai YT, Su CP. Probable Aerosol Transmission of SARS-CoV-2 through Floors and Walls of Quarantine Hotel, Taiwan, 2021. Emerg Infect Dis 2022; 28:2374-2382. [PMID: 36322955 PMCID: PMC9707602 DOI: 10.3201/eid2812.220666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
We investigated a cluster of SARS-CoV-2 infections in a quarantine hotel in Taiwan in December 2021. The cluster involved 3 case patients who lived in nonadjacent rooms on different floors. They had no direct contact during their stay. By direct exploration of the space above the room ceilings, we found residual tunnels, wall defects, and truncated pipes between their rooms. We conducted a simplified tracer-gas experiment to assess the interconnection between rooms. Aerosol transmission through structural defects in floors and walls in this poorly ventilated hotel was the most likely route of virus transmission. This event demonstrates the high transmissibility of Omicron variants, even across rooms and floors, through structural defects. Our findings emphasize the importance of ventilation and integrity of building structure in quarantine facilities.
Collapse
|
433
|
Goldman E, Choueiri TK, Mainelis G, Ramachandran G, Schaffner DW. Triethylene Glycol Can Be Predeployed as a Safe Virus-Killing Indoor Air Treatment. J Infect Dis 2022; 226:2040-2041. [PMID: 36177834 DOI: 10.1093/infdis/jiac394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/31/2022] Open
Affiliation(s)
- Emanuel Goldman
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Toni K Choueiri
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Donald W Schaffner
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
434
|
Tarragó‐Gil R, Gil‐Mosteo MJ, Aza‐Pascual‐Salcedo M, Alvarez MJL, Ainaga RR, Gimeno NL, Viñuales RF, Fernández YM, Marco JM, Bolsa EA, Sancho JB, Cajo SA, Perez‐Zsolt D, Raïch‐Regué D, Muñoz‐Basagoiti J, Izquierdo‐Useros N, Pociello VB, León R, Peris DS. Randomized clinical trial to assess the impact of oral intervention with cetylpyridinium chloride to reduce salivary SARS-CoV-2 viral load. J Clin Periodontol 2022; 50:288-294. [PMID: 36345827 PMCID: PMC9877833 DOI: 10.1111/jcpe.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
AIM Aerosols released from the oral cavity help spread the SARS-CoV-2 virus. The use of a mouthwash formulated with an antiviral agent could reduce the viral load in saliva, helping to lower the spread of the virus. The aim of this study was to assess the efficacy of a mouthwash with 0.07% cetylpyridinium chloride (CPC) to reduce the viral load in the saliva of Coronavirus disease 2019 (COVID-19) patients. MATERIALS AND METHODS In this multi-centre, single-blind, randomized, parallel group clinical trial, 80 COVID-19 patients were enrolled and randomized to two groups, namely test (n = 40) and placebo (n = 40). Saliva samples were collected at baseline and 2 h after rinsing. The samples were analysed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an enzyme-linked immunosorbent assay test specific for the nucleocapsid (N) protein of SARS-CoV-2. RESULTS With RT-qPCR, no significant differences were observed between the placebo group and the test group. However, 2 h after a single rinse, N protein concentration in saliva was significantly higher in the test group, indicating an increase in lysed virus. CONCLUSIONS The use of 0.07% CPC mouthwash induced a significant increase in N protein detection in the saliva of COVID-19 patients. Lysis of the virus in the mouth could help reduce the transmission of SARS-CoV-2. However, more studies are required to prove this.
