401
|
Kato K, Uchino R, Lillehoj EP, Knox K, Lin Y, Kim KC. Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages. Am J Respir Cell Mol Biol 2016; 54:515-23. [PMID: 26393683 DOI: 10.1165/rcmb.2015-0177oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (MUC in human; Muc in animals) is a transmembrane mucin glycoprotein expressed in mucosal epithelial cells and hematopoietic cells. MUC1 is involved in the resolution of inflammation during airway Pseudomonas aeruginosa (Pa) infection by suppressing Toll-like receptor signaling in airway epithelial cells. Although alveolar macrophages are recognized as critical mediators of cell-mediated immunity against microorganisms inhaled into the airways, the role of MUC1 in regulating their response is unknown. The aims of this study were to determine whether macrophages express MUC1, and, if so, whether MUC1 expression might be associated with macrophage M0/M1/M2 differentiation or phagocytic activity. Human and mouse MUC1/Muc1 expression was drastically up-regulated in classically activated (M1) macrophages compared with nonactivated (M0) and alternatively activated (M2) macrophages. M1 polarization and Pa stimulation each increased MUC1 ectodomain shedding from the macrophage surface in a TNF-α-converting enzyme-dependent manner. MUC1/Muc1 deficiency in M0 macrophages increased adhesion and phagocytosis of Pa and Escherichia coli compared with MUC1/Muc1-expressing cells, and attenuation of phagocytosis by MUC1 was augmented after polarization into M1 macrophages compared with M0 macrophages. Finally, MUC1/Muc1 deficiency in macrophages increased reactive oxygen species production and TNF-α release in response to Pa compared with MUC1/Muc1-sufficient cells. These results indicate that MUC1/Muc1 expression by macrophages is predominantly in the M1 subtype, and that MUC1/Muc1 expression in these cells decreases their phagocytic activity in an antiinflammatory manner.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Reina Uchino
- 2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Erik P Lillehoj
- 3 Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenneth Knox
- 4 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Yong Lin
- 5 Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico(Received in original form May 28, 2015 and in final form September 15, 2015)
| | - K Chul Kim
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
402
|
Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J. Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 2016; 22:186-193. [PMID: 27554801 DOI: 10.1016/j.drudis.2016.08.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/14/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Macrophages are a heterogeneous population of phagocytic cells present in all tissues. Recently, several drugs that target the epigenetic machinery have emerged as attractive molecules for treating infection and inflammation by modulating macrophages. Treatment of lipopolysaccharide (LPS)-challenged macrophages with epigenetic modifiers leads to phenotype switching. This could provide stimulatory/destructive (M1) or suppressive/protective (M2) therapeutic strategies, which are crucial in the cytokine milieu in which the macrophages reside. In this review, we provide an overview of macrophage functional diversity during various diseases, including infection, as well as the current status in the development and clinical utility of epigenetic modifiers.
Collapse
Affiliation(s)
- Urmi Patel
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sheeja Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Saheli Samanta
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Thuy Cao
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Johnson Rajasingh
- Department of Internal Medicine, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
403
|
Shults JA, Curtis BJ, Boe DM, Ramirez L, Kovacs EJ. Ethanol intoxication prolongs post-burn pulmonary inflammation: role of alveolar macrophages. J Leukoc Biol 2016; 100:1037-1045. [PMID: 27531926 DOI: 10.1189/jlb.3ma0316-111r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
In this study, the role and fate of AMs were examined in pulmonary inflammation after intoxication and injury. Clinical evidence has revealed that half of all burn patients brought to the emergency department are intoxicated at the time of injury. This combined insult results in amplified neutrophil accumulation and pulmonary edema, with an increased risk of lung failure and mortality, relative to either insult alone. We believe that this excessive pulmonary inflammation, which also parallels decreased lung function, is mediated in part by AMs. Restoration of lung tissue homeostasis is dependent on the eradication of neutrophils and removal of apoptotic cells, both major functions of AMs. Thirty minutes after binge ethanol intoxication, mice were anesthetized and given a 15% total body surface area dorsal scald injury. At 24 h, we found a 50% decrease in the total number of AMs (P < 0.05) and observed a proinflammatory phenotype on the remaining lung AMs. Loss of AMs paralleled a 6-fold increase in the number of TUNEL+ lung apoptotic cells (P < 0.05) and a 3.5-fold increase in the percentage of annexin V+ apoptotic cells in BAL (P < 0.05), after intoxication and injury, relative to controls. In contrast to the reduction in the number of cells, AMs from intoxicated and injured mice had a 4-fold increase in efferocytosis (P < 0.05). In summary, these data suggest that loss of AMs may delay resolution of inflammation, resulting in the pulmonary complications and elevated mortality rates observed in intoxicated and burn-injured patients.
Collapse
Affiliation(s)
- Jill A Shults
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Brenda J Curtis
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Devin M Boe
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Luis Ramirez
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| | - Elizabeth J Kovacs
- Alcohol Research Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA; .,Burn and Shock Trauma Research Institute, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago, Health Sciences Campus, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
404
|
McMahan RS, Birkland TP, Smigiel KS, Vandivort TC, Rohani MG, Manicone AM, McGuire JK, Gharib SA, Parks WC. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:899-909. [PMID: 27316687 PMCID: PMC4955757 DOI: 10.4049/jimmunol.1600502] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023]
Abstract
Several members of the matrix metalloproteinase (MMP) family control a range of immune processes, such as leukocyte influx and chemokine activity. Stromelysin-2 (MMP10) is expressed by macrophages in numerous tissues after injury; however, little is known of its function. In this study, we report that MMP10 is expressed by macrophages in human lungs from patients with cystic fibrosis and induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by isolated resident alveolar and bone marrow-derived macrophages (BMDM). Our data indicates that macrophage MMP10 serves a beneficial function in response to acute infection. Whereas wild-type mice survived infection with minimal morbidity, 50% of Mmp10(-/-) mice died and all showed sustained weight loss (morbidity). Although bacterial clearance and neutrophil influx did not differ between genotypes, macrophage numbers were ∼3-fold greater in infected Mmp10(-/-) lungs than in wild-types. Adoptive transfer of wild-type BMDM normalized infection-induced morbidity in Mmp10(-/-) recipients to wild-type levels, demonstrating that the protective effect of MMP10 was due to its production by macrophages. Both in vivo and in cultured alveolar macrophages and BMDM, expression of several M1 macrophage markers was elevated, whereas M2 markers were reduced in Mmp10(-/-) tissue and cells. Global gene expression analysis revealed that infection-mediated transcriptional changes persisted in Mmp10(-/-) BMDM long after they were downregulated in wild-type cells. These results indicate that MMP10 serves a beneficial role in response to acute infection by moderating the proinflammatory response of resident and infiltrating macrophages.
Collapse
Affiliation(s)
- Ryan S McMahan
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105
| | - Timothy P Birkland
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Tyler C Vandivort
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Maryam G Rohani
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - John K McGuire
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Pediatrics, University of Washington, Seattle, WA 98195
| | - Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, WA 98109; Department of Medicine, University of Washington, Seattle, WA 98195; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| |
Collapse
|
405
|
Sly PD, Wainwright CE. Diagnosis and early life risk factors for bronchiectasis in cystic fibrosis: a review. Expert Rev Respir Med 2016; 10:1003-10. [PMID: 27329819 DOI: 10.1080/17476348.2016.1204915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Lung disease in cystic fibrosis begins in early life with neutrophil-dominated inflammation and infection, is progressive and results in structural lung damage characterised by bronchial dilation and bronchiectasis. Preventative strategies must be employed in early life but require a better understanding of how bronchiectasis develops. AREAS COVERED In this review we have addressed the diagnosis and early life risk factors for bronchiectasis in young children with cystic fibrosis. A systematic review was not performed and the literature reviewed was known to the authors. Expert commentary: Bronchiectasis represents a process of progressive dilatation and damage of airway walls and is traditionally considered to be irreversible. Diagnosis is primarily by detecting a bronchial:arterial ratio of >1 on chest CT scan. Lung volume has a greater influence on airway diameter than on arterial making control of lung volume during scanning critical. Early life risk factors for the onset and progression bronchiectasis include: severe cystic fibrosis genotype; neutrophilic inflammation with free neutrophil elastase activity in the lung; and pulmonary infection. Bronchiectasis develops in the majority of children before they reach school age despite the best current therapy. To prevent bronchiectasis novel therapies are going to have to be given to infants.
