401
|
Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 2018; 136:41-56. [PMID: 29934873 PMCID: PMC6015111 DOI: 10.1007/s00401-018-1868-1] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/24/2023]
Abstract
The gradual deterioration of cognitive functions in Alzheimer’s disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients’ brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimer’s disease and that they could serve as targets for development of new diagnostic and therapeutic principles.
Collapse
|
402
|
Simon C, Greening DW, Bolumar D, Balaguer N, Salamonsen LA, Vilella F. Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr Rev 2018; 39:292-332. [PMID: 29390102 DOI: 10.1210/er.2017-00229] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Extensive evidence suggests that the release of membrane-enclosed compartments, more commonly known as extracellular vesicles (EVs), is a potent newly identified mechanism of cell-to-cell communication both in normal physiology and in pathological conditions. This review presents evidence about the formation and release of different EVs, their definitive markers and cargo content in reproductive physiological processes, and their capacity to convey information between cells through the transfer of functional protein and genetic information to alter phenotype and function of recipient cells associated with reproductive biology. In the male reproductive tract, epididymosomes and prostasomes participate in regulating sperm motility activation, capacitation, and acrosome reaction. In the female reproductive tract, follicular fluid, oviduct/tube, and uterine cavity EVs are considered as vehicles to carry information during oocyte maturation, fertilization, and embryo-maternal crosstalk. EVs via their cargo might be also involved in the triggering, maintenance, and progression of reproductive- and obstetric-related pathologies such as endometriosis, polycystic ovarian syndrome, preeclampsia, gestational diabetes, and erectile dysfunction. In this review, we provide current knowledge on the present and future use of EVs not only as biomarkers, but also as therapeutic targeting agents, mainly as vectors for drug or compound delivery into target cells and tissues.
Collapse
Affiliation(s)
- Carlos Simon
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David Bolumar
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Nuria Balaguer
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Felipe Vilella
- Igenomix Foundation, Valencia, Spain.,Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain.,Department of Obstetrics and Gynecology, Stanford University, Palo Alto, California
| |
Collapse
|
403
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
404
|
Secretome from SH-SY5Y APP Swe cells trigger time-dependent CHME3 microglia activation phenotypes, ultimately leading to miR-21 exosome shuttling. Biochimie 2018; 155:67-82. [PMID: 29857185 DOI: 10.1016/j.biochi.2018.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/27/2018] [Indexed: 01/08/2023]
Abstract
Exosome-mediated intercellular communication has been increasingly recognized as having a broad impact on Alzheimer's disease (AD) pathogenesis. Still, limited information exists regarding their "modus operandi", as it critically depends on exosomal cargo, environmental context and target cells. Therefore, a more thorough understanding of the role of exosomes from different cell types as mediators of neuroinflammation in AD context is a decisive step to open avenues for innovative and efficient therapies. In this study, we demonstrate that SH-SY5Y cells transfected with the Swedish mutant of APP695 (SHSwe) remarkably express increased inflammatory markers, combined with higher APP and Aβ1-40 production, when compared to naïve SH-SY5Y (SH) cells. Although exerting an early clearance effect on extracellular APP and Aβ accumulation when in co-culture with SHSwe cells, human CHME3 microglia gradually lose such property, and express both pro-inflammatory (iNOS, IL-1β, TNF-α, MHC class II, IL-6) and pro-resolving genes (IL-10 and Arginase 1), while also evidence increased senescence-associated β-galactosidase activity. Interestingly, upregulation of inflammatory-associated miRNA (miR)-155, miR-146a and miR-124 by SHSwe secretome shows to be time-dependent and to inversely correlate with their respective targets (SOCS-1, IRAK1 and C/EBP-α). We report that microglia also internalize exosomes released from SHSwe cells, which are enriched in miR-155, miR-146a, miR-124, miR-21 and miR-125b and recapitulate the cells of origin. Furthermore, we show that SHSwe-derived exosomes are capable of inducing acute and delayed microglial upregulation of TNF-α, HMGB1 and S100B pro-inflammatory markers, from which only S100B is found on their derived exosomes. Most importantly, our data reveal that miR-21 is a consistent biomarker that is found not only in SHSwe cells and in their released exosomes, but also in the recipient CHME3 microglia and derived exosomes. This work contributes to the increased understanding of neuron-microglia communication and exosome-mediated neuroinflammation in AD, while highlights miR-21 as a promising biomarker/target for therapeutic intervention.
Collapse
|
405
|
Deng H, Sun C, Sun Y, Li H, Yang L, Wu D, Gao Q, Jiang X. Lipid, Protein, and MicroRNA Composition Within Mesenchymal Stem Cell-Derived Exosomes. Cell Reprogram 2018; 20:178-186. [PMID: 29782191 DOI: 10.1089/cell.2017.0047] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were regarded as one of the most promising type of seed cells in tissue engineering due to its easy accessibility and multipotent feature of being able to differentiate into adipocyte, osteoblast, cardiomyocytes, and neurons. For years, MSCs have been applied in treating cardiovascular disease, reconstructing kidney injury, and remodeling immune system with remarkable achievements. Basic researches revealed that its clinic effects are not only due to their pluripotent ability but also through their paracrine function that they synthesize and secrete a broad spectrum of growth factors and cytokines. Recent studies show that exosomes is the main paracrine executor of MSCs. The lipid bilayer of exosome maintains its stability and integrity and keeps biological potency of biological substance within it. MSC-derived exosomes were shown to be successful in treating many diseases, including tumor and cardiovascular diseases. However, the exact composition of MSC-derived exosomes is not known yet. In this review, we will discuss the lipid, protein, and microRNA contents within MSC-derived exosomes based on current studies to guide further research and clinical applications of MSC-derived exosomes.
Collapse
Affiliation(s)
- Hao Deng
- 1 First Teaching Hospital of Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Chun Sun
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Yingxin Sun
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Huhu Li
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Lin Yang
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Danbin Wu
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Qing Gao
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| | - Xijuan Jiang
- 2 School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine , Tianjin, China
| |
Collapse
|
406
|
Extracellular vesicles – biogenesis, composition, function, uptake and therapeutic applications. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0047-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
407
|
Blandford SN, Galloway DA, Moore CS. The roles of extracellular vesicle microRNAs in the central nervous system. Glia 2018; 66:2267-2278. [PMID: 29726599 DOI: 10.1002/glia.23445] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) are small, highly conserved non-coding RNA molecules that post-transcriptionally regulate protein expression and most biological processes. Mature miRNAs are recruited to the RNA-induced silencing complex (RISC) and target mRNAs via complementary base-pairing, thus resulting in translational inhibition and/or transcript degradation. Here, we present evidence implicating miRNAs within extracellular vesicles (EVs), including microvesicles and exosomes, as mediators of central nervous system (CNS) development, homeostasis, and injury. EVs are extracellular vesicles that are secreted by all cells and represent a novel method of intercellular communication. In glial cells, the transfer of miRNAs via EVs can alter the function of recipient cells and significantly impacts cellular mechanisms involved in both injury and repair. This review discusses the value of information to be gained by studying miRNAs within EVs in the context of CNS diseases and their potential use in the development of novel disease biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
| | - Dylan A Galloway
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Craig S Moore
- Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
408
|
Abstract
INTRODUCTION Tumor-derived exosomes (TEX) and their role in tumor progression by accelerating angiogenesis are of great current interest. A better understanding of the mechanisms underlying TEX-blood vessels cross-talk may lead to improvements in current diagnosis, prognosis and treatment of cancer. Areas covered: For solid tumors, an adequate blood supply is of critical importance for their development, growth and metastasis. TEX, virus-size vesicles which circulate freely throughout body fluids and accumulate in the tumor microenvironment (TME), have been recognized as a new contributor to angiogenesis. TEX serve as a communication system between the tumor and various normal cells and are responsible for functional reprogramming of these cells. The molecular and genetic cargos that TEX deliver to the recipient cells involved in angiogenesis promote its induction and progression. The targeted inhibition of TEX pro-angiogenic functions might be a novel therapeutic approach for control of tumor progression. Expert opinion: TEX circulating in body fluids of cancer patients carry a complex molecular and genetic cargo and are responsible for phenotypic and functional reprogramming of endothelial cells and other normal cells residing in the TME.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
409
|
Exosomes and cardiovascular cell–cell communication. Essays Biochem 2018; 62:193-204. [DOI: 10.1042/ebc20170081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
Exosomes have become an important player in intercellular signaling. These lipid microvesicles can stably transfer miRNA, protein, and other molecules between cells and circulate throughout the body. Exosomes are released by almost all cell types and are present in most if not all biological fluids. The biologically active cargo carried by exosomes can alter the phenotype of recipient cells. Exosomes increasingly are recognized as having an important role in the progression and treatment of cardiac disease states. Injured cardiac cells can release exosomes with important pathological effects on surrounding tissue, in addition to effecting other organs. But of equal interest is the possible benefit(s) conferred by exosomes released from stem cells for use in treatment and possible repair of cardiac damage.
