401
|
Louis J, Shah J. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. FRONTIERS IN PLANT SCIENCE 2013; 4:213. [PMID: 23847627 PMCID: PMC3696735 DOI: 10.3389/fpls.2013.00213] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 05/19/2023]
Abstract
The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Life Sciences Building B, West Sycamore Street, Denton, TX 76201, USA e-mail:
| |
Collapse
|
402
|
Samuni-Blank M, Izhaki I, Dearing D, Karasov W, Gerchman Y, Kohl K, Lymberakis P, Kurnath P, Arad Z. Physiological and behavioural effects of fruit toxins on seed-predating versus seed-dispersing congeneric rodents. J Exp Biol 2013; 216:3667-73. [DOI: 10.1242/jeb.089664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Summary
Fleshy, ripe fruits attract seed dispersers but also seed predators. Although many fruit consumers (legitimate seed dispersers as well as seed predators) are clearly exposed to plant secondary compounds (PSCs), their impact on the consumers’ physiology and foraging behaviour has been largely overlooked. Here, we document the divergent behavioural and physiological responses of three congeneric rodent species in the Middle East, seed dispersers versus seed predators, to fruit consumption. The fruit pulp of the desert plant Ochradenus baccatus contains high concentrations of glucosinolates (GLSs). These GLSs are hydrolyzed into active toxic compounds upon contact with the myrosinase enzyme released from seeds crushed during fruit consumption. Acomys russatus and A. cahirinus share a desert habitat. Acomys russatus acts as an O. baccatus seed predator, and A. cahirinus circumvents the activation of the GLSs by orally expelling vital seeds. We found that between the three species examined, A. russatus was physiologically most tolerant to whole fruit consumption and even A. minous, which is evolutionarily naïve to O. baccatus, exhibits greater tolerance to whole fruit consumption than A. cahirinus. However, like A. cahirinus, A. minous may also behaviourally avoid the activation of the GLSs by making a hole in the pulp and consuming only the seeds. Our findings demonstrate that seed predators have a higher physiological tolerance than seed dispersers when consuming fruits containing toxic PSCs. The findings also demonstrate the extreme ecological/evolutionary ability of this plant-animal symbiosis to shift from predation to mutualism and vice versa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zeev Arad
- Technion-Israel Institute of Technology
| |
Collapse
|
403
|
Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management: problems, progress, and prospects. ANNUAL REVIEW OF ENTOMOLOGY 2013; 58:517-41. [PMID: 23020617 DOI: 10.1146/annurev-ento-120811-153605] [Citation(s) in RCA: 454] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Agricultural intensification and greater production of Brassica vegetable and oilseed crops over the past two decades have increased the pest status of the diamondback moth (DBM), Plutella xylostella L., and it is now estimated to cost the world economy US$4-5 billion annually. Our understanding of some fundamental aspects of DBM biology and ecology, particularly host plant relationships, tritrophic interactions, and migration, has improved considerably but knowledge of other aspects, e.g., its global distribution and relative abundance, remains surprisingly limited. Biological control still focuses almost exclusively on a few species of hymenopteran parasitoids. Although these can be remarkably effective, insecticides continue to form the basis of management; their inappropriate use disrupts parasitoids and has resulted in field resistance to all available products. Improved ecological understanding and the availability of a series of highly effective selective insecticides throughout the 1990s provided the basis for sustainable and economically viable integrated pest management (IPM) approaches. However, repeated reversion to scheduled insecticide applications has resulted in resistance to these and more recently introduced compounds and the breakdown of IPM programs. Proven technologies for the sustainable management of DBM currently exist, but overcoming the barriers to their sustained adoption remains an enormous challenge.
Collapse
Affiliation(s)
- Michael J Furlong
- School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | | | | |
Collapse
|
404
|
Lee EJ, Hagel JM, Facchini PJ. Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. FRONTIERS IN PLANT SCIENCE 2013; 4:182. [PMID: 23781223 PMCID: PMC3678098 DOI: 10.3389/fpls.2013.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/20/2013] [Indexed: 05/03/2023]
Abstract
Benzylisoquinoline alkaloids (BIAs) are a diverse group of biologically active specialized metabolites produced mainly in four plant families. BIA metabolism is likely of monophyletic origin and involves multiple enzymes yielding structurally diverse compounds. Several BIAs possess defensive properties against pathogenic microorganisms and herbivores. Opium poppy (Papaver somniferum: Papaveraceae) has emerged as a model system to investigate the cellular localization of BIA biosynthesis. Although alkaloids accumulate in the laticifer cytoplasm (latex) of opium poppy, corresponding biosynthetic enzymes and gene transcripts are localized to proximal sieve elements and companion cells, respectively. In contrast, BIA metabolism in the non-laticiferous meadow rue (Thalictrum flavum; Ranunculaceae) occurs independent of the phloem. Evidence points toward the adoption of diverse strategies for the biosynthesis and accumulation of alkaloids as defensive compounds. Recruitment of cell types involved in BIA metabolism, both within and external to the phloem, was likely driven by selection pressures unique to different taxa. The biochemistry, cell biology, ecophysiology, and evolution of BIA metabolism are considered in this context.
Collapse
Affiliation(s)
| | | | - Peter J. Facchini
- *Correspondence: Peter J. Facchini, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N1N4, Canada e-mail:
| |
Collapse
|
405
|
Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J. Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 2012. [PMID: 23185882 DOI: 10.1890/11-2272.1] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research investigating interactions between aboveground (AG) and below-ground (BG) herbivores has been central to characterizing AG-BG linkages in terrestrial ecosystems, with many of these interactions forming the basis of complex food webs spanning the two subsystems. Despite the growing literature on the effects of AG and BG herbivores on each other, underlying patterns have been difficult to identify due to a high degree of context dependency. In this study, we present the first quantitative meta-analysis of AG and BG herbivore interactions. Previous global predictions, specifically that BG herbivores normally promoted AG herbivore performance and AG herbivores normally reduced BG herbivore performance, were not supported. Instead, the meta-analysis identified four factors that determined the outcome of AG-BG interactions. (1) Sequence of herbivore arrival on host plants was important, with BG herbivores promoting AG herbivore performance only when introduced to the plant simultaneously, whereas AG herbivores had negative effects on BG herbivores only when introduced first. (2) AG herbivores negatively affected BG herbivore survival but tended to increase population growth rates. (3) AG herbivores negatively affected BG herbivore performance on annual plants, but not on perennials, and these effects were observed more consistently in laboratory than field studies. (4) The type of herbivore was also important, with BG insect herbivores belonging to the order Diptera (i.e., true flies) having the strongest negative effects on AG herbivores. Coleoptera (i.e., beetles) species were the most widely investigated BG herbivores and had positive impacts on AG Homoptera (e.g., aphids), but negative effects on AG Hymenoptera (e.g., sawflies). The strongest negative outcomes for BG herbivores were seen when the AG herbivore was a Coleoptera species. We found no evidence for publication bias in AG-BG herbivore interaction literature and conclude that several biological and experimental factors are important for predicting the outcome of AG-BG herbivore interactions. The sequence of herbivore arrival on the host plant was among the most influential.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith NSW 2751, Australia.
| | | | | | | | | | | |
Collapse
|
406
|
Crespo E, Hordijk CA, de Graaf RM, Samudrala D, Cristescu SM, Harren FJM, van Dam NM. On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. PHYTOCHEMISTRY 2012; 84:68-77. [PMID: 22995928 DOI: 10.1016/j.phytochem.2012.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/12/2012] [Accepted: 08/19/2012] [Indexed: 05/02/2023]
Abstract
Plants emit various volatile organic compounds (VOCs) upon herbivore attack. These VOC emissions often show temporal dynamics which may influence the behavior of natural enemies using these volatiles as cues. This study analyzes on-line VOC emissions by roots of Brassica nigra plants under attack by cabbage root fly larvae, Delia radicum. Root emitted VOCs were detected using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). These analyses showed that several sulfur containing compounds, such as methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and glucosinolate breakdown products, such as thiocyanates (TC) and isothiocyanates (ITC), were emitted by the roots in response to infestation. The emissions were subdivided into early responses, emerging within 1-6 h after infestation, and late responses, evolving only after 6-12 h. The marker for rapid responses was detected at m/z 60. The ion detected at m/z 60 was identified as thiocyanic acid, which is also a prominent fragment in some TC or ITC spectra. The emission of m/z 60 stopped when the larvae had pupated, which makes it an excellent indicator for actively feeding larvae. Methanethiol, DMS and DMDS levels increased much later in infested roots, indicating that activation of enzymes or genes involved in the production of these compounds may be required. Earlier studies have shown that both early and late responses can play a role in tritrophic interactions associated with Brassica species. Moreover, the identification of these root induced responses will help to design non-invasive analytical procedures to assess root infestations.
