1
|
Lei M, Chen G. Integration of mechanics and immunology: Perspective for understanding fibrotic disease mechanisms and innovating therapeutic strategies. Acta Biomater 2025:S1742-7061(25)00333-2. [PMID: 40324516 DOI: 10.1016/j.actbio.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The treatment of fibrotic diseases has long posed a medical challenge due to the complex mechanisms underlying their occurrence and progression. Emerging evidence suggests that fibrosis development is influenced not only by biochemical factors but also by the activation of mechanotransduction in response to mechanical stimuli. Mechanoimmunology, an interdisciplinary field that examines how the immune system is influenced by physical forces and mechanical environments, has recently demonstrated significant importance and considerable potential for application in the study of fibrotic diseases. While the mechanisms by which biochemical signals regulate the immune system have been extensively explored, the progression of fibrosis is often impacted by both immune dysregulation and mechanical changes. During fibrosis, immune cells encounter strong mechanical stimuli, such as stiffer substrates and altered viscoelasticity, which activate their own mechanotransduction pathways and subsequently influence fibrosis progression. Targeting the mechanosensation of immune cells to enhance or inhibit their mechanoreception and mechanotransduction, thereby enhancing the anti-fibrotic role they play in the fibrotic process, could help innovate therapeutic strategies for fibrotic diseases. STATEMENT OF SIGNIFICANCE: Fibrotic disease progression is often associated with dysregulation of both tissue mechanical properties and immune responses. The fibrotic microenvironment's altered mechanical properties both result from and drive fibrosis, while immune cells actively sense and respond to these mechanical cues through mechanotransduction pathways. Emerging mechanoimmunology research highlights how mechanical stimuli influence immune cell behavior, yet the precise regulatory mechanisms remain unclear. This review examines mechanical communication in fibrosis, focusing on immune cells' mechanosensing capabilities and their role in disease progression, which helps to enhance our understanding of the pathogenesis of fibrosis and inform innovative strategies to open up mechano-immune pathways targeting fibrosis therapy.
Collapse
Affiliation(s)
- Min Lei
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
2
|
Huse M. Mechanoregulation of lymphocyte cytotoxicity. Nat Rev Immunol 2025:10.1038/s41577-025-01173-2. [PMID: 40312550 DOI: 10.1038/s41577-025-01173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Cytotoxic lymphocytes counter intracellular pathogens and cancer by recognizing and destroying infected or transformed target cells. The basis for their function is the cytolytic immune synapse, a structurally stereotyped cell-cell interface through which lymphocytes deliver toxic proteins to target cells. The immune synapse is a highly dynamic contact capable of exerting nanonewton-scale forces against the target cell. In recent years, it has become clear that the interplay between these forces and the biophysical properties of the target influences the entirety of the cytotoxic response, from the initial activation of cytotoxic lymphocytes to the release of dying target cells. As a result, cellular cytotoxicity has become an exemplar of the ways in which biomechanics can regulate immune cell activation and effector function. This Review covers recent progress in this area, which has prompted a reconsideration of target cell killing from a more mechanobiological perspective.
Collapse
Affiliation(s)
- Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Schultheiss PJ, Pulkundwar A, Li W, Kam LC. Taming Variability in T-Cell Mechanosensing. Cells 2025; 14:203. [PMID: 39936994 PMCID: PMC11817355 DOI: 10.3390/cells14030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
A central step in T-cell immunotherapy is the expansion of a starting population into therapeutically potent numbers of these "living drugs". This process can be enhanced by replacing the mechanically stiff materials used for activation with softer counterparts. However, this mechanosensitive expansion response varies between individuals, impeding the full deployment of potential cell immunotherapy. This report identifies the sources of this variability, ultimately improving the reliability of T-cell expansion. T cells from a cohort of healthy donors were phenotypically characterized, activated, and expanded in vitro on soft and hard substrates, capturing and quantifying a wide range of mechanosensing responses. An analysis of expansion against demographic and phenotypic features correlated mechanosensing with the percentage of effector T cells (TEffs) in the starting population. Depletion experiments confirmed that TEffs mediate mechanosensitive expansion but also suggest that these cells are not responsible for large-scale cell production. Instead, population-level expansion results from interactions between T-cell subtypes. By providing a framework and experimental approach to understanding donor variability, the results of this study will improve the success and reliability of T-cell immunotherapy.
Collapse
Affiliation(s)
- Paula J. Schultheiss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (P.J.S.); (A.P.)
| | - Aarya Pulkundwar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (P.J.S.); (A.P.)
| | - Wangqi Li
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; (P.J.S.); (A.P.)