Collapse
|
410
|
Chen J, Chopp M. Exosome Therapy for Stroke. Stroke 2018; 49:1083-1090. [PMID: 29669873 PMCID: PMC6028936 DOI: 10.1161/strokeaha.117.018292] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Geriatrics, Tianjin Medical University General Hospital, China (J.C.)
- Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, China (J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (J.C., M.C.)
- Department of Physics, Oakland University, Rochester, MI (M.C.)
| |
Collapse
|
411
|
Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A 2018; 115:E4396-E4405. [PMID: 29686075 DOI: 10.1073/pnas.1718921115] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.
Collapse
|
412
|
Epothilone D inhibits microglia-mediated spread of alpha-synuclein aggregates. Mol Cell Neurosci 2018; 89:80-94. [PMID: 29673913 DOI: 10.1016/j.mcn.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Multiple System Atrophy (MSA) is a progressive neurodegenerative disease characterized by chronic neuroinflammation and widespread α-synuclein (α-syn) cytoplasmic inclusions. Neuroinflammation associated with microglial cells is typically located in brain regions with α-syn deposits. The potential link between microglial cell migration and the transport of pathological α-syn protein in MSA was investigated. Qualitative analysis via immunofluorescence of MSA cases (n = 4) revealed microglial cells bearing α-syn inclusions distal from oligodendrocytes bearing α-syn cytoplasmic inclusions, as well as close interactions between microglia and oligodendrocytes bearing α-syn, suggestive of a potential transfer mechanism between microglia and α-syn bearing cells in MSA and the possibility of microglia acting as a mobile vehicle to spread α-syn between anatomically connected brain regions. Further In vitro experiments using microglial-like differentiated THP-1 cells were conducted to investigate if microglial cells could act as potential transporters of α-syn. Monomeric or aggregated α-syn was immobilized at the centre of glass coverslips and treated with either cell free medium, undifferentiated THP-1 cells or microglial-like phorbol-12-myristate-13-acetate differentiated THP-1 cells (48 h; n = 3). A significant difference in residual immobilized α-syn density was observed between cell free controls and differentiated (p = 0.016) as well as undifferentiated and differentiated THP-1 cells (p = 0.032) when analysed by quantitative immunofluorescence. Furthermore, a significantly greater proportion of differentiated cells were observed bearing α-syn aggregates distal from the immobilized protein than their non-differentiated counterparts (p = 0.025). Similar results were observed with Highly Aggressive Proliferating Immortalised (HAPI) microglial cells, with cells exposed to aggregated α-syn yielding lower residual immobilized α-syn (p = 0.004) and a higher proportion of α-syn positive distal cells (p = 0.001) than cells exposed to monomeric α-syn. Co-treatment of THP-1 groups with the tubulin depolymerisation inhibitor, Epothilone D (EpoD; 10 nM), was conducted to investigate if inhibition of microtubule activity had an effect on cell migration and residual immobilized α-syn density. There was a significant increase in both residual immobilized α-syn between EpoD treated and non-treated differentiated cells exposed to monomeric (p = 0.037) and aggregated (p = 0.018) α-syn, but not with undifferentiated cells. Differentiated THP-1 cells exposed to immobilized aggregated α-syn showed a significant difference in the proportion of distal aggregate bearing cells between EpoD treated and untreated (p = 0.027). The results suggest microglia could play a role in α-syn transport in MSA, a role which could potentially be inhibited therapeutically by EpoD.
Collapse
|
413
|
Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell Communication by Extracellular Vesicles: Focus on Microglia. Neuroscience 2018; 405:148-157. [PMID: 29660443 DOI: 10.1016/j.neuroscience.2018.04.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles, including exosomes and microvesicles, are small, nano-to-micrometer vesicles that are released from cells. While initially observed in immune cells and reticulocytes as vesicles meant to remove archaic proteins, now they have been observed in almost all cell types of multicellular organisms. Growing evidence indicates that extracellular vesicles, containing lipids, proteins and RNAs, represent an efficient way to transfer functional cargoes from one cell to another. In the central nervous system, the extensive cross-talk ongoing between neurons and glia, including microglia, the immune cells of the brain, takes advantage of secreted vesicles, which mediate intercellular communication over long range distance. Recent literature supports a critical role for extracellular vesicles in mediating complex and coordinated communication among neurons, astrocytes and microglia, both in the healthy and in the diseased brain. In this review, we focus on the biogenesis and function of microglia-related extracellular vesicles and focus on their putative role in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland.
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Switzerland
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM - Institute for Regenerative Medicine, University of Zurich, Switzerland
| |
Collapse
|
414
|
Shpacovitch V, Hergenröder R. Optical and surface plasmonic approaches to characterize extracellular vesicles. A review. Anal Chim Acta 2018; 1005:1-15. [DOI: 10.1016/j.aca.2017.11.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023]
|
415
|
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018; 135:529-550. [PMID: 29302779 PMCID: PMC5978931 DOI: 10.1007/s00401-017-1803-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.
Collapse
|
416
|
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer. Semin Immunopathol 2018; 40:477-490. [PMID: 29594331 DOI: 10.1007/s00281-018-0679-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
Eukaryotic cells employ different types of extracellular vesicles (EVs) to exchange proteins, mRNAs, non-coding regulatory RNAs, carbohydrates, and lipids. Cells of the immune system, in particular antigen (Ag)-presenting cells (APCs), acquire major histocompatibility complex (MHC) class I and II molecules loaded with antigenic peptides from leukocytes and tissue parenchymal and stromal cells, through a mechanism known as MHC cross-dressing. Increasing evidence indicates that cross-dressing of APCs with pre-formed Ag-peptide/MHC complexes (pMHCs) is mediated via passage of clusters of EVs with characteristics of exosomes. A percentage of the transferred EVs remain attached to the acceptor APCs, with the appropriate orientation, at sufficient concentration within localized areas of the plasma membrane, and for sufficient time, so the preformed pMHCs carried by the EVs are presented without further processing, to cognate T cells. Although its biological relevance is not fully understood, numerous studies have demonstrated that MHC cross-dressing of APCs represents a pathway of Ag presentation of acquired pre-formed pMHCs to T cells-alternative to direct and cross-presentation-participate in immune homeostasis and T cell tolerance, cross-regulate alloreactive T cells with different MHC restricted specificities, and is a mechanism of Ag spreading for autologous, allogeneic, microbial, tumor, or vaccine-delivered Ags. Here, we compare MHC cross-dressing with other mechanisms and terminologies used for pMHC transfer, including trogocytosis. We discuss the experimental evidence, mostly from in vitro and ex vivo studies, of the role of MHC cross-dressing of APCs via EVs in positive or negative regulation of T cell immunity in the steady state, transplantation, microbial diseases, and cancer.