Collapse
Affiliation(s)
- Elena Crespo
- Life Science Trace Gas Facility, Institute of Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
407
|
Kong XY, Kissen R, Bones AM. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. PHYTOCHEMISTRY 2012; 84:7-17. [PMID: 22954730 DOI: 10.1016/j.phytochem.2012.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 08/02/2012] [Accepted: 08/11/2012] [Indexed: 05/23/2023]
Abstract
Glucosinolates are plant secondary metabolites that are part of a plant defence system against pathogens and pests, the myrosinase-glucosinolate system, in which glucosinolates get activated by enzymic degradation through thioglucoside glucohydrolases called myrosinases. Epithiospecifier protein (ESP) and nitrile-specifier proteins (NSPs) divert myrosinase-catalyzed hydrolysis of a given glucosinolate from the formation of isothiocyanate to that of epithionitrile and/or nitrile. As the biological activity of glucosinolate hydrolysis products varies considerably, a detailed characterization of these specifier proteins is of utmost importance to understand their biological role. Therefore, the Arabidopsis thaliana AtNSP1, AtNSP2 and AtNSP5 and a supposed ancestor protein AtNSP-like1 were expressed in Escherichia coli and the activity of the purified recombinant proteins was tested in vitro on three highly different glucosinolates and compared to that of purified AtESP. As previously reported, only AtESP showed epithiospecifier activity on 2-propenylglucosinolate. We further confirmed that purified AtNSP1, AtNSP2 and AtNSP5, but not the ancestor AtNSP-like1 protein, show nitrile-specifier activity on 2-propenylglucosinolate and benzylglucosinolate. We now show for the first time that in vitro AtNSP1, AtNSP2 and AtNSP5 are able to generate nitrile from indol-3-ylmethylglucosinolate. We also tested the effect of different Fe(II) ion concentrations on the nitrile-specifier activity of purified AtNSP1, AtNSP2 and AtNSP5 on 2-propenylglucosinolate and benzylglucosinolate. AtNSP-related nitrile production was highly dependent on the presence of Fe(II) ions in the reaction assay. In the absence of added Fe(II) ions nitriles were only detected when benzylglucosinolate was incubated with AtNSP1. While AtNSP1 also exhibited overall higher nitrile-specifier activity than AtNSP2 and AtNSP5 at a given Fe(II) ion concentration, the pattern of nitrile formation in relation to Fe(II) ion concentrations depended on the AtNSP and the glucosinolate substrate. The pH of the solution also affected the reaction outcome, with a higher proportion of nitrile being produced at the higher pH for AtNSP2 and AtNSP5.
Collapse
Affiliation(s)
- Xiang Yi Kong
- Department of Biology, Norwegian University of Science and Technology-NTNU, Realfagbygget, Høgskoleringen 5, NO-7491 Trondheim, Norway
| | | | | |
Collapse
|
408
|
González-Megías A, Menéndez R. Climate change effects on above- and below-ground interactions in a dryland ecosystem. Philos Trans R Soc Lond B Biol Sci 2012; 367:3115-24. [PMID: 23045709 PMCID: PMC3479687 DOI: 10.1098/rstb.2011.0346] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.
Collapse
Affiliation(s)
- Adela González-Megías
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.
| | | |
Collapse
|
409
|
Mathur V, Tytgat TOG, de Graaf RM, Kalia V, Sankara Reddy A, Vet LEM, van Dam NM. Dealing with double trouble: consequences of single and double herbivory in Brassica juncea. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0120-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
410
|
Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C. Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:411-22. [PMID: 22762247 DOI: 10.1111/j.1365-313x.2012.05096.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Glucosinolates (GSLs) are nitrogen- and sulfur-containing metabolites that contribute to human health and plant defense. The biological activities of these molecules are largely dependent on modification of the GSL R-groups derived from their corresponding amino acid precursors. In Arabidopsis seeds, esterification of the R-group of hydroxylated GSLs (OH-GSLs) leads to the accumulation of benzoylated GSLs (BzGSLs) and sinapoylated GSLs (SnGSLs). BzGSLs were thought to be synthesized from OH-GSLs and benzoyl CoA by a BAHD acyltransferase, but no BAHD gene is strongly co-expressed with the two reference genes BZO1 and AOP3 that are required for BzGSL biosynthesis. In contrast, three genes encoding serine carboxypeptidase-like (SCPL) acyltransferases [SCPL5, SCPL17 and SCPL19 (SNG2)] do exhibit strong co-expression. Using a reverse genetic approach, we found that the GSL profile of the scpl5 mutant was identical to that of wild-type, but both BzGSLs and SnGSLs were barely detectable in scpl17 mutants and their amounts were decreased in the sng2 mutant. In addition, both scpl17 and sng2 mutants accumulate the putative BzGSL precursors OH-GSLs and benzoylglucose. The results of further GSL analyses in other phenylpropanoid mutants and benzoate feeding experiments suggested that SCPL17 mediates the acyltransferase reaction directly, while the mutation in sng2 causes a decrease in BzGSLs and SnGSLs via an unknown indirect mechanism. Finally, benzoate feeding experiments using bzo1 mutants and BZO1 biochemical characterization indicated that the in vivo role of BZO1 is to synthesize the benzoate precursor cinnamoyl CoA rather than to generate benzoyl CoA from benzoate and CoA as previously predicted.
Collapse
Affiliation(s)
- Shinyoung Lee
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
411
|
Borgen BH, Ahuja I, Thangstad OP, Honne BI, Rohloff J, Rossiter JT, Bones AM. 'Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (Brassica napus) but affect host plant preferences. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:894-904. [PMID: 22672561 DOI: 10.1111/j.1438-8677.2012.00578.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The enzyme myrosinase (EC 3.2.3.1.147) is present in specialised myrosin cells and forms part of the glucosinolate-myrosinase system, also known as 'the mustard oil bomb', which has an important role in the defence system of cruciferous plants against insect pests. Transgenic Brassica napus MINELESS have been produced by transgenic ablation of myrosin cells. This prompted us to investigate the importance of myrosin cells in plant-aphid interactions. In order to study this, we challenged transgenic MINELESS and wild-type cultivar Westar seedlings with the aphids Brevicoryne brassicae (a specialist) and Myzus persicae (a generalist). Our study included aphid free-choice and aphid fecundity experiments. Data from these experiments showed that B. brassicae prefers wild-type seedlings and M. persicae prefers MINELESS. B. brassicae and M. persicae showed significant variation in establishment on plants regardless of whether they were wild type or MINELESS and also differed significantly in affecting plant parts. Myrosinase activity in MINELESS control seedlings was 83.6% lower than the wild-type control seedlings. Infestation with either of the two aphid species induced myrosinase levels in both wild-type and MINELESS seedlings. Infestation with M. persicae reduced the concentration of most glucosinolates while B. brassicae had the opposite effect. B. brassicae enhanced the formation of glucosinolate hydrolysis products both in wild-type and MINELESS seedlings. However, M. persicae decreased All ITC but increased 3,4ETBut NIT in wild-type seedlings. Taken together, the investigation shows that the presence of myrosin cells affects the preference of generalist and specialist aphid species for Brassica napus plants.
