1
|
Alfandari D, Rosenhek-Goldian I, Kozela E, Nevo R, Senprún MB, Moisieiev A, Sogauker N, Azuri I, Gelman S, Kiper E, Ben Hur D, Dharan R, Sorkin R, Porat Z, Morandi MI, Regev-Rudzki N. Host Immune Cell Membrane Deformability Governs the Uptake Route of Malaria-Derived Extracellular Vesicles. ACS NANO 2025; 19:9760-9778. [PMID: 40030053 PMCID: PMC11924330 DOI: 10.1021/acsnano.4c07503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The malaria parasite, Plasmodium falciparum, secretes extracellular vesicles (EVs) to facilitate its growth and to communicate with the external microenvironment, primarily targeting the host's immune cells. How parasitic EVs enter specific immune cell types within the highly heterogeneous pool of immune cells remains largely unknown. Using a combination of imaging flow cytometry and advanced fluorescence analysis, we demonstrated that the route of uptake of parasite-derived EVs differs markedly between host T cells and monocytes. T cells, which are components of the adaptive immune system, internalize parasite-derived EVs mainly through an interaction with the plasma membrane, whereas monocytes, which function in the innate immune system, take up these EVs via endocytosis. The membranal/endocytic balance of EV internalization is driven mostly by the amount of endocytic incorporation. Integrating atomic force microscopy with fluorescence data analysis revealed that internalization depends on the biophysical properties of the cell membrane rather than solely on molecular interactions. In support of this, altering the cholesterol content in the cell membrane tilted the balance in favor of one uptake route over another. Our results provide mechanistic insights into how P. falciparum-derived EVs enter into diverse host cells. This study highlights the sophisticated cell-communication tactics used by the malaria parasite.
Collapse
Affiliation(s)
- Daniel Alfandari
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Irit Rosenhek-Goldian
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ewa Kozela
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Reinat Nevo
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcela Bahlsen Senprún
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anton Moisieiev
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Sogauker
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Azuri
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Samuel Gelman
- Bioinformatics
Unit, Life Sciences Core Facilities, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Edo Kiper
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raviv Dharan
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Raya Sorkin
- Raymond
and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ziv Porat
- Flow
cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Science, Prague 160-00, Czech Republic
- IMol
Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Neta Regev-Rudzki
- Department
of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Cohen T, Zemmour C, Cohen OT, Benny O. Elongated Particles Show a Preferential Uptake in Invasive Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1891. [PMID: 39683280 DOI: 10.3390/nano14231891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Mechanically driven cellular preference for drug carriers can enhance selectivity in cancer therapy, underscoring the importance of understanding the physical aspects of particle uptake. In this study, it was hypothesized that elongated particles might be preferentially taken up by deformable, aggressive cancer cells compared to normal cells. Two film-stretching methods were tested for 0.8-2.4 μm polystyrene (PS) particles: one based on solubility in organic solvents and the other on heat-induced softening. The heat-induced method produced more homogenous particle batches, with a standard deviation in the particle aspect ratio of 0.42 compared to 0.91 in the solvent-based method. The ability of cells to engulf elongated PS particles versus spherical particles was assessed in two subsets of human melanoma A375 cells. In the more aggressive cancer cell subset (A375+), uptake of elongated PS particles increased by 10% compared to spherical particles. In contrast, the less aggressive subset (A375-) showed a 25% decrease in uptake of elongated particles. This resulted in an uptake ratio between A375+ and A375- that was 1.5 times higher for elongated PS particles than for spherical ones. To further demonstrate relevance to drug delivery, elongated paclitaxel-loaded biodegradable, slow-releasing poly(lactic-co-glycolic) acid (PLGA) particles were synthesized. No significant difference in cytotoxic effect was observed between A375+ and A375- cells treated with spherical drug-loaded particles. However, treatment with ellipsoidal particles led to a significantly enhanced cytotoxic effect in aggressive cells compared to less aggressive cells. These findings present promising directions for tailored cancer drug delivery and demonstrate the importance of particle physical properties in cellular uptake and drug delivery mechanisms.
Collapse
Affiliation(s)
- Talya Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Chalom Zemmour
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ora T Cohen
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ofra Benny
- Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
3
|
Bendi A, Vashisth C, Yadav S, Pundeer R, Raghav N. Recent advances in the synthesis of cholesterol-based triazoles and their biological applications. Steroids 2024; 211:109499. [PMID: 39155033 DOI: 10.1016/j.steroids.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Double-headed warheads focusing on the pharmacological aspects as well as membrane permeability can contribute a lot to medicinal chemistry. Over the past few decades, a lot of research has been conducted on steroid-heterocycle conjugates as possible therapeutic agents against a variety of disorders. In the second half of the 20th century, successful research was conducted on cholesterol-based heterocyclic moieties. Keeping in view the biological significance of various triazoles, research on fusion with cholesterol has emerged. This review has been designed to explore the chemistry of cholesterol-based triazoles for the duration from 2010 to 2023 and their significance in medicinal chemistry.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, Bangalore 560064, Karnataka, India
| | - Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| | - Sidhant Yadav
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari 122502, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119 India.