Collapse
Affiliation(s)
- Peter D Sly
- a Department of Respiratory and Sleep Medicine , Children's Health Queensland , Brisbane , Australia.,b Child Health Research Centre , The University of Queensland , Brisbane , Australia
| | - Claire E Wainwright
- a Department of Respiratory and Sleep Medicine , Children's Health Queensland , Brisbane , Australia.,b Child Health Research Centre , The University of Queensland , Brisbane , Australia
| |
Collapse
|
406
|
|
407
|
Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M, Stoeger T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 2016; 13:33. [PMID: 27328634 PMCID: PMC4915176 DOI: 10.1186/s12989-016-0144-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung. We exposed C57BL/6 mice to 20 μg CNP by intratracheal instillation and comprehensively investigated the expression of the underlying mediators during a time span of 3 to 72 h in three different lung cell populations: CD45- (negative) structural cells, CD45+ (positive) leukocytes, and by BAL recovered cells. Results Bronchoalveolar lavage (BAL) analysis revealed an acute inflammatory response characterized by the most prominent culmination of neutrophil granulocytes from 12 to 24 h after instillation, which declined to basal levels by day 7. As early as 3 h after CNP exposure 50 % of the AM revealed particle laden. BAL concentrations and lung gene expression profiles of TNFα, and the neutrophil chemoattractants CXCL1,-2 and-5 preceded the neutrophil recruitment and showed highest levels after 12 h of CNP exposure, pointing to a significant activation of the inflammation-evoking lung cells at this point of time. AM, isolated from lungs 3 to 12 h after CNP instillation, however, did not show a pro-inflammatory signature. On the contrary, gene expression analysis of different lung cell populations isolated 12 h after CNP instillation revealed CD45-, mainly representing alveolar epithelial type II (ATII) cells as major producer of inflammatory CXCL cytokines. Particularly by CD45- cells expressed Cxcl5 proved to be the most abundant chemokine, being 12 h after CNP exposure 24 (±11) fold induced. Conclusion Our data suggests that AM are noninvolved in the initiation of the inflammatory response. ATII cells, which induced highest CXCL levels early on, might in contrast be the driver of acute neutrophilic inflammation upon pulmonary CNP exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanze Chen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Renfu Yin
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Youjia Yu
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
408
|
Eldredge LC, Treuting PM, Manicone AM, Ziegler SF, Parks WC, McGuire JK. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol 2016; 54:273-83. [PMID: 26192732 DOI: 10.1165/rcmb.2014-0395oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common consequence of life-saving interventions for infants born with immature lungs. Resident tissue myeloid cells regulate lung pathology, but their role in BPD is poorly understood. To determine the role of lung interstitial myeloid cells in neonatal responses to lung injury, we exposed newborn mice to hyperoxia, a neonatal mouse lung injury model with features of human BPD. In newborn mice raised in normoxia, we identified a CD45(+) F4/80(+) CD11b(+), Ly6G(lo-int) CD71(+) population of cells in lungs of neonatal mice present in significantly greater percentages than in adult mice. In response to hyperoxia, surface marker and gene expression in whole lung macrophages/monocytes was biased to an alternatively activated phenotype. Partial depletion of these CD11b(+) mononuclear cells using CD11b-diphtheria toxin (DT) receptor transgenic mice resulted in 60% mortality by 40 hours of hyperoxia exposure with more severe lung injury, perivascular edema, and alveolar hemorrhage compared with DT-treated CD11b-DT receptor-negative controls, which displayed no mortality. These results identify an antiinflammatory population of CD11b(+) mononuclear cells that are protective in hyperoxia-induced neonatal lung injury in mice, and suggest that enhancing their beneficial functions may be a treatment strategy in infants at risk for BPD.
Collapse
Affiliation(s)
- Laurie C Eldredge
- 1 Center for Lung Biology, and Department of Pediatrics, Divisions of.,2 Pulmonary Medicine and
| | | | - Anne M Manicone
- 1 Center for Lung Biology, and Department of Pediatrics, Divisions of.,5 Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - Steven F Ziegler
- 6 Department of Immunology, University of Washington, Seattle, Washington; and.,7 Immunology Program, Benaroya Research Institute, Seattle, Washington
| | - William C Parks
- 1 Center for Lung Biology, and Department of Pediatrics, Divisions of.,4 Department of Pathology.,5 Department of Medicine, Division of Pulmonary and Critical Care Medicine
| | - John K McGuire
- 1 Center for Lung Biology, and Department of Pediatrics, Divisions of.,8 Critical Care Medicine
| |
Collapse
|
409
|
Chen S, Kammerl IE, Vosyka O, Baumann T, Yu Y, Wu Y, Irmler M, Overkleeft HS, Beckers J, Eickelberg O, Meiners S, Stoeger T. Immunoproteasome dysfunction augments alternative polarization of alveolar macrophages. Cell Death Differ 2016; 23:1026-37. [PMID: 26990663 PMCID: PMC4987736 DOI: 10.1038/cdd.2016.3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 02/04/2023] Open
Abstract
The proteasome is a central regulatory hub for intracellular signaling by degrading numerous signaling mediators. Immunoproteasomes are specialized types of proteasomes involved in shaping adaptive immune responses, but their role in innate immune signaling is still elusive. Here, we analyzed immunoproteasome function for polarization of alveolar macrophages, highly specialized tissue macrophages of the alveolar lung surface. Classical activation (M1 polarization) of primary alveolar macrophages by LPS/IFNγ transcriptionally induced all three immunoproteasome subunits, low molecular mass protein 2 (LMP2), LMP7 and multicatalytic endopeptidase complex-like 1, which was accompanied by increased immunoproteasome activity in M1 cells. Deficiency of LMP7 had no effect on the LPS/IFNγ-triggered M1 profile indicating that immunoproteasome function is dispensable for classical alveolar macrophage activation. In contrast, IL-4 triggered alternative (M2) activation of primary alveolar macrophages was accompanied by a transcriptionally independent amplified expression of LMP2 and LMP7 and an increase in immunoproteasome activity. Alveolar macrophages from LMP7 knockout mice disclosed a distorted M2 profile upon IL-4 stimulation as characterized by increased M2 marker gene expression and CCL17 cytokine release. Comparative transcriptome analysis revealed enrichment of IL-4-responsive genes and of genes involved in cellular response to defense, wounding and inflammation in LMP7-deficient alveolar macrophages indicating a distinct M2 inflammation resolving phenotype. Moreover, augmented M2 polarization was accompanied by amplified AKT/STAT6 activation and increased RNA and protein expression of the M2 master transcription factor interferon regulatory factor 4 in LMP7(-/-) alveolar macrophages. IL-13 stimulation of LMP7-deficient macrophages induced a similar M2-skewed profile indicative for augmented signaling via the IL-4 receptor α (IL4Rα). IL4Rα expression was generally elevated only on protein but not RNA level in LMP7(-/-) alveolar macrophages. Importantly, specific catalytic inhibition with an LMP7-specific proteasome inhibitor confirmed augmented IL-4-mediated M2 polarization of alveolar macrophages. Our results thus suggest a novel role of immunoproteasome function for regulating alternative activation of macrophages by limiting IL4Rα expression and signaling.