Collapse
Affiliation(s)
- B H Borgen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
412
|
Abdalsamee MK, Müller C. Effects of indole glucosinolates on performance and sequestration by the sawfly Athalia rosae and consequences of feeding on the plant defense system. J Chem Ecol 2012; 38:1366-75. [PMID: 23053922 DOI: 10.1007/s10886-012-0197-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/18/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
In this study, the performance and sequestration specificity of the sawfly Athalia rosae L. (Hymenoptera: Tenthredinidae) reared on two wild Brassica oleracea L. (Brassicaceae) populations (KIM and WIN), which express indole glucosinolates (GSs) in very high concentrations, were investigated. The local and systemic plant responses to larval feeding also were analyzed. Indole GSs predominated in KIM plants, whereas aliphatic GSs prevailed in the WIN population, which had several times higher total GS concentrations than KIM plants. Plants of the KIM population had lower specific leaf areas, and higher carbon/nitrogen ratios than WIN plants. The insects reared on WIN plants performed better for most traits than insects reared on the KIM population. The larvae preferentially sequestered aliphatic GSs but when feeding on KIM plants, indole GSs were also concentrated in the hemolymph. In response to feeding by A. rosae larvae, indole GSs were induced locally and systemically, whereas aliphatic GSs were reduced only in systemic leaves of the WIN population. Soluble myrosinase activities were constitutively higher in WIN than in KIM plants, and feeding damage led to a significant reduction of this glucosinolate-degrading enzyme in WIN plants only. The data suggest that the sawfly is well adapted to high concentrations of aliphatic GSs, which are sequestered by the larvae. In contrast, the larvae may be less adapted to plants dominated by indole GSs. Selective induction of indole GSs by the plants in response to larval feeding may be adaptive as accumulation of indole GSs may lower the performance of the larvae.
Collapse
Affiliation(s)
- Mohamed K Abdalsamee
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
413
|
Affiliation(s)
- J Daniel Hare
- Entomology Department, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
414
|
Transient abiotic stresses lead to latent defense and reproductive responses over the Brassica rapa life cycle. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0113-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
415
|
Prasad KVSK, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, Windsor AJ, Clauss MJ, Manzaneda AJ, Naqvi I, Reichelt M, Gershenzon J, Rupasinghe SG, Schuler MA, Mitchell-Olds T. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 2012; 337:1081-4. [PMID: 22936775 DOI: 10.1126/science.1221636] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of the causal genes that control complex trait variation remains challenging, limiting our appreciation of the evolutionary processes that influence polymorphisms in nature. We cloned a quantitative trait locus that controls plant defensive chemistry, damage by insect herbivores, survival, and reproduction in the natural environments where this polymorphism evolved. These ecological effects are driven by duplications in the BCMA (branched-chain methionine allocation) loci controlling this variation and by two selectively favored amino acid changes in the glucosinolate-biosynthetic cytochrome P450 proteins that they encode. These changes cause a gain of novel enzyme function, modulated by allelic differences in catalytic rate and gene copy number. Ecological interactions in diverse environments likely contribute to the widespread polymorphism of this biochemical function.
Collapse
Affiliation(s)
- Kasavajhala V S K Prasad
- Department of Biology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
416
|
Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 2012; 168:1694-717. [PMID: 22983743 DOI: 10.1007/s12010-012-9890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.
Collapse
|
417
|
Abstract
Metabolic engineering of plants can reduce the cost and environmental impact of agriculture while providing for the needs of a growing population. Although our understanding of plant metabolism continues to increase at a rapid pace, relatively few plant metabolic engineering projects with commercial potential have emerged, in part because of a lack of principles for the rational manipulation of plant phenotype. One underexplored approach to identifying such design principles derives from analysis of the dominant constraints on plant fitness, and the evolutionary innovations in response to those constraints, that gave rise to the enormous diversity of natural plant metabolic pathways.
Collapse
Affiliation(s)
- Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
418
|
Glauser G, Schweizer F, Turlings TCJ, Reymond P. Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC-QTOFMS using a charged surface hybrid column. PHYTOCHEMICAL ANALYSIS : PCA 2012; 23:520-8. [PMID: 22323091 DOI: 10.1002/pca.2350] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 05/22/2023]
Abstract
INTRODUCTION The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.
Collapse
Affiliation(s)
- Gaetan Glauser
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland.
| | | | | | | |
Collapse
|
419
|
Tyndall JDA, Lue H, Rutledge MT, Bernhagen J, Hampton MB, Wilbanks SM. Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:999-1002. [PMID: 22949182 PMCID: PMC3433185 DOI: 10.1107/s1744309112030552] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/04/2012] [Indexed: 02/01/2023]
Abstract
Macrophage migration inhibitory factor is irreversibly inhibited via covalent modification by phenethyl isothiocyanate, a naturally occurring compound with anti-inflammatory and anticancer properties. The structure of the modified protein obtained from X-ray diffraction data to 1.64 Å resolution is presented. The inhibitor sits within a deep hydrophobic pocket between subunits of the homotrimer and is highly ordered. The secondary structure of macrophage migratory inhibitory factor is unchanged by this modification, but there are significant rearrangements, including of the side-chain position of Tyr37 and the main chain of residues 31-34. These changes may explain the decreased binding of the modified protein to the receptor CD74. Together with the pocket, the areas of conformational change define specific targets for the design of more selective and potent inhibitors as potential therapeutics.
Collapse
Affiliation(s)
- Joel D. A. Tyndall
- School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Hongqi Lue
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany
| | - Malcolm T. Rutledge
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jurgen Bernhagen
- Department of Biochemistry and Molecular Cell Biology, Institute of Biochemistry and Molecular Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52074 Aachen, Germany
| | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, PO Box 4345, Christchurch 8140, New Zealand
| | - Sigurd M. Wilbanks
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
420
|
Molecular Mechanisms Underlying Anti-Inflammatory Actions of 6-(Methylsulfinyl)hexyl Isothiocyanate Derived from Wasabi (Wasabia japonica). Adv Pharmacol Sci 2012; 2012:614046. [PMID: 22927840 PMCID: PMC3426159 DOI: 10.1155/2012/614046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/15/2012] [Indexed: 12/28/2022] Open
Abstract
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.
