1
|
Berezovsky A, Nuga O, Datta I, Bergman K, Sabedot T, Gurdziel K, Irtenkauf S, Hasselbach L, Meng Y, Mueller C, Petricoin EF, Brown S, Purandare N, Aras S, Mikkelsen T, Poisson L, Noushmehr H, Ruden D, deCarvalho AC. Impact of genomic background and developmental state on signaling pathways and response to therapy in glioblastoma patient-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585115. [PMID: 39386580 PMCID: PMC11463645 DOI: 10.1101/2024.03.14.585115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glioblastoma (GBM) tumors represents diverse genomic epigenomic, and transcriptional landscapes, with significant intratumoral heterogeneity that challenges standard of care treatments involving radiation (RT) and the DNA-alkylating agent temozolomide (TMZ). In this study, we employed targeted proteomics to assess the response of a genomically-diverse panel of GBM patient-derived cancer stem cells (CSCs) to astrocytic differentiation, growth factor withdrawal and traditional high fetal bovine serum culture. Our findings revealed a complex crosstalk and co-activation of key oncogenic signaling in CSCs and diverse patterns of response to these external stimuli. Using RNA sequencing and DNA methylation, we observed common adaptations in response to astrocytic differentiation of CSCs across genomically distinct models, including BMP-Smad pathway activation, reduced cholesterol biosynthesis, and upregulation of extracellular matrix components. Notably, we observed that these differentiated CSC progenies retained a subset of stemness genes and the activation of cell survival pathways. We also examined the impact of differentiation state and genomic background on GBM cell sensitivity and transcriptional response to TMZ and RT. Differentiation of CSCs increased resistance to TMZ but not to RT. While transcriptional responses to these treatments were predominantly regulated by p53 in wild-type p53 GBM cells, its transcriptional activity was modulated by the differentiation status and treatment modality. Both mutant and wild-type p53 models exhibited significant activation of a DNA-damage associated interferon response in CSCs and differentiated cells, suggesting this pathway may play a wider role in GBM response to TMZ and RT. Our integrative analysis of the impact of GBM cell developmental states, in the context of genomic and molecular diversity of patient-derived models, provides valuable insights for pre-clinical studies aimed at optimizing treatment strategies.
Collapse
|
2
|
Blanchard CE, Gomeiz AT, Avery K, Gazzah EE, Alsubaie AM, Sikaroodi M, Chiari Y, Ward C, Sanchez J, Espina V, Petricoin E, Baldelli E, Pierobon M. Signaling dynamics in coexisting monoclonal cell subpopulations unveil mechanisms of resistance to anti-cancer compounds. Cell Commun Signal 2024; 22:377. [PMID: 39061010 PMCID: PMC11282632 DOI: 10.1186/s12964-024-01742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tumor heterogeneity is a main contributor of resistance to anti-cancer targeted agents though it has proven difficult to study. Unfortunately, model systems to functionally characterize and mechanistically study dynamic responses to treatment across coexisting subpopulations of cancer cells remain a missing need in oncology. METHODS Using single cell cloning and expansion techniques, we established monoclonal cell subpopulations (MCPs) from a commercially available epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer cell line. We then used this model sensitivity to the EGFR inhibitor osimertinib across coexisting cell populations within the same tumor. Pathway-centered signaling dynamics associated with response to treatment and morphological characteristics of the MCPs were assessed using Reverse Phase Protein Microarray. Signaling nodes differentially activated in MCPs less sensitive to treatment were then pharmacologically inhibited to identify target signaling proteins putatively implicated in promoting drug resistance. RESULTS MCPs demonstrated highly heterogeneous sensitivities to osimertinib. Cell viability after treatment increased > 20% compared to the parental line in selected MCPs, whereas viability decreased by 75% in other MCPs. Reduced treatment response was detected in MCPs with higher proliferation rates, EGFR L858R expression, activation of EGFR binding partners and downstream signaling molecules, and expression of epithelial-to-mesenchymal transition markers. Levels of activation of EGFR binding partners and MCPs' proliferation rates were also associated with response to c-MET and IGFR inhibitors. CONCLUSIONS MCPs represent a suitable model system to characterize heterogeneous biomolecular behaviors in preclinical studies and identify and functionally test biological mechanisms associated with resistance to targeted therapeutics.
Collapse
Affiliation(s)
- Claire E Blanchard
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Alison T Gomeiz
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Kyle Avery
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Emna El Gazzah
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Abduljalil M Alsubaie
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, VA, 20110, USA
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2TQ, UK
| | - Chelsea Ward
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Jonathan Sanchez
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- School of Systems Biology, George Mason University, 10920 George Mason Circle, Room 2016, Manassas, VA, 20110, USA.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
3
|
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, Morales AJ, Taylor KE, Drizyte-Miller K, Bryant KL, Schaefer A, Johnson JL, Huntsman EM, Yaron TM, Pierobon M, Baldelli E, Prevatte AW, Barker NK, Herring LE, Petricoin EF, Graves LM, Cantley LC, Cox AD, Der CJ, Stalnecker CA. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024; 384:eadk0850. [PMID: 38843329 PMCID: PMC11301400 DOI: 10.1126/science.adk0850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.
Collapse
Affiliation(s)
- Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Elisa Baldelli
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Alex W. Prevatte
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Lee M. Graves
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Grit JL, McGee LE, Tovar EA, Essenburg CJ, Wolfrum E, Beddows I, Williams K, Sheridan RTC, Schipper JL, Adams M, Arumugam M, Vander Woude T, Gurunathan S, Field JM, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. p53 modulates kinase inhibitor resistance and lineage plasticity in NF1-related MPNSTs. Oncogene 2024; 43:1411-1430. [PMID: 38480916 PMCID: PMC11068581 DOI: 10.1038/s41388-024-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 05/05/2024]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are chemotherapy resistant sarcomas that are a leading cause of death in neurofibromatosis type 1 (NF1). Although NF1-related MPNSTs derive from neural crest cell origin, they also exhibit intratumoral heterogeneity. TP53 mutations are associated with significantly decreased survival in MPNSTs, however the mechanisms underlying TP53-mediated therapy responses are unclear in the context of NF1-deficiency. We evaluated the role of two commonly altered genes, MET and TP53, in kinome reprograming and cellular differentiation in preclinical MPNST mouse models. We previously showed that MET amplification occurs early in human MPNST progression and that Trp53 loss abrogated MET-addiction resulting in MET inhibitor resistance. Here we demonstrate a novel mechanism of therapy resistance whereby p53 alters MET stability, localization, and downstream signaling leading to kinome reprogramming and lineage plasticity. Trp53 loss also resulted in a shift from RAS/ERK to AKT signaling and enhanced sensitivity to MEK and mTOR inhibition. In response to MET, MEK and mTOR inhibition, we observed broad and heterogeneous activation of key differentiation genes in Trp53-deficient lines suggesting Trp53 loss also impacts lineage plasticity in MPNSTs. These results demonstrate the mechanisms by which p53 loss alters MET dependency and therapy resistance in MPNSTS through kinome reprogramming and phenotypic flexibility.
Collapse
Affiliation(s)
- Jamie L Grit
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Lauren E McGee
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Elizabeth A Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Curt J Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Ian Beddows
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Kaitlin Williams
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Joshua L Schipper
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Thomas Vander Woude
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Sharavana Gurunathan
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey M Field
- Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Carrie R Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Matthew R Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
- Helen DeVos Children's Hospital, Corewell Health System, Grand Rapids, MI, 49503, USA.
- Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
5
|
Gallagher RI, Wulfkuhle J, Wolf DM, Brown-Swigart L, Yau C, O'Grady N, Basu A, Lu R, Campbell MJ, Magbanua MJ, Coppé JP, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Pohlmann PR, Hirst GL, Esserman LJ, van 't Veer LJ, Petricoin EF. Protein signaling and drug target activation signatures to guide therapy prioritization: Therapeutic resistance and sensitivity in the I-SPY 2 Trial. Cell Rep Med 2023; 4:101312. [PMID: 38086377 PMCID: PMC10772394 DOI: 10.1016/j.xcrm.2023.101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/03/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Molecular subtyping of breast cancer is based mostly on HR/HER2 and gene expression-based immune, DNA repair deficiency, and luminal signatures. We extend this description via functional protein pathway activation mapping using pre-treatment, quantitative expression data from 139 proteins/phosphoproteins from 736 patients across 8 treatment arms of the I-SPY 2 Trial (ClinicalTrials.gov: NCT01042379). We identify predictive fit-for-purpose, mechanism-of-action-based signatures and individual predictive protein biomarker candidates by evaluating associations with pathologic complete response. Elevated levels of cyclin D1, estrogen receptor alpha, and androgen receptor S650 associate with non-response and are biomarkers for global resistance. We uncover protein/phosphoprotein-based signatures that can be utilized both for molecularly rationalized therapeutic selection and for response prediction. We introduce a dichotomous HER2 activation response predictive signature for stratifying triple-negative breast cancer patients to either HER2 or immune checkpoint therapy response as a model for how protein activation signatures provide a different lens to view the molecular landscape of breast cancer and synergize with transcriptomic-defined signatures.