- Department of Medicine, Columbia University, New York, NY 10027, USA
| |
Collapse
|
4
|
Wang X, Fernandes SM, Brown JR, Kam LC. Assaying and classifying T cell function by cell morphology. BIOMEDINFORMATICS 2024; 4:1144-1154. [PMID: 39525274 PMCID: PMC11542667 DOI: 10.3390/biomedinformatics4020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immune cell function varies tremendously between individuals, posing a major challenge to emerging cellular immunotherapies. This report pursues the use of cell morphology as an indicator of high-level T cell function. Short-term spreading of T cells on planar, elastic surfaces was quantified by 11 morphological parameters and analyzed to identify effects of both intrinsic and extrinsic factors. Our findings identified morphological features that varied between T cells isolated from healthy donors and those from patients being treated for Chronic Lymphocytic Leukemia (CLL). This approach also identified differences between cell responses to substrates of different elastic modulus. Combining multiple features through a machine learning approach such as Decision Tree or Random Forest provided an effective means for identifying whether T cells came from healthy or CLL donors. Further development of this approach could lead to a rapid assay of T cell function to guide cellular immunotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY
| |
Collapse
|
5
|
Zeng Q, Xu B, Qian C, Li N, Guo Z, Wu S. Surface chemical modification of poly(dimethylsiloxane) for stabilizing antibody immobilization and T cell cultures. Biomater Sci 2024; 12:2369-2380. [PMID: 38498344 DOI: 10.1039/d3bm01729j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Advances in cell immunotherapy underscore the need for effective methods to produce large populations of effector T cells, driving growing interest in T-cell bioprocessing and immunoengineering. Research suggests that T cells demonstrate enhanced expansion and differentiation on soft matrices in contrast to rigid ones. Nevertheless, the influence of antibody conjugation chemistry on these processes remains largely unexplored. In this study, we examined the effect of antibody conjugation chemistry on T cell activation, expansion and differentiation using a soft and biocompatible polydimethylsiloxane (PDMS) platform. We rigorously evaluated three distinct immobilization methods, beginning with the use of amino-silane (PDMS-NH2-Ab), followed by glutaraldehyde (PDMS-CHO-Ab) or succinic acid anhydride (PDMS-COOH-Ab) activation, in addition to the conventional physical adsorption (PDMS-Ab). By employing both stable amide bonds and reducible Schiff bases, antibody conjugation significantly enhanced antibody loading and density compared to physical adsorption. Furthermore, we discovered that the PDMS-COOH-Ab surface significantly promoted IL-2 secretion, CD69 expression, and T cell expansion compared to the other groups. Moreover, we observed that both PDMS-COOH-Ab and PDMS-NH2-Ab surfaces exhibited a tendency to induce the differentiation of naïve CD4+ T cells into Th1 cells, whereas the PDMS-Ab surface elicited a Th2-biased immunological response. These findings highlight the importance of antibody conjugation chemistry in the design and development of T cell culture biomaterials. They also indicate that PDMS holds promise as a material for constructing culture platforms to modulate T cell activation, proliferation, and differentiation.
Collapse
MESH Headings
- Dimethylpolysiloxanes/chemistry
- T-Lymphocytes/immunology
- Surface Properties
- Antibodies, Immobilized/chemistry
- Antibodies, Immobilized/immunology
- Cell Differentiation/drug effects
- Animals
- Lymphocyte Activation/drug effects
- Cell Proliferation/drug effects
- Interleukin-2/metabolism
- Interleukin-2/chemistry
- Mice
- Cells, Cultured
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Adsorption
- Succinic Anhydrides
Collapse
Affiliation(s)
- Qiongjiao Zeng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Bowen Xu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Nan Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Zhenhong Guo
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Shuqing Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Lizana-Vasquez GD, Mendez-Vega J, Cappabianca D, Saha K, Torres-Lugo M. In vitro encapsulation and expansion of T and CAR-T cells using 3D synthetic thermo-responsive matrices. RSC Adv 2024; 14:13734-13747. [PMID: 38681842 PMCID: PMC11046447 DOI: 10.1039/d4ra01968g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Suspension cell culture and rigid commercial substrates are the most common methods to clinically manufacture therapeutic CAR-T cells ex vivo. However, suspension culture and nano/micro-scale commercial substrates poorly mimic the microenvironment where T cells naturally develop, leading to profound impacts on cell proliferation and phenotype. To overcome this major challenge, macro-scale substrates can be used to emulate that environment with higher precision. This work employed a biocompatible thermo-responsive material with tailored mechanical properties as a potential synthetic macro-scale scaffold to support T cell encapsulation and culture. Cell viability, expansion, and phenotype changes were assessed to study the effect of two thermo-responsive hydrogel materials with stiffnesses of 0.5 and 17 kPa. Encapsulated Pan-T and CAR-T cells were able to grow and physically behave similar to the suspension control. Furthermore, matrix stiffness influenced T cell behavior. In the softer polymer, T cells had higher activation, differentiation, and maturation after encapsulation obtaining significant cell numbers. Even when terpolymer encapsulation affected the CAR-T cell viability and expansion, CAR T cells expressed favorable phenotypical profiles, which was supported with cytokines and lactate production. These results confirmed the biocompatibility of the thermo-responsive hydrogels and their feasibility as a promising 3D macro-scale scaffold for in vitro T cell expansion that could potentially be used for cell manufacturing process.