Collapse
|
421
|
Wang J, Gu H, Yu H, Zhao Z, Sheng X, Zhang X. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
422
|
Kuchernig JC, Burow M, Wittstock U. Evolution of specifier proteins in glucosinolate-containing plants. BMC Evol Biol 2012; 12:127. [PMID: 22839361 PMCID: PMC3482593 DOI: 10.1186/1471-2148-12-127] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/11/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The glucosinolate-myrosinase system is an activated chemical defense system found in plants of the Brassicales order. Glucosinolates are stored separately from their hydrolytic enzymes, the myrosinases, in plant tissues. Upon tissue damage, e.g. by herbivory, glucosinolates and myrosinases get mixed and glucosinolates are broken down to an array of biologically active compounds of which isothiocyanates are toxic to a wide range of organisms. Specifier proteins occur in some, but not all glucosinolate-containing plants and promote the formation of biologically active non-isothiocyanate products upon myrosinase-catalyzed glucosinolate breakdown. RESULTS Based on a phytochemical screening among representatives of the Brassicales order, we selected candidate species for identification of specifier protein cDNAs. We identified ten specifier proteins from a range of species of the Brassicaceae and assigned each of them to one of the three specifier protein types (NSP, nitrile-specifier protein, ESP, epithiospecifier protein, TFP, thiocyanate-forming protein) after heterologous expression in Escherichia coli. Together with nine known specifier proteins and three putative specifier proteins found in databases, we subjected the newly identified specifier proteins to phylogenetic analyses. Specifier proteins formed three major clusters, named AtNSP5-cluster, AtNSP1-cluster, and ESP/TFP cluster. Within the ESP/TFP cluster, specifier proteins grouped according to the Brassicaceae lineage they were identified from. Non-synonymous vs. synonymous substitution rate ratios suggested purifying selection to act on specifier protein genes. CONCLUSIONS Among specifier proteins, NSPs represent the ancestral activity. The data support a monophyletic origin of ESPs from NSPs. The split between NSPs and ESPs/TFPs happened before the radiation of the core Brassicaceae. Future analyses have to show if TFP activity evolved from ESPs at least twice independently in different Brassicaceae lineages as suggested by the phylogeny. The ability to form non-isothiocyanate products by specifier protein activity may provide plants with a selective advantage. The evolution of specifier proteins in the Brassicaceae demonstrates the plasticity of secondary metabolism within an activated plant defense system.
Collapse
Affiliation(s)
- Jennifer C Kuchernig
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany
| | - Meike Burow
- DynaMo Centre of Excellence and VKR Research Centre for Pro-Active Plants, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany
| |
Collapse
|
423
|
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores. INSECTS 2012; 3:573-92. [PMID: 26466545 PMCID: PMC4553612 DOI: 10.3390/insects3020573] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests.
Collapse
|
424
|
Rohr F, Ulrichs C, Schreiner M, Zrenner R, Mewis I. Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:52-9. [PMID: 22543106 DOI: 10.1016/j.plaphy.2012.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/12/2012] [Indexed: 05/02/2023]
Abstract
Plants contain variable chemical compositions which play a role in direct defense against phytophagous insects. Glucosinolates (GSs) are the predominant secondary metabolites and defense compounds in brassicaceous species. As a consequence of co-evolution between adapted crucifer-feeding specialists and their associated host-plants, specific plant-insect interactions have developed in a divergent manner from non-adapted generalists. Therefore, generalist and specialist insects may provoke different insect-inducible plant responses. Here, we have investigated the specific biochemical and molecular plant responses of Arabidopsis thaliana (L.) induced by the generalist Spodoptera exigua (Hübner) and the specialist Pieris brassicae L. To get more detailed information about herbivore-mediated-specific plant responses in different chemotypes within one species, we used multiple plant lines with either the non-hydroxylated 3-methylsulfinylpropyl GS or the hydroxylated 3-hydroxypropyl GS in a comparable genetic background. Caterpillar feeding induced a stronger GS accumulation in the 3-hydroxypropyl GS chemotype than the 3-methylsulfinylpropyl GS chemotype, considering the overall insect-mediated changes in aliphatic and indole GS levels in all lines. Herbivory by the generalist S. exigua and the specialist P. brassicae had similar effects on biochemical and transcriptional response pattern. Contrary to the paradigm that specialists may minimize the induction of chemical defenses, we observed a higher elicitation of GSs by the specialist species. The accumulation of especially 1-methoxy-indol-3-ylmethyl GS and the induced gene transcripts by the two species point to an insect-mediated activation of the jasmonic acid signaling pathway in the plant lines.
Collapse
Affiliation(s)
- F Rohr
- Division Urban Plant Ecophysiology, Faculty for Agriculture and Horticulture, Humboldt Universität zu Berlin,Lentzeallee 55, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
425
|
Jansen JJ, Szymańska E, Hoefsloot HCJ, Smilde AK. Individual differences in metabolomics: individualised responses and between-metabolite relationships. Metabolomics 2012; 8:94-104. [PMID: 22593723 PMCID: PMC3337417 DOI: 10.1007/s11306-012-0414-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/20/2012] [Indexed: 01/02/2023]
Abstract
Many metabolomics studies aim to find 'biomarkers': sets of molecules that are consistently elevated or decreased upon experimental manipulation. Biological effects, however, often manifest themselves along a continuum of individual differences between the biological replicates in the experiment. Such differences are overlooked or even diminished by methods in standard use for metabolomics, although they may contain a wealth of information on the experiment. Properly understanding individual differences is crucial for generating knowledge in fields like personalised medicine, evolution and ecology. We propose to use simultaneous component analysis with individual differences constraints (SCA-IND), a data analysis method from psychology that focuses on these differences. This method constructs axes along the natural biochemical differences between biological replicates, comparable to principal components. The model may shed light on changes in the individual differences between experimental groups, but also on whether these differences correspond to, e.g., responders and non-responders or to distinct chemotypes. Moreover, SCA-IND reveals the individuals that respond most to a manipulation and are best suited for further experimentation. The method is illustrated by the analysis of individual differences in the metabolic response of cabbage plants to herbivory. The model reveals individual differences in the response to shoot herbivory, where two 'response chemotypes' may be identified. In the response to root herbivory the model shows that individual plants differ strongly in response dynamics. Thereby SCA-IND provides a hitherto unavailable view on the chemical diversity of the induced plant response, that greatly increases understanding of the system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0414-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeroen J. Jansen
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department of Analytical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Ewa Szymańska
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C. J. Hoefsloot
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Age K. Smilde
- Netherlands Metabolomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, Faculty of Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
426
|
Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 2012; 38:785-94. [PMID: 22592334 PMCID: PMC3375075 DOI: 10.1007/s10886-012-0129-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Root herbivores are notoriously difficult to study, as they feed hidden in the soil. However, root herbivores may be traced by analyzing specific volatile organic compounds (VOCs) that are produced by damaged roots. These VOCs not only support parasitoids in the localization of their host, but also may help scientists study belowground plant-herbivore interactions. Herbivore-induced VOCs are usually analyzed by gas-chromatography mass spectrometry (GC-MS), but with this off-line method, the gases of interest need to be preconcentrated, and destructive sampling is required to assess the level of damage to the roots. In contrast to this, proton-transfer-reaction mass spectrometry (PTR-MS) is a very sensitive on-line, non-invasive method. PTR-MS already has been successfully applied to analyze VOCs produced by aboveground (infested) plant parts. In this review, we provide a brief overview of PTR-MS and illustrate how this technology can be applied to detect specific root-herbivore induced VOCs from Brassica plants. We also specify the advantages and disadvantages of PTR-MS analyses and new technological developments to overcome their limitations.
Collapse
|
427
|
Møldrup ME, Geu-Flores F, de Vos M, Olsen CE, Sun J, Jander G, Halkier BA. Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). PLANT BIOTECHNOLOGY JOURNAL 2012; 10:435-42. [PMID: 22256859 DOI: 10.1111/j.1467-7652.2011.00680.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glucosinolates are biologically active natural products characteristic of crucifers, including oilseed rape, cabbage vegetables and the model plant Arabidopsis thaliana. Crucifer-specialist insect herbivores, like the economically important pest Plutella xylostella (diamondback moth), frequently use glucosinolates as oviposition stimuli. This suggests that the transfer of a glucosinolate biosynthetic pathway to a non-crucifer would stimulate oviposition on an otherwise non-attractive plant. Here, we demonstrate that stable genetic transfer of the six-step benzylglucosinolate pathway from A. thaliana to Nicotiana tabacum (tobacco) results in the production of benzylglucosinolate without causing morphological alterations. Benzylglucosinolate-producing tobacco plants were more attractive for oviposition by female P. xylostella moths than wild-type tobacco plants. As newly hatched P. xylostella larvae were unable to survive on tobacco, these results represent a proof-of-concept strategy for rendering non-host plants attractive for oviposition by specialist herbivores with the long-term goal of generating efficient dead-end trap crops for agriculturally important pests.