Collapse
Affiliation(s)
- Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O'Grady
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey B Matthews
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Nola Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - W Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula R Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
6
|
Elias AD, Spoelstra NS, Staley AW, Sams S, Crump LS, Vidal GA, Borges VF, Kabos P, Diamond JR, Shagisultanova E, Afghahi A, Mayordomo J, McSpadden T, Crawford G, D'Alessandro A, Zolman KL, van Bokhoven A, Zhuang Y, Gallagher RI, Wulfkuhle JD, Petricoin Iii EF, Gao D, Richer JK. Phase II trial of fulvestrant plus enzalutamide in ER+/HER2- advanced breast cancer. NPJ Breast Cancer 2023; 9:41. [PMID: 37210417 PMCID: PMC10199936 DOI: 10.1038/s41523-023-00544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/28/2023] [Indexed: 05/22/2023] Open
Abstract
This clinical trial combined fulvestrant with the anti-androgen enzalutamide in women with metastatic ER+/HER2- breast cancer (BC). Eligible patients were women with ECOG 0-2, ER+/HER2- measurable or evaluable metastatic BC. Prior fulvestrant was allowed. Fulvestrant was administered at 500 mg IM on days 1, 15, 29, and every 4 weeks thereafter. Enzalutamide was given at 160 mg po daily. Fresh tumor biopsies were required at study entry and after 4 weeks of treatment. The primary efficacy endpoint of the trial was the clinical benefit rate at 24 weeks (CBR24). The median age was 61 years (46-87); PS 1 (0-1); median of 4 prior non-hormonal and 3 prior hormonal therapies for metastatic disease. Twelve had prior fulvestrant, and 91% had visceral disease. CBR24 was 25% (7/28 evaluable). Median progression-free survival (PFS) was 8 weeks (95% CI: 2-52). Adverse events were as expected for hormonal therapy. Significant (p < 0.1) univariate relationships existed between PFS and ER%, AR%, and PIK3CA and/or PTEN mutations. Baseline levels of phospho-proteins in the mTOR pathway were more highly expressed in biopsies of patients with shorter PFS. Fulvestrant plus enzalutamide had manageable side effects. The primary endpoint of CBR24 was 25% in heavily pretreated metastatic ER+/HER2- BC. Short PFS was associated with activation of the mTOR pathway, and PIK3CA and/or PTEN mutations were associated with an increased hazard of progression. Thus, a combination of fulvestrant or other SERD plus AKT/PI3K/mTOR inhibitor with or without AR inhibition warrants investigation in second-line endocrine therapy of metastatic ER+ BC.
Collapse
Affiliation(s)
- Anthony D Elias
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Nicole S Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alyse W Staley
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sharon Sams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory A Vidal
- West Cancer Center and Research Institute and Dept of Medicine, University of Tennessee Health Sciences Center, Germantown, TN, USA
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena Shagisultanova
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anosheh Afghahi
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jose Mayordomo
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tessa McSpadden
- University of Colorado Cancer Center, Oncology Clinical Research Support Team, Anschutz Medical Campus, Aurora, CO, USA
| | - Gloria Crawford
- University of Colorado Cancer Center, Cancer Clinical Trials Office, Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn L Zolman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adrie van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yonghua Zhuang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin Iii
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Dexiang Gao
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep Med 2022; 3:100819. [PMID: 36384096 PMCID: PMC9729884 DOI: 10.1016/j.xcrm.2022.100819] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
We present a deep proteogenomic profiling study of 87 lung adenocarcinoma (LUAD) tumors from the United States, integrating whole-genome sequencing, transcriptome sequencing, proteomics and phosphoproteomics by mass spectrometry, and reverse-phase protein arrays. We identify three subtypes from somatic genome signature analysis, including a transition-high subtype enriched with never smokers, a transversion-high subtype enriched with current smokers, and a structurally altered subtype enriched with former smokers, TP53 alterations, and genome-wide structural alterations. We show that within-tumor correlations of RNA and protein expression associate with tumor purity and immune cell profiles. We detect and independently validate expression signatures of RNA and protein that predict patient survival. Additionally, among co-measured genes, we found that protein expression is more often associated with patient survival than RNA. Finally, integrative analysis characterizes three expression subtypes with divergent mutations, proteomic regulatory networks, and therapeutic vulnerabilities. This proteogenomic characterization provides a foundation for molecularly informed medicine in LUAD.
Collapse
|
8
|
Le Roux Ö, Pershing NLK, Kaltenbrun E, Newman NJ, Everitt JI, Baldelli E, Pierobon M, Petricoin EF, Counter CM. Genetically manipulating endogenous Kras levels and oncogenic mutations in vivo influences tissue patterning of murine tumorigenesis. eLife 2022; 11:e75715. [PMID: 36069770 PMCID: PMC9451540 DOI: 10.7554/elife.75715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Despite multiple possible oncogenic mutations in the proto-oncogene KRAS, unique subsets of these mutations are detected in different cancer types. As KRAS mutations occur early, if not being the initiating event, these mutational biases are ostensibly a product of how normal cells respond to the encoded oncoprotein. Oncogenic mutations can impact not only the level of active oncoprotein, but also engagement with proteins. To attempt to separate these two effects, we generated four novel Cre-inducible (LSL) Kras alleles in mice with the biochemically distinct G12D or Q61R mutations and encoded by native (nat) rare or common (com) codons to produce low or high protein levels. While there were similarities, each allele also induced a distinct transcriptional response shortly after activation in vivo. At one end of the spectrum, activating the KrasLSL-natG12D allele induced transcriptional hallmarks suggestive of an expansion of multipotent cells, while at the other end, activating the KrasLSL-comQ61R allele led to hallmarks of hyperproliferation and oncogenic stress. Evidence suggests that these changes may be a product of signaling differences due to increased protein expression as well as the specific mutation. To determine the impact of these distinct responses on RAS mutational patterning in vivo, all four alleles were globally activated, revealing that hematolymphopoietic lesions were permissive to the level of active oncoprotein, squamous tumors were permissive to the G12D mutant, while carcinomas were permissive to both these features. We suggest that different KRAS mutations impart unique signaling properties that are preferentially capable of inducing tumor initiation in a distinct cell-specific manner.
Collapse
Affiliation(s)
- Özgün Le Roux
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole LK Pershing
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Erin Kaltenbrun
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Nicole J Newman
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical CenterDurhamUnited States
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason UniversityManassasUnited States
| | - Christopher M Counter
- Department of Pharmacology & Cancer Biology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
9
|
Baldelli E, Mandarano M, Bellezza G, Petricoin EF, Pierobon M. Analysis of neuroendocrine clones in NSCLCs using an immuno-guided laser-capture microdissection-based approach. CELL REPORTS METHODS 2022; 2:100271. [PMID: 36046628 PMCID: PMC9421534 DOI: 10.1016/j.crmeth.2022.100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Clonal evolution and lineage plasticity are key contributors to tumor heterogeneity and response to treatment in cancer. However, capturing signal transduction events in coexisting clones remains challenging from a technical perspective. In this study, we developed and tested a signal-transduction-based workflow to isolate and profile coexisting clones within a complex cellular system like non-small cell lung cancers (NSCLCs). Cooccurring clones were isolated under immunohistochemical guidance using laser-capture microdissection, and cell signaling activation portraits were measured using the reverse-phase protein microarray. To increase the translational potential of this work and capture druggable vulnerabilities within different clones, we measured expression/activation of a panel of key drug targets and downstream substrates of FDA-approved or investigational agents. We isolated intermixed clones, including poorly represented ones (<5% of cells), within the tumor microecology and identified molecular characteristics uniquely attributable to cancer cells that undergo lineage plasticity and neuroendocrine transdifferentiation in NSCLCs.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Martina Mandarano
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
10
|
Huynh MV, Hobbs GA, Schaefer A, Pierobon M, Carey LM, Diehl JN, DeLiberty JM, Thurman RD, Cooke AR, Goodwin CM, Cook JH, Lin L, Waters AM, Rashid NU, Petricoin EF, Campbell SL, Haigis KM, Simeone DM, Lyssiotis CA, Cox AD, Der CJ. Functional and biological heterogeneity of KRAS Q61 mutations. Sci Signal 2022; 15:eabn2694. [PMID: 35944066 PMCID: PMC9534304 DOI: 10.1126/scisignal.abn2694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.