Collapse
|
417
|
Holm MM, Kaiser J, Schwab ME. Extracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018; 41:360-372. [PMID: 29605090 DOI: 10.1016/j.tins.2018.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
The physiology of the central nervous system (CNS) is built on a foundation of connection, integration, and the exchange of complex information among brain cells. Emerging evidence indicates that extracellular vesicles (EVs) are key players in the intercellular communication that underlies physiological processes such as synaptic plasticity and the maintenance of myelination. Furthermore, upon injury to the CNS, EVs may propagate inflammation across the blood-brain barrier and beyond, and also appear to mediate neuroprotection and modulate regenerative processes. In neurodegenerative diseases, EVs may play roles in the formation, spreading, and clearance of toxic protein aggregates. Here, we discuss the physiological roles of EVs in the healthy and the diseased CNS, with a focus on recent findings and emerging concepts.
Collapse
Affiliation(s)
- Mea M Holm
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
418
|
PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1350-1361. [PMID: 29551275 DOI: 10.1016/j.bbamem.2018.03.013] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022]
Abstract
PKH lipophilic dyes are highly fluorescent and stain membranes by intercalating their aliphatic portion into the exposed lipid bilayer. They have established use in labeling and tracking of cells in vivo and in vitro. Despite wide use of PKH-labeled extracellular vesicles (EVs) in cell targeting and functional studies, nonEV-associated fluorescent structures have never been examined systematically, nor was their internalization by cells. Here, we have characterized PKH26-positive particles in lymphoblastoid B exosome samples and exosome-free controls stained by ultracentrifugation, filtration, and sucrose-cushion-based and sucrose-gradient-based procedures, using confocal imaging and asymmetric-flow field-flow fractionation coupled to multi-angle light-scattering detector analysis. We show for the first time that numerous PKH26 nanoparticles (nine out of ten PKH26-positive particles) are formed during ultracentrifugation-based exosome staining, which are almost indistinguishable from PKH26-labeled exosomes in terms of size, surface area, and fluorescence intensity. When PKH26-labeled exosomes were purified through sucrose, PKH26 nanoparticles were differentiated from PKH26-labeled exosomes based on their reduced size. However, PKH26 nanoparticles were only physically removed from PKH26-labeled exosomes when separated on a sucrose gradient, and at the expense of low PKH26-labeled exosome recovery. Overall, low PKH26-positive particle recovery is characteristic of filtration-based exosome staining. Importantly, PKH26 nanoparticles are internalized by primary astrocytes into similar subcellular compartments as PKH26-labeled exosomes. Altogether, PKH26 nanoparticles can result in false-positive signals for stained EVs that can compromise the interpretation of EV internalization. Thus, for use in EV uptake and functional studies, sucrose-gradient-based isolation should be the method of choice to obtain PKH26-labeled exosomes devoid of PKH26 nanoparticles.
Collapse
|
419
|
Dean I, Dzinic SH, Bernardo MM, Zou Y, Kimler V, Li X, Kaplun A, Granneman J, Mao G, Sheng S. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein. Oncotarget 2018; 8:8043-8056. [PMID: 28009978 PMCID: PMC5352381 DOI: 10.18632/oncotarget.13302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/22/2016] [Indexed: 12/13/2022] Open
Abstract
Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,Department of Oncology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Center for Bioengineering and Tissue Regeneration, The University of California San Francisco, San Francisco, CA, USA
| | - Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| | - M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| | - Yi Zou
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, USA
| | - Vickie Kimler
- Department of Chemical Engineering and Materials Science, Wayne State University, MI, USA.,Current address: Ocular Structure and Imaging Facility, Eye Research Institute, Oakland University, Rochester Hills, MI, USA
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Zhangjiagang Aoyang Hospital, Nanjing Medical University, Jiangsu, China
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Current address: Variantyx, Framingham, MA, USA
| | - James Granneman
- The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, USA
| | - Guangzhao Mao
- The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA.,Department of Chemical Engineering and Materials Science, Wayne State University, MI, USA
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, MI, USA.,Department of Oncology, Wayne State University School of Medicine, MI, USA.,The Tumor Biology and Microenvironment Program, Karmanos Cancer Institute, MI, USA
| |
Collapse
|
420
|
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:113-125. [PMID: 29520164 PMCID: PMC5840070 DOI: 10.4196/kjpp.2018.22.2.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul 04763, Korea
| | - Jae-Sung Ahn
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Semi Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jin Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Shin-Hee Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju-Seop Kang
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
421
|
Gangadaran P, Hong CM, Ahn BC. An Update on in Vivo Imaging of Extracellular Vesicles as Drug Delivery Vehicles. Front Pharmacol 2018; 9:169. [PMID: 29541030 PMCID: PMC5835830 DOI: 10.3389/fphar.2018.00169] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are currently being considered as promising drug delivery vehicles. EVs are naturally occurring vesicles that exhibit many characteristics favorable to serve as drug delivery vehicles. In addition, EVs have inherent properties for treatment of cancers and other diseases. For research and clinical translation of use of EVs as drug delivery vehicles, in vivo tracking of EVs is essential. The latest molecular imaging techniques enable the tracking of EVs in living animals. However, each molecular imaging technique has its certain advantages and limitations for the in vivo imaging of EVs; therefore, understanding the molecular imaging techniques is essential to select the most appropriate imaging technology to achieve the desired imaging goal. In this review, we summarize the characteristics of EVs as drug delivery vehicles and the molecular imaging techniques used in visualizing and monitoring EVs in in vivo environments. Furthermore, we provide a perceptual vision of EVs as drug delivery vehicles and in vivo monitoring of EVs using molecular imaging technologies.
Collapse
Affiliation(s)
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| |
Collapse
|
422
|
Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, Chatellard C, Sadoul R. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci 2018; 75:757-773. [PMID: 28956068 PMCID: PMC11105273 DOI: 10.1007/s00018-017-2664-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Amyloid beta peptide (Aβ), the main component of senile plaques of Alzheimer's disease brains, is produced by sequential cleavage of amyloid precursor protein (APP) and of its C-terminal fragments (CTFs). An unanswered question is how amyloidogenic peptides spread throughout the brain during the course of the disease. Here, we show that small lipid vesicles called exosomes, secreted in the extracellular milieu by cortical neurons, carry endogenous APP and are strikingly enriched in CTF-α and the newly characterized CTF-η. Exosomes from N2a cells expressing human APP with the autosomal dominant Swedish mutation contain Aβ peptides as well as CTF-α and CTF-η, while those from cells expressing the non-mutated form of APP only contain CTF-α and CTF-η. APP and CTFs are sorted into a subset of exosomes which lack the tetraspanin CD63 and specifically bind to dendrites of neurons, unlike exosomes carrying CD63 which bind to both neurons and glial cells. Thus, neuroblastoma cells secrete distinct populations of exosomes carrying different cargoes and targeting specific cell types. APP-carrying exosomes can be endocytosed by receiving cells, allowing the processing of APP acquired by exosomes to give rise to the APP intracellular domain (AICD). Thus, our results show for the first time that neuronal exosomes may indeed act as vehicles for the intercellular transport of APP and its catabolites.
Collapse
Affiliation(s)
- Karine Laulagnier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France.
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France.
| | - Charlotte Javalet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France
| | - Fiona J Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France
| | - Mathilde Chivet
- Dulbecco Telethon Institute Lab of Neurodegenerative Diseases, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Gaëlle Lachenal
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France
| | - Béatrice Blot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France
| | - Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, 38042, Grenoble, France.
- Institut des Neurosciences, Université Grenoble Alpes, 38042, Grenoble, France.
| |
Collapse
|
423
|
Yoshimura A, Adachi N, Matsuno H, Kawamata M, Yoshioka Y, Kikuchi H, Odaka H, Numakawa T, Kunugi H, Ochiya T, Tamai Y. The Sox2 promoter-driven CD63-GFP transgenic rat model allows tracking of neural stem cell-derived extracellular vesicles. Dis Model Mech 2018; 11:dmm.028779. [PMID: 29208635 PMCID: PMC5818070 DOI: 10.1242/dmm.028779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments.