Collapse
Affiliation(s)
- Morten E Møldrup
- Section for Molecular Plant Biology, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
428
|
van Ommen Kloeke AEE, van Gestel CAM, Styrishave B, Hansen M, Ellers J, Roelofs D. Molecular and life-history effects of a natural toxin on herbivorous and non-target soil arthropods. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1084-93. [PMID: 22311422 PMCID: PMC3325419 DOI: 10.1007/s10646-012-0861-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 05/20/2023]
Abstract
Natural toxins, such as isothiocyanate (ITC), are harmful secondary metabolites produced by plants. Many natural toxins occur in commercial crops, yet their possible negative repercussions on especially non-target soil organisms are largely unknown. This study examined life-history and gene transcriptional responses to 2-phenylethyl ITC on two soil arthropod species: Folsomia candida and Protaphorura fimata. To that end the standardized ISO guideline for ecotoxicological tests and a microarray for F. candida were used. The dissipation of 2-phenylethyl ITC in natural soil was investigated using GC-MS/MS for quantification. Half-lives, tested at four concentration levels in natural soil, were on average 16 h with biodegradation as the plausible main removal process. Regardless, toxic effects on reproduction were shown for F. candida and P. fimata, with EC50 values of around 11.5 nmol/g soil illustrating the toxic character of this compound. Gene expression profiles revealed the importance of fatty acid metabolism at low exposure concentrations (EC10), which is associated with the lipophilic nature of 2-phenylethyl ITC. At higher concentrations (EC50) gene expression became more ubiquitous with over-expression of especially stress-related genes and sugar metabolism. The regulation of a gene encoding a precursor of follistatin, furthermore, implied the inhibition of reproduction and may be an important molecular target that can be linked to the observed adverse effect of life-history traits.
Collapse
Affiliation(s)
- A E Elaine van Ommen Kloeke
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
429
|
van Nouhuys S, Reudler JH, Biere A, Harvey JA. Performance of secondary parasitoids on chemically defended and undefended hosts. Basic Appl Ecol 2012. [DOI: 10.1016/j.baae.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
430
|
Agerbirk N, Olsen CE. Glucosinolate structures in evolution. PHYTOCHEMISTRY 2012; 77:16-45. [PMID: 22405332 DOI: 10.1016/j.phytochem.2012.02.005] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/19/2023]
Abstract
By 2000, around 106 natural glucosinolates (GSLs) were probably documented. In the past decade, 26 additional natural GSL structures have been elucidated and documented. Hence, the total number of documented GSLs from nature by 2011 can be estimated to around 132. A considerable number of additional suggested structures are concluded not to be sufficiently documented. In many cases, NMR spectroscopy would have provided the missing structural information. Of the GSLs documented in the past decade, several are of previously unexpected structures and occur at considerable levels. Most originate from just four species: Barbarea vulgaris, Arabidopsis thaliana, Eruca sativa and Isatis tinctoria. Acyl derivatives of known GSLs comprised 15 of the 26 newly documented structures, while the remaining exhibited new substitution patterns or chain length, or contained a mercapto group or related thio-functionality. GSL identification methods are reviewed, and the importance of using authentic references and structure-sensitive detection methods such as MS and NMR is stressed, especially when species with relatively unknown chemistry are analyzed. An example of qualitative GSL analysis is presented with experimental details (group separation and HPLC of both intact and desulfated GSLs, detection and structure determination by UV, MS, NMR and susceptibility to myrosinase) with emphasis on the use of NMR for structure elucidation of even minor GSLs and GSL hydrolysis products. The example includes identification of a novel GSL, (R)-2-hydroxy-2-(3-hydroxyphenyl)ethylglucosinolate. Recent investigations of GSL evolution, based on investigations of species with well established phylogeny, are reviewed. From the relatively few such investigations, it is already clear that GSL profiles are regularly subject to evolution. This result is compatible with natural selection for specific GSL side chains. The probable existence of structure-specific GSL catabolism in intact plants suggests that biochemical evolution of GSLs has more complex implications than the mere liberation of a different hydrolysis product upon tissue disruption.
Collapse
Affiliation(s)
- Niels Agerbirk
- Section for Plant Biochemistry, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | | |
Collapse
|
431
|
Kos M, Houshyani B, Wietsma R, Kabouw P, Vet LEM, van Loon JJA, Dicke M. Effects of glucosinolates on a generalist and specialist leaf-chewing herbivore and an associated parasitoid. PHYTOCHEMISTRY 2012; 77:162-70. [PMID: 22281379 DOI: 10.1016/j.phytochem.2012.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/28/2011] [Accepted: 01/02/2012] [Indexed: 05/07/2023]
Abstract
Glucosinolates (GLS) are secondary plant metabolites that as a result of tissue damage, for example due to herbivory, are hydrolysed into toxic compounds that negatively affect generalist herbivores. Specialist herbivores have evolved specific adaptations to detoxify GLS or inhibit the formation of toxic hydrolytic products. Although rarely studied, GLS and their breakdown products may also affect parasitoids. The objectives were to test the effects of GLS in a multitrophic system consisting of the generalist herbivore Spodoptera exigua, the specialist herbivore Pieris rapae, and the endoparasitoid Hyposoter ebeninus. Three ecotypes of Arabidopsis thaliana that differ in their GLS composition and concentrations and one transformed line that constitutively produces higher concentrations of aliphatic GLS were used, the latter allowing a direct assessment of the effects of aliphatic GLS on insect performance. Feeding by the generalist S. exigua and the specialist P. rapae induced both higher aliphatic and indole GLS concentrations in the A. thaliana ecotypes, although induction was stronger for indole than aliphatic GLS. For both herbivores a negative correlation between performance and aliphatic GLS concentrations was observed. This suggests that the specialist, despite containing a nitrile-specifier protein (NSP) that diverts GLS degradation from toxic isothiocyanates to less toxic nitriles, cannot completely inhibit the formation of toxic GLS hydrolytic products, or that the costs of this mechanism are higher at higher GLS concentrations. Surprisingly, performance of the parasitoid was positively correlated with higher concentrations of aliphatic GLS in the plant, possibly caused by negative effects on host immune responses. Our study indicates that GLS can not only confer resistance against herbivores directly, but also indirectly by increasing the performance of the parasitoids of these herbivores.
Collapse
Affiliation(s)
- Martine Kos
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
432
|
Stauber EJ, Kuczka P, van Ohlen M, Vogt B, Janowitz T, Piotrowski M, Beuerle T, Wittstock U. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. PLoS One 2012; 7:e35545. [PMID: 22536404 PMCID: PMC3334988 DOI: 10.1371/journal.pone.0035545] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/18/2012] [Indexed: 11/18/2022] Open
Abstract
Plants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.g. new chemical defenses. The association of Pierid butterflies and plants of the Brassicales has been cited as an illustrative example of this adaptive process known as 'coevolutionary armsrace'. All plants of the Brassicales are defended by the glucosinolate-myrosinase system to which larvae of cabbage white butterflies and related species are biochemically adapted through a gut nitrile-specifier protein. Here, we provide evidence by metabolite profiling and enzyme assays that metabolism of benzylglucosinolate in Pieris rapae results in release of equimolar amounts of cyanide, a potent inhibitor of cellular respiration. We further demonstrate that P. rapae larvae develop on transgenic Arabidopsis plants with ectopic production of the cyanogenic glucoside dhurrin without ill effects. Metabolite analyses and fumigation experiments indicate that cyanide is detoxified by β-cyanoalanine synthase and rhodanese in the larvae. Based on these results as well as on the facts that benzylglucosinolate was one of the predominant glucosinolates in ancient Brassicales and that ancient Brassicales lack nitrilases involved in alternative pathways, we propose that the ability of Pierid species to safely handle cyanide contributed to the primary host shift from Fabales to Brassicales that occured about 75 million years ago and was followed by Pierid species diversification.