Collapse
Affiliation(s)
- S Chen
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - I E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - O Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Baumann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Y Yu
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| | - Y Wu
- Max von Pettenkofer-Institute, Ludwig-Maximilians University, Munich, Germany
| | - M Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - H S Overkleeft
- Department of Bio-Organic Synthesis, Leiden University, Leiden, The Netherlands
| | - J Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, Freising, Germany
| | - O Eickelberg
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - S Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - T Stoeger
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
410
|
Bhattacharya J, Westphalen K. Macrophage-epithelial interactions in pulmonary alveoli. Semin Immunopathol 2016; 38:461-9. [PMID: 27170185 DOI: 10.1007/s00281-016-0569-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Abstract
Alveolar macrophages have been investigated for years by approaches involving macrophage extraction from the lung by bronchoalveolar lavage, or by cell removal from lung tissue. Since extracted macrophages are studied outside their natural milieu, there is little understanding of the extent to which alveolar macrophages interact with the epithelium, or with one another to generate the lung's innate immune response to pathogen challenge. Here, we review new evidence of macrophage-epithelial interactions in the lung, and we address the emerging understanding that the alveolar epithelium plays an important role in orchestrating the macrophage-driven immune response.
Collapse
Affiliation(s)
- Jahar Bhattacharya
- Departments of Medicine and Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| | - Kristin Westphalen
- Department of Anesthesiology, Ludwig Maximilians University, Munich, Germany.,Comprehensive Pneumology Center (CPC), German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
411
|
Zhang Y, Li X, Grailer JJ, Wang N, Wang M, Yao J, Zhong R, Gao GF, Ward PA, Tan DX, Li X. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J Pineal Res 2016; 60:405-14. [PMID: 26888116 DOI: 10.1111/jpi.12322] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinically severe respiratory disorders, and there are currently no Food and Drug Administration-approved drug therapies. Melatonin is a well-known anti-inflammatory molecule, which has proven to be effective in ALI induced by many conditions. Emerging studies suggest that the NLRP3 inflammasome plays a critical role during ALI. How melatonin directly blocks activation of the NLRP3 inflammasome in ALI remains unclear. In this study, using an LPS-induced ALI mouse model, we found intratracheal (i.t.) administration of melatonin markedly reduced the pulmonary injury and decreased the infiltration of macrophages and neutrophils into lung. During ALI, the NLRP3 inflammasome is significantly activated with a large amount of IL-1β and the activated caspase-1 occurring in the lung. Melatonin inhibits the activation of the NLRP3 inflammasome by both suppressing the release of extracellular histones and directly blocking histone-induced NLRP3 inflammasome activation. Notably, i.t. route of melatonin administration opens a more efficient therapeutic approach for treating ALI.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Jamison J Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Na Wang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingming Wang
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianfei Yao
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Zhong
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dun-Xian Tan
- The University of Texas Health Science Center at San Antonio Department of Cellular and Structural Biology, San Antonio, TX, USA
| | - Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
412
|
Zhu T, Zhang W, Feng SJ, Yu HP. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int Immunopharmacol 2016; 34:16-24. [DOI: 10.1016/j.intimp.2016.02.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/31/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
|
413
|
Wu DD, Pan PH, Liu B, Su XL, Zhang LM, Tan HY, Cao Z, Zhou ZR, Li HT, Li HS, Huang L, Li YY. Inhibition of Alveolar Macrophage Pyroptosis Reduces Lipopolysaccharide-induced Acute Lung Injury in Mice. Chin Med J (Engl) 2016; 128:2638-45. [PMID: 26415803 PMCID: PMC4736856 DOI: 10.4103/0366-6999.166039] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Pyroptosis is the term for caspase-1-dependent cell death associated with pro-inflammatory cytokines. The role of alveolar macrophage (AM) pyroptosis in the pathogenesis of the acute lung injury and acute respiratory distress syndrome (ALI/ARDS) remains unclear. Methods: C57BL/6 wild-type mice were assigned to sham, lipopolysaccharide (LPS) + vehicle, LPS + acetyl-tyrosyl-valyl- alanyl-aspartyl-chloromethylketone (Ac-YVAD-CMK) and LPS + Z-Asp-Glu-Val-Asp-fluoromethylketone groups. Mice were given intraperitoneal (IP) injections of LPS. Drugs were IP injected 1 h before LPS administration. Mice were sacrificed 16 h after LPS administration, and AMs were isolated. Western blot analysis for active caspase-1 and cleaved caspase-3, evaluation of lung injury and a cytokine release analysis were performed. AMs were treated with LPS and adenosine triphosphate (ATP); caspase-1-dependent cell death was evaluated using flow cytometry; the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosomes were examined by immunofluorescence. Results: The expression of activated caspase-1 in AMs was enhanced following LPS challenge compared with the sham group. In the ex vivo study, the caspase-1/propidium iodide-positive cells, caspase-1 specks and ASC pyroptosomes were up-regulated in AMs following LPS/ATP stimulation. The specific caspase-1 inhibitor Ac-YVAD-CMK inhibited the activation of caspase-1 and pyroptotic cell death. Ac-YVAD-CMK also reduced the lung injury, pulmonary edema and total protein in bronchoalveolar lavage fluid (BALF). In addition, Ac-YVAD-CMK significantly inhibited interleukin-β (IL-1β) release both in serum and BALF and reduced the levels of IL-18, tumor necrosis factor-α (TNF-α), High Mobility Group Box 1 (HMGB1) in BALF during LPS-induced ALI/ARDS. Conclusions: This study reported AM pyroptosis during LPS-induced ALI/ARDS in mice and has demonstrated that Ac-YVAD-CMK can prevent AM-induced pyroptosis and lung injury. These preliminary findings may form the basis for further studies to evaluate this pathway as a target for prevention or reduction of ALI/ARDS.
Collapse
Affiliation(s)
| | - Pin-Hua Pan
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
414
|
D'Alessio FR, Craig JM, Singer BD, Files DC, Mock JR, Garibaldi BT, Fallica J, Tripathi A, Mandke P, Gans JH, Limjunyawong N, Sidhaye VK, Heller NM, Mitzner W, King LS, Aggarwal NR. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol 2016; 310:L733-46. [PMID: 26895644 PMCID: PMC4836113 DOI: 10.1152/ajplung.00419.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.
Collapse
Affiliation(s)
- F R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J M Craig
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - B D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D C Files
- Division of Pulmonary and Critical Care, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - J R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - B T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Fallica
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Tripathi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - P Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J H Gans
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - V K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N M Heller
- Department of Anesthesiology and Critical Care, Johns Hopkins University, Baltimore, Maryland
| | - W Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - L S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
415
|
|
416
|
Cheng X, He S, Yuan J, Miao S, Gao H, Zhang J, Li Y, Peng W, Wu P. Lipoxin A4 attenuates LPS-induced mouse acute lung injury via Nrf2-mediated E-cadherin expression in airway epithelial cells. Free Radic Biol Med 2016; 93:52-66. [PMID: 26845617 DOI: 10.1016/j.freeradbiomed.2016.01.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/04/2023]
Abstract
A fundamental element of acute lung injury (ALI) is the inflammation that is part of the body's immune response to a variety of local or systemic stimuli. Lipoxins (LXs) are important endogenous lipids that mediate resolution of inflammation. Previously, we demonstrated that LXA4 reduced the LPS inhalation-induced pulmonary edema, neutrophil infiltration and TNF-α production in mice. With the same model, the current investigation focused on the role of the airway epithelium, a first-line barrier and a prime target of inhaled toxicants. We report that LXA4 strongly inhibited LPS-induced ALI in mice, in part by protecting the airway epithelium and preserving the E-cadherin expression and airway permeability. Using a cryo-imaging assay and fluorescence detection, LXA4 was shown to block LPS-induced ROS generation and preserve mitochondrial redox status both in vivo and in vitro. To further assess whether and how NF-E2-related factor 2 (Nrf2) was involved in the protective effect of LXA4, fluorescence resonance energy transfer (FRET) analysis was employed in human epithelial cell line (16HBE), to determine the relative distance between Nrf2 and its negative regulator or cytosolic inhibitor, Kelch-like ECH-associated protein 1 (Keap1). It provided us the evidence that LXA4 further promoted the dissociation of Nrf2 and Keap1 in LPS-treated 16HBE cells. The results also showed that LXA4 activates Nrf2 by phosphorylating it on Ser40 and triggering its nuclear translocation. Moreover, when the plasmid expression dominant negative mutation of Nrf2 was transfected as an inhibitor of wild-type Nrf2, the protective effect of LXA4 on E-cadherin expression was almost completely blocked. These results provide a new mechanism by which LXA4 inhibits LPS-induced ALI through Nrf2-mediated E-cadherin expression.