Collapse
Affiliation(s)
- Rosa Tarragó‐Gil
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - María José Gil‐Mosteo
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Mercedes Aza‐Pascual‐Salcedo
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| | - María Jesús Lallana Alvarez
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| | - Raquel Refusta Ainaga
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,San José Primary Care Health CentreAragon Health ServiceZaragozaSpain
| | - Natalia Lázaro Gimeno
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Roberto Fuentes Viñuales
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Sagasta Primary Care Health CentreAragon Health ServiceZaragozaSpain
| | - Yolanda Millán Fernández
- Seminario Primary Care Health CentreAragon Health ServiceZaragozaSpain,Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain
| | - Jesica Montero Marco
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Elena Altarribas Bolsa
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Jessica Bueno Sancho
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | - Sonia Algarate Cajo
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Lozano Blesa University Clinic HospitalZaragozaSpain
| | | | | | | | - Nuria Izquierdo‐Useros
- IrsiCaixa AIDS Research InstituteBadalonaSpain,Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
| | | | - Rubén León
- Dentaid Research CenterCerdanyola del VallèsSpain
| | - Diana Serrano Peris
- Institute of Health Research of Aragón (IIS Aragón)ZaragozaSpain,Zaragoza III Primary Care Health DirectionAragon Health ServiceZaragozaSpain
| |
Collapse
|
435
|
Filipić A, Fric K, Ravnikar M, Kogovšek P. Assessment of Different Experimental Setups to Determine Viral Filtration Efficiency of Face Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15353. [PMID: 36430072 PMCID: PMC9690668 DOI: 10.3390/ijerph192215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
As a result of the COVID-19 pandemic, many new materials and masks came onto the market. To determine their suitability, several standards specify which properties to test, including bacterial filtration efficiency (BFE), while none describe how to determine viral filtration efficiency (VFE), a property that is particularly important in times of pandemic. Therefore, we focused our research on evaluating the suitability and efficiency of different systems for determining VFE. Here, we evaluated the VFE of 6 mask types (e.g., a surgical mask, a respirator, material for mask production, and cloth masks) with different filtration efficiencies in four experimental setups and compared the results with BFE results. The study included 17 BFE and 22 VFE experiments with 73 and 81 mask samples tested, respectively. We have shown that the masks tested had high VFE (>99% for surgical masks and respirators, ≥98% for material, and 87-97% for cloth masks) and that all experimental setups provided highly reproducible and reliable VFE results (coefficient of variation < 6%). Therefore, the VFE tests described in this study can be integrated into existing standards for mask testing.
Collapse
|
436
|
Burghardt GV, Eckl M, Huether D, Larbolette OHD, Lo Faso A, Ofenloch-Haehnle BR, Riesch MA, Herb RA. Aerosol formation during processing of potentially infectious samples on Roche immunochemistry analyzers (cobas e analyzers) and in an end-to-end laboratory workflow to model SARS-CoV-2 infection risk for laboratory operators. Front Public Health 2022; 10:1034289. [PMID: 36466531 PMCID: PMC9709640 DOI: 10.3389/fpubh.2022.1034289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives To assess aerosol formation during processing of model samples in a simulated real-world laboratory setting, then apply these findings to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to assess the risk of infection to laboratory operators. Design This study assessed aerosol formation when using cobas e analyzers only and in an end-to-end laboratory workflow. Recombinant hepatitis B surface antigen (HBsAg) was used as a surrogate marker for infectious SARS-CoV-2 viral particles. Using the HBsAg model, air sampling was performed at different positions around the cobas e analyzers and in four scenarios reflecting critical handling and/or transport locations in an end-to-end laboratory workflow. Aerosol formation of HBsAg was quantified using the Elecsys® HBsAg II quant II immunoassay. The model was then applied to SARS-CoV-2. Results Following application to SARS-CoV-2, mean HBsAg uptake/hour was 1.9 viral particles across the cobas e analyzers and 0.87 viral particles across all tested scenarios in an end-to-end laboratory workflow, corresponding to a maximum inhalation rate of <16 viral particles during an 8-hour shift. Conclusion Low production of marker-containing aerosol when using cobas e analyzers and in an end-to-end laboratory workflow is consistent with a remote risk of laboratory-acquired SARS-CoV-2 infection for laboratory operators.