| |
Collapse
|
4
|
Dean WF, Mattheyses AL. Illuminating cellular architecture and dynamics with fluorescence polarization microscopy. J Cell Sci 2024; 137:jcs261947. [PMID: 39404619 PMCID: PMC11529880 DOI: 10.1242/jcs.261947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Geng X, Xia X, Liang Z, Li S, Yue Z, Zhang H, Guo L, Ma S, Jiang S, Lian X, Zhou J, Sung LA, Wang X, Yao W. Tropomodulin1 exacerbates inflammatory response in macrophages by negatively regulating LPS-induced TLR4 endocytosis. Cell Mol Life Sci 2024; 81:402. [PMID: 39276234 PMCID: PMC11401823 DOI: 10.1007/s00018-024-05424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024]
Abstract
The excessive inflammation caused by the prolonged activation of Toll-like receptor 4 (TLR4) and its downstream signaling pathways leads to sepsis. CD14-mediated endocytosis of TLR4 is the key step to control the amount of TLR4 on cell membrane and the activity of downstream pathways. The actin cytoskeleton is necessary for receptor-mediated endocytosis, but its role in TLR4 endocytosis remains elusive. Here we show that Tropomodulin 1 (Tmod1), an actin capping protein, inhibited lipopolysaccharide (LPS)-induced TLR4 endocytosis and intracellular trafficking in macrophages. Thus it resulted in increased surface TLR4 and the upregulation of myeloid differentiation factor 88 (MyD88)-dependent pathway and the downregulation of TIR domain-containing adaptor-inducing interferon-β (TRIF)-dependent pathway, leading to the enhanced secretion of inflammatory cytokines, such as TNF-α and IL-6, and the reduced secretion of cytokines, such as IFN-β. Macrophages deficient with Tmod1 relieved the inflammatory response in LPS-induced acute lung injury mouse model. Mechanistically, Tmod1 negatively regulated LPS-induced TLR4 endocytosis and inflammatory response through modulating the activity of CD14/Syk/PLCγ2/IP3/Ca2+ signaling pathway, the reorganization of actin cytoskeleton, and the membrane tension. Therefore, Tmod1 is a key regulator of inflammatory response and immune functions in macrophages and may be a potential target for the treatment of excessive inflammation and sepsis.
Collapse
Affiliation(s)
- Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Xue Xia
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, Jiangsu Province, China
| | - Zhenhui Liang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Shuo Li
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zejun Yue
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China
| | - Huan Zhang
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Guo
- Department of Rehabilitation Medicine, Caoxian People's Hospital, Heze, 274400, Shandong Province, China
| | - Shan Ma
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Siyu Jiang
- Chengde Medical College, Chengde, 067000, Hebei Province, China
| | - Xiang Lian
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Chan ET, Kural C. Targeting endocytosis to sensitize cancer cells to programmed cell death. Biochem Soc Trans 2024; 52:1703-1713. [PMID: 39092762 PMCID: PMC11519968 DOI: 10.1042/bst20231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Evading programmed cell death (PCD) is a hallmark of cancer that allows tumor cells to survive and proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore susceptibility to PCD. Strategies to modulate endocytosis for enhanced cancer treatment are discussed, including targeting endocytic regulatory proteins, altering membrane biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, harnessing endocytic pathways represents an attractive approach to overcome apoptotic resistance and could yield more effective therapies by rendering cancer cells vulnerable to PCD. Understanding the interplay between endocytosis and PCD regulation is crucial for developing novel anticancer strategies that selectively induce tumor cell death.
Collapse
Affiliation(s)
- Emily T. Chan
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Cömert Kural
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Physics, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
7
|
Maremonti MI, Panzetta V, Netti PA, Causa F. HiViPore: a highly viable in-flow compression for a one-step cell mechanoporation in microfluidics to induce a free delivery of nano- macro-cargoes. J Nanobiotechnology 2024; 22:441. [PMID: 39068464 PMCID: PMC11282774 DOI: 10.1186/s12951-024-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Among mechanoporation techniques for intracellular delivery, microfluidic approaches succeed in high delivery efficiency and throughput. However, especially the entry of large cargoes (e.g. DNA origami, mRNAs, organic/inorganic nanoparticles) is currently impaired since it requires large cell membrane pores with the need to apply multi-step processes and high forces, dramatically reducing cell viability. RESULTS Here, HiViPore presents as a microfluidic viscoelastic contactless compression for one-step cell mechanoporation to produce large pores while preserving high cell viability. Inducing an increase of curvature at the equatorial region of cells, formation of a pore with a size of ~ 1 μm is obtained. The poration is coupled to an increase of membrane tension, measured as a raised fluorescence lifetime of 12% of a planarizable push-pull fluorescent probe (Flipper-TR) labelling the cell plasma membrane. Importantly, the local disruptions of cell membrane are transient and non-invasive, with a complete recovery of cell integrity and functions in ~ 10 min. As result, HiViPore guarantees cell viability as high as ~ 90%. In such conditions, an endocytic-free diffusion of large nanoparticles is obtained with typical size up to 500 nm and with a delivery efficiency up to 12 times higher than not-treated cells. CONCLUSIONS The proposed one-step contactless mechanoporation results in an efficient and safe approach for advancing intracellular delivery strategies. In detail, HiViPore solves the issues of low cell viability when multiple steps of poration are required to obtain large pores across the cell plasma membrane. Moreover, the compression uses a versatile, low-cost, biocompatible viscoelastic fluid, thus also optimizing the operational costs. With HiViPore, we aim to propose an easy-to-use microfluidic device to a wide range of users, involved in biomedical research, imaging techniques and nanotechnology for intracellular delivery applications in cell engineering.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB), Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples "Federico II", Naples, 80125, Italy.