Collapse
Affiliation(s)
- Minh V. Huynh
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G. Aaron Hobbs
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Leiah M. Carey
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M. DeLiberty
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D. Thurman
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adelaide R. Cooke
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua H. Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lin Lin
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Andrew M. Waters
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina
at Chapel Hill, NC 27955, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Digestive Disease Center, Harvard Medical School,
Boston, MA 02115, USA
| | - Diane M. Simeone
- Perlmutter Cancer Center, New York University, New York,
NY10016, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of
Gastroenterology, University of Michigan, Ann Arbor, MI 48198, USA
- University of Michigan Comprehensive Cancer Center, Ann
Arbor, MI 48109, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North
Carolina at Chapel Hill, Chapel Hill, NC 2799, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Fitzpatrick CJ, Mudhasani RR, Altamura LA, Campbell CE, Tran JP, Beitzel BF, Narayanan A, de la Fuente CL, Kehn-Hall K, Smith JM, Schmaljohn CS, Garrison AR. Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Front Cell Infect Microbiol 2022; 12:798978. [PMID: 35463647 PMCID: PMC9022028 DOI: 10.3389/fcimb.2022.798978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/01/2022] [Indexed: 01/26/2023] Open
Abstract
Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.
Collapse
Affiliation(s)
- Collin J. Fitzpatrick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Rajini R. Mudhasani
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Louis A. Altamura
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | | | - Julie P. Tran
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Brett F. Beitzel
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Cynthia L. de la Fuente
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, United States
| | - Jeffrey M. Smith
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Connie S. Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
| | - Aura R. Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, United States
- *Correspondence: Aura R. Garrison,
| |
Collapse
|
12
|
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, Ravoori MK, Kundra V, Broom BM, Corn PG, Troncoso P, Gueron G, Logothethis CJ, Navone NM. Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. Eur Urol Oncol 2022; 5:164-175. [PMID: 34774481 PMCID: PMC11924198 DOI: 10.1016/j.euo.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leah D Guerra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan A Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher J Logothethis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Klomp JE, Lee YS, Goodwin CM, Papke B, Klomp JA, Waters AM, Stalnecker CA, DeLiberty JM, Drizyte-Miller K, Yang R, Diehl JN, Yin HH, Pierobon M, Baldelli E, Ryan MB, Li S, Peterson J, Smith AR, Neal JT, McCormick AK, Kuo CJ, Counter CM, Petricoin EF, Cox AD, Bryant KL, Der CJ. CHK1 protects oncogenic KRAS-expressing cells from DNA damage and is a target for pancreatic cancer treatment. Cell Rep 2021; 37:110060. [PMID: 34852220 PMCID: PMC8665414 DOI: 10.1016/j.celrep.2021.110060] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
We apply genetic screens to delineate modulators of KRAS mutant pancreatic ductal adenocarcinoma (PDAC) sensitivity to ERK inhibitor treatment, and we identify components of the ATR-CHK1 DNA damage repair (DDR) pathway. Pharmacologic inhibition of CHK1 alone causes apoptotic growth suppression of both PDAC cell lines and organoids, which correlates with loss of MYC expression. CHK1 inhibition also activates ERK and AMPK and increases autophagy, providing a mechanistic basis for increased efficacy of concurrent CHK1 and ERK inhibition and/or autophagy inhibition with chloroquine. To assess how CHK1 inhibition-induced ERK activation promotes PDAC survival, we perform a CRISPR-Cas9 loss-of-function screen targeting direct/indirect ERK substrates and identify RIF1. A key component of non-homologous end joining repair, RIF1 suppression sensitizes PDAC cells to CHK1 inhibition-mediated apoptotic growth suppression. Furthermore, ERK inhibition alone decreases RIF1 expression and phenocopies RIF1 depletion. We conclude that concurrent DDR suppression enhances the efficacy of ERK and/or autophagy inhibitors in KRAS mutant PDAC.
Collapse
Affiliation(s)
- Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ye S Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Björn Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeff A Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A Stalnecker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongwei H Yin
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Meagan B Ryan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Jackson Peterson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Amber R Smith
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James T Neal
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron K McCormick
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Gonzalez-Ericsson PI, Wulfkhule JD, Gallagher RI, Sun X, Axelrod ML, Sheng Q, Luo N, Gomez H, Sanchez V, Sanders M, Pusztai L, Petricoin E, Blenman KR, Balko JM. Tumor-Specific Major Histocompatibility-II Expression Predicts Benefit to Anti-PD-1/L1 Therapy in Patients With HER2-Negative Primary Breast Cancer. Clin Cancer Res 2021; 27:5299-5306. [PMID: 34315723 PMCID: PMC8792110 DOI: 10.1158/1078-0432.ccr-21-0607] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/15/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Immunotherapies targeting PD-1/L1 enhance pathologic complete response (pCR) rates when added to standard neoadjuvant chemotherapy (NAC) regimens in early-stage triple-negative, and possibly high-risk estrogen receptor-positive breast cancer. However, immunotherapy has been associated with significant toxicity, and most patients treated with NAC do not require immunotherapy to achieve pCR. Biomarkers discerning patients benefitting from the addition of immunotherapy from those who would achieve pCR to NAC alone are clearly needed. In this study, we tested the ability of MHC-II expression on tumor cells, to predict immunotherapy-specific benefit in the neoadjuvant breast cancer setting. PATIENTS AND METHODS This was a retrospective tissue-based analysis of 3 cohorts of patients with breast cancer: (i) primary nonimmunotherapy-treated breast cancers (n = 381), (ii) triple-negative breast cancers (TNBC) treated with durvalumab and standard NAC (n = 48), and (iii) HER2-negative patients treated with standard NAC (n = 87) or NAC and pembrolizumab (n = 66). RESULTS HLA-DR positivity on ≥5% of tumor cells, defined a priori, was observed in 10% and 15% of primary non-immunotherapy-treated hormone receptor-positive and triple-negative breast cancers, respectively. Quantitative assessment of MHC-II on tumor cells was predictive of durvalumab + NAC and pembrolizumab + NAC (ROC AUC, 0.71; P = 0.01 and AUC, 0.73; P = 0.001, respectively), but not NAC alone (AUC, 0.5; P = 0.99). CONCLUSIONS Tumor-specific MHC-II has a strong candidacy as a specific biomarker of anti-PD-1/L1 immunotherapy benefit when added to standard NAC in HER2-negative breast cancer. Combined with previous studies in melanoma, MHC-II has the potential to be a pan-cancer biomarker. Validation is warranted in existing and future phase II/III clinical trials in this setting.
