1
|
Kar N, Caruso AP, Prokopiou N, Abrenica A, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal-to-amoeboid transition in confined environments. Curr Biol 2025; 35:1791-1804.e5. [PMID: 40120583 PMCID: PMC12014357 DOI: 10.1016/j.cub.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/09/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
To invade tissues, cells may undergo a mesenchymal-to-amoeboid transition (MAT). However, the mechanisms regulating this transition are poorly defined. In melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1-dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light-chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 promotes de-adhesion, which in turn facilitates migration across micropatterned surfaces. Thus, we reveal a novel Piezo1/Ca2+/INF2 signaling cascade that regulates MAT, enabling cancer cells to adapt their migration mode in response to varying mechanochemical environments.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alexa P Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alleah Abrenica
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
2
|
Tkachev S, Brosalov V, Kit O, Maksimov A, Goncharova A, Sadyrin E, Dalina A, Popova E, Osipenko A, Voloshin M, Karnaukhov N, Timashev P. Unveiling Another Dimension: Advanced Visualization of Cancer Invasion and Metastasis via Micro-CT Imaging. Cancers (Basel) 2025; 17:1139. [PMID: 40227647 PMCID: PMC11988112 DOI: 10.3390/cancers17071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Invasion and metastasis are well-known hallmarks of cancer, with metastatic disease accounting for 60% to 90% of cancer-related deaths [...].
Collapse
Affiliation(s)
- Sergey Tkachev
- Institute for Regenerative Medicine, Sechenov University, 119992 Moscow, Russia
| | | | - Oleg Kit
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia
| | - Alexey Maksimov
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia
| | - Anna Goncharova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia
| | - Evgeniy Sadyrin
- Laboratory of Mechanics of Biocompatible Materials, Don State Technical University, 344003 Rostov-on-Don, Russia
| | - Alexandra Dalina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elena Popova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, 115682 Moscow, Russia
| | - Anton Osipenko
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Mark Voloshin
- A.S. Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
| | - Nikolay Karnaukhov
- A.S. Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
- Institute of Clinical Morphology and Digital Pathology, Sechenov University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119992 Moscow, Russia
| |
Collapse
|
3
|
Kim J, Kim R, Lee W, Kim GH, Jeon S, Lee YJ, Lee JS, Kim KH, Won J, Lee W, Park K, Kim HJ, Im S, Lee KJ, Park C, Kim J, Lee JY. Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion. Mol Oncol 2025; 19:698-715. [PMID: 39473365 PMCID: PMC11887666 DOI: 10.1002/1878-0261.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 03/08/2025] Open
Abstract
Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Rokhyun Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Wonseok Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Department of Transitional MedicineSeoul National University College of MedicineSeoulKorea
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Gyu Hyun Kim
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Seeun Jeon
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Yun Jin Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
| | - Jong Seok Lee
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Kyung Hyun Kim
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
| | - Jae‐Kyung Won
- Department of Pathology, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Woochan Lee
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
| | - Kyunghyuk Park
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
| | - Hyun Je Kim
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| | - Sun‐Wha Im
- Department of Biochemistry and Molecular BiologyKangwon National University School of MedicineChuncheonKorea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity, Neural Circuits Research GroupKorea Brain Research InstituteDaeguKorea
| | - Chul‐Kee Park
- Department of Neurosurgery, Seoul National University HospitalSeoul National University College of MedicineSeoulKorea
| | - Jong‐Il Kim
- Medical Research CenterGenomic Medicine Institute, Seoul National UniversitySeoulKorea
- Department of Biomedical SciencesSeoul National University College of MedicineSeoulKorea
- Cancer Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulKorea
| | - Ji Yeoun Lee
- Department of Anatomy and Cell BiologySeoul National University College of MedicineSeoulKorea
- Division of Pediatric NeurosurgerySeoul National University Children's HospitalSeoulKorea
- Neuroscience Research Institute, Medical Research CenterSeoul National University College of MedicineSeoulKorea
| |
Collapse
|
4
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2025; 228:32-43. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
5
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
6
|
Hou X, Shi W, Luo W, Luo Y, Huang X, Li J, Ji N, Chen Q. FUS::DDIT3 Fusion Protein in the Development of Myxoid Liposarcoma and Possible Implications for Therapy. Biomolecules 2024; 14:1297. [PMID: 39456230 PMCID: PMC11506083 DOI: 10.3390/biom14101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The FUS::DDIT3 fusion protein, formed by the chromosomal translocation t (12;16) (q13;p11), is found in over 90% of myxoid liposarcoma (MLS) cases and is a crucial protein in its development. Many studies have explored the role of FUS::DDIT3 in MLS, and the prevailing view is that FUS::DDIT3 inhibits adipocyte differentiation and promotes MLS growth and invasive migration by functioning as an aberrant transcription factor that affects gene expression and regulates its downstream molecules. As fusion proteins are gradually showing their potential as targets for precision cancer therapy, FUS::DDIT3 has also been investigated as a therapeutic target. Drugs that target FUS::DDIT3 and its downstream molecules for treating MLS are widely utilized in both clinical practice and experimental studies, and some of them have demonstrated promising results. This article reviews the findings of relevant research, providing an overview of the oncogenic mechanisms of the FUS::DDIT3 fusion protein in MLS, as well as recent advancements in its therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (X.H.); (W.S.); (W.L.); (Y.L.); (X.H.); (J.L.); (Q.C.)
| | | |
Collapse
|
7
|
Deasy JO. Data Science Opportunities To Improve Radiotherapy Planning and Clinical Decision Making. Semin Radiat Oncol 2024; 34:379-394. [PMID: 39271273 PMCID: PMC11698470 DOI: 10.1016/j.semradonc.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Radiotherapy aims to achieve a high tumor control probability while minimizing damage to normal tissues. Personalizing radiotherapy treatments for individual patients, therefore, depends on integrating physical treatment planning with predictive models of tumor control and normal tissue complications. Predictive models could be improved using a wide range of rich data sources, including tumor and normal tissue genomics, radiomics, and dosiomics. Deep learning will drive improvements in classifying normal tissue tolerance, predicting intra-treatment tumor changes, tracking accumulated dose distributions, and quantifying the tumor response to radiotherapy based on imaging. Mechanistic patient-specific computer simulations ('digital twins') could also be used to guide adaptive radiotherapy. Overall, we are entering an era where improved modeling methods will allow the use of newly available data sources to better guide radiotherapy treatments.
Collapse
Affiliation(s)
- Joseph O Deasy
- Department of Medical Physics, Attending Physicist, Chief, Service for Predictive Informatics, Chair, Memorial Sloan Kettering Cancer Center, New York, NY..
| |
Collapse
|
8
|
Doran BR, Moffitt LR, Wilson AL, Stephens AN, Bilandzic M. Leader Cells: Invade and Evade-The Frontline of Cancer Progression. Int J Mol Sci 2024; 25:10554. [PMID: 39408880 PMCID: PMC11476628 DOI: 10.3390/ijms251910554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Metastasis is the leading cause of cancer-related mortality; however, a complete understanding of the molecular programs driving the metastatic cascade is lacking. Metastasis is dependent on collective invasion-a developmental process exploited by many epithelial cancers to establish secondary tumours and promote widespread disease. The key drivers of collective invasion are "Leader Cells", a functionally distinct subpopulation of cells that direct migration, cellular contractility, and lead trailing or follower cells. While a significant body of research has focused on leader cell biology in the traditional context of collective invasion, the influence of metastasis-promoting leader cells is an emerging area of study. This review provides insights into the expanded role of leader cells, detailing emerging evidence on the hybrid epithelial-mesenchymal transition (EMT) state and the phenotypical plasticity exhibited by leader cells. Additionally, we explore the role of leader cells in chemotherapeutic resistance and immune evasion, highlighting their potential as effective and diverse targets for novel cancer therapies.