Collapse
Affiliation(s)
- Gaby D Lizana-Vasquez
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Janet Mendez-Vega
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| | - Dan Cappabianca
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison Madison Wisconsin USA
| | - Madeline Torres-Lugo
- Deparment of Chemical Engineering, University of Puerto Rico-Mayagüez Road 108 Km. 1.0 Bo. Miradero. P.O. Box 9046 Mayagüez 00681-9046 Puerto Rico USA +1 787 832 4040 Ext. 2585
| |
Collapse
|
7
|
Tzadka S, Ureña Martin C, Toledo E, Yassin AAK, Pandey A, Le Saux G, Porgador A, Schvartzman M. A Novel Approach for Colloidal Lithography: From Dry Particle Assembly to High-Throughput Nanofabrication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17846-17856. [PMID: 38549366 DOI: 10.1021/acsami.3c18554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We introduce a novel approach for colloidal lithography based on the dry particle assembly into a dense monolayer on an elastomer, followed by mechanical transfer to a substrate of any material and curvature. This method can be implemented either manually or automatically and it produces large area patterns with the quality obtained by the state-of-the-art colloidal lithography at a very high throughput. We first demonstrated the fabrication of nanopatterns with a periodicity ranging between 200 nm and 2 μm. We then demonstrated two nanotechnological applications of this approach. The first one is antireflective structures, fabricated on silicon and sapphire, with different geometries including arrays of bumps and holes and adjusted for different spectral ranges. The second one is smart 3D nanostructures for mechanostimulation of T cells that are used for their effective proliferation, with potential application in cancer immunotherapy. This new approach unleashes the potential of bottom-up nanofabrication and paves the way for nanoscale devices and systems in numerous applications.
Collapse
Affiliation(s)
- Sivan Tzadka
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Carlos Ureña Martin
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Abed Al Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ashish Pandey
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
8
|
Wang J, Yin Y, Ren X, Wang S, Zhu Y. Electrospun nanofibrous mats loaded with gemcitabine and cisplatin suppress bladder tumor growth by improving the tumor immune microenvironment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:21. [PMID: 38526656 PMCID: PMC10963565 DOI: 10.1007/s10856-024-06786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
The perplexing issues related to positive surgical margins and the considerable negative consequences associated with systemic chemotherapy have posed ongoing challenges for clinicians, especially when it comes to addressing bladder cancer treatment. The current investigation describes the production of nanocomposites loaded with gemcitabine (GEM) and cisplatin (CDDP) through the utilization of electrospinning technology. In vitro and in vivo studies have provided evidence of the strong effectiveness in suppressing tumor advancement while simultaneously reducing the accumulation of chemotherapy drugs within liver and kidney tissues. Mechanically, the GEM and CDDP-loaded electrospun nanocomposites could effectively eliminate myeloid-derived suppressor cells (MDSCs) in tumor tissues, and recruit CD8+ T cells and NKp46+ NK cells to kill tumor cells, which can also effectively inhibit tumor microvascular formation. Our investigation into the impact of localized administration of chemotherapy through GEM and CDDP-loaded electrospun nanocomposites on the tumor microenvironment will offer novel insights for tackling tumors.
Collapse
Affiliation(s)
- Jing Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Yin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunpeng Zhu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Shi L, Lim JY, Kam LC. Substrate stiffness enhances human regulatory T cell induction and metabolism. Biomaterials 2023; 292:121928. [PMID: 36455488 PMCID: PMC9772289 DOI: 10.1016/j.biomaterials.2022.121928] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Regulatory T cells (Tregs) provide an essential tolerance mechanism to suppress the immune response. Induced Tregs hold the potential to treat autoimmune diseases in adoptive therapy and can be produced with stimulating signals to CD3 and CD28 in presence of the cytokine TGF-β and IL-2. This report examines the modulation of human Treg induction by leveraging the ability of T cells to sense the mechanical stiffness of an activating substrate. Treg induction on polyacrylamide gels (PA-gels) was sensitive to the substrate's elastic modulus, increasing with greater material stiffness. Single-cell RNA-Seq analysis revealed that Treg induction on stiffer substrates involved greater use of oxidative phosphorylation (OXPHOS). Inhibition of ATP synthase significantly reduced the rate of Treg induction and abrogated the difference among gels while activation of AMPK (AMP-activated protein kinase) increased Treg induction on the softer sample but not on the harder sample. Treg induction is thus mechanosensitive and OXPHOS-dependent, providing new strategies for improving the production of these cells for cellular immunotherapy.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY, 10027, USA.
