1
|
Vuijk M, Ducci G, Sandoval L, Pietsch M, Reuter K, Lunkenbein T, Scheurer C. Physics-Based Synthetic Data Model for Automated Segmentation in Catalysis Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae130. [PMID: 39804734 DOI: 10.1093/mam/ozae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model. We study environmental scanning electron microscopy (ESEM) data collected from isopropanol oxidation to acetone over cobalt oxide as an example. Upon applying a temperature program during the reaction a phase transition occurs, reducing the catalyst selectivity toward acetone. This is accompanied on the micrometer ESEM scale by the formation of cracks between the pores of the catalyst surface. We aim to generate synthetic data to train a neural network capable of semantic segmentation (pixel-wise labeling) of this ESEM data. This analysis will lead to insights into this phase transition. To generate synthetic data that approximates this transition, our algorithm composes the ESEM images of the room-temperature catalyst with dynamically evolving synthetic cracks satisfying physical construction principles, gathered from qualitative knowledge accessible in the ESEM data. We mimic the surface crack growth propagation along surface paths, avoiding close vicinity to nearby pores. This physics-based approach results in a lowered rate of false positives compared to a random approach.
Collapse
Affiliation(s)
- Maurits Vuijk
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Gianmarco Ducci
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Luis Sandoval
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Markus Pietsch
- Technische Universität München, Department of Chemistry, München 80333, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
| | - Christoph Scheurer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany
- Institute of Energy Technologies, Fundamentals of Electrochemistry (IET-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Tan RKY, Ng GY, Tun TA, Braeu FA, Nongpiur ME, Aung T, Girard MJA. Iris Morphological and Biomechanical Factors Influencing Angle Closure During Pupil Dilation. Invest Ophthalmol Vis Sci 2024; 65:7. [PMID: 39230993 PMCID: PMC11379082 DOI: 10.1167/iovs.65.11.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose To use finite element (FE) analysis to assess what morphologic and biomechanical factors of the iris and anterior chamber are more likely to influence angle narrowing during pupil dilation. Methods The study consisted of 1344 FE models comprising the cornea, sclera, lens, and iris to simulate pupil dilation. For each model, we varied the following parameters: anterior chamber depth (ACD = 2-4 mm) and anterior chamber width (ACW = 10-12 mm), iris convexity (IC = 0-0.3 mm), iris thickness (IT = 0.3-0.5 mm), stiffness (E = 4-24 kPa), and Poisson's ratio (v = 0-0.3). We evaluated the change in (△∠) and the final dilated angles (∠f) from baseline to dilation for each parameter. Results The final dilated angles decreased with a smaller ACD (∠f = 53.4° ± 12.3° to 21.3° ± 14.9°), smaller ACW (∠f = 48.2° ± 13.5° to 26.2° ± 18.2°), larger IT (∠f = 52.6° ± 12.3° to 24.4° ± 15.1°), larger IC (∠f = 45.0° ± 19.2° to 33.9° ± 16.5°), larger E (∠f = 40.3° ± 17.3° to 37.4° ± 19.2°), and larger v (∠f = 42.7° ± 17.7° to 34.2° ± 18.1°). The change in angles increased with larger ACD (△∠ = 9.37° ± 11.1° to 15.4° ± 9.3°), smaller ACW (△∠ = 7.4° ± 6.8° to 16.4° ± 11.5°), larger IT (△∠ = 5.3° ± 7.1° to 19.3° ± 10.2°), smaller IC (△∠ = 5.4° ± 8.2° to 19.5° ± 10.2°), larger E (△∠ = 10.9° ± 12.2° to 13.1° ± 8.8°), and larger v (△∠ = 8.1° ± 9.4° to 16.6° ± 10.4°). Conclusions The morphology of the iris (IT and IC) and its innate biomechanical behavior (E and v) were crucial in influencing the way the iris deformed during dilation, and angle closure was further exacerbated by decreased anterior chamber biometry (ACD and ACW).
Collapse
Affiliation(s)
- Royston K Y Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Gim Yew Ng
- Department of Biomedical Engineering, NUS College of Design and Engineering, National University of Singapore, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Fabian A Braeu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Monisha E Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Michaël J A Girard
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Larenas-Muñoz F, Sánchez-Carvajal JM, Ruedas-Torres I, Álvarez-Delgado C, Fristiková K, Pallarés FJ, Carrasco L, Chicano-Gálvez E, Rodríguez-Gómez IM, Gómez-Laguna J. Proteomic analysis of granulomas from cattle and pigs naturally infected with Mycobacterium tuberculosis complex by MALDI imaging. Front Immunol 2024; 15:1369278. [PMID: 39021575 PMCID: PMC11252589 DOI: 10.3389/fimmu.2024.1369278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has recently gained prominence for its ability to provide molecular and spatial information in tissue sections. This technology has the potential to uncover novel insights into proteins and other molecules in biological and immunological pathways activated along diseases with a complex host-pathogen interaction, such as animal tuberculosis. Thus, the present study conducted a data analysis of protein signature in granulomas of cattle and pigs naturally infected with the Mycobacterium tuberculosis complex (MTC), identifying biological and immunological signaling pathways activated throughout the disease. Lymph nodes from four pigs and four cattle, positive for the MTC by bacteriological culture and/or real-time PCR, were processed for histopathological examination and MALDI-MSI. Protein identities were assigned using the MaTisse database, and protein-protein interaction networks were visualized using the STRING database. Gene Ontology (GO) analysis was carried out to determine biological and immunological signaling pathways in which these proteins could participate together with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Distinct proteomic profiles between cattle and pig granulomas were displayed. Noteworthy, the GO analysis revealed also common pathways among both species, such as "Complement activation, alternative pathway" and "Tricarboxylic acid cycle", which highlight pathways that are conserved among different species infected by the MTC. In addition, species-specific terms were identified in the current study, such as "Natural killer cell degranulation" in cattle or those related to platelet and neutrophil recruitment and activation in pigs. Overall, this study provides insights into the immunopathogenesis of tuberculosis in cattle and pigs, opening new areas of research and highlighting the importance, among others, of the complement activation pathway and the regulation of natural killer cell- and neutrophil-mediated immunity in this disease.
Collapse
Affiliation(s)
- Fernanda Larenas-Muñoz
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - José María Sánchez-Carvajal
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
- Pathology Group, United Kingdom Health Security Agency (UKHSA), Salisbury, United Kingdom
| | - Carmen Álvarez-Delgado
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Karola Fristiková
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Francisco José Pallarés
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Librado Carrasco
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Eduardo Chicano-Gálvez
- Instituto Maimónides de Investigaciones Biomédicas (IMIBIC) Mass Spectrometry and Molecular Imaging Unit (IMSMI), Maimónides Biomedical Research Institute of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
| | - Irene Magdalena Rodríguez-Gómez
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, Pathology and Immunology Group (UCO-PIG), Unidad de Investigación Competitiva (UIC) Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Barboni MTS, Széll N, Sohajda Z, Fehér T. Pupillary Light Reflex Reveals Melanopsin System Alteration in the Background of Myopia-26, the Female Limited Form of Early-Onset High Myopia. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38958970 PMCID: PMC11223624 DOI: 10.1167/iovs.65.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/17/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose The purpose of this study was to evaluate pupillary light reflex (PLR) to chromatic flashes in patients with early-onset high-myopia (eoHM) without (myopic controls = M-CTRL) and with (female-limited myopia-26 = MYP-26) genetic mutations in the ARR3 gene encoding the cone arrestin. Methods Participants were 26 female subjects divided into 3 groups: emmetropic controls (E-CTRL, N = 12, mean age = 28.6 ± 7.8 years) and 2 myopic (M-CTRL, N = 7, mean age = 25.7 ± 11.5 years and MYP-26, N = 7, mean age = 28.3 ± 15.4 years) groups. In addition, one hemizygous carrier and one control male subject were examined. Direct PLRs were recorded after 10-minute dark adaptation. Stimuli were 1-second red (peak wavelength = 621 nm) and blue (peak wavelength = 470 nm) flashes at photopic luminance of 250 cd/m². A 2-minute interval between the flashes was introduced. Baseline pupil diameter (BPD), peak pupil constriction (PPC), and postillumination pupillary response (PIPR) were extracted from the PLR. Group comparisons were performed with ANOVAs. Results Dark-adapted BPD was comparable among the groups, whereas PPC to the red light was slightly reduced in patients with myopia (P = 0.02). PIPR at 6 seconds elicited by the blue flash was significantly weaker (P < 0.01) in female patients with MYP-26, whereas it was normal in the M-CTRL group and the asymptomatic male carrier. Conclusions L/M-cone abnormalities due to ARR3 gene mutation is currently claimed to underlie the pathological eye growth in MYP-26. Our results suggest that malfunction of the melanopsin system of intrinsically photosensitive retinal ganglion cells (ipRGCs) is specific to patients with symptomatic MYP-26, and may therefore play an additional role in the pathological eye growth of MYP-26.
Collapse
Affiliation(s)
| | - Noémi Széll
- Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Sohajda
- Kenézy Campus Department of Ophthalmology, University of Debrecen, Debrecen, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| |
Collapse
|
5
|
Getz TE, Chrenek MA, Papania JT, Shelton DA, Markand S, Iuvone PM, Kozmik Z, Boatright JH, Nickerson JM. Conditional Knockouts of Interphotoreceptor Retinoid Binding Protein Suggest Two Independent Mechanisms for Retinal Degeneration and Myopia. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38904640 PMCID: PMC11193143 DOI: 10.1167/iovs.65.6.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose Interphotoreceptor retinoid-binding protein's (IRBP) role in eye growth and its involvement in cell homeostasis remain poorly understood. One hypothesis proposes early conditional deletion of the IRBP gene could lead to a myopic response with retinal degeneration, whereas late conditional deletion (after eye size is determined) could cause retinal degeneration without myopia. Here, we sought to understand if prior myopia was required for subsequent retinal degeneration in the absence of IRBP. This study investigates if any cell type or developmental stage is more important in myopia or retinal degeneration. Methods IBRPfl/fl mice were bred with 5 Cre-driver lines: HRGP-Cre, Chx10-Cre, Rho-iCre75, HRGP-Cre Rho-iCre75, and Rx-Cre. Mice were analyzed for IRBP gene expression through digital droplet PCR (ddPCR). Young adult (P30) mice were tested for retinal degeneration and morphology using spectral-domain optical coherence tomography (SD-OCT) and hematoxylin and eosin (H&E) staining. Function was analyzed using electroretinograms (ERGs). Eye sizes and axial lengths were compared through external eye measurements and whole eye biometry. Results Across all outcome measures, when bred to IRBPfl/fl, HRGP-Cre and Chx10-Cre lines showed no differences from IRBPfl/fl alone. With the Rho-iCre75 line, small but significant reductions were seen in retinal thickness with SD-OCT imaging and postmortem H&E staining without increased axial length. Both the HRGP-Cre+Rho-iCre75 and the Rx-Cre lines showed significant decreases in retinal thickness and outer nuclear layer cell counts. Using external eye measurements and SD-OCT imaging, both lines showed an increase in eye size. Finally, function in both lines was roughly halved across scotopic, photopic, and flicker ERGs. Conclusions Our studies support hypotheses that for both eye size determination and retinal homeostasis, there are two critical timing windows when IRBP must be expressed in rods or cones to prevent myopia (P7-P12) and degeneration (P21 and later). The rod-specific IRBP knockout (Rho-iCre75) showed significant retinal functional losses without myopia, indicating that the two phenotypes are independent. IRBP is needed for early development of photoreceptors and eye size, whereas Rho-iCre75 IRBPfl/fl knockout results in retinal degeneration without myopia.