Collapse
Affiliation(s)
- Paula I. Gonzalez-Ericsson
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julia D. Wulfkhule
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Rosa I. Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Xiaopeng Sun
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Margaret L. Axelrod
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Luo
- Anatomy and Histology, School of Medicine, Nankai University, Tianjin, China
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Violeta Sanchez
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melinda Sanders
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lajos Pusztai
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer Center, School of Medicine, Yale University, New Haven, Connecticut
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Kim R.M. Blenman
- Department of Internal Medicine Section of Medical Oncology and Yale Cancer Center, School of Medicine, Yale University, New Haven, Connecticut
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Justin M. Balko
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
15
|
Baldelli E, Hodge KA, Bellezza G, Shah NJ, Gambara G, Sidoni A, Mandarano M, Ruhunusiri C, Dunetz B, Abu-Khalaf M, Wulfkuhle J, Gallagher RI, Liotta L, de Bono J, Mehra N, Riisnaes R, Ravaggi A, Odicino F, Sereni MI, Blackburn M, Zupa A, Improta G, Demsko P, Crino' L, Ludovini V, Giaccone G, Petricoin EF, Pierobon M. PD-L1 quantification across tumor types using the reverse phase protein microarray: implications for precision medicine. J Immunother Cancer 2021; 9:e002179. [PMID: 34620701 PMCID: PMC8499669 DOI: 10.1136/jitc-2020-002179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anti-programmed cell death protein 1 and programmed cell death ligand 1 (PD-L1) agents are broadly used in first-line and second-line treatment across different tumor types. While immunohistochemistry-based assays are routinely used to assess PD-L1 expression, their clinical utility remains controversial due to the partial predictive value and lack of standardized cut-offs across antibody clones. Using a high throughput immunoassay, the reverse phase protein microarray (RPPA), coupled with a fluorescence-based detection system, this study compared the performance of six anti-PD-L1 antibody clones on 666 tumor samples. METHODS PD-L1 expression was measured using five antibody clones (22C3, 28-8, CAL10, E1L3N and SP142) and the therapeutic antibody atezolizumab on 222 lung, 71 ovarian, 52 prostate and 267 breast cancers, and 54 metastatic lesions. To capture clinically relevant variables, our cohort included frozen and formalin-fixed paraffin-embedded samples, surgical specimens and core needle biopsies. Pure tumor epithelia were isolated using laser capture microdissection from 602 samples. Correlation coefficients were calculated to assess concordance between antibody clones. For two independent cohorts of patients with lung cancer treated with nivolumab, RPPA-based PD-L1 measurements were examined along with response to treatment. RESULTS Median-center PD-L1 dynamic ranged from 0.01 to 39.37 across antibody clones. Correlation coefficients between the six antibody clones were heterogeneous (range: -0.48 to 0.95) and below 0.50 in 61% of the comparisons. In nivolumab-treated patients, RPPA-based measurement identified a subgroup of tumors, where low PD-L1 expression equated to lack of response. CONCLUSIONS Continuous RPPA-based measurements capture a broad dynamic range of PD-L1 expression in human specimens and heterogeneous concordance levels between antibody clones. This high throughput immunoassay can potentially identify subgroups of tumors in which low expression of PD-L1 equates to lack of response to treatment.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Neil J Shah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Guido Gambara
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Martina Mandarano
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Chamodya Ruhunusiri
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | | | - Maysa Abu-Khalaf
- Department of Medical Oncology, Sidney Kimmel Cancer Center at Jefferson Health, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | | | - Niven Mehra
- The Institute of Cancer Research, London, UK
| | | | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maria Isabella Sereni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Angelo Nocivelli Institute of Molecular Medicine, Division of Gynecologic Oncology, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Matthew Blackburn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Angela Zupa
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Giuseppina Improta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- Unita' Operativa di Anatomia Patologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) CROB, Rionero In Vulture, Italy
| | - Perry Demsko
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Lucio Crino'
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Vienna Ludovini
- Division of Medical Oncology, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Giuseppe Giaccone
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
16
|
Integrated multi-omics analyses on patient-derived CRC organoids highlight altered molecular pathways in colorectal cancer progression involving PTEN. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:198. [PMID: 34154611 PMCID: PMC8215814 DOI: 10.1186/s13046-021-01986-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/16/2021] [Indexed: 12/23/2022]
Abstract
Background Colorectal cancer (CRC) represents the fourth leading cause of cancer-related deaths. The heterogeneity of CRC identity limits the usage of cell lines to study this type of tumor because of the limited representation of multiple features of the original malignancy. Patient-derived colon organoids (PDCOs) are a promising 3D-cell model to study tumor identity for personalized medicine, although this approach still lacks detailed characterization regarding molecular stability during culturing conditions. Correlation analysis that considers genomic, transcriptomic, and proteomic data, as well as thawing, timing, and culturing conditions, is missing. Methods Through integrated multi–omics strategies, we characterized PDCOs under different growing and timing conditions, to define their ability to recapitulate the original tumor. Results Whole Exome Sequencing allowed detecting temporal acquisition of somatic variants, in a patient-specific manner, having deleterious effects on driver genes CRC-associated. Moreover, the targeted NGS approach confirmed that organoids faithfully recapitulated patients’ tumor tissue. Using RNA-seq experiments, we identified 5125 differentially expressed transcripts in tumor versus normal organoids at different time points, in which the PTEN pathway resulted of particular interest, as also confirmed by further phospho-proteomics analysis. Interestingly, we identified the PTEN c.806_817dup (NM_000314) mutation, which has never been reported previously and is predicted to be deleterious according to the American College of Medical Genetics and Genomics (ACMG) classification. Conclusion The crosstalk of genomic, transcriptomic and phosphoproteomic data allowed to observe that PDCOs recapitulate, at the molecular level, the tumor of origin, accumulating mutations over time that potentially mimic the evolution of the patient’s tumor, underlining relevant potentialities of this 3D model. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01986-8.
Collapse
|
17
|
Heterogeneous Off-Target Effects of Ultra-Low Dose Dimethyl Sulfoxide (DMSO) on Targetable Signaling Events in Lung Cancer In Vitro Models. Int J Mol Sci 2021; 22:ijms22062819. [PMID: 33802212 PMCID: PMC8001778 DOI: 10.3390/ijms22062819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Targetable alterations in cancer offer novel opportunities to the drug discovery process. However, pre-clinical testing often requires solubilization of these drugs in cosolvents like dimethyl sulfoxide (DMSO). Using a panel of cell lines commonly used for in vitro drug screening and pre-clinical testing, we explored the DMSO off-target effects on functional signaling networks, drug targets, and downstream substrates. Eight Non-Small Cell Lung Cancer (NSCLC) cell lines were incubated with three concentrations of DMSO (0.0008%, 0.002%, and 0.004% v/v) over time. Expression and activation levels of 187 proteins, of which 137 were kinases and downstream substrates, were captured using the Reverse Phase Protein Array (RPPA). The DMSO effect was heterogeneous across cell lines and varied based on concentration, exposure time, and cell line. Of the 187 proteins measured, all were statistically different in at least one comparison at the highest DMSO concentration, followed by 99.5% and 98.9% at lower concentrations. Only 46% of the proteins were found to be statistically different in more than 5 cell lines, indicating heterogeneous response across models. These cell line specific alterations modulate response to in vitro drug screening. Ultra-low DMSO concentrations have broad and heterogeneous effects on targetable signaling proteins. Off-target effects need to be carefully evaluated in pre-clinical drug screening and testing.
Collapse
|
18
|
Tew BY, Legendre C, Schroeder MA, Triche T, Gooden GC, Huang Y, Butry L, Ma DJ, Johnson K, Martinez RA, Pierobon M, Petricoin EF, O'shaughnessy J, Osborne C, Tapia C, Buckley DN, Glen J, Bernstein M, Sarkaria JN, Toms SA, Salhia B. Patient-derived xenografts of central nervous system metastasis reveal expansion of aggressive minor clones. Neuro Oncol 2021; 22:70-83. [PMID: 31433055 DOI: 10.1093/neuonc/noz137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dearth of relevant tumor models reflecting the heterogeneity of human central nervous system metastasis (CM) has hindered development of novel therapies. METHODS We established 39 CM patient-derived xenograft (PDX) models representing the histological spectrum, and performed phenotypic and multi-omic characterization of PDXs and their original patient tumors. PDX clonal evolution was also reconstructed using allele-specific copy number and somatic variants. RESULTS PDXs retained their metastatic potential, with flank-implanted PDXs forming spontaneous metastases in multiple organs, including brain, and CM subsequent to intracardiac injection. PDXs also retained the histological and molecular profiles of the original patient tumors, including retention of genomic aberrations and signaling pathways. Novel modes of clonal evolution involving rapid expansion by a minor clone were identified in 2 PDXs, including CM13, which was highly aggressive in vivo forming multiple spontaneous metastases, including to brain. These PDXs had little molecular resemblance to the patient donor tumor, including reversion to a copy number neutral genome, no shared nonsynonymous mutations, and no correlation by gene expression. CONCLUSIONS We generated a diverse and novel repertoire of PDXs that provides a new set of tools to enhance our knowledge of CM biology and improve preclinical testing. Furthermore, our study suggests that minor clone succession may confer tumor aggressiveness and potentiate brain metastasis.
Collapse
Affiliation(s)
- Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tim Triche
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Gerald C Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yizhou Huang
- Center of Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Loren Butry
- Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyle Johnson
- Translational Genomics Institute (TGEN), Phoenix, Arizona, USA
| | | | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, USA
| | - Joyce O'shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Cindy Osborne
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA
| | - Coya Tapia
- Department of Molecular Pathology, The MD Anderson Cancer Center, Houston, Texas, USA
| | - David N Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven A Toms
- Geisinger Medical Center, Danville, Pennsylvania, USA.,Lifespan, Providence, RI
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Translational Genomics Institute (TGEN), Phoenix, Arizona, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Jacobs SA, Lee JJ, George TJ, Wade JL, Stella PJ, Wang D, Sama AR, Piette F, Pogue-Geile KL, Kim RS, Gavin PG, Lipchik C, Feng H, Wang Y, Finnigan M, Kiesel BF, Beumer JH, Wolmark N, Lucas PC, Allegra CJ, Srinivasan A. Neratinib-Plus-Cetuximab in Quadruple-WT ( KRAS, NRAS, BRAF, PIK3CA) Metastatic Colorectal Cancer Resistant to Cetuximab or Panitumumab: NSABP FC-7, A Phase Ib Study. Clin Cancer Res 2020; 27:1612-1622. [PMID: 33203645 DOI: 10.1158/1078-0432.ccr-20-1831] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE In metastatic colorectal cancer (mCRC), HER2 (ERBB2) gene amplification is implicated in anti-EGFR therapy resistance. We sought to determine the recommended phase II dose (RP2D) and efficacy of neratinib, a pan-ERBB kinase inhibitor, combined with cetuximab, in patients with progressive disease (PD) on anti-EGFR treatment. PATIENTS AND METHODS Twenty-one patients with quadruple-wild-type, refractory mCRC enrolled in this 3+3 phase Ib study. Standard dosage cetuximab was administered with neratinib at 120 mg, 160 mg, 200 mg, and 240 mg/day orally in 28-day cycles. Samples were collected for molecular and pharmacokinetic studies. RESULTS Sixteen patients were evaluable for dose-limiting toxicity (DLT). 240 mg was determined to be the RP2D wherein a single DLT occurred (1/7 patients). Treatment-related DLTs were not seen at lower doses. Best response was stable disease (SD) in 7 of 16 (44%) patients. HER2 amplification (chromogenic in situ IHC) was detected in 2 of 21 (9.5%) treatment-naïve tumors and 4 of 16 (25%) biopsies upon trial enrollment (post-anti-EGFR treatment and progression). Compared with matched enrollment biopsies, 6 of 8 (75%) blood samples showed concordance for HER2 CNV in circulating cell-free DNA. Five SD patients had HER2 amplification in either treatment-naïve or enrollment biopsies. Examination of gene-expression, total protein, and protein phosphorylation levels showed relative upregulation of ≥2 members of the HER-family receptors or ligands upon enrollment versus matched treatment-naïve samples. CONCLUSIONS The RP2D of neratinib in this combination was 240 mg/day, which was well tolerated with low incidence of G3 AEs. There were no objective responses; SD was seen at all neratinib doses. HER2 amplification, detectable in both tissue and blood, was more frequent post-anti-EGFR therapy.