| |
Collapse
|
8
|
Zhao Y, Li P, Wang X, Wu Y, Liu L, Zhao R. A novel pectin polysaccharide from vinegar-baked Radix Bupleuri absorbed by microfold cells in the form of nanoparticles. Int J Biol Macromol 2024; 266:131096. [PMID: 38522695 DOI: 10.1016/j.ijbiomac.2024.131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Polysaccharides of vinegar-baked Radix Bupleuri (VBCP) have been reported to exhibit liver-targeting and immunomodulatory activities through oral administration, but the absorption behavior and mechanism of VBCPs have not been extensively studied. In this study, a novel HG type pectin polysaccharide, VBCP1-4, with a high molecular weight of 2.94 × 106 Da, was separated from VBCP. VBCP1-4 backbone was contained 1,4-α-D-GalpA, 1,4-α-D-GalpA6OMe, 1,3,4-α-D-GalpA and 1,2,4-α-D-Rhap. The branches were mainly contained 1,5-α-L-Araf, 1,3,5-α-L-Araf, t-α-L-Araf and t-α-D-Galp, which linked to the 3 position of 1,3,4-α-D-GalpA and the 4 position of 1,2,4-α-D-Rhap. VBCP1-4 could self-assemble to nanoparticles in water, with CMC values of 106.41 μg/mL, particle sizes of 178.20 ± 2.82 nm and zeta potentials of -23.19 ± 1.44 mV. The pharmacokinetic study of VBCP1-4, which detected by marking with FITC, revealed that it could be partially absorbed into the body through Peyer's patches of the ileum. In vitro absorption study demonstrated that VBCP1-4 was difficult to be absorbed by Caco-2 cell monolayer, but could be absorbed by M cells in a time and concentration dependent manner. The absorption mechanism was elucidated that VBCP1-4 entered M cells through clathrin-mediated endocytosis in the form of nanoparticles. These findings provide valuable insights into the absorption behavior of VBCP and contribute to its further development.
Collapse
Affiliation(s)
- Ya Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ping Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoshuang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yayun Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
9
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Phuyal S, Romani P, Dupont S, Farhan H. Mechanobiology of organelles: illuminating their roles in mechanosensing and mechanotransduction. Trends Cell Biol 2023; 33:1049-1061. [PMID: 37236902 DOI: 10.1016/j.tcb.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Mechanobiology studies the mechanisms by which cells sense and respond to physical forces, and the role of these forces in shaping cells and tissues themselves. Mechanosensing can occur at the plasma membrane, which is directly exposed to external forces, but also in the cell's interior, for example, through deformation of the nucleus. Less is known on how the function and morphology of organelles are influenced by alterations in their own mechanical properties, or by external forces. Here, we discuss recent advances on the mechanosensing and mechanotransduction of organelles, including the endoplasmic reticulum (ER), the Golgi apparatus, the endo-lysosmal system, and the mitochondria. We highlight open questions that need to be addressed to gain a broader understanding of the role of organelle mechanobiology.
Collapse
Affiliation(s)
- Santosh Phuyal
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Patrizia Romani
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Dinet C, Torres-Sánchez A, Lanfranco R, Di Michele L, Arroyo M, Staykova M. Patterning and dynamics of membrane adhesion under hydraulic stress. Nat Commun 2023; 14:7445. [PMID: 37978292 PMCID: PMC10656516 DOI: 10.1038/s41467-023-43246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Hydraulic fracturing plays a major role in cavity formation during embryonic development, when pressurized fluid opens microlumens at cell-cell contacts, which evolve to form a single large lumen. However, the fundamental physical mechanisms behind these processes remain masked by the complexity and specificity of biological systems. Here, we show that adhered lipid vesicles subjected to osmotic stress form hydraulic microlumens similar to those in cells. Combining vesicle experiments with theoretical modelling and numerical simulations, we provide a physical framework for the hydraulic reconfiguration of cell-cell adhesions. We map the conditions for microlumen formation from a pristine adhesion, the emerging dynamical patterns and their subsequent maturation. We demonstrate control of the fracturing process depending on the applied pressure gradients and the type and density of membrane bonds. Our experiments further reveal an unexpected, passive transition of microlumens to closed buds that suggests a physical route to adhesion remodeling by endocytosis.