Collapse
Affiliation(s)
- Tatiana E. Getz
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Jack T. Papania
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Debresha A. Shelton
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Shanu Markand
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, Missouri, United States
| | - P. Michael Iuvone
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Jeffrey H. Boatright
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Emory University, Department of Ophthalmology, Atlanta, Georgia, United States
| |
Collapse
|
6
|
Abozeid HH. Global Emergence of Infectious Bronchitis Virus Variants: Evolution, Immunity, and Vaccination Challenges. Transbound Emerg Dis 2023; 2023:1144924. [PMID: 40303661 PMCID: PMC12017171 DOI: 10.1155/2023/1144924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 05/02/2025]
Abstract
Infectious bronchitis is an acute, extremely contagious viral disease affecting chickens of all ages, leading to devastating economic losses in the poultry industry worldwide. Affected chickens show respiratory distress and/or nephritis, in addition to decrease of egg production and quality in layers. The avian coronavirus, infectious bronchitis virus (IBV), is a rapidly evolving virus due to the high frequency of mutations and recombination events that are common in coronaviruses. This leads to the continual emergence of novel genotypes that show variable or poor crossprotection. The immune response against IBV is complex. Passive, innate and adaptive humoral and cellular immunity play distinct roles in protection against IBV. Despite intensive vaccination using the currently available live-attenuated and inactivated IBV vaccines, IBV continues to circulate, evolve, and trigger outbreaks worldwide, indicating the urgent need to update the current vaccines to control the emerging variants. Different approaches for preparation of IBV vaccines, including DNA, subunit, peptides, virus-like particles, vectored and recombinant vaccines, have been tested in many studies to combat the disease. This review focuses on several key aspects related to IBV, including its clinical significance, the functional structure of the virus, the factors that contribute to its evolution and diversity, the types of immune responses against IBV, and the characteristics of both current and emerging IBV vaccines. The goal is to provide a comprehensive understanding of IBV and explore the emergence of variants, their dissemination around the world, and the challenges to define the efficient vaccination strategies.
Collapse
Affiliation(s)
- Hassanein H. Abozeid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Tan RKY, Panda SK, Braeu FA, Muralidharan AR, Nongpiur ME, Chan ASY, Aung T, Najjar RP, Girard MJA. The Structural Layers of the Porcine Iris Exhibit Inherently Different Biomechanical Properties. Invest Ophthalmol Vis Sci 2023; 64:11. [PMID: 37796489 PMCID: PMC10561784 DOI: 10.1167/iovs.64.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/09/2023] [Indexed: 10/06/2023] Open
Abstract
Purpose The purpose of this study was to isolate the structural components of the ex vivo porcine iris tissue and to determine their biomechanical properties. Methods The porcine stroma and dilator tissues were separated, and their dimensions were assessed using optical coherence tomography (OCT). The stroma underwent flow test (n = 32) to evaluate for permeability using Darcy's Law (ΔP = 2000 Pa, A = 0.0391 mm2), and both tissues underwent stress relaxation experiments (ε = 0.5 with initial ramp of δε = 0.1) to evaluate for their viscoelastic behaviours (n = 28). Viscoelasticity was characterized by the parameters β (half width of the Gaussian distribution), τm (mean relaxation time constant), E0 (instantaneous modulus), and E∞ (equilibrium modulus). Results For the stroma, the hydraulic permeability was 9.49 ± 3.05 × 10-6 mm2/Pa · s, and the viscoelastic parameters were β = 2.50 ± 1.40, and τm = 7.43 ± 4.96 s, with the 2 moduli calculated to be E0 = 14.14 ± 6.44 kPa and E∞ = 6.08 ± 2.74 kPa. For the dilator tissue, the viscoelastic parameters were β = 2.06 ± 1.33 and τm = 1.28 ± 1.27 seconds, with the 2 moduli calculated to be E0 = 9.16 ± 3.03 kPa and E∞ = 5.54 ± 1.98 kPa. Conclusions We have established a new protocol to evaluate the biomechanical properties of the structural layers of the iris. Overall, the stroma was permeable and exhibited smaller moduli than those of the dilator muscle. An improved characterization of iris biomechanics may form the basis to further our understanding of angle closure glaucoma.
Collapse
Affiliation(s)
- Royston K. Y. Tan
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Satish K. Panda
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Mechanical Engineering, Indian Institute of Technology, Bhubaneswar, India
| | - Fabian A. Braeu
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Arumugam R. Muralidharan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Monisha E. Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Anita S. Y. Chan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Raymond P. Najjar
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michaël J. A. Girard
- Ophthalmic Engineering & Innovation Laboratory, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Biomedical Engineering, NUS College of Design and Engineering, National University of Singapore, Singapore
| |
Collapse
|
8
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Wan B, Ma N, Zhou Z, Lv C. Putative causal inference for the relationship between obesity and sex hormones in males: a bidirectional Mendelian randomization study. PeerJ 2023; 11:e15760. [PMID: 37483981 PMCID: PMC10362853 DOI: 10.7717/peerj.15760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Background Obesity is a chronic disease with a high prevalence rate and is an established risk factor for human health. Body mass index (BMI) is a common and primary indicator used in assessing obesity. This work aims to investigate the putative causal relationship among BMI, sex hormone-binding globulin (SHBG), bioavailable testosterone (BioT), and estradiol levels. Materials and Methods We conducted a bidirectional Mendelian randomization study, using single-nucleotide polymorphisms (SNPs) strongly associated with BMI, SHBG, BioT, and estradiol as instrumental variables. All SNPs were identified from the genome-wide association study (GWAS) summary data of large sample studies recruiting more than 150,000 European adult male individuals. The inverse-variance-weighted (IVW) approach was used as a primary algorithm for putative causal estimation. Results Genetically predicted elevated BMI was associated with decreased SHBG (IVW, β = -0.103, 95% confidence interval [CI] [-0.113 to -0.092], P = 1.50 × 10-77) and BioT levels (IVW, β = -0.139, 95% CI [-0.165 to -0.113], P = 9.54 × 10-26) and high estradiol levels (IVW, β = 0.014, 95% CI [0.009-0.019], P = 2.19 × 10-7). Increased SHBG levels were causally associated with low BMI (IVW, β = -0.051, 95% CI [-0.098 to -0.005], P = 0.030) and BioT (IVW, β = -0.126, 95% CI [-0.175 to -0.077], P = 5.97 × 10-7) and high estradiol levels (IVW, β = 0.046, 95% CI [0.035-0.056], P = 6.51 × 10-17). Conversely, no evidence of an effect of estradiol imbalance on SHBG levels (IVW, β = 1.035, 95% CI [-0.854 to 2.926], P = 0.283) and BMI (IVW, β = 0.091, 95% CI [-0.094 to 0.276], P = 0.336) was obtained. However, increased BioT levels were causally associated with lower SHBG levels (IVW, β = -0.044, 95% CI [-0.061 to -0.026], P = 8.76 × 10-7), not BMI (IVW, β = -0.006, 95% CI [-0.035 to 0.023], P = 0.679). Conclusions The findings support a network putative causal relationship among BMI, SHBG, BioT, and estradiol. SHBG, BioT, and estradiol may partly mediate the effect of obesity on male health. Reasonably modulating BioT and estradiol, especially SHBG, facilitated the attenuation of the harmful effects of obesity on male health.
Collapse
Affiliation(s)
- Bangbei Wan
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Ning Ma
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Zhi Zhou
- Reproductive Medical Center, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Cai Lv
- Department of Urology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| |
Collapse
|
10
|
Weber S, Simon R, Schwanengel LS, Curcio CA, Augsten R, Meller D, Hammer M. Fluorescence Lifetime and Spectral Characteristics of Subretinal Drusenoid Deposits and Their Predictive Value for Progression of Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:23. [PMID: 36580310 PMCID: PMC9804024 DOI: 10.1167/iovs.63.13.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To measure fundus autofluorescence (FAF) lifetimes and peak emission wavelengths (PEW) of subretinal drusenoid deposits (SDD) in age-related macular degeneration (AMD) and their development over time. Methods Fluorescence lifetime imaging ophthalmoscopy (FLIO) was performed in 30 eyes with optical coherence tomography (OCT)-confirmed early or intermediate AMD and SDD. Contrasts of mean lifetimes in short- (SSC) and long-wavelength channels (LSC), PEW, and relative fluorescence intensity were determined as differences of the respective measures at individual SDD and their environment. Measurements were made at baseline and at follow-up intervals 1 (13-36 months) and 2 (37-72 months), respectively. Results Of 423 SDD found at baseline, 259, 47, and 117 were hypoautofluorescent, isoautofluorescent, and hyperautofluorescent, respectively. FAF lifetimes of SDD were significantly longer than those of their environment by 14.5 ps (SSC, 95% confidence interval [CI], 13.3-15.7 ps) and 3.9 ps (LSC, 3.1-4.7 ps). PEW was shorter by 1.53 nm (1.07-1.98 nm, all contrasts P < 0.001) with higher contrasts for hyperfluorescent SDD. Over follow-up, SDD tended to hyperautofluorescence (relative intensities increased by 3.4% [95% CI, 2.9%-4.1%; P < 0.001] in follow-up 2). Hyperautofluorescence was associated with disruption of the ellipsoid zone on OCT. Disease progression to late-stage AMD was associated with higher lifetime contrast in SSC (15.9ps [14.2-17.6 ps] vs. 11.7 ps [9.9-13.5 ps], P < 0.001) at baseline. Conclusions SDD show longer FAF lifetimes and shorter PEW than their environments. A high lifetime contrast of SDD in SSC might predict disease progression to late-stage AMD.
Collapse
Affiliation(s)
- Sebastian Weber
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| |
Collapse
|
11
|
Qiao Y, Sun Z, Tan C, Lai J, Sun X, Chen J. Intracameral Injection of AAV-DJ.COMP-ANG1 Reduces the IOP of Mice by Reshaping the Trabecular Outflow Pathway. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36520455 PMCID: PMC9769031 DOI: 10.1167/iovs.63.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The angiopoietin-1 (ANG1)-TIE signaling pathway orchestrates the development and maintenance of the Schlemm's canal (SC). In this study, we investigated the impact of adeno-associated virus (AAV)-mediated gene therapy with cartilage oligomeric matrix protein-ANG1 (COMP-ANG1) on trabecular outflow pathway. Methods Different serotypes of AAVs were compared for transduction specificity and efficiency in the anterior segment. The selected AAVs encoding COMP-ANG1 or ZsGreen1 (control) were delivered into the anterior chambers of wild-type C57BL/6J mice. The IOP and ocular surface were monitored regularly. Ocular perfusion was performed to measure the outflow facility and label flow patterns of the trabecular drainage pathway. Structural features of SC as well as limbal, retinal, and skin vessels were visualized by immunostaining. Ultrastructural changes in the SC and trabecular meshwork were observed under transmission electron microscopy. Results AAV-DJ could effectively infect the anterior segment. Intracameral injection of AAV-DJ.COMP-ANG1 lowered IOP in wild-type C57BL/6J mice. No signs of inflammation or angiogenesis were noticed. Four weeks after AAV injection, the conventional outflow facility and effective filtration area were increased significantly (P = 0.005 and P = 0.04, respectively). Consistently, the area of the SC was enlarged (P < 0.001) with increased density of giant vacuoles in the inner wall (P = 0.006). In addition, the SC endothelia lay on a more discontinuous basement membrane (P = 0.046) and a more porous juxtacanalicular tissue (P = 0.005) in the COMP-ANG1 group. Conclusions Intracamerally injected AAV-DJ.COMP-ANG1 offers a significant IOP-lowering effect by remodeling the trabecular outflow pathway of mouse eyes.