Collapse
Affiliation(s)
- Einar J. Stauber
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Petrissa Kuczka
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maike van Ohlen
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Birgit Vogt
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Tim Janowitz
- Department of Plant Physiology, Ruhr-Universität Bochum, Bochum, Germany
| | - Markus Piotrowski
- Department of Plant Physiology, Ruhr-Universität Bochum, Bochum, Germany
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ute Wittstock
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
433
|
Kissen R, Hyldbakk E, Wang CWV, Sørmo CG, Rossiter JT, Bones AM. Ecotype dependent expression and alternative splicing of epithiospecifier protein (ESP) in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 78:361-75. [PMID: 22228407 DOI: 10.1007/s11103-011-9869-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 12/13/2011] [Indexed: 05/20/2023]
Abstract
Epithiospecifier protein (ESP) is responsible for diverting glucosinolate hydrolysis from the generation of isothiocyanates to that of epithionitriles or nitriles, and thereby negatively affects the ability of the plant to defend itself against certain insects. Despite this important role of ESP, little is known about its expression in plant tissues and the regulation thereof. We therefore investigated ESP expression by qPCR and Western blot in different organs during the growth cycle of the two Arabidopsis thaliana ecotypes Col-0 and Mt-0. Besides the fact that ESP transcript and protein levels were revealed to be much higher in Mt-0 than in Col-0 in all cases, our qPCR results also indicated that ESP expression is regulated differently in the two A. thaliana ecotypes. No ESP protein was detected by Western blot in any organ or developmental stage for Col-0. During the assays an alternative splice variant of ESP was identified in Col-0, but not Mt-0, leading to a mis-spliced transcript which could explain the low expression levels of ESP in the former ecotype. Analysis of genomic sequences containing the ESP splice sites, of ESP protein level and ESP activity from seven A. thaliana ecotypes showed a positive correlation between the presence of a non-canonical 5' splice site for ESP and the absence of detectable ESP protein levels and ESP activity. When analysing the expression of both transcript variants in Col-0 after treatment with methyl jasmonate, a condition known to "induce ESP", it was indeed the alternative splice variant that was preferentially induced.
Collapse
Affiliation(s)
- R Kissen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, Høgskoleringen 5, 7491 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
434
|
Bukovinszky T, Gols R, Smid HM, Bukovinszkiné Kiss G, Dicke M, Harvey JA. Consequences of constitutive and induced variation in the host's food plant quality for parasitoid larval development. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:367-375. [PMID: 22233934 DOI: 10.1016/j.jinsphys.2011.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 05/31/2023]
Abstract
Constitutive and induced changes in plant quality impact higher trophic levels, such as the development of parasitoids, in different ways. An efficient way to study how plant quality affects parasitoids is to examine how the parasitoid larva is integrated within the host during the growth process. In two experiments, we investigated the effects of varying nutritional quality of Brassica oleracea on parasitoid larval development inside the host, the diamondback moth (Plutella xylostella). First, we compared larval growth of the specialist Diadegma semiclausum and the generalist Diadegma fenestrale, when the host was feeding on Brussels sprout plants that were either undamaged or were previously induced by caterpillar damage. Larvae of the generalist D. fenestrale showed lower growth rates than larvae of the specialist D. semiclausum, and this difference was more pronounced on herbivore-induced plants, suggesting differences in host-use efficiency between parasitoid species. The growth of D. semiclausum larvae was also analyzed in relation to herbivore induction on Brussels sprouts and on a wild B. oleracea strain. Parasitoid growth was more depressed on induced than on undamaged control plants, and more on wild cabbage than on Brussels sprouts, which was largely explained by differences in host mass. The effects of induction of wild Brassica on parasitoid development were pronounced early on, but as P. xylostella feeding began inducing the previously undamaged control plants, the effect of induction disappeared, revealing a temporal component of plant-parasitoid interactions. This study demonstrates how insights into the physiological aspects of host-parasitoid interactions can improve our understanding of the effects of plant-related traits on parasitoid wasps.
Collapse
Affiliation(s)
- Tibor Bukovinszky
- Laboratory of Entomology, Plant Science Group, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
435
|
Gallaher CM, Gallaher DD, Peterson S. Development and validation of a spectrophotometric method for quantification of total glucosinolates in cruciferous vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1358-1362. [PMID: 22313055 DOI: 10.1021/jf2041142] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Given their putative role in chemoprevention, validated methods are needed for quantification of total glucosinolates. Based on the colorimetric reaction of ferricyanide with 1-thioglucose, released by alkaline hydrolysis of glucosinolates, we developed a simple and sensitive method for spectrophotometric quantification of total glucosinolates in cruciferous vegetables. Lyophilized and ground vegetables are extracted with 80% boiling methanol. Extracted glucosinolates are isolated using a strong anion exchange column and then hydrolyzed with 2 N NaOH to release 1-thioglucose. Ferricyanide is added, and the decrease in absorbance is measured at 420 nm, with final values adjusted for background. Recovery of internal standard (sinigrin) was 107%. Intra- and interassay coefficients of variation were 5.4% and 15.8%, respectively. Dose response was linear with sinigrin and amount of plant material extracted (R(2) ≥ 0.99). Using sinigrin, the lower limit of quantification was 0.6 mg. This straightforward method may be an alternative to time-consuming and costly chromatographic methods.
Collapse
Affiliation(s)
- Cynthia M Gallaher
- Department of Food Science and Nutrition, University of Minnesota, 225 Food Science and Nutrition, 1334 Eckles Avenue, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
436
|
Gutbrodt B, Dorn S, Unsicker SB, Mody K. Species-specific responses of herbivores to within-plant and environmentally mediated between-plant variability in plant chemistry. CHEMOECOLOGY 2012. [DOI: 10.1007/s00049-012-0102-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
437
|
Arab A, Alves MN, Sartoratto A, Ogasawara DC, Trigo JR. Methyl jasmonate increases the tropane alkaloid scopolamine and reduces natural herbivory in Brugmansia suaveolens: is scopolamine responsible for plant resistance? NEOTROPICAL ENTOMOLOGY 2012; 41:2-8. [PMID: 23950002 DOI: 10.1007/s13744-011-0001-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 10/28/2011] [Indexed: 06/02/2023]
Abstract
The tropane alkaloid (TA) scopolamine is suggested to protect Brugmansia suaveolens (Solanaceae) against herbivorous insects. To test this prediction in a natural environment, scopolamine was induced by methyl jasmonate (MJ) in potted plants which were left 10 days in the field. MJ-treated plants increased their scopolamine concentration in leaves and herbivory decreased. These findings suggest a cause-effect relationship. However, experiments in laboratory showed that scopolamine affect differently the performance of the specialist larvae of the ithomiine butterfly Placidina euryanassa (C. Felder & R. Felder) and the generalist fall armyworm Spodoptera frugiperda (J. E. Smith): the specialist that sequester this TA from B. suaveolens leaves was not negatively affected, but the generalist was. Therefore, scopolamine probably acts only against insects that are not adapted to TAs. Other compounds that are MJ elicited may also play a role in plant resistance against herbivory by generalist and specialist insects, and deserve future investigations.