Collapse
Affiliation(s)
- Brittany R. Doran
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Laura R. Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Amy L. Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia; (B.R.D.); (L.R.M.); (A.L.W.); (A.N.S.)
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
9
|
Orgaz JL. Creating a path during melanoma amoeboid migration: When too crowded, start worrying. Dev Cell 2024; 59:2395-2397. [PMID: 39317164 DOI: 10.1016/j.devcel.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Invasion of some cancer cells into surrounding tissues requires traversing dense environments, although the precise mechanisms are unclear. In this issue of Developmental Cell, Driscoll et al. (2024) show that amoeboid melanoma cells create tunnels via bleb-driven abrasion of the extracellular matrix (ECM) without proteolytic degradation, a mechanism coined "worrying."
Collapse
Affiliation(s)
- Jose L Orgaz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| |
Collapse
|
10
|
Feroz W, Park BS, Siripurapu M, Ntim N, Kilroy MK, Sheikh AMA, Mishra R, Garrett JT. Non-Muscle Myosin II A: Friend or Foe in Cancer? Int J Mol Sci 2024; 25:9435. [PMID: 39273383 PMCID: PMC11395477 DOI: 10.3390/ijms25179435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.
Collapse
Affiliation(s)
- Wasim Feroz
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Briley SoYoung Park
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
- Cancer Research Scholars Program, College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meghna Siripurapu
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Nicole Ntim
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Mary Kate Kilroy
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | | | - Rosalin Mishra
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| | - Joan T. Garrett
- Department of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (W.F.); (B.S.P.); (M.S.); (N.N.); (M.K.K.); (R.M.)
| |
Collapse
|
11
|
Li S, Liu Z, Deng S, Zhang Y, Jie Y. The ROCK inhibitor netarsudil in the treatment of corneal endothelial decompensation caused by corneal endotheliitis: A case report and literature review. Int Immunopharmacol 2024; 136:112195. [PMID: 38820965 DOI: 10.1016/j.intimp.2024.112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 06/02/2024]
Abstract
Proper hydration and the clarity of the cornea are maintained through the crucial function of the corneal endothelium. Inflammation of the corneal endothelium, known as endotheliitis, can disrupt endothelial function, resulting in alterations to vision. Corneal endotheliitis is characterised by corneal oedema, the presence of keratic precipitates, inflammation within the anterior chamber, and occasionally, limbal injection, neovascularisation, and the concurrent or overlapping presence of uveitis. The aetiology of this condition is diverse, predominantly viral, but it may also be drug-induced, result from bacterial or fungal infections, be associated with systemic diseases and procedures, or remain idiopathic with no identifiable cause. To date, no standardised protocol for the treatment of this ocular disease exists, and in severe cases, corneal transplantation may be required. A 31-year-old male was transferred to our hospital for the management of corneal endothelial decompensation resulting from corneal endotheliitis. Hormonal therapy and antiviral medications proved ineffective, rendering the patient a candidate for corneal transplantation. As a final measure, treatment with the ROCK inhibitor netarsudil was initiated. The patient demonstrated significant improvement in symptoms, and the inflammation was successfully managed after nine months. In this study, a novel approach employing ROCK inhibitor therapy was utilised for the treatment of corneal endotheliitis, leading to marked recovery during patient follow-up. This case report represents the inaugural application of the ROCK inhibitor netarsudil in managing corneal endothelial decompensation attributed to corneal endotheliitis. These findings suggest that this method warrants consideration as a potential novel treatment option for similar conditions.
Collapse
Affiliation(s)
- Shang Li
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ziyu Liu
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shijing Deng
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Škarková A, Bizzarri M, Janoštiak R, Mašek J, Rosel D, Brábek J. Educate, not kill: treating cancer without triggering its defenses. Trends Mol Med 2024; 30:673-685. [PMID: 38658206 DOI: 10.1016/j.molmed.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Traditionally, anticancer therapies focus on restraining uncontrolled proliferation. However, these cytotoxic therapies expose cancer cells to direct killing, instigating the process of natural selection favoring survival of resistant cells that become the foundation for tumor progression and therapy failure. Recognizing this phenomenon has prompted the development of alternative therapeutic strategies. Here we propose strategies targeting cancer hallmarks beyond proliferation, aiming at re-educating cancer cells towards a less malignant phenotype. These strategies include controlling cell dormancy, transdifferentiation therapy, normalizing the cancer microenvironment, and using migrastatic therapy. Adaptive resistance to these educative strategies does not confer a direct proliferative advantage to resistant cells, as non-resistant cells are not subject to eradication, thereby delaying or preventing the development of therapy-resistant tumors.
Collapse
Affiliation(s)
- Aneta Škarková
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Mariano Bizzarri
- System Biology Group Laboratory, Sapienza University, Rome, Italy
| | - Radoslav Janoštiak
- First Faculty of Medicine, BIOCEV, Charles University, Vestec, Czech Republic
| | - Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| | - Jan Brábek
- Department of Cell Biology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
| |
Collapse
|
13
|
Li H, Han X, Song L, Li X, Zhang L, Jin Z, Zhang Y, Wang T, Huang Z, Jia Z, Yang J. LINC00645 inhibits renal cell carcinoma progression by interacting with HNRNPA2B1 to regulate the ROCK1 mRNA stability. Gene 2024; 905:148232. [PMID: 38309317 DOI: 10.1016/j.gene.2024.148232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The lncRNA plays an important role in tumorigenesis and the progression of renal cell carcinoma (RCC). LINC00645 is one of the most different expressed lncRNA between RCC and normal renal tissue. However, the regulatory mechanism of LINC00645 in RCC remains unknown. Our results indicated that LINC00645 inhibited RCC proliferation, migration, and invasion. Mechanistically, HNRNPA2B1 directly bound to ROCK1 mRNA and strengthened its stability. LINC00645 competitively bound to the RRM1 domain, which is responsible for interacting with ROCK1 mRNA, reducing ROCK1 mRNA level by affecting posttranscriptional destabilization. The expression of LINC00645 was significantly reduced in RCC cells, significantly upregulating ROCK1 by abolishing the interaction with HNRNPA2B1, finally promoting RCC proliferation, migration, and invasion. Moreover, RCC cells with lower LINC00645 expression were more sensitive to the ROCK1 inhibitor Y-27632. Our study indicates that decreased expression of LINC00645 promotes the RCC progression via HNRNPA2B1/ROCK1 axis, providing a promising treatment strategy for RCC patients with decreased LINC00645 expression.
Collapse
Affiliation(s)
- Hao Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xu Han
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liang Song
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiang Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Liwei Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhibo Jin
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhenlin Huang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jinjian Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
14
|
Colyer B, Bak M, Basanta D, Noble R. A seven-step guide to spatial, agent-based modelling of tumour evolution. Evol Appl 2024; 17:e13687. [PMID: 38707992 PMCID: PMC11064804 DOI: 10.1111/eva.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Spatial agent-based models are frequently used to investigate the evolution of solid tumours subject to localized cell-cell interactions and microenvironmental heterogeneity. As spatial genomic, transcriptomic and proteomic technologies gain traction, spatial computational models are predicted to become ever more necessary for making sense of complex clinical and experimental data sets, for predicting clinical outcomes, and for optimizing treatment strategies. Here we present a non-technical step by step guide to developing such a model from first principles. Stressing the importance of tailoring the model structure to that of the biological system, we describe methods of increasing complexity, from the basic Eden growth model up to off-lattice simulations with diffusible factors. We examine choices that unavoidably arise in model design, such as implementation, parameterization, visualization and reproducibility. Each topic is illustrated with examples drawn from recent research studies and state of the art modelling platforms. We emphasize the benefits of simpler models that aim to match the complexity of the phenomena of interest, rather than that of the entire biological system. Our guide is aimed at both aspiring modellers and other biologists and oncologists who wish to understand the assumptions and limitations of the models on which major cancer studies now so often depend.