Collapse
Affiliation(s)
- Yunsheng Qiao
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongmou Sun
- University of Rochester, School of Medicine and Dentistry, Rochester, New York, New York, United States
| | - Chen Tan
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyi Lai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Junyi Chen
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China,NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
12
|
Simon R, Jentsch M, Karimimousivandi P, Cao D, Messinger JD, Meller D, Curcio CA, Hammer M. Prolonged Lifetimes of Histologic Autofluorescence in Ectopic Retinal Pigment Epithelium in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 36469025 PMCID: PMC9730734 DOI: 10.1167/iovs.63.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate histologic autofluorescence lifetimes and spectra of retinal pigment epithelium (RPE) on the transition from normal aging to RPE activation and migration in age-related macular degeneration (AMD). Methods Autofluorescence lifetimes and spectra of 9 donor eyes were analyzed in cryosections by means of 2-photon excited fluorescence at 960 nm. Spectra were detected at 483 to 665 nm. Lifetimes were measured using time-correlated single photon counting in 2 spectral channels: 500 to 550 nm (short-wavelength spectral channel [SSC]) and 550 to 700 nm (long-wavelength spectral channel [LSC]). Fluorescence decays over time were approximated by a series of three exponential functions. The amplitude-weighted mean fluorescence lifetime was determined. Markers for retinoid activity (RPE65) and immune function (CD68) were immunolocalized in selected neighboring sections. Results We identified 9 RPE morphology phenotypes resulting in 399 regions of interest (ROIs) for spectral and 497 ROIs for lifetime measurements. RPE dysmorphia results in a shorter wavelength peak of spectral emission: normal aging versus RPE migrated into the retina (intraELM) = 601.7 (9.5) nm versus 581.6 (7.3) nm, P < 0.001, whereas autofluorescence lifetimes increase: normal aging versus intraELM: SSC 180 (44) picosecond (ps) versus 320 (86) ps, P < 0.001; and LSC 250 (55) ps versus 441 (76) ps, P < 0.001. Ectopic RPE within the neurosensory retina is strongly CD68 positive and RPE65 negative. Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia and migration, lengthening of autofluorescence lifetimes and a hypsochromic shift of emission spectra can be observed. These autofluorescence changes might provide early biomarkers for AMD progression and contribute to our understanding of RPE-driven pathology.
Collapse
Affiliation(s)
- Rowena Simon
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Marius Jentsch
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | | | - Dongfeng Cao
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
13
|
Padalhin A, Abueva C, Park SY, Ryu HS, Lee H, Kim JI, Chung PS, Woo SH. Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerve transection. PeerJ 2022; 10:e14455. [PMID: 36452076 PMCID: PMC9703994 DOI: 10.7717/peerj.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Numerous studies have noted the effect of chorda tympani (CT) nerve transection on taste sensitivity yet very few have directly observed its effects on taste receptor and taste signaling protein expressions in the tongue tissue. Methods In this study, bilateral CT nerve transection was performed in adult Sprague Dawley rats after establishing behavioral taste preference for sweet, bitter, and salty taste via short term two-bottle preference testing using a lickometer setup. Taste preference for all animals were subsequently monitored. The behavioral testing was paired with tissue sampling and protein expression analysis. Paired groups of CT nerve transected animals (CTX) and sham operated animals (SHAM) were sacrificed 7, 14, and 28 days post operation. Results Immunofluorescence staining of extracted tongue tissues shows that CT nerve transection resulted in micro-anatomical changes akin to previous investigations. Among the three taste qualities tested, only the preference for sweet taste was drastically affected. Subsequent results of the short-term two-bottle preference test indicated recovery of sweet taste preference over the course of 28 days. This recovery could possibly be due to maintenance of T1R3, GNAT3, and TRPM5 proteins allowing adaptable recovery of sweet taste preference despite down-regulation of both T1R2 and Sonic hedgehog proteins in CTX animals. This study is the first known attempt to correlate the disruption in taste preference with the altered expression of taste receptors and taste signaling proteins in the tongue brought about by CT nerve transection.
Collapse
Affiliation(s)
- Andrew Padalhin
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Hyun Seok Ryu
- Interdisciplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Hayoung Lee
- Interdisciplinary Program for Medical Laser, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Jae Il Kim
- Department of Neurology, Dankook University College of Medicine, Dankook University Hospital, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Department of Otorhinolaryngology‐Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Chungcheonam-do, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, College of Medicine, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Medical Laser Research Center, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea,Department of Otorhinolaryngology‐Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Chungcheonam-do, Republic of Korea
| |
Collapse
|
14
|
Ho CY, Salimian M, Hegert J, O’Brien J, Choi SG, Ames H, Morris M, Papadimitriou JC, Mininni J, Niehaus P, Burke A, Canbeldek L, Jacobs J, LaRocque A, Patel K, Rice K, Li L, Johnson R, LeFevre A, Blanchard T, Shaver CM, Moyer A, Drachenberg C. Postmortem Assessment of Olfactory Tissue Degeneration and Microvasculopathy in Patients With COVID-19. JAMA Neurol 2022; 79:544-553. [PMID: 35404378 PMCID: PMC9002725 DOI: 10.1001/jamaneurol.2022.0154] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Loss of smell is an early and common presentation of COVID-19 infection. Although it has been speculated that viral infection of olfactory neurons may be the culprit, it is unclear whether viral infection causes injuries in the olfactory bulb region. Objective To characterize the olfactory pathology associated with COVID-19 infection in a postmortem study. Design, Setting, and Participants This multicenter postmortem cohort study was conducted from April 7, 2020, to September 11, 2021. Deceased patients with COVID-19 and control individuals were included in the cohort. One infant with congenital anomalies was excluded. Olfactory bulb and tract tissue was collected from deceased patients with COVID-19 and appropriate controls. Histopathology, electron microscopy, droplet digital polymerase chain reaction, and immunofluorescence/immunohistochemistry studies were performed. Data analysis was conducted from February 7 to October 19, 2021. Main Outcomes and Measures (1) Severity of degeneration, (2) losses of olfactory axons, and (3) severity of microvasculopathy in olfactory tissue. Results Olfactory tissue from 23 deceased patients with COVID-19 (median [IQR] age, 62 [49-69] years; 14 men [60.9%]) and 14 control individuals (median [IQR] age, 53.5 [33.25-65] years; 7 men [50%]) was included in the analysis. The mean (SD) axon pathology score (range, 1-3) was 1.921 (0.569) in patients with COVID-19 and 1.198 (0.208) in controls (P < .001), whereas axon density was 2.973 (0.963) × 104/mm2 in patients with COVID-19 and 3.867 (0.670) × 104/mm2 in controls (P = .002). Concomitant endothelial injury of the microvasculature was also noted in olfactory tissue. The mean (SD) microvasculopathy score (range, 1-3) was 1.907 (0.490) in patients with COVID-19 and 1.405 (0.233) in control individuals (P < .001). Both the axon and microvascular pathology was worse in patients with COVID-19 with smell alterations than those with intact smell (mean [SD] axon pathology score, 2.260 [0.457] vs 1.63 [0.426]; P = .002; mean [SD] microvasculopathy score, 2.154 [0.528] vs 1.694 [0.329]; P = .02) but was not associated with clinical severity, timing of infection, or presence of virus. Conclusions and Relevance This study found that COVID-19 infection is associated with axon injuries and microvasculopathy in olfactory tissue. The striking axonal pathology in some cases indicates that olfactory dysfunction in COVID-19 infection may be severe and permanent.
Collapse
Affiliation(s)
- Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Pathology, University of Maryland School of Medicine, Baltimore
| | | | - Julia Hegert
- Department of Pathology, Orlando Health, Orlando, Florida
| | - Jennifer O’Brien
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Sun Gyeong Choi
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Heather Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Joseph Mininni
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Peter Niehaus
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Allen Burke
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Leyla Canbeldek
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Jonathan Jacobs
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Autumn LaRocque
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Kavi Patel
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Kathryn Rice
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| | - Ling Li
- Office of the Chief Medical Examiner, Baltimore, Maryland
| | - Robert Johnson
- University of Maryland Brain and Tissue Bank, Baltimore,Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Alexandra LeFevre
- University of Maryland Brain and Tissue Bank, Baltimore,Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Thomas Blanchard
- University of Maryland Brain and Tissue Bank, Baltimore,Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Ciara M. Shaver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
15
|
An D, Chung-Wah-Cheong J, Yu DY, Balaratnasingam C. Alpha-Smooth Muscle Actin Expression and Parafoveal Blood Flow Pathways Are Altered in Preclinical Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 35522303 PMCID: PMC9078056 DOI: 10.1167/iovs.63.5.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate differences in alpha smooth muscle actin (αSMA) expression and parafoveal blood flow pathways in diabetic retinopathy (DR). Methods Human donor eyes from healthy subjects (n = 8), patients with diabetes but no DR (DR-; n = 7), and patients with clinical DR (DR+; n = 13) were perfusion labeled with antibodies targeting αSMA, lectin, collagen IV, and filamentous actin. High-resolution confocal scanning laser microscopy was used to quantify αSMA staining and capillary density in the parafoveal circulation. Quantitative analyses of connections between retinal arteries and veins within the superficial vascular plexus (SVP), intermediate capillary plexus (ICP) and deep capillary plexus (DCP) were performed. Results Mean age between the groups was not different (P = 0.979). αSMA staining was seen in the SVP and ICP of all groups. The DCP was predominantly devoid of αSMA staining in control eyes but increased in a disease stage-specific manner in the DR- and DR+ groups. The increase in αSMA staining was localized to pericytes and endothelia of terminal arterioles and adjacent capillary segments. Capillary density was less in the DCP in the DR+ group (P < 0.001). ICP of the DR- and DR+ groups received more direct arteriole supplies than the control group (P < 0.001). Venous outflow pathways were not altered (all P > 0.284). Conclusions Alterations in αSMA and vascular inflow pathways in preclinical DR suggest that perfusion abnormalities precede structural vascular changes such as capillary loss. Preclinical DR may be characterized by a "steal" phenomenon where blood flow is preferentially diverted from the SVP to the ICP and DCP.
Collapse
Affiliation(s)
- Dong An
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | | | - Dao-Yi Yu
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Lions Eye Institute, Nedlands, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia.,Department of Ophthalmology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
16
|
Manton JD. Answering some questions about structured illumination microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210109. [PMID: 35152757 PMCID: PMC8841787 DOI: 10.1098/rsta.2021.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Structured illumination microscopy (SIM) provides images of fluorescent objects at an enhanced resolution greater than that of conventional epifluorescence wide-field microscopy. Initially demonstrated in 1999 to enhance the lateral resolution twofold, it has since been extended to enhance axial resolution twofold (2008), applied to live-cell imaging (2009) and combined with myriad other techniques, including interferometric detection (2008), confocal microscopy (2010) and light sheet illumination (2012). Despite these impressive developments, SIM remains, perhaps, the most poorly understood 'super-resolution' method. In this article, we provide answers to the 13 questions regarding SIM proposed by Prakash et al. along with answers to a further three questions. After providing a general overview of the technique and its developments, we explain why SIM as normally used is still diffraction-limited. We then highlight the necessity for a non-polynomial, and not just nonlinear, response to the illuminating light in order to make SIM a true, diffraction-unlimited, super-resolution technique. In addition, we present a derivation of a real-space SIM reconstruction approach that can be used to process conventional SIM and image scanning microscopy (ISM) data and extended to process data with quasi-arbitrary illumination patterns. Finally, we provide a simple bibliometric analysis of SIM development over the past two decades and provide a short outlook on potential future work. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- James D. Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
17
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
18
|
McDowell CM, Kizhatil K, Elliott MH, Overby DR, van Batenburg-Sherwood J, Millar JC, Kuehn MH, Zode G, Acott TS, Anderson MG, Bhattacharya SK, Bertrand JA, Borras T, Bovenkamp DE, Cheng L, Danias J, De Ieso ML, Du Y, Faralli JA, Fuchshofer R, Ganapathy PS, Gong H, Herberg S, Hernandez H, Humphries P, John SWM, Kaufman PL, Keller KE, Kelley MJ, Kelly RA, Krizaj D, Kumar A, Leonard BC, Lieberman RL, Liton P, Liu Y, Liu KC, Lopez NN, Mao W, Mavlyutov T, McDonnell F, McLellan GJ, Mzyk P, Nartey A, Pasquale LR, Patel GC, Pattabiraman PP, Peters DM, Raghunathan V, Rao PV, Rayana N, Raychaudhuri U, Reina-Torres E, Ren R, Rhee D, Chowdhury UR, Samples JR, Samples EG, Sharif N, Schuman JS, Sheffield VC, Stevenson CH, Soundararajan A, Subramanian P, Sugali CK, Sun Y, Toris CB, Torrejon KY, Vahabikashi A, Vranka JA, Wang T, Willoughby CE, Xin C, Yun H, Zhang HF, Fautsch MP, Tamm ER, Clark AF, Ethier CR, Stamer WD. Consensus Recommendation for Mouse Models of Ocular Hypertension to Study Aqueous Humor Outflow and Its Mechanisms. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35129590 PMCID: PMC8842499 DOI: 10.1167/iovs.63.2.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.