| |
Collapse
|
10
|
Leveraging biomaterials for enhancing T cell immunotherapy. J Control Release 2022; 344:272-288. [PMID: 35217099 DOI: 10.1016/j.jconrel.2022.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
The dynamic roles of T cells in the immune system to recognize and destroy the infected or mutated cells render T cell therapy a prospective treatment for a variety of diseases including cancer, autoimmune diseases, and allograft rejection. However, the clinical applications of T cell therapy remain unsatisfactory due to the tedious manufacturing process, off-target cytotoxicity, poor cell persistence, and associated adverse effects. To this end, various biomaterials have been introduced to enhance T cell therapy by facilitating proliferation, enhancing local enrichment, prolonging retention, and alleviating side effects. This review highlights the design strategies of biomaterials developed for T cell expansion, enrichment, and delivery as well as their corresponding therapeutic effects. The prospects of biomaterials for enhancing T cell immunotherapy are also discussed in this review.
Collapse
|
11
|
Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc Natl Acad Sci U S A 2021; 118:2107535118. [PMID: 34599101 DOI: 10.1073/pnas.2107535118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanism by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200-nm pores but not in 400-nm pores. Consequently, formation of TCR nanoclustered hotspots within 200-nm pores allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.
Collapse
|
12
|
Sachar C, Kam LC. Probing T Cell 3D Mechanosensing With Magnetically-Actuated Structures. Front Immunol 2021; 12:704693. [PMID: 34566962 PMCID: PMC8458571 DOI: 10.3389/fimmu.2021.704693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
The ability of cells to recognize and respond to the mechanical properties of their environment is of increasing importance in T cell physiology. However, initial studies in this direction focused on planar hydrogel and elastomer surfaces, presenting several challenges in interpretation including difficulties in separating mechanical stiffness from changes in chemistry needed to modulate this property. We introduce here the use of magnetic fields to change the structural rigidity of microscale elastomer pillars loaded with superparamagnetic nanoparticles, independent of substrate chemistry. This magnetic modulation of rigidity, embodied as the pillar spring constant, changed the interaction of mouse naïve CD4+ T cells from a contractile morphology to one involving deep embedding into the array. Furthermore, increasing spring constant was associated with higher IL-2 secretion, showing a functional impact on mechanosensing. The system introduced here thus separates local substrate stiffness and long-range structural rigidity, revealing new facets of T cell interaction with their environment.
Collapse
Affiliation(s)
- Chirag Sachar
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Mosher CZ, Brudnicki PAP, Gong Z, Childs HR, Lee SW, Antrobus RM, Fang EC, Schiros TN, Lu HH. Green electrospinning for biomaterials and biofabrication. Biofabrication 2021; 13. [PMID: 34102612 DOI: 10.1088/1758-5090/ac0964] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022]
Abstract
Green manufacturing has emerged across industries, propelled by a growing awareness of the negative environmental and health impacts associated with traditional practices. In the biomaterials industry, electrospinning is a ubiquitous fabrication method for producing nano- to micro-scale fibrous meshes that resemble native tissues, but this process traditionally utilizes solvents that are environmentally hazardous and pose a significant barrier to industrial scale-up and clinical translation. Applying sustainability principles to biomaterial production, we have developed a 'green electrospinning' process by systematically testing biologically benign solvents (U.S. Food and Drug Administration Q3C Class 3), and have identified acetic acid as a green solvent that exhibits low ecological impact (global warming potential (GWP) = 1.40 CO2eq. kg/L) and supports a stable electrospinning jet under routine fabrication conditions. By tuning electrospinning parameters, such as needle-plate distance and flow rate, we updated the fabrication of widely utilized biomedical polymers (e.g. poly-α-hydroxyesters, collagen), polymer blends, polymer-ceramic composites, and growth factor delivery systems. Resulting 'green' fibers and composites are comparable to traditional meshes in terms of composition, chemistry, architecture, mechanical properties, and biocompatibility. Interestingly, material properties of green synthetic fibers are more biomimetic than those of traditionally electrospun fibers, doubling in ductility (91.86 ± 35.65 vs. 45 ± 15.07%,n= 10,p< 0.05) without compromising yield strength (1.32 ± 0.26 vs. 1.38 ± 0.32 MPa) or ultimate tensile strength (2.49 ± 0.55 vs. 2.36 ± 0.45 MPa). Most importantly, green electrospinning proves advantageous for biofabrication, rendering a greater protection of growth factors during fiber formation (72.30 ± 1.94 vs. 62.87 ± 2.49% alpha helical content,n= 3,p< 0.05) and recapitulating native ECM mechanics in the fabrication of biopolymer-based meshes (16.57 ± 3.92% ductility, 33.38 ± 30.26 MPa elastic modulus, 1.30 ± 0.19 MPa yield strength, and 2.13 ± 0.36 MPa ultimate tensile strength,n= 10). The eco-conscious approach demonstrated here represents a paradigm shift in biofabrication, and will accelerate the translation of scalable biomaterials and biomimetic scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Christopher Z Mosher