Collapse
Affiliation(s)
- Blair Colyer
- Department of MathematicsCity, University of LondonLondonUK
| | - Maciej Bak
- Department of MathematicsCity, University of LondonLondonUK
| | - David Basanta
- Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Robert Noble
- Department of MathematicsCity, University of LondonLondonUK
| |
Collapse
|
15
|
Kar N, Caruso AP, Prokopiou N, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal to amoeboid transition in confined environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546346. [PMID: 37745412 PMCID: PMC10515767 DOI: 10.1101/2023.06.23.546346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
To invade heterogenous tissues, transformed cells may undergo a mesenchymal to amoeboid transition (MAT). However, the molecular mechanisms regulating this transition are poorly defined. In invasive melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1 dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 is found to promote de-adhesion, which in turn facilitates MAT. Using micropatterned surfaces, we demonstrate that cells require INF2 to effectively migrate in environments with challenging mechanochemical properties.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Alexa P. Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Jeremy S. Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| |
Collapse
|
16
|
Tan RZ. Tumour Growth Mechanisms Determine Effectiveness of Adaptive Therapy in Glandular Tumours. Interdiscip Sci 2024; 16:73-90. [PMID: 37776475 DOI: 10.1007/s12539-023-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
In cancer treatment, adaptive therapy holds promise for delaying the onset of recurrence through regulating the competition between drug-sensitive and drug-resistant cells. Adaptive therapy has been studied in well-mixed models assuming free mixing of all cells and spatial models considering the interactions of single cells with their immediate adjacent cells. Both models do not reflect the spatial structure in glandular tumours where intra-gland cellular interaction is high, while inter-gland interaction is limited. Here, we use mathematical modelling to study the effects of adaptive therapy on glandular tumours that expand using either glandular fission or invasive growth. A two-dimensional, lattice-based model of sites containing sensitive and resistant cells within individual glands is developed to study the evolution of glandular tumour cells under continuous and adaptive therapies. We found that although both growth models benefit from adaptive therapy's ability to prevent recurrence, invasive growth benefits more from it than fission growth. This difference is due to the migration of daughter cells into neighboring glands that is absent in fission but present in invasive growth. The migration resulted in greater mixing of cells, enhancing competition induced by adaptive therapy. By varying the initial spatial spread and location of the resistant cells within the tumour, we found that modifying the conditions within the resistant cells containing glands affect both fission and invasive growth. However, modifying the conditions surrounding these glands affect invasive growth only. Our work reveals the interplay between growth mechanism and tumour topology in modulating the effectiveness of cancer therapy.
Collapse
Affiliation(s)
- Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore, 138683, Singapore.
| |
Collapse
|
17
|
Hassani I, Anbiah B, Moore AL, Abraham PT, Odeniyi IA, Habbit NL, Greene MW, Lipke EA. Establishment of a tissue-engineered colon cancer model for comparative analysis of cancer cell lines. J Biomed Mater Res A 2024; 112:231-249. [PMID: 37927200 DOI: 10.1002/jbm.a.37611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 11/07/2023]
Abstract
To overcome the limitations of in vitro two-dimensional (2D) cancer models in mimicking the complexities of the native tumor milieu, three-dimensional (3D) engineered cancer models using biomimetic materials have been introduced to more closely recapitulate the key attributes of the tumor microenvironment. Specifically, for colorectal cancer (CRC), a few studies have developed 3D engineered tumor models to investigate cell-cell interactions or efficacy of anti-cancer drugs. However, recapitulation of CRC cell line phenotypic differences within a 3D engineered matrix has not been systematically investigated. Here, we developed an in vitro 3D engineered CRC (3D-eCRC) tissue model using the natural-synthetic hybrid biomaterial PEG-fibrinogen and three CRC cell lines, HCT 116, HT-29, and SW480. To better recapitulate native tumor conditions, our 3D-eCRC model supported higher cell density encapsulation (20 × 106 cells/mL) and enabled longer term maintenance (29 days) as compared to previously reported in vitro CRC models. The 3D-eCRCs formed using each cell line demonstrated line-dependent differences in cellular and tissue properties, including cellular growth and morphology, cell subpopulations, cell size, cell granularity, migration patterns, tissue growth, gene expression, and tissue stiffness. Importantly, these differences were found to be most prominent from Day 22 to Day 29, thereby indicating the importance of long-term culture of engineered CRC tissues for recapitulation and investigation of mechanistic differences and drug response. Our 3D-eCRC tissue model showed high potential for supporting future in vitro comparative studies of disease progression, metastatic mechanisms, and anti-cancer drug candidate response in a CRC cell line-dependent manner.
Collapse
Affiliation(s)
- Iman Hassani
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
- Department of Chemical Engineering, Tuskegee University, Tuskegee, Alabama, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Andrew L Moore
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Peter T Abraham
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Ifeoluwa A Odeniyi
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Nicole L Habbit
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Michael W Greene
- Department of Nutritional Sciences, Auburn University, Auburn, Alabama, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
18
|
Jiang L, Khawaja H, Tahsin S, Clarkson TA, Miranti CK, Zohar Y. Microfluidic-based human prostate-cancer-on-chip. Front Bioeng Biotechnol 2024; 12:1302223. [PMID: 38322789 PMCID: PMC10844564 DOI: 10.3389/fbioe.2024.1302223] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Lack of adequate models significantly hinders advances in prostate cancer treatment, where resistance to androgen-deprivation therapies and bone metastasis remain as major challenges. Current in vitro models fail to faithfully mimic the complex prostate physiology. In vivo animal models can shed light on the oncogenes involved in prostate cancer development and progression; however, the animal prostate gland is fundamentally different from that of human, and the underlying genetic mechanisms are different. To address this problem, we developed the first in vitro microfluidic human Prostate-Cancer-on-Chip (PCoC) model, where human prostate cancer and stromal fibroblast cells were co-cultivated in two channels separated by a porous membrane under culture medium flow. The established microenvironment enables soluble signaling factors secreted by each culture to locally diffuse through the membrane pores affecting the neighboring culture. We particularly explored the conversion of the stromal fibroblasts into cancer-associated fibroblasts (CAFs) due to the interaction between the 2 cell types. Immunofluorescence microscopy revealed that tumor cells induced CAF biomarkers, αSMA and COL1A1, in stromal fibroblasts. The stromal CAF conversion level was observed to increase along the flow direction in response to diffusion agents, consistent with simulations of solute concentration gradients. The tumor cells also downregulated androgen receptor (AR) expression in stromal fibroblasts, while an adequate level of stromal AR expression is maintained in normal prostate homeostasis. We further investigated tumor invasion into the stroma, an early step in the metastatic cascade, in devices featuring a serpentine channel with orthogonal channel segments overlaying a straight channel and separated by an 8 µm-pore membrane. Both tumor cells and stromal CAFs were observed to cross over into their neighboring channel, and the stroma's role seemed to be proactive in promoting cell invasion. As control, normal epithelial cells neither induced CAF conversion nor promoted cell invasion. In summary, the developed PCoC model allows spatiotemporal analysis of the tumor-stroma dynamic interactions, due to bi-directional signaling and physical contact, recapitulating tissue-level multicellular responses associated with prostate cancer in vivo. Hence, it can serve as an in vitro model to dissect mechanisms in human prostate cancer development and seek advanced therapeutic strategies.