Collapse
Affiliation(s)
- Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Michael H. Elliott
- University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Darryl R. Overby
- Department of Bioengineering, Imperial College London, United Kingdom
| | | | - J. Cameron Millar
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences and Institute for Vision Research, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | - Gulab Zode
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Ted S. Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Michael G. Anderson
- Department of Molecular Physiology and Biophysics and Department of Ophthalmology and Visual Sciences, The University of Iowa; Center for the Prevention and Treatment of Visual Loss, Veterans Affairs Medical Center, Iowa City, Iowa, United States
| | | | - Jacques A. Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Terete Borras
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - John Danias
- SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - Michael Lucio De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Jennifer A. Faralli
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | | | - Peter Humphries
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Simon W. M. John
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J. Kelley
- Department of Ophthalmology and Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Ruth A. Kelly
- Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - David Krizaj
- Department of Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pennsylvania, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, University of California, Davis, Davis, California, United States
| | - Raquel L. Lieberman
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Paloma Liton
- Department of Ophthalmology and Department of Pathology, Duke University, Durham, North Carolina, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia, United States
| | - Katy C. Liu
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Navita N. Lopez
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| | - Weiming Mao
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Timur Mavlyutov
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Fiona McDonnell
- Duke Eye Center, Duke Health, Durham, North Carolina, United States
| | - Gillian J. McLellan
- Department of Surgical Sciences and Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Philip Mzyk
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Andrews Nartey
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Louis R. Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Gaurang C. Patel
- Ophthalmology Research, Regeneron Pharmaceuticals, Tarreytown, New York, United States
| | | | - Donna M. Peters
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | | | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Naga Rayana
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Urmimala Raychaudhuri
- Department of Neurobiology, University of California, Irvine, Irvine, California, United States
| | - Ester Reina-Torres
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ruiyi Ren
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Douglas Rhee
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - John R. Samples
- Washington State University, Floyd Elson College of Medicine, Spokane, Washington, United States
| | | | - Najam Sharif
- Santen Inc., Emeryville, California, United States
| | - Joel S. Schuman
- Department of Ophthalmology and Department of Physiology and Neuroscience, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, New York, United States; Departments of Biomedical Engineering and Electrical and Computer Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States; Center for Neural Science, College of Arts and Science, New York University, New York, New York, United States
| | - Val C. Sheffield
- Department of Pediatrics and Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Cooper H. Stevenson
- Department of Pharmacology & Neuroscience, and North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Avinash Soundararajan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Chenna Kesavulu Sugali
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yang Sun
- Veterans Affairs Palo Alto Health Care System, Stanford University, Palo Alto, California, United States
| | - Carol B. Toris
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States; Department of Ophthalmology and Vision Sciences, The Ohio State University, Columbus, Ohio, United States
| | | | - Amir Vahabikashi
- Cell and Developmental Biology Department, Northwestern University, Chicago, Illinois, United States
| | - Janice A. Vranka
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ting Wang
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hao F. Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | - Michael P. Fautsch
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, United States
| | | | - Abbot F. Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - C. Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology; Emory University School of Medicine, Emory University, Atlanta, Georgia, United States
| | - W. Daniel Stamer
- Duke Ophthalmology, Duke University, Durham, North Carolina, United States
| |
Collapse
|
19
|
Strauch C, Naber M. Irissometry: Effects of Pupil Size on Iris Elasticity Measured With Video-Based Feature Tracking. Invest Ophthalmol Vis Sci 2022; 63:20. [PMID: 35142787 PMCID: PMC8842542 DOI: 10.1167/iovs.63.2.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose It is unclear how the iris deforms during changes in pupil size. Here, we report an application of a multi-feature iris tracking method, which we call irissometry, to investigate how the iris deforms and affects the eye position signal as a function of pupil size. Methods To evoke pupillary responses, we repeatedly presented visual and auditory stimuli to healthy participants while we additionally recorded their right eye with a macro lens–equipped camera. We tracked changes in iris surface structure between the pupil and sclera border (limbus) by calculating local densities (distance between feature points) across evenly spaced annular iris regions. Results The time analysis of densities showed that the inner regions of the iris stretched more strongly as compared with the outer regions of the iris during pupil constrictions. The pattern of iris densities across eccentricities and pupil size showed highly similar patterns across participants, highlighting the robustness of this elastic property. Importantly, iris-based eye position detection led to more stable signals than pupil-based detection. Conclusions The iris regions near the pupil appear to be more elastic than the outer regions near the sclera. This elastic property explains the instability of the pupil border and the related position errors induced by eye movement and pupil size in pupil-based eye-tracking. Tracking features in the iris produce more robust eye position signals. We expect that irissometry may pave the way to novel eye trackers and diagnostic tools in ophthalmology.
Collapse
Affiliation(s)
- Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Panda SK, Tan RKY, Tun TA, Buist ML, Nongpiur M, Baskaran M, Aung T, Girard MJA. Changes in Iris Stiffness and Permeability in Primary Angle Closure Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:29. [PMID: 34714323 PMCID: PMC8558521 DOI: 10.1167/iovs.62.13.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose To evaluate the biomechanical properties of the iris by evaluating iris movement during pupil constriction and to compare such properties between healthy and primary angle-closure glaucoma (PACG) subjects. Methods A total of 140 subjects were recruited for this study. In a dark room, the anterior segments of one eye per subject were scanned using anterior segment optical coherence tomography imaging during induced pupil constriction with an external white light source of 1700 lux. Using a custom segmentation code, we automatically isolated the iris segments from the AS-OCT images, which were then discretized and transformed into a three-dimensional point cloud. For each iris, a finite element (FE) mesh was constructed from the point cloud, and an inverse FE simulation was performed to match the clinically observed iris constriction in the AS-OCT images. Through this optimization process, we were able to identify the elastic modulus and permeability of each iris. Results For all 140 subjects (95 healthy and 45 PACG of Indian/Chinese ethnicity; age 60.2 ± 8.7 for PACG subjects and 57.7 ± 10.1 for healthy subjects), the simulated deformation pattern of the iris during pupil constriction matched well with OCT images. We found that the iris stiffness was higher in PACG than in healthy controls (24.5 ± 8.4 kPa vs. 17.1 ± 6.6 kPa with 40 kPa of active stress specified in the sphincter region; P < 0.001), whereas iris permeability was lower (0.41 ± 0.2 mm2/kPa s vs. 0.55 ± 0.2 mm2/kPa s; p = 0.142). Conclusions This study suggests that the biomechanical properties of the iris in PACG are different from those in healthy controls. An improved understanding of the biomechanical behavior of the iris may have implications for the understanding and management of angle-closure glaucoma.
Collapse
Affiliation(s)
- Satish K Panda
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Royston K Y Tan
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Martin L Buist
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Monisha Nongpiur
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Mani Baskaran
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Sankara Nethralaya, Chennai, India
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michaël J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore.,Institute of Molecular & Clinical Ophthalmology, Basel, Switzerland
| |
Collapse
|
21
|
McAleer S, Fast A, Xue Y, Seiler MJ, Tang WC, Balu M, Baldi P, Browne AW. Deep Learning-Assisted Multiphoton Microscopy to Reduce Light Exposure and Expedite Imaging in Tissues With High and Low Light Sensitivity. Transl Vis Sci Technol 2021; 10:30. [PMID: 34668935 PMCID: PMC8543395 DOI: 10.1167/tvst.10.12.30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose Two-photon excitation fluorescence (2PEF) reveals information about tissue function. Concerns for phototoxicity demand lower light exposure during imaging. Reducing excitation light reduces the quality of the image by limiting fluorescence emission. We applied deep learning (DL) super-resolution techniques to images acquired from low light exposure to yield high-resolution images of retinal and skin tissues. Methods We analyzed two methods: a method based on U-Net and a patch-based regression method using paired images of skin (550) and retina (1200), each with low- and high-resolution paired images. The retina dataset was acquired at low and high laser powers from retinal organoids, and the skin dataset was obtained from averaging 7 to 15 frames or 70 frames. Mean squared error (MSE) and the structural similarity index measure (SSIM) were outcome measures for DL algorithm performance. Results For the skin dataset, the patches method achieved a lower MSE (3.768) compared with U-Net (4.032) and a high SSIM (0.824) compared with U-Net (0.783). For the retinal dataset, the patches method achieved an average MSE of 27,611 compared with 146,855 for the U-Net method and an average SSIM of 0.636 compared with 0.607 for the U-Net method. The patches method was slower (303 seconds) than the U-Net method (<1 second). Conclusions DL can reduce excitation light exposure in 2PEF imaging while preserving image quality metrics. Translational Relevance DL methods will aid in translating 2PEF imaging from benchtop systems to in vivo imaging of light-sensitive tissues such as the retina.
Collapse
Affiliation(s)
- Stephen McAleer
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Alexander Fast
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA.,InfraDerm, LLC, Irvine, CA
| | - Yuntian Xue
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, University of California, Irvine, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Mihaela Balu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA.,Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Andrew W Browne
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.,Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA.,Institute for Clinical and Translational Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Hammer M, Jakob-Girbig J, Schwanengel L, Curcio CA, Hasan S, Meller D, Schultz R. Progressive Dysmorphia of Retinal Pigment Epithelium in Age-Related Macular Degeneration Investigated by Fluorescence Lifetime Imaging. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34491262 PMCID: PMC8431975 DOI: 10.1167/iovs.62.12.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose The purpose of this study was to observe changes of the retinal pigment epithelium (RPE) on the transition from dysmorphia to atrophy in age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods Multimodal imaging including color fundus photography (CFP), optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, and FLIO was performed in 40 eyes of 37 patients with intermediate AMD and no evidence for geographic atrophy or macular neovascularization (mean age = 74.2 ± 7.0 years). Twenty-three eyes were followed for 28.3 ± 18.3 months. Seven eyes had a second follow-up after 46.6 ± 9.0 months. Thickened RPE on OCT, hyperpigmentation on CFP, hyper-reflective foci (HRF) on OCT, attributed to single or clustered intraretinal RPE, were identified. Fluorescence lifetimes in two spectral channels (short-wavelength spectral channel [SSC] = 500–560 nm, long-wavelength spectral channel [LSC] = 560–720 nm) as well as emission spectrum intensity ratio (ESIR) of the lesions were measured by FLIO. Results As hyperpigmented areas form and RPE migrates into the retina, FAF lifetimes lengthen and ESRI of RPE cells increase. Thickened RPE showed lifetimes of 256 ± 49 ps (SSC) and 336 ± 35 ps (LSC) and an ESIR of 0.552 ± 0.079. For hyperpigmentation, these values were 317 ± 68 ps (p < 0.001), 377 ± 56 ps (P < 0.001), and 0.609 ± 0.081 (P = 0.001), respectively, and for HRF 337 ± 79 ps (P < 0.001), 414 ± 50 ps (P < 0.001), and 0.654 ± 0.075 (P < 0.001). Conclusions In the process of RPE degeneration, comprising different steps of dysmorphia, hyperpigmentation, and migration, lengthening of FAF lifetimes and a hypsochromic shift of emission spectra can be observed by FLIO. Thus, FLIO might provide early biomarkers for AMD progression and contribute to our understanding of RPE pathology.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, Univ. of Jena, Jena, Germany
| | | | - Linda Schwanengel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
23
|
Chen W, Tsissios G, Sallese A, Smucker B, Nguyen AT, Chen J, Wang H, Del Rio-Tsonis K. In Vivo Imaging of Newt Lens Regeneration: Novel Insights Into the Regeneration Process. Transl Vis Sci Technol 2021; 10:4. [PMID: 34383878 PMCID: PMC8362625 DOI: 10.1167/tvst.10.10.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To establish optical coherence tomography (OCT) as an in vivo imaging modality for investigating the process of newt lens regeneration. Methods Spectral-domain OCT was employed for in vivo imaging of the newt lens regeneration process. A total of 37 newts were lentectomized and followed by OCT imaging over the course of 60 to 80 days. Histological images were obtained at several time points to compare with the corresponding OCT images. Volume measurements were also acquired. Results OCT can identify the key features observed in corresponding histological images based on the scattering differences from various eye tissues, such as the cornea, intact and regenerated lens, and the iris. Lens volume measurements from three-dimensional OCT images showed that the regenerating lens size increased linearly until 60 days post-lentectomy. Conclusions Using OCT imaging, we were able to track the entire process of newt lens regeneration in vivo for the first time. Three-dimensional OCT images allowed us to volumetrically quantify and visualize the dynamic spatial relationships between tissues during the regeneration process. Our results establish OCT as anin vivo imaging modality to track/analyze the entire lens regeneration process from the same animal. Translational Relevance Lens regeneration in newts represents a unique example of vertebrate tissue plasticity. Investigating the cellular and morphological events that govern this extraordinary process in vivo will advance our understanding and shed light on developing new therapies to treat blinding disorders in higher vertebrates.