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Philip A P Brudnicki
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Zhengxiang Gong
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Hannah R Childs
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Sang Won Lee
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Romare M Antrobus
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Elisa C Fang
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Theanne N Schiros
- Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America.,Science and Mathematics Department, Fashion Institute of Technology, New York, NY 10001, United States of America
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.,Materials Research Science and Engineering Center, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
14
|
Bhingardive V, Kossover A, Iraqi M, Khand B, Le Saux G, Porgador A, Schvartzman M. Antibody-Functionalized Nanowires: A Tuner for the Activation of T Cells. NANO LETTERS 2021; 21:4241-4248. [PMID: 33989498 DOI: 10.1021/acs.nanolett.1c00245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
T cells sense both chemical cues delivered by antigen molecules and physical cues delivered by the environmental elasticity and topography; yet, it is still largely unclear how these cues cumulatively regulate the immune activity of T cells. Here, we engineered a nanoscale platform for ex vivo stimulation of T cells based on antigen-functionalized nanowires. The nanowire topography and elasticity, as well as the immobilized antigens, deliver the physical and chemical cues, respectively, enabling the systematic study of the integrated effect of these cues on a T cell's immune response. We found that T cells sense both the topography and bending modulus of the nanowires and modulate their signaling, degranulation, and cytotoxicity with the variation in these physical features. Our study provides an important insight into the physical mechanism of T cell activation and paves the way to novel nanomaterials for the controlled ex vivo activation of T cells in immunotherapy.
Collapse
|
15
|
Yuan DJ, Shi L, Kam LC. Biphasic response of T cell activation to substrate stiffness. Biomaterials 2021; 273:120797. [PMID: 33878536 DOI: 10.1016/j.biomaterials.2021.120797] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
T cell activation is sensitive to the mechanical properties of an activating substrate. However, there are also contrasting results on how substrate stiffness affects T cell activation, including differences between T cells of mouse and human origin. Towards reconciling these differences, this report examines the response of primary human T cells to polyacrylamide gels with stiffness between 5 and 110 kPa presenting activating antibodies to CD3 and CD28. T cell proliferation and IL-2 secretion exhibited a biphasic functional response to substrate stiffness, which can be shifted by changing density of activating antibodies and abrogated by inhibition of cellular contractility. T cell morphology was modulated by stiffness at early time points. RNA-seq indicates that T cells show differing monotonic trends in upregulated genes and pathways towards both ends of the stiffness spectrum. These studies provide a framework of T cell mechanosensing and suggest an effect of ligand density that may reconcile different, contrasting patterns of stiffness sensing seen in previous studies.
Collapse
Affiliation(s)
- Dennis J Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
16
|
Lee JH, Shao S, Kim M, Fernandes SM, Brown JR, Kam LC. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front Cell Dev Biol 2021; 9:648925. [PMID: 33898440 PMCID: PMC8063612 DOI: 10.3389/fcell.2021.648925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Abstract
Expansion of an initial population of T cells is essential for cellular immunotherapy. In Chronic Lymphocytic Leukemia (CLL), expansion is often complicated by lack of T cell proliferation, as these cells frequently show signs of exhaustion. This report seeks to identify specific biomarkers or measures of cell function that capture the proliferative potential of a starting population of cells. Mixed CD4+/CD8+ T cells from healthy donors and individuals previously treated for CLL were characterized on the basis of proliferative potential and in vitro cellular functions. Single-factor analysis found little correlation between the number of populations doublings reached during expansion and either Rai stage (a clinical measure of CLL spread) or PD-1 expression. However, inclusion of in vitro IL-2 secretion and the propensity of cells to align onto micropatterned features of activating proteins as factors identified three distinct groups of donors. Notably, these group assignments provided an elegant separation of donors with regards to proliferative potential. Furthermore, these groups exhibited different motility characteristics, suggesting a mechanism that underlies changes in proliferative potential. This study describes a new set of functional readouts that augment surface marker panels to better predict expansion outcomes and clinical prognosis.