Collapse
Affiliation(s)
- Céline Dinet
- Department of Physics, Durham University, Durham, UK
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, 31 Chemin Joseph Aiguier, 13009, Marseille, France
| | - Alejandro Torres-Sánchez
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
- European Molecular Biology Laboratory (EMBL-Barcelona), 08003, Barcelona, Spain
| | - Roberta Lanfranco
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Department of Chemistry, Imperial College of London, London, UK
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034, Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), 08034, Barcelona, Spain.
| | | |
Collapse
|
12
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
13
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
14
|
Carballo-Pedrares N, Ponti F, Lopez-Seijas J, Miranda-Balbuena D, Bono N, Candiani G, Rey-Rico A. Non-viral gene delivery to human mesenchymal stem cells: a practical guide towards cell engineering. J Biol Eng 2023; 17:49. [PMID: 37491322 PMCID: PMC10369726 DOI: 10.1186/s13036-023-00363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Junquera Lopez-Seijas
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy.
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain.
| |
Collapse
|
15
|
He Y, Cheng M, Yang R, Li H, Lu Z, Jin Y, Feng J, Tu L. Research Progress on the Mechanism of Nanoparticles Crossing the Intestinal Epithelial Cell Membrane. Pharmaceutics 2023; 15:1816. [PMID: 37514003 PMCID: PMC10384977 DOI: 10.3390/pharmaceutics15071816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Improving the stability of drugs in the gastrointestinal tract and their penetration ability in the mucosal layer by implementing a nanoparticle delivery strategy is currently a research focus in the pharmaceutical field. However, for most drugs, nanoparticles failed in enhancing their oral absorption on a large scale (4 folds or above), which hinders their clinical application. Recently, several researchers have proved that the intestinal epithelial cell membrane crossing behaviors of nanoparticles deeply influenced their oral absorption, and relevant reviews were rare. In this paper, we systematically review the behaviors of nanoparticles in the intestinal epithelial cell membrane and mainly focus on their intracellular mechanism. The three key complex intracellular processes of nanoparticles are described: uptake by intestinal epithelial cells on the apical side, intracellular transport and basal side exocytosis. We believe that this review will help scientists understand the in vivo performance of nanoparticles in the intestinal epithelial cell membrane and assist in the design of novel strategies for further improving the bioavailability of nanoparticles.
Collapse
Affiliation(s)
- Yunjie He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Meng Cheng
- The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ruyue Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Haocheng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Zhiyang Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
16
|
Wang T, Liu Y, Zhou Y, Liu Q, Zhang Q, Sun M, Sun M, Li H, Xu A, Liu Y. Astaxanthin protected against the adverse effects induced by diesel exhaust particulate matter via improving membrane stability and anti-oxidative property. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131684. [PMID: 37236114 DOI: 10.1016/j.jhazmat.2023.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Diesel exhaust particulate matter (DPM), which has been clarified as a Group I carcinogenic agent, is still challenging in its detoxification due to the complex composition and toxic mechanisms. Astaxanthin (AST) is a pleiotropic small biological molecule widely used in medical and healthcare with surprising effects and applications. The present study aimed to investigate the protective effects of AST on DPM-induced injury and the underlying mechanism. Our results indicated that AST significantly suppressed the generation of phosphorylated histone H2AX (γ-H2AX, marker of DNA damage) and inflammation caused by DPM both in vitro and in vivo. Mechanistically, AST prevented the endocytosis and intracellular accumulation of DPM via regulating the stability and fluidity of plasma membranes. Moreover, the oxidative stress elicited by DPM in cells could also be effectively inhibited by AST, together with protecting the structure and function of mitochondria. These investigations provided clear evidence that AST notably reduced DPM invasion and intracellular accumulation by modulating the membrane-endocytotic pathway, which eventually reduced intracellular oxidative stress caused by DPM. Our data might provide a novel clue for curing and treating the harmful effects of particulate matter.
Collapse
Affiliation(s)
- Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Ying Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Qiao Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Qixing Zhang
- University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengzi Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Department of Pathophysiology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Meng Sun
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, P. R. China.