Collapse
Affiliation(s)
- Weihao Chen
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Georgios Tsissios
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA.,Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at Miami University, Oxford, OH, USA.,Department of Statistics, Miami University, Oxford, OH, USA
| | - Anh-Thu Nguyen
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Junfan Chen
- Department of Chemistry and Biochemistry, Miami University, Oxford OH, USA
| | - Hui Wang
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology Miami University, Oxford, OH, USA.,Center for Visual Sciences at Miami University, Oxford, OH, USA.,Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| |
Collapse
|
24
|
Vujosevic S, Toma C, Sarao V, Veritti D, Brambilla M, Muraca A, De Cillà S, Villani E, Nucci P, Lanzetta P. Color Fundus Autofluorescence to Determine Activity of Macular Neovascularization in Age-Related Macular Degeneration. Transl Vis Sci Technol 2021; 10:33. [PMID: 34003918 PMCID: PMC7910646 DOI: 10.1167/tvst.10.2.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate with color fundus autofluorescence (FAF) different lesion components of macular neovascularization (MNV) secondary to age-related macular degeneration (AMD) and to assess its activity. Methods In total, 137 eyes (102 patients) with MNV underwent a complete eye examination, including color fundus photography, optical coherence tomography (OCT), OCT angiography, and confocal color FAF, with an excitation wavelength at 450 nm. Each image was imported into a custom-image analysis software for quantitative estimation of emission wavelength and green and red emission fluorescence (GEFC/REFC) intensity, considering both single components of neovascular AMD and different MNV types (type 1 and type 2 MNV, active and inactive MNV). Results Subretinal fluid (SRF) had significantly higher values of GEFC (P = 0.008 and P = 0.0004) and REFC intensity (P = 0.005 and P = 0.0003) versus fibrosis and atrophy. The emission wavelength from SRF was lower compared to atrophy (P = 0.024) but not to fibrosis (P = 0.46). No significant differences were detected between type 1 and 2 MNV. Considering active versus inactive MNVs, a difference was detected for all evaluated parameters (P < 0.001). Mean FAF wavelength of both MNV with SRF and intraretinal fluid (IRF) was lower versus inactive MNV (P < 0.001 and P = 0.005). MNV with SRF (P < 0.001) had higher values of GEFC and REFC versus inactive MNV (P < 0.001). MNV with IRF had higher values of GEFC versus inactive MNV (P = 0.05). Conclusions Quantitative color FAF can differentiate active versus inactive MNV, whereas no differences were found between type 1 and type 2 MNV. If these data can be further confirmed, color FAF may be useful for automatic detection of active MNV in AMD and as a guide for treatment. Translational Relevance Automatic quantitative evaluation of green and red emission components of FAF in AMD can help determine the activity of MNV and guide the treatment.
Collapse
Affiliation(s)
- Stela Vujosevic
- Eye Clinic IRCCS MultiMedica, Milan, Italy.,University Hospital Maggiore della Carità, Eye Clinic, Novara, Italy
| | - Caterina Toma
- University Hospital Maggiore della Carità, Eye Clinic, Novara, Italy
| | - Valentina Sarao
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy.,Istituto Europeo di Microchirurgia Oculare-IEMO, Udine, Italy
| | - Daniele Veritti
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy
| | - Marco Brambilla
- Department of Medical Physics, University Hospital Maggiore Della Carità, Novara, Italy
| | - Andrea Muraca
- University Hospital Maggiore della Carità, Eye Clinic, Novara, Italy
| | - Stefano De Cillà
- University Hospital Maggiore della Carità, Eye Clinic, Novara, Italy.,Department of Health Sciences, University East Piedmont "A. Avogadro," Novara, Italy
| | - Edoardo Villani
- Eye Clinic IRCCS MultiMedica, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Nucci
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Lanzetta
- Department of Medicine-Ophthalmology, University of Udine, Udine, Italy.,Istituto Europeo di Microchirurgia Oculare-IEMO, Udine, Italy
| |
Collapse
|
25
|
Lincke JB, Dysli C, Jaggi D, Fink R, Wolf S, Zinkernagel MS. The Influence of Cataract on Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO). Transl Vis Sci Technol 2021; 10:33. [PMID: 34004011 PMCID: PMC8088233 DOI: 10.1167/tvst.10.4.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the influence of lens opacifications on fluorescence lifetime imaging ophthalmoscopy (FLIO). Methods Forty-seven eyes of 45 patients were included. Mean fluorescence lifetimes (Tm) were recorded with a fluorescence lifetime imaging ophthalmoscope in a short spectral channel (SSC) and a long spectral channel (LSC). Retinal and lens autofluorescence lifetimes were measured in subjects before and after cataract surgery. Lens opacification was graded using the Lens Opacities Classification System III (LOCS III) classification. Results The retinal Tm decreased significantly after cataract surgery in both spectral channels (SSC: -53%, P < 0.0001; LSC: -26%, P = 0.0041). The lens Tm differed significantly between the crystalline and the artificial lens in both spectral channels (P < 0.0001). The "nuclear opacity" and "nuclear color" score of the LOCS III classification correlated significantly with the mean Tm difference in both spectral channels (P < 0.0001). Conclusions Lens opacification results in significantly longer retinal Tm. Therefore the lens status has to be considered when performing cross-sectional fluorescence lifetime analysis. Cataract-formation and cataract-surgery needs to be considered when conducting longitudinal studies. Grading of nuclear opacity following the LOCS III classification provides an approximate conversion formula for the mean change of lifetimes, which can be helpful in the interpretation of data in patients with lens opacities. Translational Relevance FLIO is significantly influenced by lens opacities. Using a lens opacity grading scheme and measuring fluorescence lifetimes before and after cataract surgery, an approximative conversion formula can be calculated, which enables the comparison of lifetimes after cataract surgery or over the course of time.
Collapse
Affiliation(s)
- Joel-Benjamin Lincke
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Chantal Dysli
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Damian Jaggi
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Rahel Fink
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
26
|
Martis RM, Li B, Donaldson PJ, Lim JCH. Early Onset of Age-Related Cataracts in Cystine/Glutamate Antiporter Knockout Mice. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34156426 PMCID: PMC8237109 DOI: 10.1167/iovs.62.7.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose The purpose of this study was to determine the importance of the xCT is a subunit. The cystine/glutamate antiporter is actually system xc-xCT subunit of the cystine/glutamate antiporter in maintaining redox balance by investigating the effects of the loss of xCT on lens transparency and cystine/cysteine balance in the aqueous humour. Methods C57Bl/6 wild-type and xCT knockout mice at five age groups (6 weeks to 12 months) were used. Lens transparency was examined using a slit-lamp and morphological changes visualized by immunolabelling and confocal microscopy. Quantification of glutathione in lenses and cysteine and cystine levels in the aqueous was conducted by liquid chromatography tandem mass spectrometry (LC-MS/MS). Results Slit-lamp examinations revealed that 3-month-old wild-type mice and xCT knockout mice lenses exhibited an anterior localized cataract. The frequency of this cataract significantly increased in the knockout mice compared to the wild-type mice. Morphological studies revealed a localized swelling of the lens fiber cells at the anterior pole. Glutathione levels in whole lenses were similar between wild-type and knockout mice. However, glutathione levels were significantly decreased at 3 months in the knockout mice in the lens epithelium compared to the wild-type mice. Aqueous cysteine levels remained similar between wild-type and knockout mice at all age groups, whereas cystine levels were significantly increased in 3-, 9-, and 12-month-old knockout mice compared to wild-type mice. Conclusions Loss of xCT resulted in the depletion of glutathione in the epithelium and an oxidative shift in the cysteine/cystine ratio of the aqueous. Together, these oxidative changes may contribute to the accelerated development of an anterior cataract in knockout mice, which appears to be a normal feature of aging in wild-type mice.
Collapse
Affiliation(s)
- Renita Maria Martis
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Bo Li
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul James Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Julie Ching-Hsia Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Berkowitz BA, Podolsky RH, Childers KL, Roberts R, Schneider M, Graffice E, Sinan K, Berri A, Harp L. Correcting QUEST Magnetic Resonance Imaging-Sensitive Free Radical Production in the Outer Retina In Vivo Does Not Correct Reduced Visual Performance in 24-Month-Old C57BL/6J Mice. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34036313 PMCID: PMC8164372 DOI: 10.1167/iovs.62.6.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To test the hypothesis that acutely correcting a sustained presence of outer retina free radicals measured in vivo in 24-month-old mice corrects their reduced visual performance. Methods Male C57BL/6J mice two and 24 months old were noninvasively evaluated for unremitted production of paramagnetic free radicals based on whether 1/T1 in retinal laminae are reduced after acute antioxidant administration (QUEnch-assiSTed [QUEST] magnetic resonance imaging [MRI]). Superoxide production was measured in freshly excised retina (lucigenin assay). Combining acute antioxidant administration with optical coherence tomography (i.e., QUEST OCT) tested for excessive free radical–induced shrinkage of the subretinal space volume. Combining antioxidant administration with optokinetic tracking tested for a contribution of uncontrolled free radical production to cone-based visual performance declines. Results At two months, antioxidants had no effect on 1/T1 in vivo in any retinal layer. At 24 months, antioxidants reduced 1/T1 only in superior outer retina. No age-related change in retinal superoxide production was measured ex vivo, suggesting that free radical species other than superoxide contributed to the positive QUEST MRI signal at 24 months. Also, subretinal space volume did not show evidence for age-related shrinkage and was unresponsive to antioxidants. Finally, visual performance declined with age and was not restored by antioxidants that were effective per QUEST MRI. Conclusions An ongoing uncontrolled production of outer retina free radicals as measured in vivo in 24 mo C57BL/6J mice appears to be insufficient to explain reductions in visual performance.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Michael Schneider
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Emma Graffice
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Kenan Sinan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ali Berri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Lamis Harp
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
28
|
Petrova RS, Bavana N, Zhao R, Schey KL, Donaldson PJ. Changes to Zonular Tension Alters the Subcellular Distribution of AQP5 in Regions of Influx and Efflux of Water in the Rat Lens. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32945844 PMCID: PMC7509773 DOI: 10.1167/iovs.61.11.36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/20/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The lens uses circulating fluxes of ions and water that enter the lens at both poles and exit at the equator to maintain its optical properties. We have mapped the subcellular distribution of the lens aquaporins (AQP0, AQP1, and AQP5) in these water influx and efflux zones and investigated how their membrane location is affected by changes in tension applied to the lens by the zonules. Methods Immunohistochemistry using AQP antibodies was performed on axial sections obtained from rat lenses that had been removed from the eye and then fixed or were fixed in situ to maintain zonular tension. Zonular tension was pharmacologically modulated by applying either tropicamide (increased) or pilocarpine (decreased). AQP labeling was visualized using confocal microscopy. Results Modulation of zonular tension had no effect on AQP1 or AQP0 labeling in either the water efflux or influx zones. In contrast, AQP5 labeling changed from membranous to cytoplasmic in response to both mechanical and pharmacologically induced reductions in zonular tension in both the efflux zone and anterior (but not posterior) influx zone associated with the lens sutures. Conclusions Altering zonular tension dynamically regulates the membrane trafficking of AQP5 in the efflux and anterior influx zones to potentially change the magnitude of circulating water fluxes in the lens.