Collapse
Affiliation(s)
- Aya Yoshimura
- Division of Laboratory Animals Resources, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Education and Research Facility of Animal Models for Human Diseases, Center for Research Promotion and Support, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Hisae Kikuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute (NCC), 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshitaka Tamai
- Division of Laboratory Animals Resources, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.,Chromocenter Inc., 6-7-4 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
424
|
Lee TH, Chennakrishnaiah S, Meehan B, Montermini L, Garnier D, D'Asti E, Hou W, Magnus N, Gayden T, Jabado N, Eppert K, Majewska L, Rak J. Barriers to horizontal cell transformation by extracellular vesicles containing oncogenic H-ras. Oncotarget 2018; 7:51991-52002. [PMID: 27437771 PMCID: PMC5239530 DOI: 10.18632/oncotarget.10627] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/29/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) enable the exit of regulatory, mutant and oncogenic macromolecules (proteins, RNA and DNA) from their parental tumor cells and uptake of this material by unrelated cellular populations. Among the resulting biological effects of interest is the notion that cancer-derived EVs may mediate horizontal transformation of normal cells through transfer of mutant genes, including mutant ras. Here, we report that H-ras-mediated transformation of intestinal epithelial cells (IEC-18) results in the emission of exosome-like EVs containing genomic DNA, HRAS oncoprotein and transcript. However, EV-mediated horizontal transformation of non-transformed cells (epithelial, astrocytic, fibroblastic and endothelial) is transient, limited or absent due to barrier mechanisms that curtail the uptake, retention and function of oncogenic H-ras in recipient cells. Thus, epithelial cells and astrocytes are resistant to EV uptake, unless they undergo malignant transformation. In contrast, primary and immortalized fibroblasts are susceptible to the EV uptake, retention of H-ras DNA and phenotypic transformation, but these effects are transient and fail to produce a permanent tumorigenic conversion of these cells in vitro and in vivo, even after several months of observation. Increased exposure to EVs isolated from H-ras-transformed cancer cells, but not to those from their indolent counterparts, triggers demise of recipient fibroblasts. Uptake of H-ras-containing EVs stimulates but fails to transform primary endothelial cells. Thus, we suggest that intercellular transfer of oncogenes exerts regulatory rather than transforming influence on recipient cells, while cancer cells may often act as preferential EV recipients.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Shilpa Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Brian Meehan
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Laura Montermini
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Delphine Garnier
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Esterina D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Wenyang Hou
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Nathalie Magnus
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Tenzin Gayden
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Nada Jabado
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Loydie Majewska
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, QC, H4A 3J1 Canada
| |
Collapse
|
425
|
Microglia-derived extracellular vesicles in Alzheimer's Disease: A double-edged sword. Biochem Pharmacol 2018; 148:184-192. [PMID: 29305855 DOI: 10.1016/j.bcp.2017.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023]
Abstract
Extracellular vesicles (EVs), based on their origin or size, can be classified as apoptotic bodies, microvesicles (MVs)/microparticles (MPs), and exosomes. EVs are one of the new emerging modes of communication between cells that are providing new insights into the pathophysiology of several diseases. EVs released from activated or apoptotic cells contain specific proteins (signaling molecules, receptors, integrins, cytokines), bioactive lipids, nucleic acids (mRNA, miRNA, small non coding RNAs, DNA) from their progenitor cells. In the brain, EVs contribute to intercellular communication through their basal release and uptake by surrounding cells, or release into the cerebrospinal fluid (CSF) and blood. In the central nervous system (CNS), EVs have been suggested as potential carriers in the intercellular delivery of misfolded proteins associated to neurodegenerative disorders, such as tau and amyloid β in Alzheimer's Disease (AD), α-synuclein in Parkinson's Disease (PD), superoxide dismutase (SOD)1 in amyotrophic lateral sclerosis and huntingtin in Huntington's Disease. Multiple studies indicate that EVs are involved in the pathogenesis of AD, although their role has not been completely elucidated. The focus of this review is to analyze the new emerging role of EVs in AD progression, paying particular attention to microglia EVs. Recent data show that microglia are the first myeloid cells to be activated during neuroinflammation. Microglial EVs in fact, could have both a beneficial and a detrimental action in AD. The study of EVs may provide specific, precise information regarding the AD transition stage that may offer possibilities to intervene in order to retain cognition. In chronic neurodegenerative diseases EVs could be a novel biomarker to monitor the progression of the pathology and also represent a new therapeutical approach to CNS diseases.
Collapse
|
426
|
Lankford KL, Arroyo EJ, Nazimek K, Bryniarski K, Askenase PW, Kocsis JD. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018; 13:e0190358. [PMID: 29293592 PMCID: PMC5749801 DOI: 10.1371/journal.pone.0190358] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration.
Collapse
Affiliation(s)
- Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Edgardo J. Arroyo
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University College of Medicine, Krakow; Poland
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University College of Medicine, Krakow; Poland
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Philip W. Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Center for Neuroscience Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| |
Collapse
|
427
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM, Pang T. Microglia: Housekeeper of the Central Nervous System. Cell Mol Neurobiol 2018; 38:53-71. [PMID: 28534246 PMCID: PMC11481884 DOI: 10.1007/s10571-017-0504-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
Microglia, of myeloid origin, play fundamental roles in the control of immune responses and the maintenance of central nervous system homeostasis. These cells, just like peripheral macrophages, may be activated into M1 pro-inflammatory or M2 anti-inflammatory phenotypes by appropriate stimuli. Microglia do not respond in isolation, but form part of complex networks of cells influencing each other. This review addresses the complex interaction of microglia with each cell type in the brain: neurons, astrocytes, cerebrovascular endothelial cells, and oligodendrocytes. We also highlight the participation of microglia in the maintenance of homeostasis in the brain, and their roles in the development and progression of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- John Alimamy Kabba
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yazhou Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Handson Christian
- Department of Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wenchen Ruan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Kitchen Chenai
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, People's Republic of China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20057, USA.
| |
Collapse
|
428
|
Cavallini C, Zannini C, Olivi E, Tassinari R, Taglioli V, Rossi M, Poggi P, Chatgilialoglu A, Simonazzi G, Alviano F, Bonsi L, Ventura C. Restoring In Vivo-Like Membrane Lipidomics Promotes Exosome Trophic Behavior from Human Placental Mesenchymal Stromal/Stem Cells. Cell Transplant 2018; 27:55-69. [PMID: 29562775 PMCID: PMC6434476 DOI: 10.1177/0963689717723016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) are an effective tool in regenerative medicine notably for their intrinsic plentiful paracrine activity rather than differentiating properties. The hMSC secretome includes a wide spectrum of regulatory and trophic factors, encompassing several naked molecules as well as different kinds of extracellular vesicles (EVs). Among EVs, exosomes represent an intriguing population, able to shuttle proteins, transcription factors, and genetic materials, with a relevant role in cell-to-cell communication, modulating biological responses in recipient cells. In this context, the extracellular milieu can greatly impact the paracrine activity of stem cells, modifying their metabolism, and the dynamics of vesicle secretion. In the present study, we investigated the effects elicited on exosome patterning by tailored, ad hoc formulated lipid supplementation (Refeed®) in MSCs derived from human fetal membranes (hFM-MSCs). Wound healing experiments revealed that stem cell exposure to exosomes obtained from Refeed®-supplemented hFM-MSCs increased their migratory capability, although the amount of exosomes released after Refeed® supplementation was lower than that yielded from non-supplemented cells. We found that such a decrease was mainly due to a different rate of exosomal exocytosis rather than to an effect of the lipid supplement on the endocytic pathway. Endoplasmic reticulum homeostasis was modified by supplementation, through the upregulation of PKR-like ER kinase (PERK) and inositol-requiring enzyme 1α (IRE1α). Increased expression of these proteins did not lead to stress-induced, unfolded protein response (UPR)-mediated apoptosis, nor did it affect phosphorylation of p38 kinase, suggesting that PERK and IRE1α overexpression was due to augmented metabolic activities mediated by optimization of a cellular feeding network afforded through lipid supplementation. In summary, these results demonstrate how tailored lipid supplementation can successfully modify the paracrine features in hFM-MSCs, impacting both intracellular vesicle trafficking and secreted exosome number and function.