Collapse
|
437
|
Torres-Teran MM, Cadnum JL, Donskey CJ. Is ventilation in grocery stores adequate to minimize the risk for airborne transmission of severe acute respiratory syndrome coronavirus 2? ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e182. [PMID: 36406164 PMCID: PMC9672910 DOI: 10.1017/ash.2022.322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Maria M. Torres-Teran
- Research Service, Louis Stokes Cleveland Veterans’ Affairs (VA) Medical Center, Cleveland, Ohio
| | - Jennifer L. Cadnum
- Research Service, Louis Stokes Cleveland Veterans’ Affairs (VA) Medical Center, Cleveland, Ohio
| | - Curtis J. Donskey
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
438
|
Cornelis R, Shulman Z. Upper airway and brain protection by plasma cells: A local affair. Immunity 2022; 55:1972-1974. [PMID: 36351370 DOI: 10.1016/j.immuni.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protecting the upper airways and brain from viral invasion through the olfactory mucosa is critical. Wellford et al. describe a barrier that restricts the passage of circulating antibodies and prevents them from reaching the olfactory mucosa. Instead, plasma cells are recruited into this site and prevent viral infection of the airways and the brain through local antibody production.
Collapse
Affiliation(s)
- Rebecca Cornelis
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
439
|
Cadnum JL, Jencson AL, Memic S, Osborne AO, Torres-Teran MM, Wilson BM, Deshpande A, Donskey CJ. Real-World Evidence on the Effectiveness of Plexiglass Barriers in Reducing Aerosol Exposure. Pathog Immun 2022; 7:66-77. [PMID: 36381131 PMCID: PMC9651177 DOI: 10.20411/pai.v7i2.533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/13/2022] [Indexed: 08/17/2023] Open
Abstract
UNLABELLED Reprinted with permission, Cleveland Clinic Foundation ©2022. All Rights Reserved. BACKGROUND Barriers are commonly installed in workplace situations where physical distancing cannot be maintained to reduce the risk for transmission of respiratory viruses. Although some types of barriers have been shown to reduce exposure to aerosols in laboratory-based testing, limited information is available on the efficacy of barriers in real-world settings. METHODS In an acute care hospital, we tested the effectiveness of in-use plexiglass barriers in reducing exposure of staff to aerosolized particles. A nebulizer was used to release 5% NaCl aerosol 1 meter from staff members with and without the barrier positioned between the point of aerosol release and the hospital staff. Particle counts on the staff side of the barrier were measured using a 6-channel particle counter. A condensed moisture (fog) generating device was used to visualize the airflow patterns. RESULTS Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detected behind the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 (8%) significantly increased particle counts behind the barrier. Condensed moisture fog accumulated in the area where staff were seated behind the barrier that increased particle exposure, but not behind the other barriers. After repositioning the ineffective barrier, the condensed moisture fog no longer accumulated behind the barrier and aerosol exposure was reduced. CONCLUSION In real-world settings, plexiglass barriers vary widely in effectiveness in reducing staff exposure to aerosols, and some barriers may increase risk for exposure if not positioned correctly. Devices that visualize airflow patterns may be useful as simple tools to assess barriers.