Collapse
Affiliation(s)
- Rosica S. Petrova
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Nandini Bavana
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Rusin Zhao
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, United States
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Brauer JL, Schultz R, Klemm M, Hammer M. Influence of Lens Fluorescence on Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) Fundus Imaging and Strategies for Its Compensation. Transl Vis Sci Technol 2020; 9:13. [PMID: 32855860 PMCID: PMC7422756 DOI: 10.1167/tvst.9.8.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/15/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose To explore the contribution of crystalline lens fluorescence to fluorescence lifetimes measured with fluorescence lifetime imaging ophthalmoscopy (FLIO) and to propose a computational model to reduce the lens influence. Methods FLIO, which detects autofluorescence decay over time in a short-wavelength spectral channel (SSC, 498–560 nm) and a long-wavelength spectral channel (LSC, 560–720 nm), was performed on 32 patients before and after cataract extraction. The mean autofluorescence lifetime (τm) of the fundus was determined from a three-exponential fit of the postoperative fluorescence decays. The preoperative measurements were fit with series of exponential functions in which one fluorescence component was time-shifted in order to represent lens fluorescence. Results Postoperatively, τm was 185 ± 22 ps in the SSC and 209 ± 34 ps in the LSC at the posterior pole. These values were best reproduced by fitting the postoperative measurements with a three-exponential model with a time-shifted third fluorescence component (SSC, 203 ± 45 ps; LSC, 215 ± 29 ps), whereas disregarding time-shifted lens fluorescence resulted in significantly (P < 0.001) longer τm values (SSC, 474 ± 206 ps; LSC, 215 ± 29 ps). The fluorescence of the cataract lens contributed to the total fluorescence by 54.2 ± 10.6% (SSC) and 29.5 ± 9.9% (LSC). Conclusions Cataract lens fluorescence greatly alters fluorescence lifetimes measured at the fundus by FLIO, resulting in an overestimation of the lifetimes; however, this may be compensated for considerably by taking lens influence into account in the fitting model. Translational Relevance This study investigates cataract fluorescence in FLIO and a mathematical model for compensation of this influence.
Collapse
Affiliation(s)
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Techniques and Informatics, Ilmenau, Germany
| | - Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| |
Collapse
|
30
|
Bertrand JA, Schicht M, Stamer WD, Baker D, Sherwood JM, Lütjen-Drecoll E, Selwood DL, Overby DR. The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice. Invest Ophthalmol Vis Sci 2020; 61:41. [PMID: 32203982 PMCID: PMC7401454 DOI: 10.1167/iovs.61.3.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose The large-conductance calcium-activated potassium channel KCa1.1 (BKCa, maxi-K) influences aqueous humor outflow facility, but the contribution of auxiliary β-subunits to KCa1.1 activity in the outflow pathway is unknown. Methods Using quantitative polymerase chain reaction, we measured expression of β-subunit genes in anterior segments of C57BL/6J mice (Kcnmb1-4) and in cultured human trabecular meshwork (TM) and Schlemm's canal (SC) cells (KCNMB1-4). We also measured expression of Kcnma1/KCNMA1 that encodes the pore-forming α-subunit. Using confocal immunofluorescence, we visualized the distribution of β4 in the conventional outflow pathway of mice. Using iPerfusion, we measured outflow facility in enucleated mouse eyes in response to 100 or 500 nM iberiotoxin (IbTX; N = 9) or 100 nM martentoxin (MarTX; N = 12). MarTX selectively blocks β4-containing KCa1.1 channels, whereas IbTX blocks KCa1.1 channels that lack β4. Results Kcnmb4 was the most highly expressed β-subunit in mouse conventional outflow tissues, expressed at a level comparable to Kcnma1. β4 was present within the juxtacanalicular TM, appearing to label cellular processes connecting to SC cells. Accordingly, KCNMB4 was the most highly expressed β-subunit in human TM cells, and the sole β-subunit in human SC cells. To dissect functional contribution, MarTX decreased outflow facility by 35% (27%, 42%; mean, 95% confidence interval) relative to vehicle-treated contralateral eyes, whereas IbTX reduced outflow facility by 16% (6%, 25%). Conclusions The β4-subunit regulates KCa1.1 activity in the conventional outflow pathway, significantly influencing outflow function. Targeting β4-containing KCa1.1 channels may be a promising approach to lower intraocular pressure to treat glaucoma.
Collapse
|
31
|
Liu C, Scales CW, Fuller GG. Tuning corneal epithelial cell adhesive strength with varying crosslinker content in silicone hydrogel materials. Transl Vis Sci Technol 2020; 9:3. [PMID: 32821500 PMCID: PMC7408810 DOI: 10.1167/tvst.9.6.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose To quantify the effect of silicone hydrogel crosslink density on the adhesion at corneal epithelial cells/silicone hydrogel contact lens interface. Methods A custom-built rheometer, referred to as the live cell monolayer rheometer, was used to measure the adhesive strengths between corneal epithelial cell monolayers and silicone hydrogel lens surfaces. The resulting stress relaxations of senofilcon A-derived silicone hydrogel materials with varying crosslinking densities and delefilcon A were tested. Senofilcon A-like materials labeled L1, L2, L3, L4, and L5 contained crosslinker concentrations of 1.2, 1.35, 1.5, 1.65, and 1.8 wt%, respectively. The residual modulus measured from the live cell monolayer rheometer provided a direct indication of adhesive attachment. Results Within the senofilcon-derived series, the adhesive strength shows a surprising minimum with respect to crosslink density. Specifically, L1 (1.20%) has the highest adhesive strength of 39.5 ± 11.2 Pa. The adhesive strength diminishes to a minimum of 11.2 ± 2.1 Pa for L3, whereafter it increases to 14.5 ± 2.5 Pa and 18.1 ± 5.1 Pa for L4 and L5, respectively. The delefilcon A lens exhibits a comparable adhesive strength of 27.8 ± 6.3 Pa to L1. Conclusions These results demonstrated that increasing the crosslink density has a nonmonotonic influence on the adherence of lenses to mucin-expressing corneal epithelial cells, which suggests a competition mechanism at the cell/lens interface. Translational Relevance Because the adhesiveness of contact lenses to ocular tissues may impact the comfort level for lens wearers and affect ease of removal, this study suggests that lens adhesion can be optimized through the control of crosslink density.
Collapse
Affiliation(s)
- Chunzi Liu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
32
|
Hammer M, Schultz R, Hasan S, Sauer L, Klemm M, Kreilkamp L, Zweifel L, Augsten R, Meller D. Fundus Autofluorescence Lifetimes and Spectral Features of Soft Drusen and Hyperpigmentation in Age-Related Macular Degeneration. Transl Vis Sci Technol 2020; 9:20. [PMID: 32821492 PMCID: PMC7401897 DOI: 10.1167/tvst.9.5.20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/06/2020] [Indexed: 01/13/2023] Open
Abstract
Purpose To investigate the autofluorescence lifetimes as well as spectral characteristics of soft drusen and retinal hyperpigmentation in age-related macular degeneration (AMD). Methods Forty-three eyes with nonexudative AMD were included in this study. Fluorescence lifetime imaging ophthalmoscopy (FLIO), which detects autofluorescence decay over time in the short (SSC) and long (LSC) wavelength channel, was performed. The mean autofluorescence lifetime (τm) and the spectral ratio (sr) of autofluorescence emission in the SSC and LSC were recorded and analyzed. In total, 2760 soft drusen and 265 hyperpigmented areas were identified from color fundus photographs and spectral domain optical coherence tomography (SD-OCT) images and superimposed onto their respective AF images. τm and sr of these lesions were compared with fundus areas without drusen. For clearly hyperfluorescent drusen, the local differences compared to fundus areas without drusen were determined for lifetimes and sr. Results Hyperpigmentation showed significantly longer τm (SSC: 341 ± 81 vs. 289 ± 70 ps, P < 0.001; LSC: 406 ± 42 vs. 343 ± 42 ps, P < 0.001) and higher sr (0.621 ± 0.077 vs. 0.539 ± 0.083, P < 0.001) compared to fundus areas without hyperpigmentation or drusen. No significant difference in τm was found between soft drusen and fundus areas without drusen. However, the sr was significantly higher in soft drusen (0.555 ± 0.077 vs. 0.539 ± 0.081, P < 0.0005). Hyperfluorescent drusen showed longer τm than surrounding fundus areas without drusen (SSC: 18 ± 42 ps, P = 0.074; LSC: 16 ± 29 ps, P = 0.020). Conclusions FLIO can quantitatively characterize the autofluorescence of the fundus, drusen, and hyperpigmentation in AMD. Translational Relevance The experimental FLIO technique was applied in a clinical investigation. As FLIO yields information on molecular changes in AMD, it might support future diagnostics.
Collapse
Affiliation(s)
- Martin Hammer
- Department of Ophthalmology, University Hospital Jena, Jena, Germany.,Center for Medical Optics and Photonics, University of Jena, Jena, Germany
| | - Rowena Schultz
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Somar Hasan
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lydia Sauer
- John A. Moran Eye Center, Salt Lake City, UT, USA
| | - Matthias Klemm
- Technical University Ilmenau, Institute for Biomedical Techniques and Informatics, Ilmenau, Germany
| | - Lukas Kreilkamp
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Lynn Zweifel
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Regine Augsten
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| | - Daniel Meller
- Department of Ophthalmology, University Hospital Jena, Jena, Germany
| |
Collapse
|
33
|
Jimenez NT, Lines JW, Kueppers RB, Kofuji P, Wei H, Rankila A, Coyle JT, Miller RF, McLoon LK. Electroretinographic Abnormalities and Sex Differences Detected with Mesopic Adaptation in a Mouse Model of Schizophrenia: A and B Wave Analysis. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 32053730 PMCID: PMC7326504 DOI: 10.1167/iovs.61.2.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose Mesopic flash electroretinography (fERG) as a tool to identify N-methyl-d-aspartate receptor (NMDAR) hypofunction in subjects with schizophrenia shows great potential. We report the first fERG study in a genetic mouse model of schizophrenia characterized by NMDAR hypofunction from gene silencing of serine racemase (SR) expression (SR-/-), an established risk gene for schizophrenia. We analyzed fERG parameters under various background light adaptations to determine the most significant variables to allow for early identification of people at risk for schizophrenia, prior to onset of psychosis. SR is a risk gene for schizophrenia, and negative and cognitive symptoms antedate the onset of psychosis that is required for diagnosis. Methods The scotopic, photopic, and mesopic fERGs were analyzed in male and female mice in both SR-/- and wild-type (WT) mice and also analyzed for sex differences. Amplitude and implicit time of the a- and b-wave components, b-/a-wave ratio, and Fourier transform analysis were analyzed. Results Mesopic a- and b-wave implicit times were significantly delayed, and b-wave amplitudes, b/a ratios, and Fourier transform were significantly decreased in the male SR-/- mice compared to WT, but not in female SR-/- mice. No significant differences were observed in photopic or scotopic fERGs between genotype. Conclusions The fERG prognostic capability may be improved by examination of background light adaptation, a larger array of light intensities, considering sex as a variable, and performing Fourier transform analyses of all waveforms. This should improve the ability to differentiate between controls and subjects with schizophrenia characterized by NMDAR hypofunction.