Collapse
Affiliation(s)
- Linan Jiang
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
| | - Hunain Khawaja
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | - Shekha Tahsin
- Cancer Biology Graduate Interdisciplinary Program, Tucson, AZ, United States
| | | | - Cindy K. Miranti
- Department of Molecular and Cellular Biology, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, Tucson, AZ, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
19
|
Pranoto IKA, Lee J, Kwon YV. The roles of the native cell differentiation program aberrantly recapitulated in Drosophila intestinal tumors. Cell Rep 2023; 42:113245. [PMID: 37837622 PMCID: PMC10872463 DOI: 10.1016/j.celrep.2023.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/11/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Many tumors recapitulate the developmental and differentiation program of their tissue of origin, a basis for tumor cell heterogeneity. Although stem-cell-like tumor cells are well studied, the roles of tumor cells undergoing differentiation remain to be elucidated. We employ Drosophila genetics to demonstrate that the differentiation program of intestinal stem cells is crucial for enabling intestinal tumors to invade and induce non-tumor-autonomous phenotypes. The differentiation program that generates absorptive cells is aberrantly recapitulated in the intestinal tumors generated by activation of the Yap1 ortholog Yorkie. Inhibiting it allows stem-cell-like tumor cells to grow but suppresses invasiveness and reshapes various phenotypes associated with cachexia-like wasting by altering the expression of tumor-derived factors. Our study provides insight into how a native differentiation program determines a tumor's capacity to induce advanced cancer phenotypes and suggests that manipulating the differentiation programs co-opted in tumors might alleviate complications of cancer, including cachexia.
Collapse
Affiliation(s)
| | - Jiae Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Young V Kwon
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Samain R, Maiques O, Monger J, Lam H, Candido J, George S, Ferrari N, KohIhammer L, Lunetto S, Varela A, Orgaz JL, Vilardell F, Olsina JJ, Matias-Guiu X, Sarker D, Biddle A, Balkwill FR, Eyles J, Wilkinson RW, Kocher HM, Calvo F, Wells CM, Sanz-Moreno V. CD73 controls Myosin II-driven invasion, metastasis, and immunosuppression in amoeboid pancreatic cancer cells. SCIENCE ADVANCES 2023; 9:eadi0244. [PMID: 37851808 PMCID: PMC10584351 DOI: 10.1126/sciadv.adi0244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/06/2023] [Indexed: 10/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.
Collapse
Affiliation(s)
- Remi Samain
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Oscar Maiques
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Joanne Monger
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
- GSK, R&D Portfolio, Strategy and Business Insights, GSK House, 980 Great West Road, Brentford, TW8 9GS, UK
| | - Juliana Candido
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | - Samantha George
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicola Ferrari
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Translational Science and Experimental Medicine, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Leonie KohIhammer
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophia Lunetto
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Adrian Varela
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jose L. Orgaz
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Instituto de Investigaciones Biomédicas Sols-Morreale CSIC-UAM, 28029 Madrid, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Jorge Juan Olsina
- Department of Surgery, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology, University Hospital Arnau de Vilanova, University of Lleida, Lleida, Spain
- IRBLLEIDA, IDIBELL, University Hospita of Bellvitge, CIBERONC, Lleida, Spain
| | - Debashis Sarker
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Adrian Biddle
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Frances R. Balkwill
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jim Eyles
- Oncology R&D, AstraZeneca, Cambridge CB21 6GH, UK
| | | | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts and the London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Fernando Calvo
- Tumour Microenvironment Team, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Instituto de Biomedicina y Biotecnologia de Cantabria, c/ Albert Einstein 22, E39011 Santander, Spain
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
21
|
Nazari SS, Doyle AD, Bleck CKE, Yamada KM. Long Prehensile Protrusions Can Facilitate Cancer Cell Invasion through the Basement Membrane. Cells 2023; 12:2474. [PMID: 37887318 PMCID: PMC10605924 DOI: 10.3390/cells12202474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
A basic process in cancer is the breaching of basement-membrane barriers to permit tissue invasion. Cancer cells can use proteases and physical mechanisms to produce initial holes in basement membranes, but how cells squeeze through this barrier into matrix environments is not well understood. We used a 3D invasion model consisting of cancer-cell spheroids encapsulated by a basement membrane and embedded in collagen to characterize the dynamic early steps in cancer-cell invasion across this barrier. We demonstrate that certain cancer cells extend exceptionally long (~30-100 μm) protrusions through basement membranes via actin and microtubule cytoskeletal function. These long protrusions use integrin adhesion and myosin II-based contractility to pull cells through the basement membrane for initial invasion. Concurrently, these long, organelle-rich protrusions pull surrounding collagen inward while propelling cancer cells outward through perforations in the basement-membrane barrier. These exceptionally long, contractile cellular protrusions can facilitate the breaching of the basement-membrane barrier as a first step in cancer metastasis.
Collapse
Affiliation(s)
- Shayan S. Nazari
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D. Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K. E. Bleck
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenneth M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Su CY, Matsubara T, Wu A, Ahn EH, Kim DH. Matrix Anisotropy Promotes a Transition of Collective to Disseminated Cell Migration via a Collective Vortex Motion. Adv Biol (Weinh) 2023; 7:e2300026. [PMID: 36932886 DOI: 10.1002/adbi.202300026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/19/2023]
Abstract
Cells detached and disseminated away from collectively migrating cells are frequently found during tumor invasion at the invasion front, where extracellular matrix (ECM) fibers are parallel to the cell migration direction. However, it remains unclear how anisotropic topography promotes the transition of collective to disseminated cell migration. This study applies a collective cell migration model with and without 800 nm wide aligned nanogrooves parallel, perpendicular, or diagonal to the cell migration direction. After 120 hour migration, MCF7-GFP-H2B-mCherry breast cancer cells display more disseminated cells at the migration front on parallel topography than on other topographies. Notably, a fluid-like collective motion with high vorticity is enhanced at the migration front on parallel topography. Furthermore, high vorticity but not velocity is correlated with disseminated cell numbers on parallel topography. Enhanced collective vortex motion colocalizes with cell monolayer defects where cells extend protrusions into the free space, suggesting that topography-driven cell crawling for defect closure promotes the collective vortex motion. In addition, elongated cell morphology and frequent protrusions induced by topography may further contribute to the collective vortex motion. Overall, a high-vorticity collective motion at the migration front promoted by parallel topography suggests a cause of the transition of collective to disseminated cell migration.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tatsuya Matsubara
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alex Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
23
|
Hiraki HL, Matera DL, Wang WY, Prabhu ES, Zhang Z, Midekssa F, Argento AE, Buschhaus JM, Humphries BA, Luker GD, Pena-Francesch A, Baker BM. Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimetic composite hydrogel. Acta Biomater 2023; 163:378-391. [PMID: 36179980 PMCID: PMC10043045 DOI: 10.1016/j.actbio.2022.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023]
Abstract
The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.
Collapse
Affiliation(s)
- Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eashan S Prabhu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Zane Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Firaol Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Anna E Argento
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brock A Humphries
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
24
|
Crosas-Molist E, Graziani V, Maiques O, Pandya P, Monger J, Samain R, George SL, Malik S, Salise J, Morales V, Le Guennec A, Atkinson RA, Marti RM, Matias-Guiu X, Charras G, Conte MR, Elosegui-Artola A, Holt M, Sanz-Moreno V. AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration. Nat Commun 2023; 14:2740. [PMID: 37217519 PMCID: PMC10202939 DOI: 10.1038/s41467-023-38292-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Pahini Pandya
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Joanne Monger
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Samantha L George
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Saba Malik
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Jerrine Salise
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Valle Morales
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Adrien Le Guennec
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - R Andrew Atkinson
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR5089, CNRS-Université de Toulouse III-Paul Sabatier, BP 64182, 31077, Toulouse, Cedex 4, France
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, CIBERONC, IRB Lleida, Lleida, 25198, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, Lleida, 25198, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, IDIBELL, CIBERONC, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- Centre for Biomolecular Spectroscopy, King's College London, London, SE1 1UL, UK
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Mark Holt
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London BHF Centre of Research Excellence, London, SE1 1UL, UK
| | - Victoria Sanz-Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK.