Collapse
Affiliation(s)
- A Arab
- Lab de Ecologia Química, Depto de Biologia Animal, Instituto de Biologia, Campinas, SP, Brasil
| | | | | | | | | |
Collapse
|
438
|
Brown PN, Murch SJ, Shipley P. Phytochemical diversity of cranberry (Vaccinium macrocarpon Aiton) cultivars by anthocyanin determination and metabolomic profiling with chemometric analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:261-71. [PMID: 22148867 DOI: 10.1021/jf2033335] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Originally native to the eastern United States, American cranberry ( Vaccinium macrocarpon Aiton, family Ericaceae) cultivation of native and hybrid varieties has spread across North America. Herein is reported the phytochemical diversity of five cranberry cultivars (Stevens, Ben Lear, Bergman, Pilgrim, and GH1) collected in the Greater Vancouver Regional District, by anthocyanin content and UPLC-TOF-MS metabolomic profiling. The anthocyanin content for biological replicates (n = 5) was determined as 7.98 ± 5.83, Ben Lear; 7.02 ± 1.75, Bergman; 6.05 ± 2.51, GH1; 3.28 ± 1.88, Pilgrim; and 2.81 ± 0.81, Stevens. Using subtractive metabonomic algorithms 6481 compounds were found conserved across all varietals, with 136 (Ben Lear), 84 (Bergman), 91 (GH1), 128 (Pilgrim), and 165 (Stevens) unique compounds observed. Principal component analysis (PCA) did not differentiate varieties, whereas partial least-squares discriminate analysis (PLS-DA) exhibited clustering patterns. Univariate statistical approaches were applied to the data set, establishing significance of values and assessing quality of the models. Metabolomic profiling with chemometric analysis proved to be useful for characterizing metabonomic changes across cranberry varieties.
Collapse
Affiliation(s)
- Paula N Brown
- University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, British Columbia V1V 1V7, Canada
| | | | | |
Collapse
|
439
|
Plant neighborhood influences colonization of Brassicaceae by specialist and generalist aphids. Oecologia 2012; 169:753-61. [DOI: 10.1007/s00442-011-2241-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
440
|
Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LEM, Dicke M, van Loon JJA. Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. J Chem Ecol 2012. [PMID: 22258357 DOI: 10.1007/s10886-012-0065-62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The cabbage aphid Brevicoryne brassicae is a specialist herbivore that sequesters glucosinolates from its host plant as a defense against its predators. It is unknown to what extent parasitoids are affected by this sequestration. We investigated herbivore-mediated effects of glucosinolates on the parasitoid wasp Diaeretiella rapae and the predator Episyrphus balteatus. We reared B. brassicae on three ecotypes of Arabidopsis thaliana that differ in glucosinolate content and on one genetically transformed line with modified concentrations of aliphatic glucosinolates. We tested aphid performance and the performance and behavior of both natural enemies. We correlated this with phloem and aphid glucosinolate concentrations and emission of volatiles. Brevicoryne brassicae performance correlated positively with concentrations of both aliphatic and indole glucosinolates in the phloem. Aphids selectively sequestered glucosinolates. Glucosinolate concentration in B. brassicae correlated negatively with performance of the predator, but positively with performance of the parasitoid, possibly because the aphids with the highest glucosinolate concentrations had a higher body weight. Both natural enemies showed a positive performance-preference correlation. The predator preferred the ecotype with the lowest emission of volatile glucosinolate breakdown products in each test combination, whereas the parasitoid wasp preferred the A. thaliana ecotype with the highest emission of these volatiles. The study shows that there are differential herbivore-mediated effects of glucosinolates on a predator and a parasitoid of a specialist aphid that selectively sequesters glucosinolates from its host plant.
Collapse
Affiliation(s)
- Martine Kos
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
441
|
Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LEM, Dicke M, van Loon JJA. Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. J Chem Ecol 2012; 38:100-15. [PMID: 22258357 PMCID: PMC3268984 DOI: 10.1007/s10886-012-0065-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/22/2011] [Accepted: 12/28/2011] [Indexed: 01/07/2023]
Abstract
The cabbage aphid Brevicoryne brassicae is a specialist herbivore that sequesters glucosinolates from its host plant as a defense against its predators. It is unknown to what extent parasitoids are affected by this sequestration. We investigated herbivore-mediated effects of glucosinolates on the parasitoid wasp Diaeretiella rapae and the predator Episyrphus balteatus. We reared B. brassicae on three ecotypes of Arabidopsis thaliana that differ in glucosinolate content and on one genetically transformed line with modified concentrations of aliphatic glucosinolates. We tested aphid performance and the performance and behavior of both natural enemies. We correlated this with phloem and aphid glucosinolate concentrations and emission of volatiles. Brevicoryne brassicae performance correlated positively with concentrations of both aliphatic and indole glucosinolates in the phloem. Aphids selectively sequestered glucosinolates. Glucosinolate concentration in B. brassicae correlated negatively with performance of the predator, but positively with performance of the parasitoid, possibly because the aphids with the highest glucosinolate concentrations had a higher body weight. Both natural enemies showed a positive performance-preference correlation. The predator preferred the ecotype with the lowest emission of volatile glucosinolate breakdown products in each test combination, whereas the parasitoid wasp preferred the A. thaliana ecotype with the highest emission of these volatiles. The study shows that there are differential herbivore-mediated effects of glucosinolates on a predator and a parasitoid of a specialist aphid that selectively sequesters glucosinolates from its host plant.
Collapse
Affiliation(s)
- Martine Kos
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
442
|
Pierre PS, Dugravot S, Cortesero AM, Poinsot D, Raaijmakers CE, Hassan HM, van Dam NM. Broccoli and turnip plants display contrasting responses to belowground induction by Delia radicum infestation and phytohormone applications. PHYTOCHEMISTRY 2012; 73:42-50. [PMID: 22019318 DOI: 10.1016/j.phytochem.2011.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/04/2011] [Accepted: 09/21/2011] [Indexed: 05/13/2023]
Abstract
Induced responses to insect herbivory are a common phenomenon in the plant kingdom. So far, induced responses have mostly investigated in aerial plant parts. Recently it was found that root herbivore may also elicit both local and systemic responses affecting aboveground herbivores and their natural enemies. Using broccoli (Brassica oleracea subsp. italica L.) and turnip (Brassica rapa subsp. rapa L.), two cultivated brassicaceaous plants differing in their chemistry and morphology, we analysed the local and systemic induced responses triggered by Delia radicum L. damage, JA and SA application. We also assessed whether the root induction treatments affected D. radicum larval performance. Both D. radicum damage and JA induced changes in glucosinolate and sugar content as well as affected D. radicum performance, while SA application did not. Despite the uniform chemical responses, the effect on larval performance on broccoli and turnip plants was very different. On broccoli, JA root treatment reduced herbivore performance, whereas in turnips the same treatment enhanced it. JA- and D. radicum-induced responses followed similar patterns, which suggests that the JA signalling pathway is involved in root-induced responses to larval feeding. Glucosinolate induction cannot fully explain the differences found in the performance of D. radicum on the different species. Changes in other resistance factors might significantly contribute to the induced resistance in these brassicaceaeous species as well.
Collapse
Affiliation(s)
- Prisca S Pierre
- UMR 1099 BiO3P, INRA, Agrocampus Ouest, University of Rennes Campus Scientifique de Beaulieu - Bât 25, 4 ème Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
443
|
Abstract
Plants have evolved a plethora of different chemical defenses covering nearly all classes of (secondary) metabolites that represent a major barrier to herbivory: Some are constitutive; others are induced after attack. Many compounds act directly on the herbivore, whereas others act indirectly via the attraction of organisms from other trophic levels that, in turn, protect the plant. An enormous diversity of plant (bio)chemicals are toxic, repellent, or antinutritive for herbivores of all types. Examples include cyanogenic glycosides, glucosinolates, alkaloids, and terpenoids; others are macromolecules and comprise latex or proteinase inhibitors. Their modes of action include membrane disruption, inhibition of nutrient and ion transport, inhibition of signal transduction processes, inhibition of metabolism, or disruption of the hormonal control of physiological processes. Recognizing the herbivore challenge and precise timing of plant activities as well as the adaptive modulation of the plants' metabolism is important so that metabolites and energy may be efficiently allocated to defensive activities.