Collapse
Affiliation(s)
- Claudia Cavallini
- GUNA - ATTRE (Advanced Therapies and Tissue Regeneration), Innovation Accelerator at CNR, Via Gobetti 101, 40129 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
- Ettore Sansavini Health Science Foundation ONLUS—Lab SWITH, Lugo, Italy
| | - Chiara Zannini
- Ettore Sansavini Health Science Foundation ONLUS—Lab SWITH, Lugo, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Nephrology, Dialysis and Renal Transplant, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elena Olivi
- GUNA - ATTRE (Advanced Therapies and Tissue Regeneration), Innovation Accelerator at CNR, Via Gobetti 101, 40129 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
- Ettore Sansavini Health Science Foundation ONLUS—Lab SWITH, Lugo, Italy
| | - Riccardo Tassinari
- GUNA - ATTRE (Advanced Therapies and Tissue Regeneration), Innovation Accelerator at CNR, Via Gobetti 101, 40129 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
- Ettore Sansavini Health Science Foundation ONLUS—Lab SWITH, Lugo, Italy
| | - Valentina Taglioli
- National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, Laboratory of Experimental Cardiology, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Martina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | | | | | - Giuliana Simonazzi
- Division of Obstetrics and Prenatal Medicine, Department of Medical and Surgical Sciences, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Carlo Ventura
- GUNA - ATTRE (Advanced Therapies and Tissue Regeneration), Innovation Accelerator at CNR, Via Gobetti 101, 40129 Bologna, Italy
- National Institute of Biostructures and Biosystems (NIBB), Rome, Italy
- CNR, Institute of Organic Synthesis and Photoreactivity (Istituto per la Sintesi Organica e la Fotoreattività ISOF), Via Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
429
|
Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and Immune Cell-Derived Extracellular Vesicles in the Regulation of Cardiovascular Health and Disease. JACC Basic Transl Sci 2017; 2:790-807. [PMID: 30062186 PMCID: PMC6059011 DOI: 10.1016/j.jacbts.2017.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 02/08/2023]
Abstract
Intercellular signaling by extracellular vesicles (EVs) is a route of cell-cell crosstalk that allows cells to deliver biological messages to specific recipient cells. EVs convey these messages through their distinct cargoes consisting of cytokines, proteins, nucleic acids, and lipids, which they transport from the donor cell to the recipient cell. In cardiovascular disease (CVD), endothelial- and immune cell-derived EVs are emerging as key players in different stages of disease development. EVs can contribute to atherosclerosis development and progression by promoting endothelial dysfunction, intravascular calcification, unstable plaque progression, and thrombus formation after rupture. In contrast, an increasing body of evidence highlights the beneficial effects of certain EVs on vascular function and endothelial regeneration. However, the effects of EVs in CVD are extremely complex and depend on the cellular origin, the functional state of the releasing cells, the biological content, and the diverse recipient cells. This paper summarizes recent progress in our understanding of EV signaling in cardiovascular health and disease and its emerging potential as a therapeutic agent.
Collapse
Key Words
- CVD, cardiovascular disease
- EC, endothelial cell
- EMV, endothelial cell-derived microvesicles
- ESCRT, endosomal sorting complex required for transport
- IL, interleukin
- MV, microvesicles
- NO, nitric oxide
- PEG, polyethylene glycol
- TGF, transforming growth factor
- cardiovascular disease
- extracellular vesicles
- miRNA, microRNA
- microvesicles
Collapse
Affiliation(s)
- Felix Jansen
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| | - Qian Li
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany.,Department of Cardiology, Second Hospital of Jilin University, Nanguan District, Changchun, China
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, Rheinische Friedrich-Wilhelms University, Bonn, Germany
| |
Collapse
|
430
|
Schneider DJ, Speth JM, Penke LR, Wettlaufer SH, Swanson JA, Peters-Golden M. Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. J Biol Chem 2017; 292:20897-20910. [PMID: 29101235 PMCID: PMC5743066 DOI: 10.1074/jbc.m117.792416] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles, including exosomes and shed microvesicles (MVs), can be internalized by recipient cells to modulate function. Although the mechanism by which extracellular vesicles are internalized is incompletely characterized, it is generally considered to involve endocytosis and an initial surface-binding event. Furthermore, modulation of uptake by microenvironmental factors is largely unstudied. Here, we used flow cytometry, confocal microscopy, and pharmacologic and molecular targeting to address these gaps in knowledge in a model of pulmonary alveolar cell-cell communication. Alveolar macrophage-derived MVs were fully internalized by alveolar epithelial cells in a time-, dose-, and temperature-dependent manner. Uptake was dependent on dynamin and actin polymerization. However, it was neither saturable nor dependent on clathrin or receptor binding. Internalization was enhanced by extracellular proteins but was inhibited by cigarette smoke extract via oxidative disruption of actin polymerization. We conclude that MV internalization occurs via a pathway more consistent with fluid-phase than receptor-dependent endocytosis and is subject to bidirectional modulation by relevant pathologic perturbations.
Collapse
Affiliation(s)
| | | | - Loka R Penke
- From the Division of Pulmonary and Critical Care Medicine
| | | | - Joel A Swanson
- Department of Microbiology and Immunology, and
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Marc Peters-Golden
- From the Division of Pulmonary and Critical Care Medicine,
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
431
|
Cui S, Cheng Z, Qin W, Jiang L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer 2017; 116:46-54. [PMID: 29413050 DOI: 10.1016/j.lungcan.2017.12.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
In lung cancer and other malignancies, the so-called "liquid biopsy" is quickly moving into clinical practice. Its full potential has not yet been fully identified, but the "liquid biopsy" is no longer a promise but has become a reality that allows for better treatment selection and monitoring of lung cancer. This emerging field has significant potential to make up for the limitations of the traditional tissue-derived biomaterials. Exosomes are spherical nano-sized vesicles with a diameter of 40-100 nm and a density of 1.13-1.19 g/ml. In both physiological and pathological conditions, exosomes can be released by different cell types, including immune cells, stem cells and tumor cells. These small molecules may serve as promising biomarkers in lung cancer "liquid biopsy" as they can be easily obtained from most body fluids. In addition, the lipid bilayer of exosomes allows for stable cargoes which are relatively hard to degrade. Furthermore, the composition of exosomes reflects that of their parental cells, suggesting that exosomes are potential surrogates of the original cells and, therefore, are useful for understanding cell biology. Previous studies have demonstrated that exosomes play important roles in cell-to-cell communication. Moreover, tumor-derived exosomes are evolved in tumor-specific biological process, including tumor proliferation and progression. Recently, a growing number of studies has focused on exosomal cargo and their use in lung cancer genesis and progression. In addition, their utility as lung cancer diagnostic, prognostic and predictive biomarkers have also been studied. The current review primarily summaries lung cancer-related exosomal biomarkers that have recently been identified and discusses their potential in clinical practice.
Collapse
Affiliation(s)
- Shaohua Cui
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zhuoan Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| | - Liyan Jiang
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, China.
| |
Collapse
|
432
|
Samoylova EM, Kalsin VA, Bespalova VA, Devichensky VM, Baklaushev VP. Exosomes: from biology to clinics. GENES & CELLS 2017; 12:7-19. [DOI: 10.23868/201707024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Exosomes are extracellular vesicles with the diameter of 30-120 nm, originating from early endosomes. Exosomes have been actively studied in the last decade, and a great amount of data has appeared on their nature and role in the intercellular transport and signaling both in the normal and pathological conditions. A particular interest to exosomes in the clinical practice emerged after the separation of their circulating fraction from the blood and the study of tumor genetic markers in them became possible (so called “liquid biopsy”). The objective of this review is to familiarize clinical specialists with the fundamentals of exosomes' biology and physiology and with the main achievements on their practical application in the medicine, as a natural drug delivery system, as well as for high-precision, early non-invasive differential diagnostics of diseases.