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
25
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
26
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
27
|
Barcelo J, Samain R, Sanz-Moreno V. Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer 2023; 9:250-263. [PMID: 36599733 DOI: 10.1016/j.trecan.2022.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
ROCK belongs to the AGC family of Ser/Thr protein kinases that are involved in many cellular processes. ROCK-driven actomyosin contractility regulates cytoskeletal dynamics underpinning cell migration, proliferation, and survival in many cancer types. ROCK1/2 play key protumorigenic roles in several subtypes and stages of cancer development. Therefore, successfully targeting ROCK and its downstream effectors presents an interesting avenue for cancer treatment. Because local use of ROCK inhibitors will reduce the side effects of systemic administration, we propose different therapeutic strategies and latest-generation ROCK inhibitors for use in the clinic.
Collapse
Affiliation(s)
- Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
28
|
Chillà A, Anceschi C, Frediani E, Scavone F, Del Rosso T, Pelagio G, Tufaro A, De Palma G, Del Rosso M, Fibbi G, Chiarugi P, Laurenzana A, Margheri F. Inhibition of MMPs supports amoeboid angiogenesis hampering VEGF-targeted therapies via MLC and ERK 1/2 signaling. J Transl Med 2023; 21:102. [PMID: 36759828 PMCID: PMC9912547 DOI: 10.1186/s12967-023-03954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
| | - Cecilia Anceschi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Elena Frediani
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Scavone
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Tommaso Del Rosso
- grid.4839.60000 0001 2323 852XDepartment of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22451-900 Brazil
| | - Giuseppe Pelagio
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Tufaro
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giuseppe De Palma
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Mario Del Rosso
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Paola Chiarugi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Anna Laurenzana
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Margheri
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
29
|
CHRNA1 and its correlated-myogenesis/cell cycle genes are prognosis-related markers of metastatic melanoma. Biochem Biophys Rep 2023; 33:101425. [PMID: 36654921 PMCID: PMC9841360 DOI: 10.1016/j.bbrep.2023.101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Nicotinic acetylcholine receptors (CHRNs) expression and their critical role in various types of cancer have been reported. However, it is still unclear which CHRNs and their associated genes play essential roles in metastasis in melanoma patients. Here, we performed bioinformatics analyses on publicly available bulk RNA sequencing (RNA-seq) data of patients with melanoma to identify the CHRNs highly expressed in metastatic melanoma. We found that CHRNA1 was highly expressed in metastatic melanoma samples compared to primary melanoma samples and was strongly associated with CHRNB1 and CHRNG. These muscle-type CHRNs (CHRNA1, CHRNB1, and CHRNG) were correlated with the ZEB1 and Rho/ROCK pathway-related genes in metastatic melanoma samples. Pairwise correlations and enrichment analyses revealed that CHRNA1 was significantly associated with myogenesis/muscle contraction and cell cycle genes. Kaplan-Meier curves illustrated the involvement of CHRNA1, four of its correlated genes (DES, FLNC, CDK1, and CDC20), and the myogenesis gene signature in the prognosis of melanoma patients. Following the bulk RNA-seq analysis, single-cell RNA-seq (scRNA-seq) analysis showed that the CHRNA1-expressing melanoma cells are primarily metastatic and had high expression levels of CHRNB1, CHRNG, and myogenesis/cell cycle-related genes. Our bioinformatics analyses of the bulk RNA-seq and scRNA-seq data of patients with melanoma revealed that CHRNA1 and its correlated myogenesis/cell-related cycle genes are critical prognosis-related markers of metastatic melanoma.
Collapse
|
30
|
Jung-Garcia Y, Maiques O, Monger J, Rodriguez-Hernandez I, Fanshawe B, Domart MC, Renshaw MJ, Marti RM, Matias-Guiu X, Collinson LM, Sanz-Moreno V, Carlton JG. LAP1 supports nuclear adaptability during constrained melanoma cell migration and invasion. Nat Cell Biol 2023; 25:108-119. [PMID: 36624187 PMCID: PMC9859759 DOI: 10.1038/s41556-022-01042-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2022] [Indexed: 01/11/2023]
Abstract
Metastasis involves dissemination of cancer cells away from a primary tumour and colonization at distal sites. During this process, the mechanical properties of the nucleus must be tuned since they pose a challenge to the negotiation of physical constraints imposed by the microenvironment and tissue structure. We discovered increased expression of the inner nuclear membrane protein LAP1 in metastatic melanoma cells, at the invasive front of human primary melanoma tumours and in metastases. Human cells express two LAP1 isoforms (LAP1B and LAP1C), which differ in their amino terminus. Here, using in vitro and in vivo models that recapitulate human melanoma progression, we found that expression of the shorter isoform, LAP1C, supports nuclear envelope blebbing, constrained migration and invasion by allowing a weaker coupling between the nuclear envelope and the nuclear lamina. We propose that LAP1 renders the nucleus highly adaptable and contributes to melanoma aggressiveness.
Collapse
Affiliation(s)
- Yaiza Jung-Garcia
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, UK
- Sanz-Moreno Group, Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, UK
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Oscar Maiques
- Sanz-Moreno Group, Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Joanne Monger
- Sanz-Moreno Group, Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, UK
| | - Irene Rodriguez-Hernandez
- Sanz-Moreno Group, Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, UK
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Bruce Fanshawe
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Marie-Charlotte Domart
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Rosa M Marti
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova, University of Lleida, IRB Lleida, CIBERONC, Lleida, Spain
| | - Lucy M Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK
| | - Victoria Sanz-Moreno
- Sanz-Moreno Group, Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, UK.
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK.
| | - Jeremy G Carlton
- Organelle Dynamics Laboratory, The Francis Crick Institute, London, UK.