| |
Collapse
|
17
|
Abstract
Plasma membrane tension functions as a global physical organizer of cellular activities. Technical limitations of current membrane tension measurement techniques have hampered in-depth investigation of cellular membrane biophysics and the role of plasma membrane tension in regulating cellular processes. Here, we develop an optical membrane tension reporter by repurposing an E. coli mechanosensitive channel via insertion of circularly permuted GFP (cpGFP), which undergoes a large conformational rearrangement associated with channel activation and thus fluorescence intensity changes under increased membrane tension.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Agnes M Resto Irizarry
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
19
|
Lee A, Sousa de Almeida M, Milinkovic D, Septiadi D, Taladriz-Blanco P, Loussert-Fonta C, Balog S, Bazzoni A, Rothen-Rutishauser B, Petri-Fink A. Substrate stiffness reduces particle uptake by epithelial cells and macrophages in a size-dependent manner through mechanoregulation. NANOSCALE 2022; 14:15141-15155. [PMID: 36205559 PMCID: PMC9585528 DOI: 10.1039/d2nr03792k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 05/23/2023]
Abstract
Cells continuously exert forces on their environment and respond to changes in mechanical forces by altering their behaviour. Many pathologies such as cancer and fibrosis are hallmarked by dysregulation in the extracellular matrix, driving aberrant behaviour through mechanotransduction pathways. We demonstrate that substrate stiffness can be used to regulate cellular endocytosis of particles in a size-dependent fashion. Culture of A549 epithelial cells and J774A.1 macrophages on polystyrene/glass (stiff) and polydimethylsiloxane (soft) substrates indicated that particle uptake is increased up to six times for A549 and two times for macrophages when cells are grown in softer environments. Furthermore, we altered surface characteristics through the attachment of submicron-sized particles as a method to locally engineer substrate stiffness and topography to investigate the biomechanical changes which occurred within adherent epithelial cells, i.e. characterization of A549 cell spreading and focal adhesion maturation. Consequently, decreasing substrate rigidity and particle-based topography led to a reduction of focal adhesion size. Moreover, expression levels of Yes-associated protein were found to correlate with the degree of particle endocytosis. A thorough appreciation of the mechanical cues may lead to improved solutions to optimize nanomedicine approaches for treatment of cancer and other diseases with abnormal mechanosignalling.
Collapse
Affiliation(s)
- Aaron Lee
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Daela Milinkovic
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Céline Loussert-Fonta
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Amelie Bazzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
20
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
21
|
Joseph JG, Mudgal R, Lin SS, Ono A, Liu AP. Biomechanical Role of Epsin in Influenza A Virus Entry. MEMBRANES 2022; 12:859. [PMID: 36135878 PMCID: PMC9505878 DOI: 10.3390/membranes12090859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Influenza A virus (IAV) utilizes clathrin-mediated endocytosis for cellular entry. Membrane-bending protein epsin is a cargo-specific adaptor for IAV entry. Epsin interacts with ubiquitinated surface receptors bound to IAVs via its ubiquitin interacting motifs (UIMs). Recently, epsin was shown to have membrane tension sensitivity via its amphiphilic H0 helix. We hypothesize this feature is important as IAV membrane binding would bend the membrane and clinical isolates of IAVs contain filamentous IAVs that may involve more membrane bending. However, it is not known if IAV internalization might also depend on epsin's H0 helix. We found that CALM, a structurally similar protein to epsin lacking UIMs shows weaker recruitment to IAV-containing clathrin-coated structures (CCSs) compared to epsin. Removal of the ENTH domain of epsin containing the N-terminus H0 helix, which detects changes in membrane curvature and membrane tension, or mutations in the ENTH domain preventing the formation of H0 helix reduce the ability of epsin to be recruited to IAV-containing CCSs, thereby reducing the internalization of spherical IAVs. However, internalization of IAVs competent in filamentous particle formation is not affected by the inhibition of H0 helix formation in the ENTH domain of epsin. Together, these findings support the hypothesis that epsin plays a biomechanical role in IAV entry.
Collapse
Affiliation(s)
- Jophin G. Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajat Mudgal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shan-Shan Lin
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
23
|
Ponti F, Bono N, Russo L, Bigini P, Mantovani D, Candiani G. Vibropolyfection: coupling polymer-mediated gene delivery to mechanical stimulation to enhance transfection of adherent cells. J Nanobiotechnology 2022; 20:363. [PMID: 35933375 PMCID: PMC9356458 DOI: 10.1186/s12951-022-01571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.
Collapse
Affiliation(s)
- Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Milan, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC Tier I, Department of Min-Met-Mat Engineering and CHU de Québec Research Center, Division of Regenerative Medicine, Laval University, Quebec, QC, Canada
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
24
|
Barbeau S, Joushomme A, Chappe Y, Cardouat G, Baudrimont I, Freund-Michel V, Guibert C, Marthan R, Berger P, Vacher P, Percherancier Y, Quignard JF, Ducret T. Cell Confluence Modulates TRPV4 Channel Activity in Response to Hypoxia. Biomolecules 2022; 12:954. [PMID: 35883510 PMCID: PMC9313184 DOI: 10.3390/biom12070954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a polymodal Ca2+-permeable channel involved in various hypoxia-sensitive pathophysiological phenomena. Different tools are available to study channel activity, requiring cells to be cultured at specific optimal densities. In the present study, we examined if cell density may influence the effect of hypoxia on TRPV4 activity. Transiently TRPV4-transfected HEK293T cells were seeded at low or high densities corresponding to non-confluent or confluent cells, respectively, on the day of experiments, and cultured under in vitro normoxia or hypoxia. TRPV4-mediated cytosolic Ca2+ responses, single-channel currents, and Ca2+ influx through the channel were measured using Ca2+ imaging/microspectrofluorimetric assay, patch-clamp, and Bioluminescence Resonance Energy Transfer (BRET), respectively. TRPV4 plasma membrane translocation was studied using confocal microscopy, biotinylation of cell surface proteins, and BRET. Our results show that hypoxia exposure has a differential effect on TRPV4 activation depending on cell confluence. At low confluence levels, TRPV4 response is increased in hypoxia, whereas at high confluence levels, TRPV4 response is strongly inhibited, due to channel internalization. Thus, cell density appears to be a crucial parameter for TRPV4 channel activity.