Collapse
Affiliation(s)
- Jennifer L. Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Annette L. Jencson
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | | | | | - Brigid M. Wilson
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Abhishek Deshpande
- Center for Value-Based Care Research, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Curtis J. Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
440
|
Book J, Broichhaus L, Grüne B, Nießen J, Wiesmüller GA, Joisten C, Kossow A. Adherence to stay-at-home orders: awareness, implementation and difficulties of officially ordered quarantine measures in the context of the COVID-19 pandemic in Cologne - a retrospective cohort study. BMJ Open 2022; 12:e063358. [PMID: 36323466 PMCID: PMC9638749 DOI: 10.1136/bmjopen-2022-063358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES To estimate the awareness, implementation and difficulty of behavioural recommendations and their correlates in officially ordered domestic isolation and quarantine during the COVID-19 pandemic. DESIGN Online retrospective cohort survey conducted from 12 December 2020 to 6 January 2021 as part of the Cologne-Corona Counselling and Support for Index and Contact Persons During the Quarantine Period study. SETTING Administrative area of the city of Cologne, Germany. PARTICIPANTS 3011 infected persons (IPs) and 5822 contacts over 16 years of age who were in officially ordered domestic isolation or quarantine between 28 February 2020 and 9 December 2020. Of these, 60.4% were women. OUTCOME MEASURES Self-developed scores were calculated based on responses about awareness and implementation of 19 behavioural recommendations to determine community-based and household-based adherence. Linear regression analyses were conducted to determine factors influencing adherence. RESULTS The average adherence to all recommendations, including staying in a single room, keeping distance and wearing a mask, was 13.8±2.4 out of 15 points for community-based recommendations (CBRs) and 17.2±6.8 out of 25 points for household-based recommendations (HBRs). IPs were significantly more adherent to CBRs (14.3±2.0 points vs 13.7±2.6 points, p<0.001) and HBRs (18.2±6.7 points vs 16.5±6.8 points, p<0.001) than were contact persons. Among other factors, both status as an IP and being informed about the measures positively influenced participants' adherence. The linear regression analysis explained 6.6% and 14.4% (corr. R²) of the adherence to CBRs and HBRs. CONCLUSIONS Not all persons under official quarantine were aware of the relevant behavioural recommendations. This was especially true in cases where instructions were given for measures to be taken in one's own household. Due to the high transmission rates within households, HBRs should be communicated with particular emphasis.
Collapse
Affiliation(s)
- Julian Book
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Uniclinic RWTH Aachen, Aachen, Germany
| | - Lukas Broichhaus
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Uniclinic RWTH Aachen, Aachen, Germany
| | - Barbara Grüne
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
| | - Johannes Nießen
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
| | - Gerhard A Wiesmüller
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Uniclinic RWTH Aachen, Aachen, Germany
| | - Christine Joisten
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Annelene Kossow
- Department of Infection Control and Environmental Hygiene, Cologne Health Authority, Cologne, Germany
- Institute of Hygiene, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
441
|
Oksanen L, Auvinen M, Kuula J, Malmgren R, Romantschuk M, Hyvärinen A, Laitinen S, Maunula L, Sanmark E, Geneid A, Sofieva S, Salokas J, Veskiväli H, Sironen T, Grönholm T, Hellsten A, Atanasova N. Combining Phi6 as a surrogate virus and computational large-eddy simulations to study airborne transmission of SARS-CoV-2 in a restaurant. INDOOR AIR 2022; 32:e13165. [PMID: 36437671 PMCID: PMC10100099 DOI: 10.1111/ina.13165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/18/2023]
Abstract
COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant. Aerosolized Phi6 viruses were detected with several methods. The aerosol dispersion was modeled by using the Large-Eddy Simulation (LES) technique. Three risk-reduction strategies were studied: (1) augmenting ventilation with air purifiers, (2) spatial partitioning with dividers, and (3) combination of 1 and 2. In all simulations infectious viruses were detected throughout the space proving the existence long-distance aerosol transmission indoors. Experimental cumulative virus numbers and LES dispersion results were qualitatively similar. The LES results were further utilized to derive the evolution of infection probability. Air purifiers augmenting the effective ventilation rate by 65% reduced the spatially averaged infection probability by 30%-32%. This relative reduction manifests with approximately 15 min lag as aerosol dispersion only gradually reaches the purifier units. Both viral findings and LES results confirm that spatial partitioning has a negligible effect on the mean infection-probability indoors, but may affect the local levels adversely. Exploitation of high-resolution LES jointly with microbiological measurements enables an informative interpretation of the experimental results and facilitates a more complete risk assessment.