Collapse
Affiliation(s)
| | - James J Lee
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- UPMC, Pittsburgh, Pennsylvania
| | - Thomas J George
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- University of Florida, Gainesville, Florida
| | - James L Wade
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- Cancer Care Specialists of Illinois, Decatur, Illinois
| | - Philip J Stella
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- St. Joseph Mercy Health System, Ann Arbor, Michigan
| | - Ding Wang
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- Henry Ford Cancer Institute, Detroit, Michigan
| | - Ashwin R Sama
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Fanny Piette
- International Drug Development Institute (IDDI), Louvain la Neuve, Belgium
| | | | - Rim S Kim
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
| | | | | | - Huichen Feng
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
| | - Ying Wang
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
| | | | - Brian F Kiesel
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- UPMC, Pittsburgh, Pennsylvania
| | - Jan H Beumer
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- UPMC, Pittsburgh, Pennsylvania
| | - Norman Wolmark
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- UPMC, Pittsburgh, Pennsylvania
| | - Peter C Lucas
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carmen J Allegra
- NSABP Foundation, Inc., Pittsburgh, Pennsylvania
- University of Florida, Gainesville, Florida
| | | |
Collapse
|
20
|
Grit JL, Pridgeon MG, Essenburg CJ, Wolfrum E, Madaj ZB, Turner L, Wulfkuhle J, Petricoin EF, Graveel CR, Steensma MR. Kinome Profiling of NF1-Related MPNSTs in Response to Kinase Inhibition and Doxorubicin Reveals Therapeutic Vulnerabilities. Genes (Basel) 2020; 11:genes11030331. [PMID: 32245042 PMCID: PMC7141129 DOI: 10.3390/genes11030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1)-related Malignant Peripheral Nerve Sheath Tumors (MPNST) are highly resistant sarcomas that account for significant mortality. The mechanisms of therapy resistance are not well-understood in MPNSTs, particularly with respect to kinase inhibition strategies. In this study, we aimed to quantify the impact of both the genomic context and targeted therapy on MPNST resistance using reverse phase phosphoproteome array (RPPA) analysis. We treated tumorgrafts from three genetically engineered mouse models using MET (capmatinib) and MEK (trametinib) inhibitors and doxorubicin, and assessed phosphosignaling at 4 h, 2 days, and 21 days. Baseline kinase signaling in our mouse models recapitulated an MET-addicted state (NF1-MET), P53 mutation (NF1-P53), and HGF overexpression (NF1). Following perturbation with the drug, we observed broad and redundant kinome adaptations that extended well beyond canonical RAS/ERK or PI3K/AKT/mTOR signaling. MET and MEK inhibition were both associated with an initial inflammatory response mediated by kinases in the JAK/STAT pathway and NFkB. Growth signaling predominated at the 2-day and 21-day time points as a result of broad RTK and intracellular kinase activation. Interestingly, AXL and NFkB were strongly activated at the 2-day and 21-day time points, and tightly correlated, regardless of the treatment type or genomic context. The degree of kinome adaptation observed in innately resistant tumors was significantly less than the surviving fractions of responsive tumors that exhibited a latency period before reinitiating growth. Lastly, doxorubicin resistance was associated with kinome adaptations that strongly favored growth and survival signaling. These observations confirm that MPNSTs are capable of profound signaling plasticity in the face of kinase inhibition or DNA damaging agent administration. It is possible that by targeting AXL or NFkB, therapy resistance can be mitigated.
Collapse
Affiliation(s)
- Jamie L. Grit
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.L.G.); (M.G.P.); (C.J.E.); (C.R.G.)
| | - Matt G. Pridgeon
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.L.G.); (M.G.P.); (C.J.E.); (C.R.G.)
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, MI 49503, USA
| | - Curt J. Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.L.G.); (M.G.P.); (C.J.E.); (C.R.G.)
| | - Emily Wolfrum
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.W.); (Z.B.M.)
| | - Zachary B. Madaj
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (E.W.); (Z.B.M.)
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 22030, USA; (J.W.); (E.F.P.)
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 22030, USA; (J.W.); (E.F.P.)
| | - Carrie R. Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.L.G.); (M.G.P.); (C.J.E.); (C.R.G.)
| | - Matthew R. Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.L.G.); (M.G.P.); (C.J.E.); (C.R.G.)
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, MI 49503, USA
- Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
- Correspondence:
| |
Collapse
|
21
|
Hobbs GA, Baker NM, Miermont AM, Thurman RD, Pierobon M, Tran TH, Anderson AO, Waters AM, Diehl JN, Papke B, Hodge RG, Klomp JE, Goodwin CM, DeLiberty JM, Wang J, Ng RWS, Gautam P, Bryant KL, Esposito D, Campbell SL, Petricoin EF, Simanshu DK, Aguirre AJ, Wolpin BM, Wennerberg K, Rudloff U, Cox AD, Der CJ. Atypical KRAS G12R Mutant Is Impaired in PI3K Signaling and Macropinocytosis in Pancreatic Cancer. Cancer Discov 2020; 10:104-123. [PMID: 31649109 PMCID: PMC6954322 DOI: 10.1158/2159-8290.cd-19-1006] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022]
Abstract
Allele-specific signaling by different KRAS alleles remains poorly understood. The KRAS G12R mutation displays uneven prevalence among cancers that harbor the highest occurrence of KRAS mutations: It is rare (∼1%) in lung and colorectal cancers, yet relatively common (∼20%) in pancreatic ductal adenocarcinoma (PDAC), suggesting context-specific properties. We evaluated whether KRASG12R is functionally distinct from the more common KRASG12D- or KRASG12V-mutant proteins (KRASG12D/V). We found that KRASG12D/V but not KRASG12R drives macropinocytosis and that MYC is essential for macropinocytosis in KRASG12D/V- but not KRASG12R-mutant PDAC. Surprisingly, we found that KRASG12R is defective for interaction with a key effector, p110α PI3K (PI3Kα), due to structural perturbations in switch II. Instead, upregulated KRAS-independent PI3Kγ activity was able to support macropinocytosis in KRASG12R-mutant PDAC. Finally, we determined that KRASG12R-mutant PDAC displayed a distinct drug sensitivity profile compared with KRASG12D-mutant PDAC but is still responsive to the combined inhibition of ERK and autophagy. SIGNIFICANCE: We determined that KRASG12R is impaired in activating a key effector, p110α PI3K. As such, KRASG12R is impaired in driving macropinocytosis. However, overexpression of PI3Kγ in PDAC compensates for this deficiency, providing one basis for the prevalence of this otherwise rare KRAS mutant in pancreatic cancer but not other cancers.See related commentary by Falcomatà et al., p. 23.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nicole M Baker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Ryan D Thurman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | | | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer E Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Raymond W S Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prson Gautam
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Udo Rudloff
- Thoracic and GI Oncology Branch, NCI, Bethesda, Maryland.