Collapse
Affiliation(s)
- Xue Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Songqing He
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin 541001, China
| | - Jing Yuan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Miao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hongyu Gao
- Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingnong Zhang
- Department of Emergency, Union Hospital, Huanzhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Peng
- Heart and Lung Institute of Utah, Murray, UT 84107, United States
| | - Ping Wu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
417
|
Stouch AN, McCoy AM, Greer RM, Lakhdari O, Yull FE, Blackwell TS, Hoffman HM, Prince LS. IL-1β and Inflammasome Activity Link Inflammation to Abnormal Fetal Airway Development. THE JOURNAL OF IMMUNOLOGY 2016; 196:3411-20. [PMID: 26951798 DOI: 10.4049/jimmunol.1500906] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Inflammation in the developing preterm lung leads to disrupted airway morphogenesis and chronic lung disease in human neonates. However, the molecular mechanisms linking inflammation and the pathways controlling airway morphogenesis remain unclear. In this article, we show that IL-1β released by activated fetal lung macrophages is the key inflammatory mediator that disrupts airway morphogenesis. In mouse lung explants, blocking IL-1β expression, posttranslational processing, and signaling protected the formation of new airways from the inhibitory effects ofEscherichia coliLPS. Consistent with a critical role for IL-1β, mice expressing a gain-of-functionNlrp3allele and subsequent overactive inflammasome activity displayed abnormal saccular-stage lung morphogenesis and died soon after birth. Although the early-stage fetal lung appeared capable of mounting an NF-κB-mediated immune response, airway formation became more sensitive to inflammation later in development. This period of susceptibility coincided with higher expression of multiple inflammasome components that could increase the ability to release bioactive IL-1β. Macrophages fromNlrp3gain-of-function mice also expressed higher levels of more mature cell surface markers, additionally linking inflammasome activation with macrophage maturation. These data identify developmental expression of the inflammasome and IL-1β release by fetal lung macrophages as key mechanisms and potential therapeutic targets for neonatal lung disease.
Collapse
Affiliation(s)
- Ashley N Stouch
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093
| | - Alyssa M McCoy
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093
| | - Rachel M Greer
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093
| | - Omar Lakhdari
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Hal M Hoffman
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego and Rady Children's Hospital, San Diego, La Jolla, CA 92093;
| |
Collapse
|
418
|
Rendon A, Rendon-Ramirez EJ, Rosas-Taraco AG. Relevant Cytokines in the Management of Community-Acquired Pneumonia. Curr Infect Dis Rep 2016; 18:10. [PMID: 26874956 PMCID: PMC7088528 DOI: 10.1007/s11908-016-0516-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Community-acquired pneumonia (CAP) is the leading cause of infectious death in the world. Immune dysregulation during acute lung infection plays a role in lung injury and the systemic inflammatory response. Cytokines seem to be major players in severe lung infection cases. Here, we present a review of published papers in the last 3 years regarding this topic. The cytokine response during pneumonia is different in bacterial vs viral infections; some of these cytokines correlate with clinical severity scales such as CURB65 or SOFA. Treatment focused in the cytokine environment is an interesting area that could impact the prognosis of CAP. Some of the agents that have been studied as co-adjuvant therapy are corticosteroids, macrolides, and linezolid, but anyone of those have shown a clear or proven efficacy or have been recommended as a part of the standard of care for CAP. More studies designed to define the role of immunomodulatory agents, such as co-adjuvant therapy in pneumonia, are needed.
Collapse
Affiliation(s)
- Adrian Rendon
- School of Medicine and University Hospital, CIPTIR (Centro de investigación, prevención y tratamiento de infecciones respiratorias), Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Erick J Rendon-Ramirez
- School of Medicine and University Hospital, Internal Medicine Department, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Adrian G Rosas-Taraco
- Department of Immunology Monterrey, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
419
|
Brenner TA, Rice TA, Anderson ED, Percopo CM, Rosenberg HF. Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication. Immunol Lett 2016; 172:106-12. [PMID: 26916143 DOI: 10.1016/j.imlet.2016.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
The SV-40-transformed MH-S cell line maintains some, but not all, features of primary alveolar macrophages (AMs) from BALB/c mice. We show here that MH-S cells produce inflammatory cytokines IL-6 and CXCL10 in response to challenge with Gram-positive Lactobacillus reuteri, and to TLR2 and NOD2 ligands Pam3CSK4 and MDP, respectively. In contrast, although wild-type AMs are infected in vivo by pneumonia virus of mice (PVM), no virus replication was detected in MH-S cells. Interestingly, the surface immunophenotype of MH-S cells (CD11c(+)Siglec F(-)) differs from that of wild-type AMs (CD11c(+) Siglec F(+)) and is similar to that of immature AMs isolated from granulocyte macrophage-colony stimulating factor (GM-CSF) gene-deleted mice; AMs from GM-CSF(-/-) mice also support PVM replication. However, MH-S cells do not express the GM-CSF receptor alpha chain (CD116) and do not respond to GM-CSF. Due to these unusual features, MH-S cells should be used with caution as experimental models of AMs.
Collapse
Affiliation(s)
- Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tyler A Rice
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Erik D Anderson
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
420
|
Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury. Sci Rep 2016; 6:21348. [PMID: 26884314 PMCID: PMC4756332 DOI: 10.1038/srep21348] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
T helper (Th) 17 cells and CD4+ CD25+ regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease.
Collapse
|
421
|
Jia CE, Jiang D, Dai H, Xiao F, Wang C. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice. Am J Transl Res 2016; 8:981-992. [PMID: 27158384 PMCID: PMC4846941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the role of pendrin in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and to explore whether pendrin expression existing on alveolar cells. METHODS ALI C57BL/6 mice model induced by lipopolysaccharide (LPS) was established. The expression of pendrin in lung was analyzed by RT-PCR and western blotting methods, the changes of lung inflammatory parameters and pathology were observed, the cellular distribution of pendrin in the lung was determined using immunofluorescence. Statistical comparisons between groups were made by two-tailed Student's t-test. RESULTS Enhanced expression of the slc26a4 gene and production of pendrin in lungs of LPS-induced ALI mice were confirmed. In comparison with vehicle-control mice, methazolamide treatment mitigated lung inflammatory parameters and pathology. IL-6 and MCP-1 in lung tissues and BALF in methazolamide-treated mice were statistically decreased. Methazolamide treatment had significant effect on the total protein concentration in the BALF and the ratio of lung wet/dry weight. The percentage of macrophages in the BALF was increased. There was a low expression of pendrin in ATII. CONCLUSIONS Pendrin may be involved in pathological process of LPS-induced ALI. Inhibition of the pendrin function could be used to treat ALI. Airway epithelial cell may be a valuable therapeutic target for discovering and developing new drugs and/or new therapeutic strategies for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chun-E Jia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
| | - Dingyuan Jiang
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
| | - Huaping Dai
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
| | - Fei Xiao
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
- Department of Cell Biology, Institute of Geriatrics, Beijing HospitalBeijing 100730, P. R. China
| | - Chen Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Graduate School, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing 100730, P. R. China
- Department of Respiratory and Critical Care Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital-Beijing Institute of Respiratory Medicine, Capital Medical UniversityBeijing 100020, P. R. China
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship HospitalBeijing 100029, P. R. China
- National Clinical Research Center of Respiratory DiseasesBeijing 100730, P. R. China
| |
Collapse
|
422
|
Gaydos J, McNally A, Guo R, Vandivier RW, Simonian PL, Burnham EL. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L507-18. [PMID: 26747782 DOI: 10.1152/ajplung.00242.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022] Open
Abstract
Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress.