Collapse
|
433
|
Sadovska L, Zandberga E, Sagini K, Jēkabsons K, Riekstiņa U, Kalniņa Z, Llorente A, Linē A. A novel 3D heterotypic spheroid model for studying extracellular vesicle-mediated tumour and immune cell communication. Biochem Biophys Res Commun 2017; 495:1930-1935. [PMID: 29248729 DOI: 10.1016/j.bbrc.2017.12.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022]
Abstract
Cancer-derived extracellular vesicles (EVs) have emerged as important mediators of tumour-host interactions, and they have been shown to exert various functional effects in immune cells. In most of the studies on human immune cells, EVs have been isolated from cancer cell culture medium or patients' body fluids and added to the immune cell cultures. In such a setting, the physiological relevance of the chosen EV concentration is unknown and the EV isolation method and the timing of EV administration may bias the results. In the current study we aimed to develop an experimental cell culture model to study EV-mediated effects in human T and B cells at conditions mimicking the tumour microenvironment. We constructed a human prostate cancer cell line PC3 producing GFP-tagged EVs (PC3-CD63-GFP cells) and developed a 3D heterotypic spheroid model composed of PC3-CD63-GFP cells and human peripheral blood mononuclear cells (PBMCs). The transfer of GFP-tagged EVs from PC3-CD63-GFP cells to the lymphocytes was analysed by flow cytometry and fluorescence imaging. The endocytic pathway was investigated using three endocytosis inhibitors. Our results showed that GFP-tagged EVs interacted with a large fraction of B cells, however, the majority of EVs were not internalised by B cells but rather remained bound at the cell surface. T cell subsets differed in their ability to interact with the EVs - 15.7-24.1% of the total CD3+ T cell population interacted with GFP-tagged EVs, while only 0.3-5.8% of CD8+ T were GFP positive. Furthermore, a fraction of EVs were internalised in CD3+ T cells via macropinocytosis. Taken together, the heterotypic PC3-CD63-GFP and PBMC spheroid model provides the opportunity to study the interactions and functional effects of cancer-derived EVs in human immune cells at conditions mimicking the tumour microenvironment.
Collapse
Affiliation(s)
- Lilite Sadovska
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Elīna Zandberga
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Kaspars Jēkabsons
- University of Latvia, Faculty of Medicine, Raiņa blvd. 19, LV-1586, Riga, Latvia
| | - Una Riekstiņa
- University of Latvia, Faculty of Medicine, Raiņa blvd. 19, LV-1586, Riga, Latvia
| | - Zane Kalniņa
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Aija Linē
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, k-1, LV-1067, Riga, Latvia.
| |
Collapse
|
434
|
Jin J, Menon R. Placental exosomes: A proxy to understand pregnancy complications. Am J Reprod Immunol 2017; 79:e12788. [PMID: 29193463 DOI: 10.1111/aji.12788] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes (30- to 150-nm particles), originating from multivesicular bodies by the invagination of the endosomal membrane, are communication channels between cells. Exosomes are released by various cell types and cargo proteins, lipids, and nucleic acids reflecting the physiologic status of their cells of origin and cause functional changes in recipient cells, which are likely dependent on their quantity and/or cargo contents. Recently, placental exosomes, produced by various placental cell types, have been isolated from maternal blood using the placental protein-specific marker, placental alkaline phosphatase (PLAP). PLAP-positive exosomes are seen in maternal blood as early as the first trimester of pregnancy and increase as gestation progresses, with maximum numbers seen at term. Although the functional relevance of placental exosomes is still under investigation, several studies have linked placental exosomes changes (quantity and cargo) reflecting placental dysfunctions associated with adverse pregnancy events. As placental exosomes can be isolated from maternal blood, they are liquid biopsies reflecting placental functions. Hence, they are useful as biomarkers of placental functions and dysfunctions obtainable through non-invasive approaches. This review summarizes the biogenesis, release, and functions of exosomes and specifically expounds the role of placental-specific exosomes and their significance associated with pregnancy complications.
Collapse
Affiliation(s)
- Jin Jin
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Gynaecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
435
|
Extracellular microRNAs as messengers in the central and peripheral nervous system. Neuronal Signal 2017; 1:NS20170112. [PMID: 32714581 PMCID: PMC7373247 DOI: 10.1042/ns20170112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are small post-transcriptional regulators that play an important role in nervous system development, function and disease. More recently, microRNAs have been detected extracellularly and circulating in blood and other body fluids, where they are protected from degradation by encapsulation in vesicles, such as exosomes, or by association with proteins. These microRNAs are thought to be released from cells selectively through active processes and taken up by specific target cells within the same or in remote tissues where they are able to exert their repressive function. These characteristics make extracellular microRNAs ideal candidates for intercellular communication over short and long distances. This review aims to explore the potential mechanisms underlying microRNA communication within the nervous system and between the nervous system and other tissues. The suggested roles of extracellular microRNAs in the healthy and the diseased nervous system will be reviewed.
Collapse
|
436
|
Abstract
Extracellular RNAs consist of coding and non-coding transcripts released from all cell types, which are involved in multiple cellular processes, predominantly through regulation of gene expression. Recent advances have helped us better understand the functions of these molecules, particularly microRNAs (miRNAs). Numerous pre-clinical and human studies have demonstrated that miRNAs are dysregulated in cancer and contribute to tumorigenesis and metastasis. miRNA profiling has extensively been evaluated as a non-invasive method for cancer diagnosis, prognostication, and assessment of response to cancer therapies. Broader applications for miRNAs in these settings are currently under active development. Investigators have also moved miRNAs into the realm of cancer therapy. miRNA antagonists targeting miRNAs that silence tumor suppressor genes have shown promising pre-clinical activity. Alternatively, miRNA mimics that silence oncogenes are also under active investigation. These miRNA-based cancer therapies are in early development, but represent novel strategies for clinical management of human cancer.
Collapse
Affiliation(s)
- Jonathan R Thompson
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jing Zhu
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Deepak Kilari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Liang Wang
- Department of Pathology and MCW Cancer Center, TBRC-C4970, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
437
|
Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells Int 2017; 2017:5785436. [PMID: 29163642 PMCID: PMC5662033 DOI: 10.1155/2017/5785436] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.
Collapse
|
438
|
Let's make microglia great again in neurodegenerative disorders. J Neural Transm (Vienna) 2017; 125:751-770. [PMID: 29027011 DOI: 10.1007/s00702-017-1792-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
All of the common neurodegenerative disorders-Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion diseases-are characterized by accumulation of misfolded proteins that trigger activation of microglia; brain-resident mononuclear phagocytes. This chronic form of neuroinflammation is earmarked by increased release of myriad cytokines and chemokines in patient brains and biofluids. Microglial phagocytosis is compromised early in the disease process, obfuscating clearance of abnormal proteins. This review identifies immune pathologies shared by the major neurodegenerative disorders. The overarching concept is that aberrant innate immune pathways can be targeted for return to homeostasis in hopes of coaxing microglia into clearing neurotoxic misfolded proteins.
Collapse
|
439
|
Stremersch S, Brans T, Braeckmans K, De Smedt S, Raemdonck K. Nucleic acid loading and fluorescent labeling of isolated extracellular vesicles requires adequate purification. Int J Pharm 2017; 548:783-792. [PMID: 29031850 DOI: 10.1016/j.ijpharm.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicular structures released by cells to communicate with one another. The growing interest in the (patho)physiological function and potential pharmaceutical application of these vesicles is accompanied by a vast number of new research groups entering this research field and a plethora of different protocols to separate EVs from non-vesicular components. This lack of uniformity often generates conflicting or difficult-to-compare results. Here we provide a comparative analysis of different EV isolation strategies, discussing the purity of the final isolate and highlighting the importance of purity on downstream experimental readouts. First, we show that ultracentrifugation (UC) of B16F10 melanoma cell-derived conditioned medium co-purifies proteins or protein complexes with nuclease activity. Such contaminants should be taken into account when aiming to apply EVs as delivery carriers for exogenous nucleic acids. Second, three commonly used purification strategies (i.e. precipitation, UC and density-gradient centrifugation) were evaluated for their ability to remove non-incorporated fluorescent dye (i.e. the lipophilic PKH67 dye), important when probing EV interactions with cells. For both types of impurities, endogenous and exogenous, density gradient purification outperforms the other evaluated methods. Overall, these results demonstrate that the implementation of stringent purification protocols and adequate controls is of pivotal importance to draw reliable conclusions from downstream experiments performed with EV isolates.