Collapse
Affiliation(s)
- Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Alexandre Joushomme
- Laboratoire de l’Intégration du Matériau au Système, UMR5518, Univ. Bordeaux, F-33400 Talence, France; (A.J.); (Y.C.); (Y.P.)
- CNRS (Centre National de la Recherche Scientifique), Laboratoire de L’integration du Matériau au Système, UMR5518, F-33400 Talence, France
| | - Yann Chappe
- Laboratoire de l’Intégration du Matériau au Système, UMR5518, Univ. Bordeaux, F-33400 Talence, France; (A.J.); (Y.C.); (Y.P.)
- CNRS (Centre National de la Recherche Scientifique), Laboratoire de L’integration du Matériau au Système, UMR5518, F-33400 Talence, France
| | - Guillaume Cardouat
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Isabelle Baudrimont
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Véronique Freund-Michel
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Christelle Guibert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
- CHU (Centre Hospitalier Universitaire) Bordeaux, Service d’Exploration Fonctionnelle Respiratoire, F-33600 Pessac, France
| | - Patrick Berger
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
- CHU (Centre Hospitalier Universitaire) Bordeaux, Service d’Exploration Fonctionnelle Respiratoire, F-33600 Pessac, France
| | - Pierre Vacher
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Yann Percherancier
- Laboratoire de l’Intégration du Matériau au Système, UMR5518, Univ. Bordeaux, F-33400 Talence, France; (A.J.); (Y.C.); (Y.P.)
- CNRS (Centre National de la Recherche Scientifique), Laboratoire de L’integration du Matériau au Système, UMR5518, F-33400 Talence, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ. Bordeaux, U1045, F-33600 Pessac, France; (S.B.); (G.C.); (I.B.); (V.F.-M.); (C.G.); (R.M.); (P.B.); (P.V.); (J.-F.Q.)
- INSERM (Institut National de la Santé Et de la Recherche Médicale), Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, F-33600 Pessac, France
| |
Collapse
|
25
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
27
|
Ginini L, Billan S, Fridman E, Gil Z. Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. Cells 2022; 11:1375. [PMID: 35563681 PMCID: PMC9101098 DOI: 10.3390/cells11091375] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogamous lipid bilayer-enclosed membranous structures secreted by cells. They are comprised of apoptotic bodies, microvesicles, and exosomes, and carry a range of nucleic acids and proteins that are necessary for cell-to-cell communication via interaction on the cells surface. They initiate intracellular signaling pathways or the transference of cargo molecules, which elicit pleiotropic responses in recipient cells in physiological processes, as well as pathological processes, such as cancer. It is therefore important to understand the molecular means by which EVs are taken up into cells. Accordingly, this review summarizes the underlying mechanisms involved in EV targeting and uptake. The primary method of entry by EVs appears to be endocytosis, where clathrin-mediated, caveolae-dependent, macropinocytotic, phagocytotic, and lipid raft-mediated uptake have been variously described as being prevalent. EV uptake mechanisms may depend on proteins and lipids found on the surfaces of both vesicles and target cells. As EVs have been shown to contribute to cancer growth and progression, further exploration and targeting of the gateways utilized by EVs to internalize into tumor cells may assist in the prevention or deceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Lana Ginini
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Salem Billan
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
- Medical Oncology and Radiation Therapy Program, Oncology Section, Rambam Health Care Campus, HaAliya HaShniya Street 8, Haifa 3109601, Israel
| | - Eran Fridman
- Rappaport Family Institute for Research in the Medical Sciences, Technion–Israel Institute of Technology, Haifa 31096, Israel; (L.G.); (E.F.)