Collapse
Affiliation(s)
- Joanne H. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Shuai Shao
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Michelle Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Stacey M. Fernandes
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jennifer R. Brown
- Department of Medical Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Shou X, Zhang H, Wu D, Zhong L, Ni D, Kong T, Zhao Y, Zhao Y. Antigen-Presenting Hybrid Colloidal Crystal Clusters for Promoting T cells Expansion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006955. [PMID: 33711196 DOI: 10.1002/smll.202006955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/03/2021] [Indexed: 06/12/2023]
Abstract
T cell based-immunotherapy has been a powerful strategy to eradicate tumor cells in clinical trials. Effectively expanding the therapeutic T cells for clinical demand is still a challenge. Here, artificial antigen-presenting scaffolds are created for T cell ex vivo expansion. The antigen-presenting hybrid colloidal crystal clusters (HCCCs) with multiple stimuli are generated by internal encapsulation with prosurvival cytokines and surface decoration with activating antibodies to CD3ε and CD28, respectively. With the large loading capacity endowed by their abundant nanoporous structures, the antigen-presenting HCCCs can constantly release prosurvival cytokine IL-2. It is found that following the direct and multiple stimulations, the antigen-presenting HCCCs can effectively promote the expansion of T cells, which exhibits robust antitumor activity in vitro. Thus, the antigen-presenting HCCCs provide a novel expansion platform for clinical manufacturing of T cells.
Collapse
Affiliation(s)
- Xin Shou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Dan Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, 530021, China
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, 530021, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Bhingardive V, Le Saux G, Edri A, Porgador A, Schvartzman M. Nanowire Based Guidance of the Morphology and Cytotoxic Activity of Natural Killer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007347. [PMID: 33719212 DOI: 10.1002/smll.202007347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The cytotoxic activity of natural killer (NK) cells is regulated by many chemical and physical cues, whose integration mechanism is still obscure. Here, a multifunctional platform is engineered for NK cell stimulation, to study the effect of the signal integration and spatial heterogeneity on NK cell function. The platform is based on nanowires, whose mechanical compliance and site-selective tip functionalization with antigens produce the physical and chemical stimuli, respectively. The nanowires are confined to micron-sized islands, which induce a splitting of the NK cells into two subpopulations with distinct morphologies and immune responses: NK cells atop the nanowire islands display symmetrical spreading and enhanced activation, whereas cells lying in the straits between the islands develop elongated profiles and show lower activation levels. The demonstrated tunability of NK cell cytotoxicity provides an important insight into the mechanism of their immune function and introduces a novel technological route for the ex vivo shaping of cytotoxic lymphocytes in immunotherapy.
Collapse
Affiliation(s)
- Viraj Bhingardive
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Avishay Edri
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Angel Porgador
- Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, The Shraga Segal Department of Microbiology, Immunology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| |
Collapse
|
19
|
Shelton SE, Nguyen HT, Barbie DA, Kamm RD. Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 2021; 24:101985. [PMID: 33490895 PMCID: PMC7808917 DOI: 10.1016/j.isci.2020.101985] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review describes recent research that has advanced our understanding of the role of immune cells in the tumor microenvironment (TME) using advanced 3D in vitro models and engineering approaches. The TME can hinder effective eradication of tumor cells by the immune system, but immunotherapy has been able to reverse this effect in some cases. However, patient-to-patient variability in response suggests that we require deeper understanding of the mechanistic interactions between immune and tumor cells to improve response and develop novel therapeutics. Reconstruction of the TME using engineered 3D models allows high-resolution observation of cell interactions while allowing control of conditions such as hypoxia, matrix stiffness, and flow. Moreover, patient-derived organotypic models are an emerging tool for prediction of drug efficacy. This review highlights the importance of modeling and understanding the immune TME and describes new tools for identifying new biological targets, drug testing, and strategies for personalized medicine.
Collapse
Affiliation(s)
- Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Huu Tuan Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Engineering advanced dynamic biomaterials to optimize adoptive T-cell immunotherapy. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Mordechay L, Le Saux G, Edri A, Hadad U, Porgador A, Schvartzman M. Mechanical Regulation of the Cytotoxic Activity of Natural Killer Cells. ACS Biomater Sci Eng 2020; 7:122-132. [DOI: 10.1021/acsbiomaterials.0c01121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lital Mordechay
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| |
Collapse
|
22
|
Chin MW, Norman MDA, Gentleman E, Coppens MO, Day RM. A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47355-47367. [PMID: 33027591 PMCID: PMC7586298 DOI: 10.1021/acsami.0c16478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The recent rise of adoptive T cell therapy (ATCT) as a promising cancer immunotherapy has triggered increased interest in therapeutic T cell bioprocessing. T cell activation is a critical processing step and is known to be modulated by physical parameters, such as substrate stiffness. Nevertheless, relatively little is known about how biophysical factors regulate immune cells, such as T cells. Understanding how T cell activation is modulated by physical and biochemical cues may offer novel methods to control cell behavior for therapeutic cell processing. Inspired by T cell mechanosensitivity, we developed a multiwell, reusable, customizable, two-dimensional (2D) polyacrylamide (PA) hydrogel-integrated culture device to study the physicochemical stimulation of Jurkat T cells. Substrate stiffness and ligand density were tuned by concentrations of the hydrogel cross-linker and antibody in the coating solution, respectively. We cultured Jurkat T cells on 2D hydrogels of different stiffnesses that presented surface-immobilized stimulatory antibodies against CD3 and CD28 and demonstrated that Jurkat T cells stimulated by stiff hydrogels (50.6 ± 15.1 kPa) exhibited significantly higher interleukin-2 (IL-2) secretion, but lower proliferation, than those stimulated by softer hydrogels (7.1 ± 0.4 kPa). In addition, we found that increasing anti-CD3 concentration from 10 to 30 μg/mL led to a significant increase in IL-2 secretion from cells stimulated on 7.1 ± 0.4 and 9.3 ± 2.4 kPa gels. Simultaneous tuning of substrate stiffness and stimulatory ligand density showed that the two parameters synergize (two-way ANOVA interaction effect: p < 0.001) to enhance IL-2 secretion. Our results demonstrate the importance of physical parameters in immune cell stimulation and highlight the potential of designing future immunostimulatory biomaterials that are mechanically tailored to balance stimulatory strength and downstream proliferative capacity of therapeutic T cells.