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
31
|
Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V. Green-Based Approach to Synthesize Silver Nanoparticles Using the Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and In Vitro Anticancer Potential. ACS OMEGA 2022; 7:46653-46673. [PMID: 36570288 PMCID: PMC9774420 DOI: 10.1021/acsomega.2c05605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A green-based approach for the synthesis of silver nanoparticles has gained tremendous attention in biomedical applications. Fungal endophytes have been recognized as a remarkable biological source for the synthesis of potential nanodrugs. The present study focuses on the fabrication of silver nanoparticles using the fungal endophyte Penicillium oxalicum (POAgNPs) associated with the leaf of the Amoora rohituka plant. Sharp UV-visible spectra at 420 nm appeared due to the surface plasmon resonance of POAgNPs and the reduction of silver salt. FT-IR analysis revealed the presence of functional groups of bioactive compounds of P. oxalicum responsible for the reduction of silver salt and validated the synthesis of POAgNPs. A high degree of crystallinity was revealed through XRD analysis, and microscopy-based characterizations such as AFM, TEM, and FESEM showed uniformly distributed, and spherically shaped nanoparticles. Furthermore, POAgNPs showed a potential inhibitory effect against bacterial and fungal strains of pathogenic nature. POAgNPs also exhibited potential antioxidant activity against the synthetically generated free radicals such as DPPH, superoxide, hydroxyl, and nitric oxide with EC50 values of 9.034 ± 0.449, 56.378 ± 1.137, 34.094 ± 1.944, and 61.219 ± 0.69 μg/mL, respectively. Moreover, POAgNPs exhibited cytotoxic potential against the breast cancer cell lines, MDA-MB-231 and MCF-7 with IC50 values of 20.080 ± 0.761 and 40.038 ± 1.022 μg/mL, respectively. POAgNPs showed anticancer potential through inhibition of wound closure and by altering the nuclear morphology of MDA-MB-231 and MCF-7 cells. Further anticancer activity revealed that POAgNPs induced apoptosis in MDA-MB-231 and MCF-7 cells by differential expression of genes related to apoptosis, tumor suppression, and cell cycle arrest and increased the level of Caspase-3. The novel study showed that P. oxalicum-mediated silver nanoparticles exhibit potential biological activity, which can be exploited as nanodrugs in clinical applications.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dimple Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Surya Pratap Singh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Deepak Kumar
- Department
of Botany, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
32
|
TRPV4 Promotes Metastasis in Melanoma by Regulating Cell Motility through Cytoskeletal Rearrangement. Int J Mol Sci 2022; 23:ijms232315155. [PMID: 36499486 PMCID: PMC9737014 DOI: 10.3390/ijms232315155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The abnormal expression of Transient Receptor Potential cation channel subfamily V member 4 (TRPV4) is closely related to the progression of multiple tumors. In addition, TRPV4 is increasingly being considered a potential target for cancer therapy, especially in tumor metastasis prevention. However, the biological correlation between TRPV4 and tumor metastasis, as well as the specific role of TRPV4 in malignant melanoma metastasis, is poorly understood. In this study, we aimed to examine the role of TRPV4 in melanoma metastasis through experiments and clinical data analysis, and the underlying anticancer mechanism of Baicalin, a natural compound, and its inhibitory effect on TRPV4 with in vivo and in vitro experiments. Our findings suggested that TRPV4 promotes metastasis in melanoma by regulating cell motility via rearranging the cytoskeletal, and Baicalin can inhibit cancer metastasis, whose mechanisms reverse the recruitment of activated cofilin to leading-edge protrusion and the increasing phosphorylation level of cortactin, which is provoked by TRPV4 activation.
Collapse
|
33
|
Su Z, Ao J, Zhao F, Xu G, Chen H, Gao C. The roles of long non‑coding RNAs in renal cell carcinoma (Review). Mol Clin Oncol 2022; 18:4. [PMID: 36591597 PMCID: PMC9780631 DOI: 10.3892/mco.2022.2600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/07/2022] [Indexed: 11/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in the gene expression regulation and usually play important roles in various human cancers, including the renal cell carcinoma (RCC). Dysregulation of certain lncRNAs are associated with the prognosis of patients with RCC. In the present review, several recently studied lncRNAs were discussed and their critical roles in proliferation, migration, invasion, apoptosis and drug resistance of renal cancer cells were revealed. The research on lncRNAs further increases our understanding on the development and progression of RCC. It is suggested that lncRNAs can be used as biomarkers or therapeutic targets for diagnosis or treatment of renal cancer.
Collapse
Affiliation(s)
- Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Jian Ao
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Fengjin Zhao
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Huihua Chen
- Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| | - Chen Gao
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Professor Huihua Chen, Department of Education Management Section, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Road, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
34
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
35
|
Jin Y, Zhang J, Pan Y, Shen W. Berberine Suppressed the Progression of Human Glioma Cells by Inhibiting the TGF-β1/SMAD2/3 Signaling Pathway. Integr Cancer Ther 2022; 21:15347354221130303. [PMID: 36255058 PMCID: PMC9583234 DOI: 10.1177/15347354221130303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Previous studies have shown that berberine can inhibit glioma progression,
although the underlying molecular mechanisms needed to be explored further.
The aim of this study was to evaluate the suppressive effects of berberine
on human glioma cells, and identify the underlying signaling pathways. Material and Methods: The cytotoxic effect of different concentrations of berberine against normal
human glial cells (HEB) and 4 glioma cell lines was evaluated by the CCK-8
assay. Apoptosis was assayed by flow cytometry. In vitro migration and
invasion were analyzed by the wound healing and transwell assays. The
expression levels of specific proteins were measured by western blotting and
ELISA. Results: Berberine significantly inhibited the proliferation of human glioma U-87
cells, and induced apoptosis in the U-87 and LN229 cells by downregulating
Bcl-2, and upregulating Bax and caspase-3. In addition, berberine also
inhibited migration and invasion of the glioma cells. Furthermore, berberine
exerted its effects on the proliferation, migration, invasion, and apoptosis
of glioma cells by inhibiting the TGF-β1/SMAD2/3 signaling pathway, and
exogenous TGF-β abrogated the pro-apoptotic and anti-oncogenic effects of
berberine. Conclusions: Berberine inhibits glioma progression by targeting the TGF-β1/SMAD2/3
signaling pathway.
Collapse
Affiliation(s)
- Yun Jin
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Jiawei Zhang
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Yunfeng Pan
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China
| | - Wangzhen Shen
- Tongxiang First People’s Hospital,
Tongxiang, Zhejiang, China,Wangzhen Shen, Department of Neurosurgery,
Tongxiang First People’s Hospital, No. 1918, Jiaochang East Road, Zhendong New
District, Tongxiang City, Zhejiang 314500, China.
| |
Collapse
|
36
|
Lu JJ, Ma XR, Xie K, Chen MR, Huang B, Li RT, Ye RR. Lysosome-targeted cyclometalated iridium(III) complexes: JMJD inhibition, dual induction of apoptosis and autophagy. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6694002. [PMID: 36073756 DOI: 10.1093/mtomcs/mfac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/28/2022] [Indexed: 11/14/2022]
Abstract
A series of cyclometalated iridium(III) complexes with the formula [Ir(C^N)2 L](PF6) (C^N = 2-phenylpyridine (ppy, in Ir-1), 2-(2-thienyl)pyridine (thpy, in Ir-2), 2-(2,4-difluorophenyl)pyridine (dfppy, in Ir-3), L = 2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)quinolin-8-ol) were designed and synthesized, which utilize 8-hydroxyquinoline derivative as N^N ligands to chelate the cofactor Fe2+ of the Jumonji domain-containing protein (JMJD) histone demethylase. As expected, the results of UV/Vis titration analysis confirm the chelating capabilities of Ir-1-3 for Fe2+, and molecular docking studies also show that Ir-1-3 can interact with the active pocket of JMJD protein, and treatment of cells with Ir-1-3 results in significant upregulation of trimethylated histone 3 lysine 9 (H3K9Me3), indicating the inhibition of JMJD activity. Meanwhile, Ir-1-3 exhibit much higher cytotoxicity against the tested tumor cell lines compared with the clinical chemotherapeutic agent cisplatin. And Ir-1-3 can block the cell cycle at G2/M phase and inhibit cell migration and colony formation. Further studies show that Ir-1-3 can specifically accumulate in lysosomes, damage the integrity of lysosomes, and induce apoptosis and autophagy. Reduction of mitochondrial membrane potential (MMP) and elevation of reactive oxygen species (ROS) also contribute to the antitumor effects of Ir-1-3. Finally, Ir-1 can inhibit tumor growth effectively in vivo and increase the expression of H3K9Me3 in tumor tissues. Our study demonstrates that these iridium(III) complexes are promising anticancer agents with multiple functions, including the inhibition of JMJD and induction of apoptosis and autophagy.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mei-Ru Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
37
|
Perivascular infiltration reflects subclinical lymph node metastasis in invasive lobular carcinoma. Virchows Arch 2022; 481:533-543. [PMID: 35947202 DOI: 10.1007/s00428-022-03391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Invasive lobular carcinoma (ILC) is characterized by discohesive cells due to irreversible loss of E-cadherin expression and multiple satellites, where individual cell migration is evident without disturbance of the stroma. Neoplastic cells sometimes infiltrate the surrounding vessel in satellites. Here, we aimed to clarify the specific role of perivascular infiltration (PVI) and ameboid migration, characterized by nondisturbance of the background stromal structure, in ILCs. A total of 139 cases with ILC and 122 cases with invasive breast carcinoma of no special type (IBC-NST) were evaluated retrospectively. PVI was significantly more common in ILC than in IBC-NST (50% [70 of 139 cases] vs. 9% [11 of 122 cases], p < 0.001). ILC cases with PVI showed a larger pathological tumour size than clinical tumour size (p < 0.01), a higher frequency of pathological node status pN2-pN3 when limited to clinically node-negative cases (p < 0.01) and lower circularity of tumour morphology on imaging (p < 0.01) than ILC cases without PVI. In the pathological evaluation, the intensity and occupancy of tumour cells expressing phospho-myosin light chain 2, which is a hallmark of ameboid migration, were significantly higher in ILC cases with PVI than in those without PVI at the tumour margins (p < 0.05). ILC with PVI is associated with irregular, poorly defined tumour margins and lymph node metastasis without adenopathy, which is difficult to assess using imaging. PVI may be caused by ameboid migration, as shown by the positive expression of phospho-myosin light chain 2. The presence of PVI may be a predictor for clinically node-negative pN2-pN3 in ILC patients.