Collapse
Affiliation(s)
- Stephan Stremersch
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Center for Nano-and Biophotonics (NB-Photonics), Ghent University, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
440
|
Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release 2017; 266:100-108. [PMID: 28919558 DOI: 10.1016/j.jconrel.2017.09.019] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Recent evidence has established that extracellular vesicles (EVs), including exosomes and microvesicles, form an endogenous transport system through which biomolecules, including proteins and RNA, are exchanged between cells. This endows EVs with immense potential for drug delivery and regenerative medicine applications. Understanding the biology underlying EV-based intercellular transfer of cargo is of great importance for the development of EV-based therapeutics. Here, we sought to characterize the cellular mechanisms involved in EV uptake. Internalization of fluorescently-labeled EVs was evaluated in HeLa cells, in 2D (monolayer) cell culture as well as 3D spheroids. Uptake was assessed using flow cytometry and confocal microscopy, using chemical as well as RNA interference-based inhibition of key proteins involved in individual endocytic pathways. Experiments with chemical inhibitors revealed that EV uptake depends on cholesterol and tyrosine kinase activity, which are implicated in clathrin-independent endocytosis, and on Na+/H+ exchange and phosphoinositide 3-kinase activity, which are important for macropinocytosis. Furthermore, EV internalization was inhibited by siRNA-mediated knockdown of caveolin-1, flotillin-1, RhoA, Rac1 and PAK1, but not clathrin heavy chain. Together, these results suggest that EVs enter cells predominantly via clathrin-independent endocytosis and macropinocytosis. Identification of EV components that promote their uptake via pathways that lead to functional cargo transfer might allow development of more efficient therapeutics through EV-inspired engineering.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jerney J Gitz-Francois
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Raymond M Schiffelers
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Pieter Vader
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.
| |
Collapse
|
441
|
Matsumoto J, Stewart T, Sheng L, Li N, Bullock K, Song N, Shi M, Banks WA, Zhang J. Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease? Acta Neuropathol Commun 2017; 5:71. [PMID: 28903781 PMCID: PMC5598000 DOI: 10.1186/s40478-017-0470-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) pathophysiology develops in part from the formation, transmission, and aggregation of toxic species of the protein α-synuclein (α-syn). Recent evidence suggests that extracellular vesicles (EVs) may play a vital role in the transport of toxic α-syn between brain regions. Moreover, increasing evidence has highlighted the participation of peripheral molecules, particularly inflammatory species, which may influence or exacerbate the development of PD-related changes to the central nervous system (CNS), although detailed characterization of these species remains to be completed. Despite these findings, little attention has been devoted to erythrocytes, which contain α-syn concentrations ~1000-fold higher than the cerebrospinal fluid, as a source of potentially pathogenic α-syn. Here, we demonstrate that erythrocytes produce α-syn-rich EVs, which can cross the BBB, particularly under inflammatory conditions provoked by peripheral administration of lipopolysaccharide. This transport likely occurs via adsorptive-mediated transcytosis, with EVs that transit the BBB co-localizing with brain microglia. Examination of microglial reactivity upon exposure to α-syn-containing erythrocyte EVs in vitro and in vivo revealed that uptake provoked an increase in microglial inflammatory responses. EVs derived from the erythrocytes of PD patients elicited stronger responses than did those of control subjects, suggesting that inherent characteristics of EVs arising in the periphery might contribute to, or even initiate, CNS α-syn-related pathology. These results provide new insight into the mechanisms by which the brain and periphery communicate throughout the process of synucleinopathy pathogenesis.
Collapse
|
442
|
Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release 2017; 262:247-258. [DOI: 10.1016/j.jconrel.2017.07.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/11/2022]
|
443
|
Tian Z, Zhao Q, Biswas S, Deng W. Methods of reactivation and reprogramming of neural stem cells for neural repair. Methods 2017; 133:3-20. [PMID: 28864354 DOI: 10.1016/j.ymeth.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 08/24/2017] [Indexed: 12/27/2022] Open
Abstract
Research on the biology of adult neural stem cells (NSCs) and induced NSCs (iNSCs), as well as NSC-based therapies for diseases in central nervous system (CNS) has started to generate the expectation that these cells may be used for treatments in CNS injuries or disorders. Recent technological progresses in both NSCs themselves and their derivatives have brought us closer to therapeutic applications. Adult neurogenesis presents in particular regions in mammal brain, known as neurogenic niches such as the dental gyrus (DG) in hippocampus and the subventricular zone (SVZ), within which adult NSCs usually stay for long periods out of the cell cycle, in G0. The reactivation of quiescent adult NSCs needs orchestrated interactions between the extrinsic stimulis from niches and the intrinsic factors involving transcription factors (TFs), signaling pathway, epigenetics, and metabolism to start an intracellular regulatory program, which promotes the quiescent NSCs exit G0 and reenter cell cycle. Extrinsic and intrinsic mechanisms that regulate adult NSCs are interconnected and feedback on one another. Since endogenous neurogenesis only happens in restricted regions and steadily fails with disease advances, interest has evolved to apply the iNSCs converted from somatic cells to treat CNS disorders, as is also promising and preferable. To overcome the limitation of viral-based reprogramming of iNSCs, bioactive small molecules (SM) have been explored to enhance the efficiency of iNSC reprogramming or even replace TFs, making the iNSCs more amenable to clinical application. Despite intense research efforts to translate the studies of adult and induced NSCs from the bench to bedside, vital troubles remain at several steps in these processes. In this review, we examine the present status, advancement, pitfalls, and potential of the two types of NSC technologies, focusing on each aspects of reactivation of quiescent adult NSC and reprogramming of iNSC from somatic cells, as well as on progresses in cell-based regenerative strategies for neural repair and criteria for successful therapeutic applications.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Qiuge Zhao
- Department of Neurology, The Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
444
|
Jiang N, Xiang L, He L, Yang G, Zheng J, Wang C, Zhang Y, Wang S, Zhou Y, Sheu TJ, Wu J, Chen K, Coelho PG, Tovar NM, Kim SH, Chen M, Zhou YH, Mao JJ. Exosomes Mediate Epithelium-Mesenchyme Crosstalk in Organ Development. ACS NANO 2017; 11:7736-7746. [PMID: 28727410 PMCID: PMC5634743 DOI: 10.1021/acsnano.7b01087] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Organ development requires complex signaling by cells in different tissues. Epithelium and mesenchyme interactions are crucial for the development of skin, hair follicles, kidney, lungs, prostate, major glands, and teeth. Despite myriad literature on cell-cell interactions and ligand-receptor binding, the roles of extracellular vesicles in epithelium-mesenchyme interactions during organogenesis are poorly understood. Here, we discovered that ∼100 nm exosomes were secreted by the epithelium and mesenchyme of a developing tooth organ and diffused through the basement membrane. Exosomes were entocytosed by epithelium or mesenchyme cells with preference by reciprocal cells rather than self-uptake. Exosomes reciprocally evoked cell differentiation and matrix synthesis: epithelium exosomes induce mesenchyme cells to produce dentin sialoprotein and undergo mineralization, whereas mesenchyme exosomes induce epithelium cells to produce basement membrane components, ameloblastin and amelogenenin. Attenuated exosomal secretion by Rab27a/b knockdown or GW4869 disrupted the basement membrane and reduced enamel and dentin production in organ culture and reduced matrix synthesis and the size of the cervical loop, which harbors epithelium stem cells, in Rab27aash/ash mutant mice. We then profiled exosomal constituents including miRNAs and peptides and further crossed all epithelium exosomal miRNAs with literature-known miRNA Wnt regulators. Epithelium exosome-derived miR135a activated Wnt/β-catenin signaling and escalated mesenchymal production of dentin matrix proteins, partially reversible by Antago-miR135a attenuation. Our results suggest that exosomes may mediate epithelium-mesenchyme crosstalk in organ development, suggesting that these vesicles and/or the molecular contents they are transporting may be interventional targets for treatment of diseases or regeneration of tissues.