Collapse
Affiliation(s)
- Lotta Oksanen
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Rasmus Malmgren
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Martin Romantschuk
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
| | | | | | - Leena Maunula
- Faculty of Veterinary Medicine, Food Hygiene and Environmental HealthUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ahmed Geneid
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Julija Salokas
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Helin Veskiväli
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Tarja Sironen
- Department of Virology, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Veterinary Biosciences, Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | | | | | - Nina Atanasova
- Finnish Meteorological InstituteHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
442
|
Recommended food supplies under conditions of natural and provoked catastrophes. INNOV FOOD SCI EMERG 2022; 83:103218. [PMCID: PMC9701581 DOI: 10.1016/j.ifset.2022.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
|
443
|
Gary JM, Ritter JM, Sun X, Maines TR, Belser JA. Influenza A virus infection and pathology in nasal and periocular tissues after ocular inoculation in ferrets. Vet Pathol 2022; 59:1056-1061. [PMID: 35786220 PMCID: PMC10479928 DOI: 10.1177/03009858221109103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Influenza A viruses (IAV) cause mammalian infections following several transmission routes. Considering the anatomic proximity and connection between the nasopharynx and periocular tissues, there is a need to understand the dynamics of virus spread between these sites following both respiratory and nonrespiratory viral transmission. We examined virus distribution and associated inflammation within nasal and periocular tissues during the acute phase of H1N1 IAV infection in ferrets following intranasal or ocular inoculation. Ocular and intranasal inoculations with IAV caused comparable viral antigen distribution and inflammation in the nasal passages, though infection kinetics and magnitude differed by inoculation route. Ocular inoculation was associated with inflammation in the conjunctiva and lacrimal glands. Although intranasal inoculation was also associated with periocular inflammation, the onset was delayed relative to ocular inoculation. This work underscores the importance of investigating extrapulmonary tissues following mammalian infection with respiratory pathogens, even after intranasal inoculation.
Collapse
Affiliation(s)
- Joy M. Gary
- Centers for Disease Control and Prevention, Atlanta, GA
- StageBio, Frederick, MD
| | | | - Xiangjie Sun
- Centers for Disease Control and Prevention, Atlanta, GA
| | | | | |
Collapse
|
444
|
OWAE-Net: Covid-19 detection from ECG images using Deep Learning and Optimized Weighted Average Ensemble Technique. INTELLIGENT SYSTEMS WITH APPLICATIONS 2022. [PMCID: PMC9676168 DOI: 10.1016/j.iswa.2022.200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
445
|
Jantunen MJ. Pandemic management requires exposure science. ENVIRONMENT INTERNATIONAL 2022; 169:107470. [PMID: 36028335 PMCID: PMC9392555 DOI: 10.1016/j.envint.2022.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
COVID-19 was first detected in Wuhan, China, on 8.12.2019, and WHO announced it a pandemic on 11.3.2020. No vaccines or medical cures against COVID-19 were available in the first corona year. Instead, different combinations of generic non-pharmaceutical interventions - to slow down the spread of infections via exposure restrictions to 'flatten the curve' so that it would not overburden the health care systems, or to suppress the virus to extinction - were applied with varying levels of strictness, duration and success in the Pacific and North Atlantic regions. Due to an old misconception, almost all public health authorities dismissed the possibility that the virus would be transmitted via air. Opportunities to reduce the inhalation exposure - such as wearing effective FFP2/N95 respirators, improving ventilation and indoor air cleaning - were missed, and instead, hands were washed and surfaces disinfected. The fact that aerosols were acknowledged as the main route of COVID-19 transmission in 2021 opened avenues for more efficient and socially less disruptive exposure and risk reduction policies that are discussed and evaluated here, demonstrating that indoor air and exposure sciences are crucial for successful management of pandemics. To effectively apply environmental and personal exposure mitigation measures, exposure science needs to target the human-to-human exposure pathways of the virus.