| | - Ziv Gil
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel;
| |
Collapse
|
28
|
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Hong Yin
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Daniel T H Lai
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Victoria, 3011, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia Biosolids Resource, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vi Khanh Truong
- School of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Agata Marta Rybicka
- Oncovet Clinical Research, Parc Eurasante, 80 Rue du Dr Alexandre Yersin, Loos, F-59120, France
| | - Ivan Cole
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
29
|
Yan X, Gong X, Lin T, Lin M, Qin P, Ye J, Li H, Hong Q, Li M, Liu Y, Li Y, Wang X, Zhang Y, Ling Y, Cao H, Zhang X, Fang F. Analysis of protein phosphorylation sites in the hypothalamus tissues of pubescent goats. J Proteomics 2022; 260:104574. [DOI: 10.1016/j.jprot.2022.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
30
|
Zhang X, Hu X, Wu H, Mu L. Persistence and Recovery of ZIF-8 and ZIF-67 Phytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15301-15312. [PMID: 34719228 DOI: 10.1021/acs.est.1c05838] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have been developed quickly and have attracted considerable attention for use in the detection and removal of various pollutants. Understanding the environmental risks of ZIFs is a prerequisite to their safe application by industry and new chemical registration by governments; however, the persistence and recovery of toxicity induced by ZIFs remain largely unclear. This study finds that typical ZIFs (e.g., ZIF-8 and ZIF-67) at a concentration of 0.01-1 mg/L induce significant algal growth inhibition, plasmolysis, membrane permeability, chloroplast damage, and chlorophyll biosynthesis, and the above alterations are recoverable. Unexpectedly, a persistent decrease in reactive oxygen species (ROS) is observed due to the quenching of hydroxyl free radicals. The adverse effects of ZIF-8 are weak and easily alleviated compared with those of ZIF-67. ZIF-8 is internalized mainly by caveolae-mediated endocytosis, while ZIF-67 is internalized mainly by clathrin-mediated endocytosis. Omics studies reveal that the downregulation of mRNA associated with oxidative phosphorylation and the inhibition of chlorophyll and adenosine triphosphate (ATP) synthesis in mitochondria are related to the persistence of phytotoxicity. These findings highlight the phenomena and mechanisms of the persistence and recovery of phytotoxicity, indicating the need to reconsider the environmental risk assessments of ZIFs.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Key Laboratory for Environmental Factor Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
31
|
Muriel O, Michon L, Kukulski W, Martin SG. Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. J Cell Biol 2021; 220:e202103142. [PMID: 34382996 PMCID: PMC8366684 DOI: 10.1083/jcb.202103142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cell-cell fusion is central for sexual reproduction, and generally involves gametes of different shapes and sizes. In walled fission yeast Schizosaccharomyces pombe, the fusion of h+ and h- isogametes requires the fusion focus, an actin structure that concentrates glucanase-containing vesicles for cell wall digestion. Here, we present a quantitative correlative light and electron microscopy (CLEM) tomographic dataset of the fusion site, which reveals the fusion focus ultrastructure. Unexpectedly, gametes show marked asymmetries: a taut, convex plasma membrane of h- cells progressively protrudes into a more slack, wavy plasma membrane of h+ cells. Asymmetries are relaxed upon fusion, with observations of ramified fusion pores. h+ cells have a higher exo-/endocytosis ratio than h- cells, and local reduction in exocytosis strongly diminishes membrane waviness. Reciprocally, turgor pressure reduction specifically in h- cells impedes their protrusions into h+ cells and delays cell fusion. We hypothesize that asymmetric membrane conformations, due to differential turgor pressure and exocytosis/endocytosis ratios between mating types, favor cell-cell fusion.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Wanda Kukulski
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Holden L, Burke CS, Cullinane D, Keyes TE. Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chem Biol 2021; 2:1021-1049. [PMID: 34458823 PMCID: PMC8341117 DOI: 10.1039/d1cb00049g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Transition metal luminophores are emerging as important tools for intracellular imaging and sensing. Their putative suitability for such applications has long been recognised but poor membrane permeability and cytotoxicity were significant barriers that impeded early progress. In recent years, numerous effective routes to overcoming these issues have been reported, inspired in part, by advances and insights from the pharmaceutical and drug delivery domains. In particular, the conjugation of biomolecules but also other less natural synthetic species, from a repertoire of functional motifs have granted membrane permeability and cellular targeting. Such motifs can also reduce cytotoxicity of transition metal complexes and offer a valuable avenue to circumvent such problems leading to promising metal complex candidates for application in bioimaging, sensing and diagnostics. The advances in metal complex probes permeability/targeting are timely, as, in parallel, over the past two decades significant technological advances in luminescence imaging have occurred. In particular, super-resolution imaging is enormously powerful but makes substantial demands of its imaging contrast agents and metal complex luminophores frequently possess the photophysical characteristics to meet these demands. Here, we review some of the key vectors that have been conjugated to transition metal complex luminophores to promote their use in intra-cellular imaging applications. We evaluate some of the most effective strategies in terms of membrane permeability, intracellular targeting and what impact these approaches have on toxicity and phototoxicity which are important considerations in a luminescent contrast or sensing agent.