- Rare Tumor Initiative, Pediatric Oncology Branch, NCI, Bethesda, Maryland
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Byron A. Reproducibility and Crossplatform Validation of Reverse-Phase Protein Array Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1188:181-201. [PMID: 31820389 DOI: 10.1007/978-981-32-9755-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reverse-phase protein array (RPPA) technology is a high-throughput antibody- and microarray-based approach for the rapid profiling of levels of proteins and protein posttranslational modifications in biological specimens. The technology consumes small amounts of samples, can sensitively detect low-abundance proteins and posttranslational modifications, enables measurements of multiple signaling pathways in parallel, has the capacity to analyze large sample numbers, and offers robust interexperimental reproducibility. These features of RPPA experiments have motivated and enabled the use of RPPA technology in various biomedical, translational, and clinical applications, including the delineation of molecular mechanisms of disease, profiling of druggable signaling pathway activation, and search for new prognostic markers. Owing to the complexity of many of these applications, such as developing multiplex protein assays for diagnostic laboratories or integrating posttranslational modification-level data using large-scale proteogenomic approaches, robust and well-validated data are essential. There are many distinct components of an RPPA workflow, and numerous possible technical setups and analysis parameter options exist. The differences between RPPA platform setups around the world offer opportunities to assess and minimize interplatform variation. Crossplatform validation may also aid in the evaluation of robust, platform-independent protein markers of disease and response to therapy.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Parasido EM, Silvestri A, Canzonieri V, Belluco C, Diodoro MG, Milione M, Melotti F, De Maria R, Liotta L, Petricoin EF, Pierobon M. Protein drug target activation homogeneity in the face of intra-tumor heterogeneity: implications for precision medicine. Oncotarget 2018; 8:48534-48544. [PMID: 28159918 PMCID: PMC5564706 DOI: 10.18632/oncotarget.14019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/09/2016] [Indexed: 12/17/2022] Open
Abstract
Introduction: Recent studies indicated tumors may be comprised of heterogeneous molecular subtypes and incongruent molecular portraits may emerge if different areas of the tumor are sampled. This study explored the impact of intra-tumoral heterogeneity in terms of activation/phosphorylation of FDA approved drug targets and downstream kinase substrates. Material and methods: Two independent sets of liver metastases from colorectal cancer were used to evaluate protein kinase-driven signaling networks within different areas using laser capture microdissection and reverse phase protein array. Results: Unsupervised hierarchical clustering analysis indicated that the signaling architecture and activation of the MAPK and AKT-mTOR pathways were consistently maintained within different regions of the same biopsy. Intra-patient variability of the MAPK and AKT-mTOR pathway were <1.06 fold change, while inter-patients variability reached fold change values of 5.01. Conclusions: Protein pathway activation mapping of enriched tumor cells obtained from different regions of the same tumor indicated consistency and robustness independent of the region sampled. This suggests a dominant protein pathway network may be activated in a high percentage of the tumor cell population. Given the genomic intra-tumoral variability, our data suggest that protein/phosphoprotein signaling measurements should be integrated with genomic analysis for precision medicine based analysis.
Collapse
Affiliation(s)
- Erika Maria Parasido
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.,Department of Experimental Oncology, CRO-National Cancer Institute, Aviano, Italy
| | - Alessandra Silvestri
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | - Claudio Belluco
- Department of Surgical Oncology, CRO-National Cancer Institute, Aviano, Italy
| | | | - Massimo Milione
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Flavia Melotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Ruggero De Maria
- Department of Pathology, Sacred Heart Catholic University of Rome, Roma, Italy
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
24
|
Baldelli E, Calvert V, Hodge A, VanMeter A, Petricoin EF, Pierobon M. Reverse Phase Protein Microarrays. Methods Mol Biol 2018; 1606:149-169. [PMID: 28502000 DOI: 10.1007/978-1-4939-6990-6_11] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While genes and RNA encode information about cellular status, proteins are considered the engine of the cellular machine, as they are the effective elements that drive all cellular functions including proliferation, migration, differentiation, and apoptosis. Consequently, investigations of the cellular protein network are considered a fundamental tool for understanding cellular functions.Alteration of the cellular homeostasis driven by elaborate intra- and extracellular interactions has become one of the most studied fields in the era of personalized medicine and targeted therapy. Increasing interest has been focused on developing and improving proteomic technologies that are suitable for analysis of clinical samples. In this context, reverse-phase protein microarrays (RPPA) is a sensitive, quantitative, high-throughput immunoassay for protein analyses of tissue samples, cells, and body fluids.RPPA is well suited for broad proteomic profiling and is capable of capturing protein activation as well as biochemical reactions such as phosphorylation, glycosylation, ubiquitination, protein cleavage, and conformational alterations across hundreds of samples using a limited amount of biological material. For these reasons, RPPA represents a valid tool for protein analyses and generates data that help elucidate the functional signaling architecture through protein-protein interaction and protein activation mapping for the identification of critical nodes for individualized or combinatorial targeted therapy.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Amy VanMeter
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS 1A9, Manassas, VA, 20110, USA.
| |
Collapse
|
25
|
de la Fuente C, Pinkham C, Dabbagh D, Beitzel B, Garrison A, Palacios G, Hodge KA, Petricoin EF, Schmaljohn C, Campbell CE, Narayanan A, Kehn-Hall K. Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS One 2018; 13:e0191983. [PMID: 29408900 PMCID: PMC5800665 DOI: 10.1371/journal.pone.0191983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Rift Valley fever virus (RVFV) infects both ruminants and humans leading to a wide variance of pathologies dependent on host background and age. Utilizing a targeted reverse phase protein array (RPPA) to define changes in signaling cascades after in vitro infection of human cells with virulent and attenuated RVFV strains, we observed high phosphorylation of Smad transcription factors. This evolutionarily conserved family is phosphorylated by and transduces the activation of TGF-β superfamily receptors. Moreover, we observed that phosphorylation of Smad proteins required active RVFV replication and loss of NSs impaired this activation, further corroborating the RPPA results. Gene promoter analysis of transcripts altered after RVFV infection identified 913 genes that contained a Smad-response element. Functional annotation of these potential Smad-regulated genes clustered in axonal guidance, hepatic fibrosis and cell signaling pathways involved in cellular adhesion/migration, calcium influx, and cytoskeletal reorganization. Furthermore, chromatin immunoprecipitation confirmed the presence of a Smad complex on the interleukin 1 receptor type 2 (IL1R2) promoter, which acts as a decoy receptor for IL-1 activation.
Collapse
Affiliation(s)
- Cynthia de la Fuente
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Brett Beitzel
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Aura Garrison
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kimberley Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Connie Schmaljohn
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Olshen A, Wolf D, Jones EF, Newitt D, van ‘t Veer LJ, Yau C, Esserman L, Wulfkuhle JD, Gallagher RI, Singer L, Petricoin EF, Hylton N, Park CC. Features of MRI stromal enhancement with neoadjuvant chemotherapy: a subgroup analysis of the ACRIN 6657/I-SPY TRIAL. J Med Imaging (Bellingham) 2017; 5:011014. [PMID: 29296631 PMCID: PMC5741993 DOI: 10.1117/1.jmi.5.1.011014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/06/2017] [Indexed: 12/29/2022] Open
Abstract
Although the role of cancer-activated stroma in malignant progression has been well investigated, the influence of an activated stroma in therapy response is not well understood. Using retrospective pilot cohorts, we previously observed that MRI detected stromal contrast enhancement was associated with proximity to the tumor and was predictive for relapse-free survival in patients with breast cancer receiving neoadjuvant chemotherapy. Here, to evaluate the association of stromal contrast enhancement to therapy, we applied an advanced tissue mapping technique to evaluate stromal enhancement patterns within 71 patients enrolled in the I-SPY 1 neoadjuvant breast cancer trial. We correlated MR stromal measurements with stromal protein levels involved in tumor progression processes. We found that stromal percent enhancement values decrease with distance from the tumor edge with the estimated mean change ranging [Formula: see text] to [Formula: see text] ([Formula: see text]) for time points T2 through T4. While not statistically significant, we found a decreasing trend in global stromal signal enhancement ratio values with the use of chemotherapy. There were no statistically significant differences between MR enhancement measurements and stromal protein levels. Findings from this study indicate that stromal features characterized by MRI are impacted by chemotherapy and may have predictive value in a larger study.