Collapse
Affiliation(s)
- Matthew
H. W. Chin
- Centre
for Precision Healthcare, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
| | - Michael D. A. Norman
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Eileen Gentleman
- Centre
for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, United Kingdom
| | - Marc-Olivier Coppens
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, United Kingdom
| | - Richard M. Day
- Centre
for Precision Healthcare, Division of Medicine, University College London, London WC1E 6BT, United Kingdom
- Centre
for Nature Inspired Engineering, University
College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Chin MH, Gentleman E, Coppens MO, Day RM. Rethinking Cancer Immunotherapy by Embracing and Engineering Complexity. Trends Biotechnol 2020; 38:1054-1065. [DOI: 10.1016/j.tibtech.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022]
|
24
|
Cardle II, Cheng EL, Jensen MC, Pun SH. Biomaterials in Chimeric Antigen Receptor T-Cell Process Development. Acc Chem Res 2020; 53:1724-1738. [PMID: 32786336 DOI: 10.1021/acs.accounts.0c00335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has transformed the cancer treatment landscape, utilizing ex vivo modified autologous T cells to treat relapsed or refractory B-cell leukemias and lymphomas. However, the therapy's broader impact has been limited, in part, by a complicated, lengthy, and expensive production process. Accordingly, as CAR T-cell therapies are further advanced to treat other cancers, continual innovation in cell manufacturing will be critical to their successful clinical implementation. In this Account, we describe our research efforts using biomaterials to improve the three fundamental steps in CAR T-cell manufacturing: (1) isolation, (2) activation, and (3) genetic modification.Recognizing that clinical T-cell isolation reagents have high cost and supply constraints, we developed a synthetic DNA aptamer and complementary reversal agent technology that isolates label-free CD8+ T cells with high purity and yield from peripheral blood mononuclear cells. Encouragingly, CAR T cells manufactured from both antibody- and aptamer-isolated T cells were comparable in therapeutic potency. Discovery and design of other T-cell specific aptamers and corresponding reversal reagents could fully realize the potential of this approach, enabling inexpensive isolation of multiple distinct T-cell populations in a single isolation step.Current ex vivo T-cell activation materials do not accurately mimic in situ T-cell activation by antigen presenting cells (APCs). They cause unequal CD4+ and CD8+ T-cell expansion, necessitating separate production of CD4+ and CD8+ CAR T cells for therapies that call for balanced infusion compositions. To address these shortcomings, we designed a panel of biodegradable cell-templated silica microparticles with supported lipid bilayers that display stimulatory ligands for T-cell activation. High membrane fluidity, elongated shape, and rough surface topography, all properties of endogenous APCs, were found to be favorable parameters for activation, promoting unbiased and efficient CD4/CD8 T-cell expansion while not terminally differentiating the cells.Viral and electroporation-based gene delivery systems have various drawbacks. Viral vectors are expensive and have limited cargo sizes, whereas electroporation is highly cytotoxic. Thus, low-cost nonviral platforms that transfect T cells with low cytotoxicity and high efficiency are needed for CAR gene delivery. Our group thus synthesized a panel of cationic polymers with different architectures and evaluated their T-cell transfection ability. We identified a comb-shaped polymer formulation that transfected primary T cells with low cytotoxicity, although transfection efficiency was low compared to conventional methods. Analysis of intracellular and extracellular barriers to transfection revealed low uptake of polyplexes and high endosomal pH in T cells, alluding to biological and polymer properties that could be further improved.These innovations represent just a few recent developments in the biomaterials field for addressing CAR T-cell production needs. Together, these technologies and their future advancement will pave the way for economical and straightforward CAR T-cell manufacturing.