Collapse
Affiliation(s)
- Jeanette Gaydos
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Alicia McNally
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Ruixin Guo
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Denver, Colorado; and
| | - R William Vandivier
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Philip L Simonian
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado; Division of Allergy and Immunology, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado;
| |
Collapse
|
423
|
Groves AM, Johnston CJ, Misra RS, Williams JP, Finkelstein JN. Whole-Lung Irradiation Results in Pulmonary Macrophage Alterations that are Subpopulation and Strain Specific. Radiat Res 2015; 184:639-49. [PMID: 26632857 DOI: 10.1667/rr14178.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Exposure of the lung to radiation produces injury and inflammatory responses that result in microenvironmental alterations, which can promote the development of pneumonitis and/or pulmonary fibrosis. It has been shown that after other toxic insults, macrophages become phenotypically polarized in response to microenvironmental signals, orchestrating the downstream inflammatory responses. However, their contribution to the development of the late consequences of pulmonary radiation exposure remains unclear. To address this issue, fibrosis-prone C57BL/6J mice or pneumonitis-prone C3H/HeJ mice were whole-lung irradiated with 0 or 12.5 Gy and lung digests were collected between 3 and 26 weeks after radiation exposure. CD45(+) leukocytes were isolated and characterized by flow cytometry, and alveolar, interstitial and infiltrating macrophages were also detected. Ly6C, expressed by pro-inflammatory monocytes and macrophages, and mannose receptor (CD206), a marker of alternative activation, were assessed in each subpopulation. While the total number of pulmonary macrophages was depleted at 3 weeks after lung irradiation relative to age-matched controls in both C57 and C3H mice, identification of discrete subpopulations showed that this loss in cell number occurred in the alveolar, but not the interstitial or infiltrating, subsets. In the alveolar macrophages of both C57 and C3H mice, this correlated with a loss in the proportion of cells that expressed CD206 and F4/80. In contrast, in interstitial and infiltrating macrophages, the proportion of cells expressing these markers was increased at several time points after irradiation, with this response generally more pronounced in C3H mice. Radiation exposure was also associated with elevations in the proportion of alveolar and interstitial macrophage subpopulations expressing Ly6C and F4/80, with this response occurring at earlier time points in C57 mice. Although the radiation dose used in this study was not isoeffective for the inflammatory response in the two strains, the differences observed in the responses of these discrete macrophage populations between the fibrosis-prone versus pneumonitis-prone mice nonetheless suggest a possible role for these cells in the development of long-term consequences of pulmonary radiation exposure.
Collapse
Affiliation(s)
- Angela M Groves
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Carl J Johnston
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Ravi S Misra
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jacob N Finkelstein
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York; and.,b Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
424
|
Chen X, Jin Y, Hou X, Liu F, Wang Y. Sonic Hedgehog Signaling: Evidence for Its Protective Role in Endotoxin Induced Acute Lung Injury in Mouse Model. PLoS One 2015; 10:e0140886. [PMID: 26545089 PMCID: PMC4636314 DOI: 10.1371/journal.pone.0140886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/30/2015] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the protective role of the sonic hedgehog (SHH) signaling associated with a lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a mouse model. Methods Male BALB/c mice were randomly divided into four groups: control, LPS, LPS-cyclopamine group and cyclopamine group. ALI was induced by LPS ip injection (5 mg/kg). The sonic hedgehog inhibitor cyclopamine (50 mg/kg) was given to the LPS-cyclopamine group at 30 min after LPS injection as well as normal mice as control. Lung injury was observed histologically in hematoxylin and eosin (HE) stained tissue sections, semi-quantified by lung tissue injury score, and the lung tissue mass alteration was measured by wet to dry weight ratio (W/D). mRNA expression levels of TNF-α, SHH, Patched (PTC) and GLI1 in lung tissue were studied with real time quantitative PCR (RT-PCR), while the protein expression of SHH and GLI1 was determined by western blot analysis. Results Lung tissue injury score, thickness of alveolar septa, W/D, and TNF-α mRNA expression levels were significantly higher in the ALI mice than the normal mice (P<0.05). The mRNA expression levels of SHH, PTC, and GLI1 in the ALI mice were significantly higher at 12h and 24h after LPS injection, but not at the 6h time point. Protein production of SHH and GLI1 at 6h, 12h, and 24h in the lungs of ALI mice significantly increased, in a time-dependent manner, compared with that in normal mice. Cyclopamine alone has no effect on pathological changes in normal mice. Intervention with cyclopamine in ALI mice led to a reduction in mRNA levels of SHH, PTC, and GLI1 as well as SHH and GLI1 protein levels; meanwhile, the pathological injury scores of lung tissues, thickness of alveolar septa, W/D, and mRNA expression levels of TNF-α increased compared with mice receiving LPS only. Conclusion The SHH signaling pathway was activated in response to LPS-induced ALI, and up-regulation of SHH expression could alleviate lung injury and be involved in the repair of injured lung tissue.
Collapse
Affiliation(s)
- Xing Chen
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, The People’s Republic of China
| | - Yuting Jin
- Department of Pediatrics, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, The People’s Republic of China
| | - Xiaoming Hou
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, The People’s Republic of China
| | - Fengqin Liu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, The People’s Republic of China
| | - Yulin Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, The People’s Republic of China
- * E-mail:
| |
Collapse
|
425
|
Yadav H, Kor DJ. Platelets in the pathogenesis of acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2015; 309:L915-23. [PMID: 26320157 PMCID: PMC4628982 DOI: 10.1152/ajplung.00266.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/26/2015] [Indexed: 12/29/2022] Open
Abstract
Platelets have an emerging and incompletely understood role in a myriad of host immune responses, extending their role well beyond regulating thrombosis. Acute respiratory distress syndrome is a complex disease process characterized by a range of pathophysiologic processes including oxidative stress, lung deformation, inflammation, and intravascular coagulation. The objective of this review is to summarize existing knowledge on platelets and their putative role in the development and resolution of lung injury.