Collapse
|
38
|
Activity of ROCKII not ROCKI promotes pulmonary metastasis of melanoma cells via modulating Smad2/3-MMP9 and FAK-Src-VEGF signalling. Cell Signal 2022; 97:110389. [PMID: 35718242 DOI: 10.1016/j.cellsig.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) inhibition decreases tumourogenic growth, proliferation and angiogenesis. Multifaceted evidences are there about the role of ROCK in cancer progression, but isoform specific analysis in secondary pulmonary melanoma is still unaddressed. This study explored the operating function of ROCK in the metastasis of B16F10 mice melanoma cell line. Inhibition by KD-025 indicated dual wielding role of ROCKII as it is associated with the regulation of MMP9 activity responsible for extra-cellular matrix (ECM) degradation as well as angiogenic invasion as an effect of Src-FAK-STAT3 interaction dependent VEGF switching. We found the assisting role of ROCKII, not ROCKI in nuclear localization of Smads that effectively increased MMP9 expression and activity (p < 0.01). This cleaved the protein components of ECM thereby played a crucial role in tissue remodeling at secondary site during establishment of metastatic tumour. ROCKII phosphorylation at Ser1366 as an activation of the same was imprinted essential for oncogenic molecular bagatelle leading to histo-architectural change of pulmonary tissue with extracellular matrix degradation as a consequence of invasion. Direct correlation of pROCKIISer1366 with MMP9 as well as VEGF expression in vivo studies cue to demonstrate the importance of pROCKIISer1366 inhibition in the context of angiogenesis, and metastasis suggesting ROCKII signaling as a possible target for the treatment of secondary lung cancer specially in metastatic melanoma.
Collapse
|
39
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
40
|
Lu JJ, Ma XR, Xie K, Yang PX, Li RT, Ye RR. Novel heterobimetallic Ir(III)-Re(I) complexes: design, synthesis and antitumor mechanism investigation. Dalton Trans 2022; 51:7907-7917. [PMID: 35535974 DOI: 10.1039/d2dt00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reasonable design of binuclear or multinuclear metal complexes has demonstrated their potential advantages in the anticancer field. Herein, three heterobimetallic Ir(III)-Re(I) complexes, [Ir(C^N)2LRe(CO)3DIP](PF6)2 (C^N = 2-phenylpyridine (ppy, in IrRe-1), 2-(2-thienyl)pyridine (thpy, in IrRe-2) and 2-(2,4-difluorophenyl)pyridine (dfppy, in IrRe-3); L = pyridylimidazo[4,5-f][1,10]phenanthroline; DIP = 4,7-diphenyl-1,10-phenanthroline), were designed and synthesized. The heterobimetallic IrRe-1-3 complexes show pH-sensitive emission properties, which can be used for specific imaging of lysosomes. Additionally, IrRe-1-3 display higher cytotoxicity against tested tumor cell lines than the clinical chemotherapeutic drug cisplatin. Further mechanisms indicate that IrRe-1-3 can induce apoptosis and autophagy, increase intracellular reactive oxygen species (ROS), depolarize the mitochondrial membrane (MMP), block the cell cycle at the G0/G1 phase and inhibit cell migration. To the best of our knowledge, this is the first example of the synthesis of heterobimetallic Ir(III)-Re(I) complexes with superior anticancer activities and evaluation of their anticancer mechanisms.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Kai Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Pei-Xin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
41
|
Laforgue L, Fertin A, Usson Y, Verdier C, Laurent VM. Efficient deformation mechanisms enable invasive cancer cells to migrate faster in 3D collagen networks. Sci Rep 2022; 12:7867. [PMID: 35550548 PMCID: PMC9098560 DOI: 10.1038/s41598-022-11581-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is a widely studied topic but has been very often limited to two dimensional motion on various substrates. Indeed, less is known about cancer cell migration in 3D fibrous-extracellular matrix (ECM) including variations of the microenvironment. Here we used 3D time lapse imaging on a confocal microscope and a phase correlation method to follow fiber deformations, as well as cell morphology and live actin distribution during the migration of cancer cells. Different collagen concentrations together with three bladder cancer cell lines were used to investigate the role of the metastatic potential on 3D cell migration characteristics. We found that grade-3 cells (T24 and J82) are characterized by a great diversity of shapes in comparison with grade-2 cells (RT112). Moreover, grade-3 cells with the highest metastatic potential (J82) showed the highest values of migration speeds and diffusivities at low collagen concentration and the greatest sensitivity to collagen concentration. Our results also suggested that the small shape fluctuations of J82 cells are the signature of larger migration velocities. Moreover, the displacement fields generated by J82 cells showed significantly higher fiber displacements as compared to T24 and RT112 cells, regardless of collagen concentration. The analysis of cell movements enhanced the fact that bladder cancer cells were able to exhibit different phenotypes (mesenchymal, amoeboid). Furthermore, the analysis of spatio-temporal migration mechanisms showed that cancer cells are able to push or pull on collagen fibers, therefore producing efficient local collagen deformations in the vicinity of cells. Our results also revealed that dense actin regions are correlated with the largest displacement fields, and this correlation is enhanced for the most invasive J82 cancer cells. Therefore this work opens up new routes to understand cancer cell migration in soft biological networks.
Collapse
Affiliation(s)
- Laure Laforgue
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.,Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, 38000, France
| | - Arnold Fertin
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Yves Usson
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Claude Verdier
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | |
Collapse
|
42
|
Zheng K, Chen S, Hu X. Peroxisome Proliferator Activated Receptor Gamma Coactivator-1 Alpha: A Double-Edged Sword in Prostate Cancer. Curr Cancer Drug Targets 2022; 22:541-559. [PMID: 35362394 DOI: 10.2174/1568009622666220330194149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α/PPARGC1A) is a pivotal transcriptional coactivator involved in the regulation of mitochondrial metabolism, including biogenesis and oxidative metabolism. PGC-1α is finely regulated by AMP-activated protein kinases (AMPKs), the role of which in tumors remains controversial to date. In recent years, a growing amount of research on PGC-1α and tumor metabolism has emphasized its importance in a variety of tumors, including prostate cancer (PCA). Compelling evidence has shown that PGC-1α may play dual roles in promoting and inhibiting tumor development under certain conditions. Therefore, a better understanding of the critical role of PGC-1α in PCA pathogenesis will provide new insights into targeting PGC-1α for the treatment of this disease. In this review, we highlight the procancer and anticancer effects of PGC-1α in PCA and aim to provide a theoretical basis for targeting AMPK/PGC-1α to inhibit the development of PCA. In addition, our recent findings provide a candidate drug target and theoretical basis for targeting PGC-1α to regulate lipid metabolism in PCA.