Collapse
Affiliation(s)
- Ian I. Cardle
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
| | - Emmeline L. Cheng
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| | - Michael C. Jensen
- Research and Development, Seattle Children’s Therapeutics, Seattle, Washington 98101, United States
- Department of Pediatrics and Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States
| |
Collapse
|
25
|
Chaudhuri PK, Wang MS, Black CT, Huse M, Kam LC. Modulating T Cell Activation Using Depth Sensing Topographic Cues. ACTA ACUST UNITED AC 2020; 4:e2000143. [PMID: 32744809 DOI: 10.1002/adbi.202000143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Indexed: 12/11/2022]
Abstract
This report examines how sensing of substrate topography can be used to modulate T cell activation, a key coordinating step in the adaptive immune response. Inspired by the native T cell-antigen presenting cell interface, micrometer scale pits with varying depth are fabricated into planar substrates. Primary CD4+ T cells extend actin-rich protrusions into the micropits. T cell activation, reflected in secretion of cytokines interleukin-2 and interferon gamma, is sensitive to the micropit depth. Surprisingly, arrays of micropits with 4 μm depth enhance activation compared to flat substrates but deeper micropits are less effective at increasing cell response, revealing a biphasic dependence in activation as a function of feature dimensions. Inhibition of cell contractility abrogates the enhanced activation associated with the micropits. In conclusion, this report demonstrates that the 3D, microscale topography can be used to enhance T cell activation, an ability that most directly can be used to improve production of these cells for immunotherapy.
Collapse
Affiliation(s)
| | - Mitchell S Wang
- Pharmacology Graduate Program, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
26
|
T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proc Natl Acad Sci U S A 2019; 116:19835-19840. [PMID: 31527238 DOI: 10.1073/pnas.1906986116] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells have the remarkable ability to sense the mechanical stiffness of their surroundings. This has been studied extensively in the context of cells interacting with planar surfaces, a conceptually elegant model that also has application in biomaterial design. However, physiological interfaces are spatially complex, exhibiting topographical features that are described over multiple scales. This report explores mechanosensing of microstructured elastomer surfaces by CD4+ T cells, key mediators of the adaptive immune response. We show that T cells form complex interactions with elastomer micropillar arrays, extending processes into spaces between structures and forming local areas of contraction and expansion dictated by the layout of microtubules within this interface. Conversely, cytoskeletal reorganization and intracellular signaling are sensitive to the pillar dimensions and flexibility. Unexpectedly, these measures show different responses to substrate rigidity, suggesting competing processes in overall T cell mechanosensing. The results of this study demonstrate that T cells sense the local rigidity of their environment, leading to strategies for biomaterial design.
Collapse
|
27
|
Wan Z, Shaheen S, Chau A, Zeng Y, Liu W. Imaging: Gear up for mechano-immunology. Cell Immunol 2019; 350:103926. [PMID: 31151736 DOI: 10.1016/j.cellimm.2019.103926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Immune cells including B and T lymphocytes have a remarkable ability to sense the physical perturbations through their surface expressed receptors. At the advent of modern imaging technologies paired with biophysical methods, we have gained the understanding of mechanical forces exerted by immune cells to perform their functions. This review will go over the imaging techniques already being used to study mechanical forces in immune cells. We will also discuss the dire need for new modern technologies for future work.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Alicia Chau
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
28
|
Nataraj NM, Dang AP, Kam LC, Lee JH. Ex vivo induction of regulatory T cells from conventional CD4 + T cells is sensitive to substrate rigidity. J Biomed Mater Res A 2018; 106:3001-3008. [PMID: 30303608 PMCID: PMC6240380 DOI: 10.1002/jbm.a.36489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/16/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
The immune system maintains a balance between protection and tolerance. Regulatory T cells (Tregs) function as a vital tolerance mechanism in the immune system to suppress effector immune cells. Additionally, Tregs can be utilized as a form of immunotherapy for autoimmune disorders. As T cells have previously been shown to exhibit sensitivity to the rigidity of an activating substrate upon activation via IL-2 secretion, we herein explore the previously unknown effect of substrate rigidity on the induction of Tregs from conventional naïve mouse CD4+ T cells. Substrates with modulatable rigidities ranging from a hundred kilopascals to a few megapascals were fabricated via poly(dimethylsiloxane). We found that there was a significant increase in Treg induction at lower substrate rigidities (i.e., E ~ 100 kPa) compared to higher rigidity levels (i.e., E ~ 3 MPa). To confirm that this significant difference in induction rate was truly related to T-cell mechanosensing, we administered compound Y-27632 to inhibit myosin contractility. In the presence of Y-27632, the myosin-based contractility was disrupted and, as a result, the difference in Treg induction caused by the substrate rigidity was abrogated. This study demonstrates that mechanosensing is involved in Treg induction and raises questions about the underlying molecular mechanisms involved in this process. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3001-3008, 2018.
Collapse
Affiliation(s)
- Neha M Nataraj
- Department of Biomedical Engineering, Columbia University, New York, New York
- Biomedical Graduate Studies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex P Dang
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Lance C Kam
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jounghyun H Lee
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
29
|
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.
Collapse
|
30
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|