Collapse
|
446
|
Mukherjee D, Wadhwa G. A mesoscale agent based modeling framework for flow-mediated infection transmission in indoor occupied spaces. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 401:115485. [PMID: 36035085 PMCID: PMC9391028 DOI: 10.1016/j.cma.2022.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ongoing Covid-19 pandemic, and its associated public health and socioeconomic burden, has reaffirmed the necessity for a comprehensive understanding of flow-mediated infection transmission in occupied indoor spaces. This is an inherently multiscale problem, and suitable investigation approaches that can enable evidence-based decision-making for infection control strategies, interventions, and policies; will need to account for flow physics, and occupant behavior. Here, we present a mesoscale infection transmission model for human occupied indoor spaces, by integrating an agent-based human interaction model with a flow physics model for respiratory droplet dynamics and transport. We outline the mathematical and algorithmic details of the modeling framework, and demonstrate its validity using two simple simulation scenarios that verify each of the major sub-models. We then present a detailed case-study of infection transmission in a model indoor space with 60 human occupants; using a systematic set of simulations representing various flow scenarios. Data from the simulations illustrate the utility and efficacy of the devised mesoscale model in resolving flow-mediated infection transmission; and elucidate key trends in infection transmission dynamics amongst the human occupants.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Gauri Wadhwa
- Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
447
|
Liu Z, Yao G, Li Y, Huang Z, Jiang C, He J, Wu M, Liu J, Liu H. Bioaerosol distribution characteristics and potential SARS-CoV-2 infection risk in a multi-compartment dental clinic. BUILDING AND ENVIRONMENT 2022; 225:109624. [PMID: 36164582 PMCID: PMC9494923 DOI: 10.1016/j.buildenv.2022.109624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Dental clinics have a potential risk of infection, particularly during the COVID-19 pandemic. Multi-compartment dental clinics are widely used in general hospitals and independent clinics. This study utilised computational fluid dynamics to investigate the bioaerosol distribution characteristics in a multi-compartment dental clinic through spatiotemporal distribution, working area time-varying concentrations, and key surface deposition. The infection probability of SARS-CoV-2 for the dental staff and patients was calculated using the Wells-Riley model. In addition, the accuracy of the numerical model was verified by field measurements of aerosol concentrations performed during a clinical ultrasonic scaling procedure. The results showed that bioaerosols were mainly distributed in the compartments where the patients were treated. The average infection probability was 3.8% for dental staff. The average deposition number per unit area of the treatment chair and table are 28729 pcs/m2 and 7945 pcs/m2, respectively, which creates a possible contact transmission risk. Moreover, there was a certain cross-infection risk in adjacent compartments, and the average infection probability for patients was 0.84%. The bioaerosol concentrations of the working area in each compartment 30 min post-treatment were reduced to 0.07% of those during treatment, and the infection probability was <0.05%. The results will contribute to an in-depth understanding of the infection risk in multi-compartment dental clinics, forming feasible suggestions for management to efficiently support epidemic prevention and control in dental clinics.