Collapse
Affiliation(s)
- Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | | |
Collapse
|
444
|
Bejai S, Fridborg I, Ekbom B. Varied response of Spodoptera littoralis against Arabidopsis thaliana with metabolically engineered glucosinolate profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 50:72-8. [PMID: 21835629 DOI: 10.1016/j.plaphy.2011.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/20/2011] [Indexed: 05/02/2023]
Abstract
Upon herbivory glucosinolates are known to be degraded into a cascade of secondary products that can be detrimental for certain herbivores. We performed herbivory bioassays using first and second instar generalist Lepidoptera larvae Spodoptera littoralis on Arabidopsis thaliana engineered to overexpress novel glucosinolates. A differential response in larval feeding patterns was observed on the plants engineered with novel glucosinolates. Larvae fed on plants overexpressing 4-hydroxybenzyl glucosinolate and isopropyl glucosinolate showed little response. Larvae fed on 35S:CYP79A2 plants engineered to overexpress benzyl glucosinolates, however, showed reduced larval and pupal weights. Upon herbivory a high expression of JA signalling gene LOX2 was observed on the 35S:CYP79A2 plants compared to the PR1a and VSP2 expression. To confirm the role of benzyl isothiocyanate (BITC), a degradation product of benzyl glucosinolate overexpressing plants, in the retarded larval growth we used Virus Induced Gene Silencing (VIGS) approach to silence LOX2 expression in the 35S:CYP79A2 plants. S. littoralis larvae fed on LOX2 silenced 35S:CYP79A2 plants exhibited a retarded larval growth thus indicating that BITC played a pivotal role in anti-herbivory and not only the JA signalling pathway.
Collapse
Affiliation(s)
- Sarosh Bejai
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, SLU, Uppsala SE-75007, Sweden.
| | | | | |
Collapse
|
445
|
Glauser G, Marti G, Villard N, Doyen GA, Wolfender JL, Turlings TCJ, Erb M. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:901-11. [PMID: 21838747 DOI: 10.1111/j.1365-313x.2011.04740.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant-insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant-insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-β-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived β-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant-insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.
Collapse
Affiliation(s)
- Gaétan Glauser
- Laboratory for Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
446
|
Pedras MSC, Hossain S. Interaction of cruciferous phytoanticipins with plant fungal pathogens: indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are. PHYTOCHEMISTRY 2011; 72:2308-16. [PMID: 21920565 DOI: 10.1016/j.phytochem.2011.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/21/2011] [Accepted: 08/16/2011] [Indexed: 05/10/2023]
Abstract
Glucosinolates represent a large group of plant natural products long known for diverse and fascinating physiological functions and activities. Despite the relevance and huge interest on the roles of indole glucosinolates in plant defense, little is known about their direct interaction with microbial plant pathogens. Toward this end, the metabolism of indolyl glucosinolates, their corresponding desulfo-derivatives, and derived metabolites, by three fungal species pathogenic on crucifers was investigated. While glucobrassicin, 1-methoxyglucobrassicin, 4-methoxyglucobrassicin were not metabolized by the pathogenic fungi Alternaria brassicicola, Rhizoctonia solani and Sclerotinia sclerotiorum, the corresponding desulfo-derivatives were metabolized to indolyl-3-acetonitrile, caulilexin C (1-methoxyindolyl-3-acetonitrile) and arvelexin (4-methoxyindolyl-3-acetonitrile) by R. solani and S. sclerotiorum, but not by A. brassicicola. That is, desulfo-glucosinolates were metabolized by two non-host-selective pathogens, but not by a host-selective. Indolyl-3-acetonitrile, caulilexin C and arvelexin were metabolized to the corresponding indole-3-carboxylic acids. Indolyl-3-acetonitriles displayed higher inhibitory activity than indole desulfo-glucosinolates. Indolyl-3-methanol displayed antifungal activity and was metabolized by A. brassicicola and R. solani to the less antifungal compounds indole-3-carboxaldehyde and indole-3-carboxylic acid. Diindolyl-3-methane was strongly antifungal and stable in fungal cultures, but ascorbigen was not stable in solution and displayed low antifungal activity; neither compound appeared to be metabolized by any of the three fungal species. The cell-free extracts of mycelia of A. brassicicola displayed low myrosinase activity using glucobrassicin as substrate, but myrosinase activity was not detectable in mycelia of either R. solani or S. sclerotiorum.
Collapse
|
447
|
Mostafa AM, Lowery DT, Jensen LBM, Deglow EK. Host plant suitability and feeding preferences of the grapevine pest Abagrotis orbis (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2011; 40:1458-1464. [PMID: 22217761 DOI: 10.1603/en11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Thirteen plant species were tested for their suitability as hosts for Abagrotis orbis (Grote), a climbing cutworm pest of grapevines in British Columbia. Choice tests were also conducted to investigate larval feeding preferences for the Brassicaceae species joi choi, Brassica rapa variety. Chinensis L., spring draba; Draba verna L.; and shepherd's purse, Capsella bursa-pastoris (L.) Medik; compared with postdormant buds of grape, Vitis vinifera L. (Vitaceae), and leaves of nine other plant species from several families. Results showed that tah tsai, Brassica rapa L. variety rosularis (M. Tsen & S. H. Lee) Hanelt (Brassicaceae), is a superior host for A. orbis based on shorter time to adult eclosion, heavier pupae, and higher rates of survival. Later-instar larvae died when fed draba, whereas those reared on shepherd's purse did not survive beyond the third instar. White clover, Trifolium repens L. (Fabaceae), and grape leaves were unsuitable hosts throughout development. Fifth-instar A. orbis preferred plants of the Brassicaceae family, dandelion, Taraxacum officinale Weber (Asteraceae), and strawberry, Fragaria sp. L. (Rosaceae), compared with postdormant grape buds. The results of this study suggest that the winter annual mustards draba and shepherd's purse that often grow abundantly in vine rows might help reduce climbing cutworm damage to the buds of grapevines.
Collapse
Affiliation(s)
- A M Mostafa
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| | | | | | | |
Collapse
|
448
|
Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proc Natl Acad Sci U S A 2011; 108:19647-52. [PMID: 22084113 DOI: 10.1073/pnas.1110748108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.
Collapse
|
449
|
Ahuja I, Borgen BH, Hansen M, Honne BI, Müller C, Rohloff J, Rossiter JT, Bones AM. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4975-93. [PMID: 21778185 PMCID: PMC3193006 DOI: 10.1093/jxb/err195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 05/25/2023]
Abstract
Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Birgit Hafeld Borgen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Magnor Hansen
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås Norway
| | - Bjørn Ivar Honne
- Bioforsk Div. Grassland and Landscape, Kvithamar, N-7500 Stjørdal, Norway
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - John Trevor Rossiter
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| |
Collapse
|
450
|
Harvey JA, Gols R. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp. J Chem Ecol 2011; 37:1081-90. [PMID: 21987026 PMCID: PMC3197929 DOI: 10.1007/s10886-011-0024-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/19/2011] [Accepted: 09/28/2011] [Indexed: 10/31/2022]
Abstract
The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer instars, and host growth is arrested when they are only a fraction of the size of healthy caterpillars. Certain aspects of the biology and life-history of the host and parasitoid may determine their response to chemical challenges imposed by the food plant.
Collapse
Affiliation(s)
- Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | | |
Collapse
|