Collapse
Affiliation(s)
- Nathalia Torres Jimenez
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Justin W. Lines
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Rachel B. Kueppers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Paulo Kofuji
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Henry Wei
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Amy Rankila
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Joseph T. Coyle
- Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts, United States
| | - Robert F. Miller
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Linda K. McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
34
|
Kim Y, Vogel SS. Measuring two-photon microscopy ultrafast laser pulse duration at the sample plane using time-correlated single-photon counting. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-9. [PMID: 31994362 PMCID: PMC6987257 DOI: 10.1117/1.jbo.25.1.014516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
<p>Two-photon microscopy (2PM) has revolutionized biomedical imaging by allowing thin optical sectioning in relatively thick biological specimens. Because dispersive microscope components in 2PM, such as objective lens, can alter temporal laser pulse width (typically being broader at the sample plane), for accurate measurements of two-photon absorption properties, it is important to characterize pulse duration at the sample plane. We present a simple modification to a two-photon microscope light path that allows for second-harmonic-generation-based interferometric autocorrelation measurements to characterize ultrafast laser pulse duration at the sample plane using time-correlated single-photon counting (TCSPC). We show that TCSPC can be used as a simple and versatile method to estimate the zero time delay step value between two adjacent ultrafast laser pulses for these measurements. To demonstrate the utility of this modification, we measured the Coherent Chameleon-Ultra II Ti:sapphire laser pulse width at the sample plane using a 10 × air, 40 × air, or 63 × water-immersion objective lens. At 950-nm two-photon excitation, the measured pulse width was 154 ± 32, 165 ± 13, and 218 ± 27 fs (<italic>n</italic> = 6, mean ± standard deviation), respectively.</p>.
Collapse
Affiliation(s)
- Youngchan Kim
- U.S. National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Section on Cellular Biophotonics, Laboratory of Molecular Physiology, Bethesda, Maryland, United States
| | - Steven S. Vogel
- U.S. National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Section on Cellular Biophotonics, Laboratory of Molecular Physiology, Bethesda, Maryland, United States
| |
Collapse
|
35
|
Periasamy A, König K, So P. Special Section Guest Editorial: Thirty Years of Multiphoton Microscopy in the Biomedical Sciences. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-3. [PMID: 32006419 PMCID: PMC6994010 DOI: 10.1117/1.jbo.25.1.014501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
<p>JBO guest editors introduce the Special Section Celebrating Thirty Years of Multiphoton Microscopy in the Biomedical Sciences.</p>.
Collapse
Affiliation(s)
- Ammasi Periasamy
- University of Virginia, W.M. Keck Center for Cellular Imaging, Departments of Biology and Biomedical, United States
| | - Karsten König
- Saarland University, Department of Biophotonics and Laser Technologies, Saarbrücken, Germany
- JenLab GmbH, Berlin, Germany
| | - Peter So
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, Massachusett, United States
| |
Collapse
|
36
|
Dumas JP, Jiang JY, Gates EM, Hoffman BD, Pierce MC, Boustany NN. FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31884745 PMCID: PMC6935677 DOI: 10.1117/1.jbo.24.12.126501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells. We evaluated the system's sensitivity by differentiating the short and long lifetimes of mTFP1 corresponding to the known standards' high and low FRET efficiency, respectively. Furthermore, we show that the lifetime of the vinculin tension sensor, VinTS, at focal adhesions (2.30 ± 0.16 ns) is significantly (p < 10 - 6) longer than the lifetime of the unloaded TSMod probe (2.02 ± 0.16 ns). The pixel dwell time was 6.8 μs for samples expressing the FRET standards, with signal typically an order of magnitude higher than VinTS. The apparent FRET efficiency (<inline-formula>EFRETapp</inline-formula>) of the standards, calculated from the measured apparent lifetime, was linearly related to their known FRET efficiency by a factor of 0.92 to 0.99 (R2 = 0.98). This relationship serves as a calibration curve to convert apparent FRET to true FRET and circumvent the need to measure multiexponential lifetime decays. This approach yielded a FRET efficiency of 18% to 19.5%, for VinTS, in agreement with published values. Taken together, our results demonstrate a cost-effective, fast, and sensitive FD-FLIM approach with the potential to facilitate applications of FLIM in mechanobiology and FRET-based biosensing.
Collapse
Affiliation(s)
- John-Paul Dumas
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
- Thorlabs Inc., Newton, New Jersey, United States
| | | | - Evan M. Gates
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Brenton D. Hoffman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Mark C. Pierce
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| | - Nada N. Boustany
- Rutgers University, Department of Biomedical Engineering, Piscataway, New Jersey, United States
| |
Collapse
|
37
|
Sagar MAK, Dai B, Chacko JV, Weber JJ, Velten A, Sanders ST, White JG, Eliceiri KW. Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-17. [PMID: 31833280 PMCID: PMC6907392 DOI: 10.1117/1.jbo.25.1.014506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The excited state lifetime of a fluorophore together with its fluorescence emission spectrum provide information that can yield valuable insights into the nature of a fluorophore and its microenvironment. However, it is difficult to obtain both channels of information in a conventional scheme as detectors are typically configured either for spectral or lifetime detection. We present a fiber-based method to obtain spectral information from a multiphoton fluorescence lifetime imaging (FLIM) system. This is made possible using the time delay introduced in the fluorescence emission path by a dispersive optical fiber coupled to a detector operating in time-correlated single-photon counting mode. This add-on spectral implementation requires only a few simple modifications to any existing FLIM system and is considerably more cost-efficient compared to currently available spectral detectors.
Collapse
Affiliation(s)
- Md Abdul Kader Sagar
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Biomedical Engineering Department, Madison, Wisconsin, United States
| | - Bing Dai
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
| | - Jenu V. Chacko
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
| | - Joshua J. Weber
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
| | - Andreas Velten
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
| | - Scott T. Sanders
- University of Wisconsin–Madison, Mechanical Engineering Department, Madison, Wisconsin, United States
| | - John G. White
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Biomedical Engineering Department, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Medical Physics Department, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| |
Collapse
|
38
|
Can Demirdöğen B, Demirkaya-Budak S, Özge G, Mumcuoğlu T. Evaluation of Tear Fluid and Aqueous Humor Concentration of Clusterin as Biomarkers for Early Diagnosis of Pseudoexfoliation Syndrome and Pseudoexfoliative Glaucoma. Curr Eye Res 2019; 45:805-813. [PMID: 31765245 DOI: 10.1080/02713683.2019.1698055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Pseudoexfoliation syndrome (PEX) is an age-related disorder of the extracellular matrix characterized by the accumulation of fibrillary deposits in the anterior chamber of the eye, which leads to the development of pseudoexfoliative glaucoma (PEG). Early identification of subjects with higher susceptibility to PEX and PEG development is very important so that these conditions are managed at earlier stages, which requires that an objective biomarker is defined. Therefore, in the present study, we aimed to determine if aqueous humor and tear fluid concentrations of clusterin, an extracellular chaperone, are objective biomarkers for PEX and PEG risk. METHODS Tear fluid was obtained from 80 patients with PEG, 80 patients with PEX, and 80 controls, using Schirmer strips. Aqueous humor was also collected during cataract surgery from 12 patients with PEG, 17 patients with PEX, and 22 controls, who also gave tear samples. Clusterin concentration was determined by ELISA. RESULTS Clusterin concentration in aqueous humor was significantly higher in patients with PEG than in PEX cases (P = .002) and controls (P = .004). Receiver operating characteristics analysis revealed that this parameter is a robust classifier to distinguish PEG and PEX cases. Tear fluid clusterin concentrations did not differ significantly between groups. Aqueous humor and tear fluid levels of clusterin were not significantly correlated. CONCLUSIONS In conclusion, tear fluid clusterin level in patients with PEG and PEX was determined for the first time, which showed no difference between study groups. Aqueous humor clusterin level was markedly higher in patients with PEG.
Collapse
Affiliation(s)
- Birsen Can Demirdöğen
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Sinem Demirkaya-Budak
- Department of Biomedical Engineering, TOBB University of Economics and Technology , Ankara, Turkey
| | - Gökhan Özge
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| | - Tarkan Mumcuoğlu
- Department of Ophthalmology, Gülhane Training and Research Hospital, University of Health Sciences , Ankara, Turkey
| |
Collapse
|
39
|
Torres VC, Li C, He Y, Sinha L, Papavasiliou G, Sattar HA, Brankov JG, Tichauer KM. Angular restriction fluorescence optical projection tomography to localize micrometastases in lymph nodes. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-4. [PMID: 31705637 PMCID: PMC6839382 DOI: 10.1117/1.jbo.24.11.110501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Lymph node biopsy is a primary means of staging breast cancer, yet standard pathological techniques are time-consuming and typically sample less than 1% of the total node volume. A low-cost fluorescence optical projection tomography (OPT) protocol is demonstrated for rapid imaging of whole lymph nodes in three dimensions. The relatively low scattering properties of lymph node tissue can be leveraged to significantly improve spatial resolution of lymph node OPT by employing angular restriction of photon detection. It is demonstrated through porcine lymph node metastases models that simple filtered-backprojection reconstruction is sufficient to detect and localize 200-μm-diameter metastases (the smallest clinically significant) in 1-cm-diameter lymph nodes.
Collapse
Affiliation(s)
- Veronica C. Torres
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Chengyue Li
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Yusheng He
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Lagnojita Sinha
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Georgia Papavasiliou
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Husain A. Sattar
- University of Chicago, Department of Pathology, Chicago, Illinois, United States
| | - Jovan G. Brankov
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
- Illinois Institute of Technology, Department of Electrical and Computer Engineering, Chicago, Illinois, United States
| | - Kenneth M. Tichauer
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| |
Collapse
|
40
|
Garofalakis A, Kruglik SG, Mansuryan T, Gillibert A, Thiberville L, Louradour F, Vever-Bizet C, Bourg-Heckly G. Characterization of a multicore fiber image guide for nonlinear endoscopic imaging using two-photon fluorescence and second-harmonic generation. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-12. [PMID: 31646840 PMCID: PMC7000885 DOI: 10.1117/1.jbo.24.10.106004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Multiphoton microscopy (MPM) has the capacity to record second-harmonic generation (SHG) and endogenous two-photon excitation fluorescence (2PEF) signals emitted from biological tissues. The development of fiber-based miniaturized endomicroscopes delivering pulses in the femtosecond range will allow the transfer of MPM to clinical endoscopy. We present real-time SHG and 2PEF ex vivo images using an endomicroscope, which totally complies with clinical endoscopy regulations. This system is based on the proximal scanning of a commercial multicore image guide (IG). For understanding the inhomogeneities of the recorded images, we quantitatively characterize the IG at the single-core level during nonlinear excitation. The obtained results suggest that these inhomogeneities originate from the variable core geometries that, therefore, exhibit variable nonlinear and dispersive properties. Finally, we propose a method based on modulation of dispersion precompensation to address the image inhomogeneity issue and, as a proof of concept, we demonstrate its capability to improve the nonlinear image quality.