Collapse
Affiliation(s)
- Nan Jiang
- Central Laboratory, Department of Orthodontics, Peking University School & Hospital of Stomatology, 22 Zhongguancun Nandajie, Beijing 100081, China
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Lusai Xiang
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ling He
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Guodong Yang
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Jinxuan Zheng
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chenglin Wang
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Yimei Zhang
- Department of Orthodontics, Peking University School & Hospital of Stomatology, 22 Zhongguancun Nandajie, Beijing 100081, China
| | - Sainan Wang
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Yue Zhou
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Tzong-Jen Sheu
- Department of Orthopaedics, University of Rochester School of Medicine, Rochester, New York 14642, United States
| | - Jiaqian Wu
- The Vivian L. Smith Department of Neurosurgery, University of Texas, Houston, Texas 77054, United States
| | - Kenian Chen
- The Vivian L. Smith Department of Neurosurgery, University of Texas, Houston, Texas 77054, United States
| | - Paulo G. Coelho
- Department of Biomaterials and Biomimetics, New York University, New York, New York 10010, United States
| | - Nicky M. Tovar
- Department of Biomaterials and Biomimetics, New York University, New York, New York 10010, United States
| | - Shin Hye Kim
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Mo Chen
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School & Hospital of Stomatology, 22 Zhongguancun Nandajie, Beijing 100081, China
| | - Jeremy J. Mao
- Center for Craniofacial Regeneration, Columbia University, 630 W. 168 Street, New York, New York 10032, United States
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Department of Orthopedic Surgery, Columbia University, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
445
|
Ma L, Demin KA, Kolesnikova TO, Kharsko SL, Zhu X, Yuan X, Song C, Meshalkina DA, Leonard BE, Tian L, Kalueff AV. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017; 12:995-1009. [DOI: 10.1080/17460441.2017.1362385] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Ma
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | - Xiaokang Zhu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Graduate Institute of Biomedical Sciences, College of Medicine, and Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Darya A. Meshalkina
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
| | - Brian E. Leonard
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Li Tian
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Psychiatry Research Centre, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Allan V. Kalueff
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China
- Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia
- Institute of Chemical Technologies, Ural Federal University, Ekaterinburg, Russia
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| |
Collapse
|
446
|
Exosomes in cancer: Use them or target them? Semin Cell Dev Biol 2017; 78:13-21. [PMID: 28803894 DOI: 10.1016/j.semcdb.2017.08.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/03/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Exosomes are small extracellular vesicles with a significant role in most processes associated with cancer. On one hand, exosomes role in the different hallmarks of cancer has been widely described, highlighting the urge to understand the potential to target communication mediated by exosomes as a novel therapeutic approach in cancer. On the other hand, exosomes stability in circulation and tumor-targeting capacity shows their applicability in the delivery of anti-cancer molecules. This review will discuss the dual applicability of exosomes in cancer focusing on their usage for therapy improvement, or their targeting to block their supportive role in tumor progression and response to therapy. We highlight the current developments and the strategies used to enhance the potential of exosomes to become clinical partners in the treatment of cancer.
Collapse
|
447
|
Lázaro-Ibáñez E, Neuvonen M, Takatalo M, Thanigai Arasu U, Capasso C, Cerullo V, Rhim JS, Rilla K, Yliperttula M, Siljander PRM. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles 2017; 6:1354645. [PMID: 28819549 PMCID: PMC5556667 DOI: 10.1080/20013078.2017.1354645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs), including microvesicles and exosomes, mediate intercellular signalling which has a profound role in cancer progression and in the development of metastasis. Internalisation of EVs can prompt functional changes in the recipient cells, the nature of which depends on the molecular composition and the cargo of the EVs. We hypothesised that the metastatic stage of cancerous parent cells would determine the uptake efficacy and the subsequent functional effects of the respective cancer cell-derived EVs. To address this question, we compared the internalisation of EVs derived from two metastatic site-derived prostate cancer cell lines (PC-3 and LNCaP), human telomerase reverse transcriptase immortalised primary malignant prostate epithelial cells (RC92a/hTERT), and a benign epithelial prostate cell line (PNT2). EVs isolated from the metastatic site-derived PC-3 and LNCaP cells were more efficiently internalised by the PC-3 and PNT2 cells compared to the EVs from the primary malignant RC92a/hTERT cells or the benign PNT2 cells, as determined by high content microscopy, confocal microscopy, and flow cytometry. EV uptake was also influenced by the phase of the cell cycle, so that an increased EV-derived fluorescence signal was observed in the cells at the G2/M phase compared to the G0/G1 or S phases. Finally, differences were also observed in the functions of the recipient cells based on the EV source. Proliferation of PNT2 cells and to a lesser extent also PC-3 cells was enhanced particularly by the EVs from the metastatic-site-derived prostate cancer cells in comparison to the EVs from the benign cells or primary cancer cells, whereas migration of PC-3 cells was enhanced by all cancerous EVs. RESPONSIBLE EDITOR Takahiro Ochiya, National Cancer Center, Japan.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maarit Neuvonen
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Uma Thanigai Arasu
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Cristian Capasso
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Division of Pharmaceutical Biosciences and Centre for Drug Research, University of Helsinki, Helsinki, Finland
| | - Johng S Rhim
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, USA
| | - Kirsi Rilla
- Faculty of Health Sciences, School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
448
|
Poe AJ, Knowlton AA. Exosomes as agents of change in the cardiovascular system. J Mol Cell Cardiol 2017; 111:40-50. [PMID: 28782514 DOI: 10.1016/j.yjmcc.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022]
Abstract
Exosomes have an evolving role in paracrine and autocrine signaling, which is enhanced because these lipid vesicles are quite stable and can deliver miRNA, DNA, protein and other molecules to cells throughout the body. Most cell types release exosomes, and exosomes are found in all biological fluids, making them accessible biomarkers. Significantly, exosomes can carry a biologically potent cargo, which can alter the phenotype of recipient cells. In the cardiovascular system exosomes have been primarily studied for their role in mediating the beneficial effects of mesenchymal stem cells after myocardial injury. Exosomes released by cardiac cells in disease states, such as myocardial ischemia, can potentially have important pathophysiologic effects on other cardiac cells as well as on distant organs.
Collapse
Affiliation(s)
- A J Poe
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California-Davis, Davis, CA, United States
| | - A A Knowlton
- VA Medical Center Sacramento, University of California-Davis, Davis, CA, United States; Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California-Davis, Davis, CA, United States; Pharmacology Department, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
449
|
Guo W, Gao Y, Li N, Shao F, Wang C, Wang P, Yang Z, Li R, He J. Exosomes: New players in cancer (Review). Oncol Rep 2017; 38:665-675. [PMID: 28627679 PMCID: PMC5561930 DOI: 10.3892/or.2017.5714] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
The past decade has witnessed an exponential increase in research on exosomes. For many years considered to be extracellular debris, exosomes are now considered important mediators in intercellular communication. The capability of exosomes to transfer proteins, DNA, mRNA, as well as non-coding RNAs has made them an attractive focus of research into the pathogenesis of different diseases, including cancer. Increasing evidence suggests that tumor cells release a large sum of exosomes, which may not only influence proximal tumor cells and stromal cells in local microenvironment, but also can exert systemic effects when participating in blood circulation. In this study, we review the current understanding on this topic. The literature outlines two broad facets of exosomes in cancer: 1) promotion of tumor growth, tumorigenesis, tumor angiogenesis, tumor immune escape, drug resistance, and metastasis and 2) their role as promising biomarkers for cancer diagnosis and even as potential treatment targets for cancer patients.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Ning Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Pan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang, Beijing 10021, P.R. China
| |
Collapse
|
450
|
Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: exosomes. J Neurosci Res 2017; 96:45-52. [DOI: 10.1002/jnr.24113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Guan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing 400038 P.R. China
- Cadet Brigade; Third Military Medical University; Chongqing 400038 P.R. China
| | - Ping Yang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology; Third Military Medical University; Chongqing 400038 P.R. China
| |
Collapse
|