Collapse
Affiliation(s)
- Hemang Yadav
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Daryl J Kor
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
426
|
Ménoret A, Svedova J, Behl B, Vella AT. Trace Levels of Staphylococcal Enterotoxin Bioactivity Are Concealed in a Mucosal Niche during Pulmonary Inflammation. PLoS One 2015; 10:e0141548. [PMID: 26509442 PMCID: PMC4625020 DOI: 10.1371/journal.pone.0141548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/10/2015] [Indexed: 02/01/2023] Open
Abstract
Pathogen and cellular by-products released during infection or trauma are critical for initiating mucosal inflammation. The localization of these factors, their bioactivity and natural countermeasures remain unclear. This concept was studied in mice undergoing pulmonary inflammation after Staphylococcal enterotoxin A (SEA) inhalation. Highly purified bronchoalveolar lavage fluid (BALF) fractions obtained by sequential chromatography were screened for bioactivity and subjected to mass spectrometry. The Inflammatory and inhibitory potentials of the identified proteins were measured using T cells assays. A potent pro-inflammatory factor was detected in BALF, and we hypothesized SEA could be recovered with its biological activity. Highly purified BALF fractions with bioactivity were subjected to mass spectrometry. SEA was the only identified protein with known inflammatory potential, and unexpectedly, it co-purified with immunosuppressive proteins. Among them was lactoferrin, which inhibited SEA and anti-CD3/-CD28 stimulation by promoting T cell death and reducing TNF synthesis. Higher doses of lactoferrin were required to inhibit effector compared to resting T cells. Inhibition relied on the continual presence of lactoferrin rather than a programming event. The data show a fraction of bioactive SEA resided in a mucosal niche within BALF even after the initiation of inflammation. These results may have clinical value in human diagnostic since traces levels of SEA can be detected using a sensitive bioassay, and may help pinpoint potential mediators of lung inflammation when molecular approaches fail.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology MC3710. University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Julia Svedova
- Department of Immunology MC3710. University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Bharat Behl
- Department of Immunology MC3710. University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06032, United States of America
| | - Anthony T. Vella
- Department of Immunology MC3710. University of Connecticut Health, 263 Farmington Avenue, Farmington, CT 06032, United States of America
- * E-mail:
| |
Collapse
|
427
|
Low-Level Expression of the E1B 20-Kilodalton Protein by Adenovirus 14p1 Enhances Viral Immunopathogenesis. J Virol 2015; 90:497-505. [PMID: 26491152 DOI: 10.1128/jvi.01790-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Adenovirus 14p1 (Ad14p1) is an emergent variant of Ad serotype 14 (Ad14) that has caused increased severity of respiratory illnesses during globally distributed outbreaks, including cases of acute respiratory distress syndrome and death. We found that human cell infection with Ad14p1 results in markedly decreased expression of the E1B 20-kilodalton (20K) protein compared to that with infection with wild-type (wt) Ad14. This reduced Ad14p1 E1B 20K expression caused a loss-of-function phenotype of Ad-infected cell corpses that, in contrast to cells infected with wt Ad14, either failed to repress or increased NF-κB-dependent, proinflammatory cytokine responses of responder human alveolar macrophages. A small-animal model of Ad14-induced lung infection was used to test the translational relevance of these in vitro observations. Intratracheal infection of Syrian hamsters with Ad14p1 caused a marked, patchy bronchopneumonia, whereas hamster infection with wt Ad14 caused minimal peribronchial inflammation. These results suggest that this difference in E1B 20K gene expression during Ad14p1 infection and its modulating effect on the interactions between Ad14-infected cells and the host innate immune response could explain the increased immunopathogenic potential and associated increase in clinical illness in some people infected with the Ad14p1 outbreak strain.IMPORTANCE We previously reported that Ad-infected human cells exhibit E1B 19K-dependent repression of virally induced, NF-κB-dependent macrophage cytokine responses (J. R. Radke, F. Grigera, D. S. Ucker, and J. L. Cook, J Virol 88:2658-2669, 2014, http://dx.doi.org/10.1128/JVI.02372-13). The more virulent, emergent strain of Ad14, Ad14p1, causes increased cytopathology in vitro, which suggested a possible E1B 20K defect. Whether there is a linkage between these observations was unknown. We show that there is markedly reduced expression of E1B 20K in Ad14p1-infected human cells and that this causes an increased proinflammatory cytokine response of human alveolar macrophages and more severe inflammatory lung disease in infected hamsters. This is the first evidence of a clinical relevance of differential expression of the small Ad E1B gene product. The results suggest that there is a low, critical threshold of E1B 19/20K expression that is needed for viral replication and infection transmission but that a higher level of E1B 19/20K expression is required for the usual repression and control of the Ad-triggered host innate immune response.
Collapse
|
428
|
Wehrmann F, Lavelle JC, Collins CB, Tinega AN, Thurman JM, Burnham EL, Simonian PL. γδ T cells protect against LPS-induced lung injury. J Leukoc Biol 2015; 99:373-86. [PMID: 26428678 DOI: 10.1189/jlb.4a0115-017rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022] Open
Abstract
γδ T lymphocytes are a unique T cell population with important anti-inflammatory capabilities. Their role in acute lung injury, however, is poorly understood but may provide significant insight into lung-protective mechanisms occurring after injury. In a murine model of lung injury, wild-type C57BL/6 and TCRδ(-/-) mice were exposed to Escherichia coli LPS, followed by analysis of γδ T cell and macrophage subsets. In the absence of γδ T cells, TCRδ(-/-) mice developed increased inflammation and alveolar-capillary leak compared with wild-type C57BL/6 mice after LPS exposure that correlated with expansion of distinct macrophage populations. Classically activated M1 macrophages were increased in the lung of TCRδ(-/-) mice at d 1, 4, and 7 after LPS exposure that peaked at d 4 and persisted at d 7 compared with wild-type animals. In response to LPS, Vγ1 and Vγ7 γδ T cells were expanded in the lung and expressed IL-4. Coculture experiments showed decreased expression of TNF-α by resident alveolar macrophages in the presence of γδ T cells that was reversed in the presence of an anti-IL-4-blocking antibody. Treatment of mice with rIL4 resulted in reduced numbers of M1 macrophages, inflammation, and alveolar-capillary leak. Therefore, one mechanism by which Vγ1 and Vγ7 γδ T cells protect against LPS-induced lung injury is through IL-4 expression, which decreases TNF-α production by resident alveolar macrophages, thus reducing accumulation of M1 macrophages, inflammation, and alveolar-capillary leak.
Collapse
Affiliation(s)
- Fabian Wehrmann
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - James C Lavelle
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colm B Collins
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex N Tinega
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ellen L Burnham
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip L Simonian
- Departments of *Medicine and Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
429
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
430
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
431
|
Patel BV, Tatham KC, Wilson MR, O'Dea KP, Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2015; 309:L639-52. [PMID: 26254421 PMCID: PMC4593833 DOI: 10.1152/ajplung.00140.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6Clo monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6Clo monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases.
Collapse
Affiliation(s)
- Brijesh V Patel
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kate C Tatham
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
432
|
Malaviya R, Sunil VR, Venosa A, Verissimo VL, Cervelli JA, Vayas KN, Hall L, Laskin JD, Laskin DL. Attenuation of Nitrogen Mustard-Induced Pulmonary Injury and Fibrosis by Anti-Tumor Necrosis Factor-α Antibody. Toxicol Sci 2015; 148:71-88. [PMID: 26243812 DOI: 10.1093/toxsci/kfv161] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nitrogen mustard (NM) is a bifunctional alkylating agent that causes acute injury to the lung that progresses to fibrosis. This is accompanied by a prominent infiltration of macrophages into the lung and upregulation of proinflammatory/profibrotic cytokines including tumor necrosis factor (TNF)α. In these studies, we analyzed the ability of anti-TNFα antibody to mitigate NM-induced lung injury, inflammation, and fibrosis. Treatment of rats with anti-TNFα antibody (15 mg/kg, iv, every 9 days) beginning 30 min after intratracheal administration of NM (0.125 mg/kg) reduced progressive histopathologic alterations in the lung including perivascular and peribronchial edema, macrophage/monocyte infiltration, interstitial thickening, bronchiolization of alveolar walls, fibrin deposition, emphysema, and fibrosis. NM-induced damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage (BAL) protein and cell content, was also reduced by anti-TNFα antibody, along with expression of the oxidative stress marker, heme oxygenase-1. Whereas the accumulation of proinflammatory/cytotoxic M1 macrophages in the lung in response to NM was suppressed by anti-TNFα antibody, anti-inflammatory/profibrotic M2 macrophages were increased or unchanged. Treatment of rats with anti-TNFα antibody also reduced NM-induced increases in expression of the profibrotic mediator, transforming growth factor-β. This was associated with a reduction in NM-induced collagen deposition in the lung. These data suggest that inhibiting TNFα may represent an efficacious approach to mitigating lung injury induced by mustards.
Collapse
Affiliation(s)
- Rama Malaviya
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Vasanthi R Sunil
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Alessandro Venosa
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | | | - Jessica A Cervelli
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - Kinal N Vayas
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy
| | - LeRoy Hall
- Department of Drug Safety Sciences, Janssen Research & Development, Raritan, New Jersey 08869
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854; and
| | - Debra L Laskin
- *Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy,
| |
Collapse
|
433
|
Abstract
High sodium consumption has been raising interest as a putative environmental factor linking Western lifestyle to the growing epidemic of autoimmune and inflammatory diseases. Now Zhang and colleagues show that high sodium drives macrophage to acquire a new proinflammatory effector phenotype with a distinct signature, paving the path to assess the role of salt-activated macrophages in human disease.
Collapse
Affiliation(s)
- Liliana E Lucca
- Department of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - David A Hafler
- Department of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
434
|
Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, Sun S, Zhang Z, Chen XQ, Qin M, Liu X, Tao J, Jia L, Fan HY, Zhou B, Yu Y, Ying H, Hui L, Liu X, Yi X, Liu X, Zhang L, Duan SZ. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25:893-910. [PMID: 26206316 PMCID: PMC4528058 DOI: 10.1038/cr.2015.87] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/12/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023] Open
Abstract
High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).