Collapse
Affiliation(s)
- Anikitos Garofalakis
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | | | - André Gillibert
- Rouen University Hospital, Department of Biostatistics, Rouen, France
| | - Luc Thiberville
- CHU Rouen, Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, Rouen, France
| | | | - Christine Vever-Bizet
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Genevieve Bourg-Heckly
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| |
Collapse
|
41
|
Haligur M, Aydogan A, Ozmen O, Ipek V. Immunohistochemical evaluation of natural cases of encephalitic listeriosis in sheep. Biotech Histochem 2019; 94:341-347. [DOI: 10.1080/10520295.2019.1571225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- M. Haligur
- Faculty of Ceyhan Veterinary Medicine, Department of Pathology, University of Cukurova, Adana, Turkey
| | - A. Aydogan
- Faculty of Ceyhan Veterinary Medicine, Department of Pathology, University of Cukurova, Adana, Turkey
| | - O. Ozmen
- Faculty of Veterinary Medicine, Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - V. Ipek
- Faculty of Veterinary Medicine, Department of Pathology, University of Mehmet Akif Ersoy, Burdur, Turkey
| |
Collapse
|
42
|
Xie W, Chen Y, Wang Y, Wei L, Yin C, Glaser AK, Fauver ME, Seibel EJ, Dintzis SM, Vaughan JC, Reder NP, Liu JTC. Microscopy with ultraviolet surface excitation for wide-area pathology of breast surgical margins. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 30737911 PMCID: PMC6368047 DOI: 10.1117/1.jbo.24.2.026501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/21/2019] [Indexed: 05/06/2023]
Abstract
Intraoperative assessment of breast surgical margins will be of value for reducing the rate of re-excision surgeries for lumpectomy patients. While frozen-section histology is used for intraoperative guidance of certain cancers, it provides limited sampling of the margin surface (typically <1 % of the margin) and is inferior to gold-standard histology, especially for fatty tissues that do not freeze well, such as breast specimens. Microscopy with ultraviolet surface excitation (MUSE) is a nondestructive superficial optical-sectioning technique that has the potential to enable rapid, high-resolution examination of excised margin surfaces. Here, a MUSE system is developed with fully automated sample translation to image fresh tissue surfaces over large areas and at multiple levels of defocus, at a rate of ∼5 min / cm2. Surface extraction is used to improve the comprehensiveness of surface imaging, and 3-D deconvolution is used to improve resolution and contrast. In addition, an improved fluorescent analog of conventional H&E staining is developed to label fresh tissues within ∼5 min for MUSE imaging. We compare the image quality of our MUSE system with both frozen-section and conventional H&E histology, demonstrating the feasibility to provide microscopic visualization of breast margin surfaces at speeds that are relevant for intraoperative use.
Collapse
Affiliation(s)
- Weisi Xie
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Ye Chen
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Yu Wang
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Linpeng Wei
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Chengbo Yin
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Adam K. Glaser
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Mark E. Fauver
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Eric J. Seibel
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Suzanne M. Dintzis
- University of Washington, School of Medicine, Department of Pathology, Seattle, Washington, United States
| | - Joshua C. Vaughan
- University of Washington, Department of Chemistry, Seattle, Washington, United States
| | - Nicholas P. Reder
- University of Washington, School of Medicine, Department of Pathology, Seattle, Washington, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington, School of Medicine, Department of Pathology, Seattle, Washington, United States
- Address all correspondence to Jonathan T. C. Liu, E-mail:
| |
Collapse
|
43
|
Li L, Chen R, Liu X, Li N, Liu X, Wang X, Quan T, Lv X, Zeng S. Penetration model for chemical reactivation for resin-embedded green fluorescent protein imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 24:1-6. [PMID: 30484293 PMCID: PMC6992894 DOI: 10.1117/1.jbo.24.5.051406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
In the so-called surface microscopy, serial block-face imaging is combined with mechanic sectioning to obtain volumetric imaging. While mapping a resin-embedded green fluorescent protein (GFP)-labeled specimen, it has been recently reported that an alkaline buffer is used to chemically reactivate the protonated GFP molecules, and thus improve the signal-to-noise ratio. In such a procedure, the image quality is highly affected by the penetration rate of a solution. We propose a reliable penetration model to describe the penetration process of the solution into the resin. The experimental results are consistent with the parameters predicted using this model. Thus, this model provides a valuable theoretical explanation and aids in optimizing the system parameters for mapping resin-embedded GFP biological samples.
Collapse
Affiliation(s)
- Longhui Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Ruixi Chen
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Xiuli Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Ning Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Xiaoxiang Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Xiaojun Wang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Tingwei Quan
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Xiaohua Lv
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| | - Shaoqun Zeng
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
- Huazhong University of Science and Technology, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, MoE Key Laboratory for Biomedical Photonics, Wuhan, Hubei, China
| |
Collapse
|
44
|
Sauer L, Andersen KM, Dysli C, Zinkernagel MS, Bernstein PS, Hammer M. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-20. [PMID: 30182580 PMCID: PMC8357196 DOI: 10.1117/1.jbo.23.9.091415] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/24/2018] [Indexed: 05/04/2023]
Abstract
Autofluorescence-based imaging techniques have become very important in the ophthalmological field. Being noninvasive and very sensitive, they are broadly used in clinical routines. Conventional autofluorescence intensity imaging is largely influenced by the strong fluorescence of lipofuscin, a fluorophore that can be found at the level of the retinal pigment epithelium. However, different endogenous retinal fluorophores can be altered in various diseases. Fluorescence lifetime imaging ophthalmoscopy (FLIO) is an imaging modality to investigate the autofluorescence of the human fundus in vivo. It expands the level of information, as an addition to investigating the fluorescence intensity, and autofluorescence lifetimes are captured. The Heidelberg Engineering Spectralis-based fluorescence lifetime imaging ophthalmoscope is used to investigate a 30-deg retinal field centered at the fovea. It detects FAF decays in short [498 to 560 nm, short spectral channel (SSC) and long (560 to 720 nm, long spectral channel (LSC)] spectral channels, the mean fluorescence lifetimes (τm) are calculated using bi- or triexponential approaches. These are meant to be relatively independent of the fluorophore's intensity; therefore, fluorophores with less intense fluorescence can be detected. As an example, FLIO detects the fluorescence of macular pigment, retinal carotenoids that help protect the human fundus from light damages. Furthermore, FLIO is able to detect changes related to various retinal diseases, such as age-related macular degeneration, albinism, Alzheimer's disease, diabetic retinopathy, macular telangiectasia type 2, retinitis pigmentosa, and Stargardt disease. Some of these changes can already be found in healthy eyes and may indicate a risk to developing such diseases. Other changes in already affected eyes seem to indicate disease progression. This review article focuses on providing detailed information on the clinical findings of FLIO. This technique detects not only structural changes at very early stages but also metabolic and disease-related alterations. Therefore, it is a very promising tool that might soon be used for early diagnostics.
Collapse
Affiliation(s)
- Lydia Sauer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Karl M. Andersen
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Chantal Dysli
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Martin S. Zinkernagel
- Bern University Hospital, Inselspital, Department of Ophthalmology, Bern, Switzerland
| | - Paul S. Bernstein
- University of Utah, John A. Moran Eye Center, Salt Lake City, Utah, United States
| | - Martin Hammer
- University Hospital Jena, Jena, Thuringia, Germany
- University of Jena, Center for Biomedical Optics and Photonics, Jena, Germany
- Address all correspondence to: Martin Hammer, E-mail:
| |
Collapse
|
45
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
46
|
King SV, Yuan S, Preza C. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-15. [PMID: 29600602 DOI: 10.1117/1.jbo.23.3.036016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Effectiveness of extended depth of field microscopy (EDFM) implementation with wavefront encoding methods is reduced by depth-induced spherical aberration (SA) due to reliance of this approach on a defined point spread function (PSF). Evaluation of the engineered PSF's robustness to SA, when a specific phase mask design is used, is presented in terms of the final restored image quality. Synthetic intermediate images were generated using selected generalized cubic and cubic phase mask designs. Experimental intermediate images were acquired using the same phase mask designs projected from a liquid crystal spatial light modulator. Intermediate images were restored using the penalized space-invariant expectation maximization and the regularized linear least squares algorithms. In the presence of depth-induced SA, systems characterized by radially symmetric PSFs, coupled with model-based computational methods, achieve microscope imaging performance with fewer deviations in structural fidelity (e.g., artifacts) in simulation and experiment and 50% more accurate positioning of 1-μm beads at 10-μm depth in simulation than those with radially asymmetric PSFs. Despite a drop in the signal-to-noise ratio after processing, EDFM is shown to achieve the conventional resolution limit when a model-based reconstruction algorithm with appropriate regularization is used. These trends are also found in images of fixed fluorescently labeled brine shrimp, not adjacent to the coverslip, and fluorescently labeled mitochondria in live cells.
Collapse
Affiliation(s)
- Sharon V King
- University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee, United States
| | - Shuai Yuan
- University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee, United States
| | - Chrysanthe Preza
- University of Memphis, Department of Electrical and Computer Engineering, Memphis, Tennessee, United States
| |
Collapse
|
47
|
Okuyama S, Kotani Y, Yamamoto K, Sawamoto A, Sugawara K, Sudo M, Ohkubo Y, Tamanaha A, Nakajima M, Furukawa Y. The peel of Citrus kawachiensis (kawachi bankan) ameliorates microglial activation, tau hyper-phosphorylation, and suppression of neurogenesis in the hippocampus of senescence-accelerated mice. Biosci Biotechnol Biochem 2018; 82:869-878. [PMID: 29424280 DOI: 10.1080/09168451.2018.1433993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We previously reported that the dried peel powder of Citrus kawachiensis, one of the citrus products of Ehime, Japan, exerted anti-inflammatory effects in the brain of a lipopolysaccharide-injected systemic inflammation animal model. Inflammation is one of the main mechanisms underlying aging in the brain; therefore, we herein evaluated the anti-inflammatory and other effects of the dried peel powder of C. kawachiensis in the senescence-accelerated mouse-prone 8 (SAMP8) model. The C. kawachiensis treatment inhibited microglial activation in the hippocampus, the hyper-phosphorylation of tau at 231 of threonine in hippocampal neurons, and ameliorated the suppression of neurogenesis in the dentate gyrus of the hippocampus. These results suggest that the dried peel powder of C. kawachiensis exert anti-inflammatory and neuroprotective effects.
Collapse
Affiliation(s)
- Satoshi Okuyama
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Yoshimi Kotani
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Kana Yamamoto
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Atsushi Sawamoto
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Kuniaki Sugawara
- b Department of Planning and Development , Ehime Beverage Inc ., Matsuyama , Japan
| | - Masahiko Sudo
- b Department of Planning and Development , Ehime Beverage Inc ., Matsuyama , Japan
| | - Yuu Ohkubo
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Arisa Tamanaha
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Mitsunari Nakajima
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| | - Yoshiko Furukawa
- a Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences , Matsuyama University , Matsuyama , Japan
| |
Collapse
|
48
|
Krunkosky M, García M, Beltran Garza LG, Karpuzoglu-Belgin E, Levin J, Williams RJ, Gogal RM. Seeding of the mucosal leukocytes in the HALT and trachea of White Leghorn chickens. J Immunoassay Immunochem 2018; 39:43-57. [DOI: 10.1080/15321819.2017.1393435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Madelyn Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Maricarmen García
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, USA
| | | | - Ebru Karpuzoglu-Belgin
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Jaclyn Levin
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Robert J. Williams
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Robert M. Gogal
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, USA
| |
Collapse
|
49
|
Ruiz-Santaquiteria J, Espinosa-Aranda JL, Deniz O, Sanchez C, Borrego-Ramos M, Blanco S, Cristobal G, Bueno G. Low-cost oblique illumination: an image quality assessment. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-14. [PMID: 29297212 DOI: 10.1117/1.jbo.23.1.016001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
We study the effectiveness of several low-cost oblique illumination filters to improve overall image quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution, focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied to the same image dataset to complete the study, together with the calculation of several texture features to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods, subjective and objective, showed better results for images acquired using these illumination filters in comparison with the no filtered image. These promising results confirm that this kind of illumination filters can be a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing process.
Collapse
Affiliation(s)
| | | | - Oscar Deniz
- University of Castilla-La Mancha, ETSI Industriales, Visilab, Ciudad Real, Spain
| | - Carlos Sanchez
- Institute of Optics "Daza de Valdés", Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Saul Blanco
- University of León, Institute of Environment, León, Spain
| | - Gabriel Cristobal
- Institute of Optics "Daza de Valdés", Spanish National Research Council (CSIC), Madrid, Spain
| | - Gloria Bueno
- University of Castilla-La Mancha, ETSI Industriales, Visilab, Ciudad Real, Spain
| |
Collapse
|
50
|
Ravanfar M, Pfeiffer FM, Bozynski CC, Wang Y, Yao G. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29197177 DOI: 10.1117/1.jbo.22.12.121708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/14/2017] [Indexed: 05/18/2023]
Abstract
Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.
Collapse
Affiliation(s)
- Mohammadreza Ravanfar
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Ferris M Pfeiffer
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Chantelle C Bozynski
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Yuanbo Wang
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Gang Yao
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| |
Collapse
|