Collapse
Affiliation(s)
- Kun Zheng
- Department of urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| | - Suzhen Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People\'s Hospital, Shanghai Jiao Tong University Affiliated Sixth People\'s Hospital, China
| | - Xiaoyong Hu
- Department of Urology, Shanghai Sixth People\'s Hospital, 600 Yishan Road, Xuhui District, Shanghai, China
| |
Collapse
|
43
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
44
|
Noble R, Burri D, Le Sueur C, Lemant J, Viossat Y, Kather JN, Beerenwinkel N. Spatial structure governs the mode of tumour evolution. Nat Ecol Evol 2022; 6:207-217. [PMID: 34949822 PMCID: PMC8825284 DOI: 10.1038/s41559-021-01615-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Characterizing the mode-the way, manner or pattern-of evolution in tumours is important for clinical forecasting and optimizing cancer treatment. Sequencing studies have inferred various modes, including branching, punctuated and neutral evolution, but it is unclear why a particular pattern predominates in any given tumour. Here we propose that tumour architecture is key to explaining the variety of observed genetic patterns. We examine this hypothesis using spatially explicit population genetics models and demonstrate that, within biologically relevant parameter ranges, different spatial structures can generate four tumour evolutionary modes: rapid clonal expansion, progressive diversification, branching evolution and effectively almost neutral evolution. Quantitative indices for describing and classifying these evolutionary modes are presented. Using these indices, we show that our model predictions are consistent with empirical observations for cancer types with corresponding spatial structures. The manner of cell dispersal and the range of cell-cell interactions are found to be essential factors in accurately characterizing, forecasting and controlling tumour evolution.
Collapse
Affiliation(s)
- Robert Noble
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Department of Mathematics, City, University of London, London, UK.
| | - Dominik Burri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Cécile Le Sueur
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jeanne Lemant
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Jakob Nikolas Kather
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
45
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
46
|
Govindasamy N, Long H, Jeong HW, Raman R, Özcifci B, Probst S, Arnold SJ, Riehemann K, Ranga A, Adams RH, Trappmann B, Bedzhov I. 3D biomimetic platform reveals the first interactions of the embryo and the maternal blood vessels. Dev Cell 2021; 56:3276-3287.e8. [PMID: 34741805 DOI: 10.1016/j.devcel.2021.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 06/21/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
The process of implantation and the cellular interactions at the embryo-maternal interface are intrinsically difficult to analyze, as the implanting embryo is concealed by the uterine tissues. Therefore, the mechanisms mediating the interconnection of the embryo and the mother are poorly understood. Here, we established a 3D biomimetic culture environment that harbors the key features of the murine implantation niche. This culture system enabled direct analysis of trophoblast invasion and revealed the first embryonic interactions with the maternal vasculature. We found that implantation is mediated by the collective migration of penetrating strands of trophoblast giant cells, which acquire the expression of vascular receptors, ligands, and adhesion molecules, assembling a network for communication with the maternal blood vessels. In particular, Pdgf signaling cues promote the establishment of the heterologous contacts. Together, the biomimetic platform and our findings thereof elucidate the hidden dynamics of the early interactions at the implantation site.
Collapse
Affiliation(s)
- Niraimathi Govindasamy
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Ratish Raman
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Burak Özcifci
- Center for Nanotechnology (CeNTech) und Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Simone Probst
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, and Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Germany
| | - Kristina Riehemann
- Center for Nanotechnology (CeNTech) und Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| | - Adrian Ranga
- Laboratory of Bioengineering and Morphogenesis, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| | - Ivan Bedzhov
- Embryonic Self-Organization research group, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany.
| |
Collapse
|
47
|
Graziani V, Rodriguez-Hernandez I, Maiques O, Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol 2021; 32:228-242. [PMID: 34836782 DOI: 10.1016/j.tcb.2021.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.
Collapse
Affiliation(s)
- Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
48
|
Tognoli ML, Vlahov N, Steenbeek S, Grawenda AM, Eyres M, Cano‐Rodriguez D, Scrace S, Kartsonaki C, von Kriegsheim A, Willms E, Wood MJ, Rots MG, van Rheenen J, O'Neill E, Pankova D. RASSF1C oncogene elicits amoeboid invasion, cancer stemness, and extracellular vesicle release via a SRC/Rho axis. EMBO J 2021; 40:e107680. [PMID: 34532864 PMCID: PMC8521318 DOI: 10.15252/embj.2021107680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal-to-amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC-mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C-induced amoeboid cells display increased expression of cancer stem-like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C-induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C-driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early-stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.
Collapse
Affiliation(s)
| | | | - Sander Steenbeek
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | | | | | - David Cano‐Rodriguez
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Simon Scrace
- Department of OncologyUniversity of OxfordOxfordUK
| | | | - Alex von Kriegsheim
- Cancer Research UK Edinburgh CentreMRC Institute of Genetics & Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Eduard Willms
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
- La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVic.Australia
| | | | - Marianne G Rots
- University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jacco van Rheenen
- Molecular PathologyOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Eric O'Neill
- Department of OncologyUniversity of OxfordOxfordUK
| | | |
Collapse
|
49
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
50
|
Gabbireddy SR, Vosatka KW, Chung AJ, Logue JS. Melanoma cells adopt features of both mesenchymal and amoeboid migration within confining channels. Sci Rep 2021; 11:17804. [PMID: 34493759 PMCID: PMC8423822 DOI: 10.1038/s41598-021-97348-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
For metastasis to occur, cancer cells must traverse a range of tissue environments. In part, this is accomplished by cells adjusting their migration mode to one that is best suited to the environment. Melanoma cells have been shown to be particularly plastic, frequently using both mesenchymal and amoeboid (bleb-based) modes of migration. It has been demonstrated that 2D confinement will promote the transition from mesenchymal to bleb-based migration. However, if melanoma cells similarly transition to bleb-based migration in response to 3D confinement, such as within narrow channels, is unknown. Here, using micro-fabricated channels, we demonstrate that metastatic, A375-M2, melanoma cells adopt features of both mesenchymal and bleb-based migration. In narrow (8 µm; height and width) channels coated with fibronectin, ~ 50% of melanoma cells were found to use either mesenchymal or bleb-based migration modes. In contrast, the inhibition of Src family kinases or coating channels with BSA, completely eliminated any features of mesenchymal migration. Detailed comparisons of migration parameters revealed that blebbing cells, particularly in the absence of adhesions, were faster than mesenchymal cells. In contrast to what has been previously shown under conditions of 2D confinement, pharmacologically inhibiting Arp2/3 promoted a fast filopodial-based mode of migration. Accordingly, we report that melanoma cells adopt a unique range of phenotypes under conditions of 3D confinement.
Collapse
Affiliation(s)
- Sairisheel R Gabbireddy
- Undergraduate Research Program, Rensselaer Polytechnic Institute (RPI), 110 8th St, Troy, NY, 12180, USA
| | - Karl W Vosatka
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Aram J Chung
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
- School of Biomedical Engineering, Korea University, 02841, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 02841, Seoul, Republic of Korea
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|