Collapse
Affiliation(s)
- Wu-Chang Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Jun Zheng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin-Juan Du
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian-Yong Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhu-Xia Shen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chaoji Shi
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuyang Sun
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Zhang
- Shanghai Key Laboratory of Stomatology, Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao-qing Chen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Heng-yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Ying
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ 08854, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Sheng-Zhong Duan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
435
|
Remus EW, Sayeed I, Won S, Lyle AN, Stein DG. Progesterone protects endothelial cells after cerebrovascular occlusion by decreasing MCP-1- and CXCL1-mediated macrophage infiltration. Exp Neurol 2015; 271:401-8. [PMID: 26188381 DOI: 10.1016/j.expneurol.2015.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022]
Abstract
The neuroprotective effects of progesterone after ischemic stroke have been established, but the role of progesterone in promoting cerebrovascular repair remains under-explored. Male Sprague-Dawley rats underwent transient middle cerebral artery occlusion (tMCAO) for 90 min followed by reperfusion for 3 days. Progesterone (8 mg/kg/day) was administered intraperitoneally at 1h after initial occlusion followed by subcutaneous injections at 6, 24 and 48 h post-occlusion. Rats were euthanized after 72 h and brain endothelial cell density and macrophage infiltration were evaluated within the cerebral cortex. We also assessed progesterone's ability to induce macrophage migration toward hypoxic/reoxygenated cultured endothelial cells. We found that progesterone treatment post-tMCAO protects ischemic endothelial cells from macrophage infiltration. We further demonstrate that infiltration of monocytes/macrophages can be induced by potent chemotactic factors such as monocyte chemoattractant protein-1 (MCP-1) and the chemokine ligand 1 (CXCL1), secreted by hypoxic/reoxygenated endothelial cells. Progesterone blunts secretion of MCP-1 and CXCL1 from endothelial cells after hypoxia/reoxygenation injury and decreases leukocyte infiltration. The treatment protects ischemic endothelial cells from macrophage infiltration and thus preserves vascularization after ischemic injury.
Collapse
Affiliation(s)
- Ebony Washington Remus
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Soonmi Won
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA
| | - Alicia N Lyle
- Department of Cardiology, Emory University Atlanta, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| |
Collapse
|
436
|
Sanfilippo AM, Furuya Y, Roberts S, Salmon SL, Metzger DW. Allergic Lung Inflammation Reduces Tissue Invasion and Enhances Survival from Pulmonary Pneumococcal Infection in Mice, Which Correlates with Increased Expression of Transforming Growth Factor β1 and SiglecF(low) Alveolar Macrophages. Infect Immun 2015; 83:2976-83. [PMID: 25964474 PMCID: PMC4468552 DOI: 10.1128/iai.00142-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
Asthma is generally thought to confer an increased risk for invasive pneumococcal disease (IPD) in humans. However, recent reports suggest that mortality rates from IPD are unaffected in patients with asthma and that chronic obstructive pulmonary disease (COPD), a condition similar to asthma, protects against the development of complicated pneumonia. To clarify the effects of asthma on the subsequent susceptibility to pneumococcal infection, ovalbumin (OVA)-induced allergic lung inflammation (ALI) was induced in mice followed by intranasal infection with A66.1 serotype 3 Streptococcus pneumoniae. Surprisingly, mice with ALI were significantly more resistant to lethal infection than non-ALI mice. The heightened resistance observed following ALI correlated with enhanced early clearance of pneumococci from the lung, decreased bacterial invasion from the airway into the lung tissue, a blunted inflammatory cytokine and neutrophil response to infection, and enhanced expression of transforming growth factor β1 (TGF-β1). Neutrophil depletion prior to infection had no effect on enhanced early bacterial clearance or resistance to IPD in mice with ALI. Although eosinophils recruited into the lung during ALI appeared to be capable of phagocytizing bacteria, neutralization of interleukin-5 (IL-5) to inhibit eosinophil recruitment likewise had no effect on early clearance or survival following infection. However, enhanced resistance was associated with an increase in levels of clodronate-sensitive, phagocytic SiglecF(low) alveolar macrophages within the airways following ALI. These findings suggest that, while the risk of developing IPD may actually be decreased in patients with acute asthma, additional clinical data are needed to better understand the risk of IPD in patients with different asthma phenotypes.
Collapse
Affiliation(s)
- Alan M Sanfilippo
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sean Roberts
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sharon L Salmon
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| |
Collapse
|
437
|
Bao S, Zou Y, Wang B, Li Y, Zhu J, Luo Y, Li J. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages. Int Immunopharmacol 2015; 28:429-34. [PMID: 26122136 DOI: 10.1016/j.intimp.2015.06.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/31/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Ginsenoside Rg1 (Rg1), the major effective component of ginseng, has been reported to have potent anti-inflammatory properties. However, the effect of ginsenoside Rg1 on lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice was unknown. The present study was designed to investigate the protective role of Rg1 on LPS-induced ALI and explore the potential mechanisms. The mice were divided randomly into four groups: the sham group, the LPS group and the LPS+Rg1 (40 mg/kg or 200mg/kg) pretreatment groups. All mice received Rg1 or an equivalent volume of phosphate buffer saline (PBS) intraperitoneally 1h before LPS administration. Edema quantification, histology, and apoptosis were detected 6h after LPS administration. The number of inflammatory cells, the percentage of alternative activated (M2) macrophages and the exudate quantification in bronchoalveolar lavage fluid (BALF) were evaluated. The caspase 3 expression, and the levels of phosphorylated IκB-α and p65 were tested. The results showed that the Rg1 pretreatment group markedly improved lung damage, modulated the infiltration of neutrophils and M2 macrophages, prevented the production of protein and proinflammatory cytokines in BALF, and inhibited apoptosis in lung. We also found that Rg1 suppressed NF-κB and caspase 3 activation. These data suggest that Rg1 plays a protective role against LPS-induced ALI by ameliorating inflammatory responses, regulating the infiltration of M2 macrophages, and inhibiting pulmonary cell apoptosis.
Collapse
Affiliation(s)
- Suhong Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yun Zou
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bing Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yinjiao Li
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Jiali Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.
| | - Jinbao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
438
|
Kasper JY, Hermanns MI, Unger RE, Kirkpatrick CJ. A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med 2015; 11:1285-1297. [PMID: 26078119 PMCID: PMC6680361 DOI: 10.1002/term.2032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/07/2023]
Abstract
Current pulmonary research underlines the relevance of the alveolar macrophage (AM) integrated in multicellular co-culture-systems of the respiratory tract to unravel, for example, the mechanisms of tissue regeneration. AMs demonstrate a specific functionality, as they inhabit a unique microenvironment with high oxygen levels and exposure to external hazards. Healthy AMs display an anti-inflammatory phenotype, prevent hypersensitivity to normally innocuous contaminants and maintain tissue homeostasis in the alveolus. To mirror the actual physiological function of the AM, we developed three different polarized [classically activated (M1) and alternatively activated (M2wh , wound-healing; M2reg , regulatory)] macrophage models using a mixture of differentiation mediators, as described in the current literature. To test their immunological impact, these distinct macrophage phenotypes were seeded on to the epithelial layer of an established in vitro air-blood barrier co-culture, consisting of alveolar epithelial cells A549 or H441 and microvascular endothelial cells ISO-HAS-1 on the opposite side of a Transwell filter-membrane. IL-8 and sICAM release were measured as functionality parameters after LPS challenge. The M1 model itself already provoked a severe inflammatory-like response of the air-blood barrier co-culture, thus demonstrating its potential as a useful in vitro model for inflammatory lung diseases. The two M2 models represent a 'non-inflammatory' phenotype but still showed the ability to trigger inflammation following LPS challenge. Hence, the latter could be used to establish a quiescent, physiological in vitro air-blood model. Thus, the more complex differentiation protocol developed in the present study provides a responsive in vitro triple-culture model of the air-blood-barrier that mimics AM features as they occur in vivo. © 2015 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Maria I Hermanns
- Institute of Pathology, University Medical Centre, Mainz, Germany
| | - Ronald E Unger
- Institute of Pathology, University Medical Centre, Mainz, Germany
| | | |
Collapse
|
439
|
The Assembly of EDC4 and Dcp1a into Processing Bodies Is Critical for the Translational Regulation of IL-6. PLoS One 2015; 10:e0123223. [PMID: 25970328 PMCID: PMC4430274 DOI: 10.1371/journal.pone.0123223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/02/2015] [Indexed: 12/31/2022] Open
Abstract
Macrophages play critical roles in the onset of various diseases and in maintaining homeostasis. There are several functional subsets, of which M1 and M2 macrophages are of particular interest because they are differentially involved in inflammation and its resolution. Here, we investigated the differences in regulatory mechanisms between M1- and M2-polarized macrophages by examining mRNA metabolic machineries such as stress granules (SGs) and processing bodies (P-bodies). Human monocytic leukemia THP-1 cells cultured under M1-polarizing conditions (M1-THPs) had less ability to assemble oxidative-stress-induced SGs than those cultured under M2-polarizing conditions (M2-THPs). In contrast, P-body assembly in response to oxidative stress or TLR4 stimulation was increased in M1-THPs as compared to M2-THPs. These results suggest that mRNA metabolism is controlled differently in M1-THPs and M2-THPs. Interestingly, knocking down EDC4 or Dcp1a, which are components of P-bodies, severely reduced the production of IL-6, but not TNF-α in M1-THPs without decreasing the amount of IL-6 mRNA. This is the first report to demonstrate that the assembly of EDC4 and Dcp1a into P-bodies is critical in the posttranscriptional regulation of IL-6. Thus, improving our understanding of the mechanisms governing mRNA metabolism by examining macrophage subtypes may lead to new therapeutic targets.