Collapse
Affiliation(s)
- Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Guangpeng Yao
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Yabin Li
- The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Zhenzhe Huang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Chuan Jiang
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Minnan Wu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| | - Jia Liu
- The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Haiyang Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei, 071003, PR China
| |
Collapse
|
448
|
Abstract
RNA viruses include respiratory viruses, such as coronaviruses and influenza viruses, as well as vector-borne viruses, like dengue and West Nile virus. RNA viruses like these encounter various environments when they copy themselves and spread from cell to cell or host to host. Ex vivo differences, such as geographical location and humidity, affect their stability and transmission, while in vivo differences, such as pH and host gene expression, impact viral receptor binding, viral replication, and the host immune response against the viral infection. A critical factor affecting RNA viruses both ex vivo and in vivo, and defining the outcome of viral infections and the direction of viral evolution, is temperature. In this minireview, we discuss the impact of temperature on viral replication, stability, transmission, and adaptation, as well as the host innate immune response. Improving our understanding of how RNA viruses function, survive, and spread at different temperatures will improve our models of viral replication and transmission risk analyses.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
449
|
Boarino A, Wang H, Olgiati F, Artusio F, Özkan M, Bertella S, Razza N, Cagno V, Luterbacher JS, Klok HA, Stellacci F. Lignin: A Sustainable Antiviral Coating Material. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:14001-14010. [PMID: 36312454 PMCID: PMC9597781 DOI: 10.1021/acssuschemeng.2c04284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Indexed: 05/15/2023]
Abstract
Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers. These approaches, however, even if successful, will have to face great challenges when it comes to large-scale applications and their environmental sustainability. Here, an antiviral surface coating was prepared by spin-coating lignin, a natural biomass residue of the paper production industry. We show effective inactivation of herpes simplex virus type 2 (>99% after 30 min) on a surface coating that is low-cost and environmentally sustainable. The antiviral mechanism of the lignin surface was investigated and is attributed to reactive oxygen species generated upon oxidation of lignin phenols. This mechanism does not consume the surface coating (as opposed to the release of a specific antiviral agent) and does not require regeneration. The coating is stable in ambient conditions, as demonstrated in a 6 month aging study that did not reveal any decrease in antiviral activity. This research suggests that natural compounds may be used for the development of affordable and sustainable antiviral coatings.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Heyun Wang
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesca Olgiati
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Fiora Artusio
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Melis Özkan
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Stefania Bertella
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Nicolò Razza
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Valeria Cagno
- Institute
of Microbiology, Lausanne University Hospital,
University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Jeremy S. Luterbacher
- Laboratory
of Sustainable and Catalytic Processing, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
- Institute
of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale
de Lausanne (EPFL), Station
12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
450
|
Kitamura H, Ishigaki Y, Ohashi H, Yokogawa S. Ventilation improvement and evaluation of its effectiveness in a Japanese manufacturing factory. Sci Rep 2022; 12:17642. [PMID: 36271253 PMCID: PMC9586972 DOI: 10.1038/s41598-022-22764-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/19/2022] [Indexed: 01/18/2023] Open
Abstract
A coronavirus disease 2019 (COVID-19) cluster emerged in a manufacturing factory in early August 2021. In November 2021, we conducted a ventilation survey using the tracer gas method. Firstly, we reproduce the situation at the time of cluster emergence and examined whether the ventilation in the office was in a condition that increased the risk of aerosol transmission. Secondly, we verified the effectiveness of the factory's own countermeasure implemented immediately after the August cluster outbreak. Furthermore, we verified the effectiveness of several additional improvement measures on the factory's own countermeasures already installed in August. Under the conditions of the cluster emergence, the air changes per hour (ACH) value was 0.73 ACH on average. The ACH value was less than 2 ACH recommended by the Ministry of Health, Labour, and Welfare, suggesting an increased risk of aerosol transmission. The factory's own countermeasures taken immediately in August were found to be effective, as the ACH value increased to 3.41 ACH on average. Moreover, it was confirmed that additional improvement measures on the factory's own countermeasures increased the ACH value to 8.33 ACH on average. In order to prevent the re-emergence of COVID-19 clusters due to aerosol infection in the office, it was found that while continuing the factory's own countermeasure, additional improvement measures should also be added depending on the number of workers in the room. In a company, it is important that workers themselves continue to take infection control measures autonomously, and confirming the effectiveness of the measures will help maintain workers' motivation. We believe it is helpful that external researchers in multiple fields and internal personnel in charge of the health and safety department and occupational health work together to confirm the effectiveness of conducted measures, such as in this case.
Collapse
Affiliation(s)
- Hiroko Kitamura
- Occupational Health Training Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Yo Ishigaki
- Graduate School of Informatics and Engineering, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hideaki Ohashi
- Occupational Health Training Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-Ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Shinji Yokogawa
- Info-Powered Energy System Research Center (I-PERC), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|