Collapse
Affiliation(s)
- Adam Olshen
- University of California San Francisco, Department of Biostatistics and Epidemiology, San Francisco, California, United States.,University of California San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States
| | - Denise Wolf
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States
| | - Ella F Jones
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, United States
| | - David Newitt
- University of California San Francisco, Department of Surgery, San Francisco, California, United States
| | - Laura J van ‘t Veer
- University of California San Francisco, Department of Laboratory Medicine, San Francisco, California, United States
| | - Christina Yau
- University of California San Francisco, Department of Surgery, San Francisco, California, United States
| | - Laura Esserman
- University of California San Francisco, Department of Surgery, San Francisco, California, United States
| | - Julia D Wulfkuhle
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia, United States
| | - Rosa I Gallagher
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia, United States
| | - Lisa Singer
- University of California San Francisco, Department of Radiation Oncology, San Francisco, California, United States
| | - Emanuel F Petricoin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia, United States
| | - Nola Hylton
- University of California San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, California, United States
| | - Catherine C Park
- University of California San Francisco, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, United States.,University of California San Francisco, Department of Radiation Oncology, San Francisco, California, United States
| |
Collapse
|
27
|
Dumont L, Chalmel F, Oblette A, Berby B, Rives A, Duchesne V, Rondanino C, Rives N. Evaluation of apoptotic- and autophagic-related protein expressions before and after IVM of fresh, slow-frozen and vitrified pre-pubertal mouse testicular tissue. Mol Hum Reprod 2017; 23:738-754. [DOI: 10.1093/molehr/gax054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- L Dumont
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - F Chalmel
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | - A Oblette
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - B Berby
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - V Duchesne
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - C Rondanino
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| |
Collapse
|
28
|
Ludovini V, Chiari R, Tomassoni L, Antonini C, Baldelli E, Baglivo S, Siggillino A, Tofanetti FR, Bellezza G, Hodge KA, Petricoin E, Pierobon M, Crinò L, Bianconi F. Reverse phase protein array (RPPA) combined with computational analysis to unravel relevant prognostic factors in non- small cell lung cancer (NSCLC): a pilot study. Oncotarget 2017; 8:83343-83353. [PMID: 29137348 PMCID: PMC5669974 DOI: 10.18632/oncotarget.18480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
In this work high throughput technology and computational analysis were used to study two stage IV lung adenocarcinoma patients treated with standard chemotherapy with markedly different survival (128 months vs 6 months, respectively) and whose tumor samples exhibit a dissimilar protein activation pattern of the signal transduction. Tumor samples of the two patients were subjected to Reverse Phase Protein Microarray (RPPA) analysis to explore the expression/activation levels of 51 signaling proteins. We selected the most divergent proteins based on the ratio of their RPPA values in the two patients with short (s-OS) and long (l-OS) overall survival (OS) and tested them against a EGFR-IGF1R mathematical model. The model with RPPA data showed that the activation levels of 19 proteins were different in the two patients. The four proteins that most distinguished the two patients were BADS155/136 and c-KITY703/719 having a higher activation level in the patient with short survival and p70S6S371/T389 and b-RAFS445 that had a lower activation level in the s-OS patient. The final model describes the interactions between the MAPK and PI3K-mTOR pathways, including 21 nodes. According to our model mTOR and ERK activation levels were predicted to be lower in the s-OS patient than the l-OS patient, while the AMPK activation level was higher in the s-OS patient. Moreover, KRAS activation was predicted to be higher in the l-OS KRAS-mutated patient. In accordance with their different biological properties, the Moment Independent Robustness Indicator in s-OS and l-OS predicted the interaction of MAPK and mTOR and the crosstalk AKT with p90RSK as candidates to be prognostic factors and drug targets.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | - Chiara Antonini
- Department of Engineering, University of Perugia, Perugia, Italy
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Sara Baglivo
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | | | | | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Perugia, Italy
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lucio Crinò
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Fortunato Bianconi
- Department of Engineering, University of Perugia, Perugia, Italy.,Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Sereni MI, Baldelli E, Gambara G, Ravaggi A, Hodge KA, Alberts DS, Guillen-Rodriguez JM, Dong T, Memo M, Odicino F, Angioli R, Liotta LA, Pecorelli SL, Petricoin EF, Pierobon M. Kinase-driven metabolic signalling as a predictor of response to carboplatin-paclitaxel adjuvant treatment in advanced ovarian cancers. Br J Cancer 2017; 117:494-502. [PMID: 28664915 PMCID: PMC5558684 DOI: 10.1038/bjc.2017.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The biological mechanisms underlying early- and advanced-stage epithelial ovarian cancers (EOCs) are still poorly understood. This study explored kinase-driven metabolic signalling in early and advanced EOCs, and its role in tumour progression and response to carboplatin-paclitaxel treatment. METHODS Tumour epithelia were isolated from two independent sets of primary EOC (n=72 and 30 for the discovery and the validation sets, respectively) via laser capture microdissection. Reverse phase protein microarrays were used to broadly profile the kinase-driven metabolic signalling of EOC with particular emphasis on the LBK1-AMPK and AKT-mTOR axes. Signalling activation was compared between early and advanced lesions, and carboplatin-paclitaxel-sensitive and -resistant tumours. RESULTS Advanced EOCs were characterised by a heterogeneous kinase-driven metabolic signature and decreased phosphorylation of the AMPK-AKT-mTOR axis compared to early EOC (P<0.05 for AMPKα T172, AMPKα1 S485, AMPKβ1 S108, AKT S473 and T308, mTOR S2448, p70S6 S371, 4EBP1 S65, GSK-3 α/β S21/9, FOXO1 T24/FOXO3 T32, and FOXO1 S256). Advanced tumours with low relative activation of the metabolic signature and increased FOXO1 T24/FOXO3 T32 phosphorylation (P=0.041) were associated with carboplatin-paclitaxel resistance. CONCLUSIONS If validated in a larger cohort of patients, the decreased AMPK-AKT-mTOR activation and phosphorylation of FOXO1 T24/FOXO3 T32 may help identify carboplatin-paclitaxel-resistant EOC patients.
Collapse
Affiliation(s)
- Maria Isabella Sereni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Guido Gambara
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Antonella Ravaggi
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - David S Alberts
- The University of Arizona Cancer Center, 3838N Campbell Ave, Tucson, AZ 85719, USA
| | | | - Ting Dong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Franco Odicino
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Sergio L Pecorelli
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| |
Collapse
|
30
|
Rao G, Pierobon M, Kim IK, Hsu WH, Deng J, Moon YW, Petricoin EF, Zhang YW, Wang Y, Giaccone G. Inhibition of AKT1 signaling promotes invasion and metastasis of non-small cell lung cancer cells with K-RAS or EGFR mutations. Sci Rep 2017; 7:7066. [PMID: 28765579 PMCID: PMC5539338 DOI: 10.1038/s41598-017-06128-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence supports a role of the PI3K-AKT pathway in the regulation of cell motility, invasion and metastasis. AKT activation is known to promote metastasis, however under certain circumstances, it also shows an inhibitory activity on metastatic processes, and the cause of such conflicting results is largely unclear. Here we found that AKT1 is an important regulator of metastasis and down-regulation of its activity is associated with increased metastatic potential of A549 cells. Inhibition of AKT1 enhanced migration and invasion in KRAS- or EGFR-mutant non-small cell lung cancer (NSCLC) cells. The allosteric AKT inhibitor MK-2206 promoted metastasis of KRAS-mutated A549 cells in vivo. We next identified that the phosphorylation of Myristoylated alanine-rich C-kinase substrate (MARCKS) and LAMC2 protein level were increased with AKT1 inhibition, and MARCKS or LAMC2 knockdown abrogated migration and invasion induced by AKT1 inhibition. This study unravels an anti-metastatic role of AKT1 in the NSCLC cells with KRAS or EGFR mutations, and establishes an AKT1-MARCKS-LAMC2 feedback loop in this regulation.