Collapse
|
440
|
Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. THE JOURNAL OF IMMUNOLOGY 2015; 194:855-60. [PMID: 25596299 DOI: 10.4049/jimmunol.1402513] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a form of severe hypoxemic respiratory failure that is characterized by inflammatory injury to the alveolar capillary barrier, with extravasation of protein-rich edema fluid into the airspace. Although many modalities to treat ARDS have been investigated over the past several decades, supportive therapies remain the mainstay of treatment. In this article, we briefly review the definition, epidemiology, and pathophysiology of ARDS and present emerging aspects of ARDS pathophysiology that encompass modulators of the innate immune response, damage signals, and aberrant proteolysis that may serve as a foundation for future therapeutic targets.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213; and Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
441
|
The nicotinic receptor Alpha7 impacts the mouse lung response to LPS through multiple mechanisms. PLoS One 2015; 10:e0121128. [PMID: 25803612 PMCID: PMC4372581 DOI: 10.1371/journal.pone.0121128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023] Open
Abstract
The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung.
Collapse
|
442
|
Yu ZX, Ji MS, Yan J, Cai Y, Liu J, Yang HF, Li Y, Jin ZC, Zheng JX. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:82. [PMID: 25887535 PMCID: PMC4355972 DOI: 10.1186/s13054-015-0811-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/13/2015] [Indexed: 01/07/2023]
Abstract
Introduction Recent studies have revealed that lung inflammation mediated by CD4+ T cells may contribute to the pathogenesis of acute respiratory distress syndrome (ARDS). The imbalance between CD4 + CD25 + Foxp3 + regulatory T (Treg) cells and T helper (Th)17 cells has been found in a number of different inflammation and autoimmune diseases, while the role of the Th17/Treg balance in ARDS remains largely unknown. The aim of this study was to investigate the Th17/Treg pattern and its impact on disease severity and outcomes in patients with ARDS. Methods This prospective, observational study enrolled 79 patients who fulfilled the Berlin definition of ARDS and 26 age- and sex-matched healthy controls. Circulation Th17 and Treg cell frequencies were analyzed by flow cytometry, and the expressions of Th17- and Treg-related cytokines in serum were measured by enzyme-linked immunosorbent assay (ELISA). Acute Physiologic and Chronic Health Evaluation (APACHE) II score, Sequential Organ Failure Assessment (SOFA) score, and the Lung Injury Score were also calculated at enrollment. Results Within 24 hours after the onset of ARDS, the changes of peripheral circulating Th17 and Treg cell frequencies gradually increased from mild to severe ARDS. Th17/Treg ratio was positively correlated with APACHE II score, SOFA score, and Lung Injury Score, while negatively correlated with PaO2/FiO2. The areas under the receiver operating characteristic (AUC) curves of Th17/Treg ratio for predicting 28-day mortality in ARDS patients was higher than that of APACHE II score, SOFA score, Lung injury score, as well as PaO2/FiO2. Using a Th17/Treg ratio cutoff value of >0.79 to determine 28-day mortality, the sensitivity was 87.5% with 68.1% specificity. Multivariate logistic regression showed Th17/Treg ratio >0.79 (odds ratio = 8.68, P = 0.002) was the independent predictor for 28-day mortality in patients with ARDS. Finally, cumulative survival rates at 28-day follow-up also differed significantly between patients with Th17/Treg ratio >0.79 and ≤0.79 (P <0.001). Conclusions The Th17/Treg imbalance favoring a Th17 shift represents a potential therapeutic target to alleviate lung injury and a novel risk indicator in patients with early ARDS.
Collapse
Affiliation(s)
- Zhi-xin Yu
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Mu-sen Ji
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Jun Yan
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Yan Cai
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Jing Liu
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Hong-feng Yang
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Yong Li
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Zhao-chen Jin
- Department of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Jin-Xu Zheng
- Department of Respiratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
443
|
Sunil VR, Francis M, Vayas KN, Cervelli JA, Choi H, Laskin JD, Laskin DL. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3. Toxicol Appl Pharmacol 2015; 284:236-45. [PMID: 25724551 DOI: 10.1016/j.taap.2015.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24-72h after exposure (3h) of WT and Gal-3(-/-) mice to air or 0.8ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3(+), iNOS(+)) and anti-inflammatory (MR-1(+)) macrophages in the lungs. While accumulation of iNOS(+) macrophages was attenuated in Gal-3(-/-) mice, increased numbers of enlarged MR-1(+) macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b(+) and consisted mainly (>97%) of mature (F4/80(+)CD11c(+)) proinflammatory (Ly6GLy6C(hi)) and anti-inflammatory (Ly6GLy6C(lo)) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C(hi) macrophages, with no effect on Ly6C(lo) macrophages. CD11b(+)Ly6G(+)Ly6C(+) granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3(-/-) mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3(-/-) mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure.
Collapse
Affiliation(s)
- Vasanthi R Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Mary Francis
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Hyejeong Choi
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States.
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ, United States.
| |
Collapse
|
444
|
Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015. [PMID: 25596299 DOI: 10.4049/j.immunol.14002513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a form of severe hypoxemic respiratory failure that is characterized by inflammatory injury to the alveolar capillary barrier, with extravasation of protein-rich edema fluid into the airspace. Although many modalities to treat ARDS have been investigated over the past several decades, supportive therapies remain the mainstay of treatment. In this article, we briefly review the definition, epidemiology, and pathophysiology of ARDS and present emerging aspects of ARDS pathophysiology that encompass modulators of the innate immune response, damage signals, and aberrant proteolysis that may serve as a foundation for future therapeutic targets.
Collapse
Affiliation(s)
- SeungHye Han
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rama K Mallampalli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213; and Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240
| |
Collapse
|
445
|
Abstract
ABSTRACT: The importance of macrophages in the control of infections has long been documented, but macrophages have also been shown to contribute to severe influenza A virus infections. Macrophage function ranges from highly proinflammatory to wound healing and regulatory and a picture of diverse subsets with considerable plasticity in function and phenotype is emerging. Within the lung three subsets of macrophage populations have been identified: resident alveolar macrophages, interstitial macrophages and exudate-derived macrophages. Here we review model systems and techniques for defining macrophage function in vivo and discuss macrophage infection in vitro. The use of detailed phenotypic approaches and techniques to dissect the role of individual macrophage subsets in vivo promises rapid advances in this area of research.
Collapse
Affiliation(s)
- Marlynne Q Nicol
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, UK
| | - Bernadette M Dutia
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, UK
| |
Collapse
|
446
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|