Collapse
Affiliation(s)
- Guanhua Rao
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - In-Kyu Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Wei-Hsun Hsu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jianghong Deng
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Yong-Wha Moon
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Yu-Wen Zhang
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Yisong Wang
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Giuseppe Giaccone
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
31
|
Pierobon M, Ramos C, Wong S, Hodge KA, Aldrich J, Byron S, Anthony SP, Robert NJ, Northfelt DW, Jahanzeb M, Vocila L, Wulfkuhle J, Gambara G, Gallagher RI, Dunetz B, Hoke N, Dong T, Craig DW, Cristofanilli M, Leyland-Jones B, Liotta LA, O'Shaughnessy JA, Carpten JD, Petricoin EF. Enrichment of PI3K-AKT-mTOR Pathway Activation in Hepatic Metastases from Breast Cancer. Clin Cancer Res 2017; 23:4919-4928. [PMID: 28446508 DOI: 10.1158/1078-0432.ccr-16-2656] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/24/2022]
Abstract
Purpose: Little is known about the molecular signatures associated with specific metastatic sites in breast cancer. Using comprehensive multi-omic molecular profiling, we assessed whether alterations or activation of the PI3K-AKT-mTOR pathway is associated with specific sites of breast cancer metastasis.Experimental Design: Next-generation sequencing-based whole-exome sequencing was coupled with reverse-phase protein microarray (RPPA) functional signaling network analysis to explore the PI3K-AKT-mTOR axis in 32 pretreated breast cancer metastases. RPPA-based signaling data were further validated in an independent cohort of 154 metastatic lesions from breast cancer and 101 unmatched primary breast tumors. The proportion of cases with PI3K-AKT-mTOR genomic alterations or signaling network activation were compared between hepatic and nonhepatic lesions.Results:PIK3CA mutation and activation of AKT (S473) and p70S6K (T389) were detected more frequently among liver metastases than nonhepatic lesions (P < 0.01, P = 0.056, and P = 0.053, respectively). However, PIK3CA mutations alone were insufficient in predicting protein activation (P = 0.32 and P = 0.19 for activated AKT and p70S6K, respectively). RPPA analysis of an independent cohort of 154 tumors confirmed the relationship between pathway activation and hepatic metastasis [AKT (S473), mTOR (S2448), and 4EBP1 (S65); P < 0.01, P = 0.02, and P = 0.01, respectively]. Similar results were also seen between liver metastases and primary breast tumors [AKT (S473) P < 0.01, mTOR (S2448) P < 0.01, 4EBP1 (S65) P = 0.01]. This signature was lost when primary tumors were compared with all metastatic sites combined.Conclusions: Breast cancer patients with liver metastasis may represent a molecularly homogenized cohort with increased incidence of PIK3CA mutations and activation of the PI3K-AKT-mTOR signaling network. Clin Cancer Res; 23(16); 4919-28. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Shukmei Wong
- Translational Genomics Research Institute, Phoenix, Arizona
| | | | | | - Sara Byron
- Translational Genomics Research Institute, Phoenix, Arizona
| | | | | | - Donald W Northfelt
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Mohammad Jahanzeb
- University of Miami Sylvester Comprehensive Cancer Center Deerfield Campus, Deerfield Beach, Florida
| | - Linda Vocila
- TD2 Translational Drug Development, Scottsdale, Arizona
| | | | | | | | | | | | - Ting Dong
- George Mason University, Manassas, Virginia
| | - David W Craig
- Translational Genomics Research Institute, Phoenix, Arizona
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Brian Leyland-Jones
- Avera Cancer Institute Center for Precision Oncology, Sioux Falls, South Dakota
| | | | | | - John D Carpten
- Translational Genomics Research Institute, Phoenix, Arizona
| | | |
Collapse
|
32
|
Elnegaard MP, List M, Christiansen H, Schmidt S, Mollenhauer J, Block I. Protein-based nanotoxicology assessment strategy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1229-1233. [DOI: 10.1016/j.nano.2016.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/25/2016] [Indexed: 02/07/2023]
|
33
|
Pin E, Stratton S, Belluco C, Liotta L, Nagle R, Hodge KA, Deng J, Dong T, Baldelli E, Petricoin E, Pierobon M. A pilot study exploring the molecular architecture of the tumor microenvironment in human prostate cancer using laser capture microdissection and reverse phase protein microarray. Mol Oncol 2016; 10:1585-1594. [PMID: 27825696 DOI: 10.1016/j.molonc.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
The cross-talk between tumor epithelium and surrounding stromal/immune microenvironment is essential to sustain tumor growth and progression and provides new opportunities for the development of targeted treatments focused on disrupting the tumor ecology. Identification of novel approaches to study these interactions is of primary importance. Using laser capture microdissection (LCM) coupled with reverse phase protein microarray (RPPA) based protein signaling activation mapping we explored the molecular interconnection between tumor epithelium and surrounding stromal microenvironment in 18 prostate cancer (PCa) specimens. Four specimen-matched cellular compartments (normal-appearing epithelium and its adjacent stroma, and malignant epithelium and its adjacent stroma) were isolated for each case. The signaling network analysis of the four compartments unraveled a number of molecular mechanisms underlying the communication between tumor cells and stroma in the context of the tumor microenvironment. In particular, differential expression of inflammatory mediators like IL-8 and IL-10 by the stroma cells appeared to modulate specific cross-talks between the tumor cells and surrounding microenvironment.
Collapse
Affiliation(s)
- Elisa Pin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA; Division of Experimental Oncology 2, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Steven Stratton
- Division of Cancer Prevention and Control, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Claudio Belluco
- Department of Surgical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Ray Nagle
- Division of Cancer Prevention and Control, University of Arizona Cancer Center, Tucson, AZ, USA
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Jianghong Deng
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Ting Dong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| |
Collapse
|
34
|
Baldelli E, Bellezza G, Haura EB, Crinó L, Cress WD, Deng J, Ludovini V, Sidoni A, Schabath MB, Puma F, Vannucci J, Siggillino A, Liotta LA, Petricoin EF, Pierobon M. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors. Oncotarget 2016; 6:32368-79. [PMID: 26468985 PMCID: PMC4741699 DOI: 10.18632/oncotarget.5941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets.Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC).Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02).This finding was verified in an independent population by IHC (p=0.03).KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.,Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lucio Crinó
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - W Douglas Cress
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jianghong Deng
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Vienna Ludovini
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Matthew B Schabath
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Francesco Puma
- Department of Thoracic Surgery, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, University of Perugia, Perugia, Italy
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
35
|
Elisa B, B. HE, Lucio C, Douglas CW, Vienna L, B. SM, A. LL, F. PE, Mariaelena P. Impact of upfront cellular enrichment by laser capture microdissection on protein and phosphoprotein drug target signaling activation measurements in human lung cancer: Implications for personalized medicine. Proteomics Clin Appl 2015; 9:928-37. [PMID: 25676683 PMCID: PMC4547918 DOI: 10.1002/prca.201400056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection (LCM) is necessary for accurately quantifying predictive biomarkers in nonsmall cell lung cancer tumors. EXPERIMENTAL DESIGN Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via LCM were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. RESULTS Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. CONCLUSIONS AND CLINICAL RELEVANCE These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted.
Collapse
Affiliation(s)
- Baldelli Elisa
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Haura Eric B.
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Crinò Lucio
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Cress W. Douglas
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ludovini Vienna
- Medical Oncology Division, S. Maria della Misericordia Hospital, Perugia, Italy
| | - Schabath Matthew B.
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liotta Lance A.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Petricoin Emanuel F.
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Pierobon Mariaelena
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| |
Collapse
|
36
|
Abstract
Reverse phase protein array (RPPA) technology evolved from the advent of miniaturized immunoassays and gene microarray technology. Reverse phase protein arrays provide either a low throughput or high throughput methodology for quantifying proteins and their post-translationally modified forms in both cellular and non-cellular samples. As the demand for patient tailored therapies increases so does the need for precise and sensitive technology to accurately profile the molecular circuitry driving an individual patient's disease. RPPAs are currently utilized in clinical trials for profiling and comparing the functional state of protein signaling pathways, either temporally within tumors, between patients, or within the same patients before/after treatment. RPPAs are generally employed for quantifying large numbers of samples on one array, under identical experimental conditions. However, the goal of personalized cancer medicine is to design therapies based on the molecular portrait of a patient's tumor, which in turn result in more efficacious treatments with less toxicity. Therefore, RPPAs are also being validated for low throughput assays of individual patient samples. This review explores RPPA technology in the cancer research field, concentrating on its role as a fundamental tool for deciphering protein signaling networks and its emerging role in personalized medicine.
Collapse
|
37
|
Brown KE, Chagoya G, Kwatra SG, Yen T, Keir ST, Cooter M, Hoadley KA, Rasheed A, Lipp ES, Mclendon R, Ali-Osman F, Bigner DD, Sampson JH, Kwatra MM. Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development. J Neurochem 2015; 133:730-8. [PMID: 25598002 DOI: 10.1111/jnc.13032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 01/06/2023]
Abstract
The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. To date, proteomic level validation of widely used patient-derived glioblastoma xenografts (PDGX) has not been performed. In the present study, we characterized 20 PDGX models according to subtype classification based on The Cancer Genome Atlas criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. The 20 PDGXs belonged to three of four The Cancer Genome Atlas subtypes: eight classical, eight mesenchymal, and four proneural; none neural. Amplification of EGFR gene was observed in 9 of 20 xenografts, and of these, 3 harbored the EGFRvIII mutation. We then performed proteomic profiling of PDGX, analyzing expression/activity of several proteins including EGFR. Levels of EGFR phosphorylated at Y1068 vary considerably between PDGX samples, and this pattern was also seen in primary GBM. Partitioning of 20 PDGX into high (n = 5) and low (n = 15) groups identified a panel of proteins associated with high EGFR activity. Thus, PDGX with high EGFR activity represent an excellent pre-clinical model to develop therapies for a subset of GBM patients whose tumors are characterized by high EGFR activity. Further, the proteins found to be associated with high EGFR activity can be monitored to assess the effectiveness of targeting EGFR. The development of drugs to inhibit glioblastoma (GBM) growth requires reliable pre-clinical models. We validated proteomic profiles using patient-derived glioblastoma xenografts (PDGX), characterizing 20 PDGX models according to subtype classification based on The Cancer Genome Atlas (TCGA) criteria, TP53, PTEN, IDH 1/2, and TERT promoter genetic analysis, EGFR amplification status, and examined their proteomic profiles against those of their parent tumors. Proteins found to be associated with high EGFR activity represent potential biomarkers for GBM monitoring.
Collapse
Affiliation(s)
- Kristine E Brown
- School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|