Collapse
Affiliation(s)
- Lorcan Holden
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Christopher S Burke
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - David Cullinane
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, and National Centre for Sensor Research Dublin City University Dublin 9 Ireland
| |
Collapse
|
33
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
34
|
Pedrioli G, Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol 2021; 8:595515. [PMID: 33490063 PMCID: PMC7817780 DOI: 10.3389/fcell.2020.595515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles, phospholipid bilayer-membrane vesicles of cellular origin, are emerging as nanocarriers of biological information between cells. Extracellular vesicles transport virtually all biologically active macromolecules (e.g., nucleotides, lipids, and proteins), thus eliciting phenotypic changes in recipient cells. However, we only partially understand the cellular mechanisms driving the encounter of a soluble ligand transported in the lumen of extracellular vesicles with its cytosolic receptor: a step required to evoke a biologically relevant response. In this context, we review herein current evidence supporting the role of two well-described cellular transport pathways: the endocytic pathway as the main entry route for extracellular vesicles and the autophagic pathway driving lysosomal degradation of cytosolic proteins. The interplay between these pathways may result in the target engagement between an extracellular vesicle cargo protein and its cytosolic target within the acidic compartments of the cell. This mechanism of cell-to-cell communication may well own possible implications in the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Giona Pedrioli
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Member of the International Ph.D. Program of the Biozentrum, University of Basel, Basel, Switzerland
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
35
|
Joseph JG, Osorio C, Yee V, Agrawal A, Liu AP. Complimentary action of structured and unstructured domains of epsin supports clathrin-mediated endocytosis at high tension. Commun Biol 2020; 3:743. [PMID: 33293652 PMCID: PMC7722716 DOI: 10.1038/s42003-020-01471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Membrane tension plays an inhibitory role in clathrin-mediated endocytosis (CME) by impeding the transition of flat plasma membrane to hemispherical clathrin-coated structures (CCSs). Membrane tension also impedes the transition of hemispherical domes to omega-shaped CCSs. However, CME is not completely halted in cells under high tension conditions. Here we find that epsin, a membrane bending protein which inserts its N-terminus H0 helix into lipid bilayer, supports flat-to-dome transition of a CCS and stabilizes its curvature at high tension. This discovery is supported by molecular dynamic simulation of the epsin N-terminal homology (ENTH) domain that becomes more structured when embedded in a lipid bilayer. In addition, epsin has an intrinsically disordered protein (IDP) C-terminus domain which induces membrane curvature via steric repulsion. Insertion of H0 helix into lipid bilayer is not sufficient for stable epsin recruitment. Epsin's binding to adaptor protein 2 and clathrin is critical for epsin's association with CCSs under high tension conditions, supporting the importance of multivalent interactions in CCSs. Together, our results support a model where the ENTH and unstructured IDP region of epsin have complementary roles to ensure CME initiation and CCS maturation are unimpeded under high tension environments.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Osorio
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Vivian Yee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
36
|
Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules 2020; 25:E5710. [PMID: 33287269 PMCID: PMC7730005 DOI: 10.3390/molecules25235710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.
Collapse
Affiliation(s)
- Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, Sutton, Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| |
Collapse
|
37
|
Song C, Zhou H, Lu H, Luo C, Wang C, Wang Q, Peng Y, Xin Y, Liu T, Yang W. Aberrant expression for microRNA is potential crucial factors of haemorrhoid. Hereditas 2020; 157:25. [PMID: 32620169 PMCID: PMC7334851 DOI: 10.1186/s41065-020-00139-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haemorrhoids occur commonly and frequently in the human digestive system. There are diverse causes of haemorrhoids and their in-depth pathogenesis is still currently unclear. METHODS In this study, we explored haemorrhoids from an epigenetics perspective by employing RNA-Seq for comprehensive and in-depth analysis of the differences in microRNA (miRNA) transcripts between haemorrhoidal tissue and normal tissue in 48 patients with Grade II and above haemorrhoids. RESULTS The results showed that 9 miRNAs were significantly upregulated (ratio > 3.5 and P-value < 0.01) and 16 miRNAs were significantly downregulated (ratio > 0.6 and P-value < 0.01) in haemorrhoid tissue. Subsequently, target gene prediction results showed that there were 184 potential target genes of significantly upregulated miRNAs (common to both TargetScan7.1 and MirdbV5 databases) and there were 372 potential target genes of significantly downregulated miRNAs. Gene ontology analysis results showed that the target genes of differentially expressed miRNAs in haemorrhoids are involved in regulating "cell composition" and "protein binding". Lastly, KEGG search found that the differentially expressed miRNAs that are associated with the occurrence of haemorrhoids mainly regulate the activity of endocytosis and the synaptic vesicle cycle. CONCLUSIONS In summary, the results of high-throughput RNA-Seq screening suggested that the occurrence of haemorrhoids may be intimately associated with aberrant miRNA transcription, resulting in aberrant target gene expression and an imbalance in certain signal transduction pathways.
Collapse
Affiliation(s)
- Chengkun Song
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Haikun Zhou
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Hong Lu
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Chunsheng Luo
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Chen Wang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Qingming Wang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Yunhua Peng
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, P.R. China.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Wei Yang
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, P.R. China.
| |
Collapse
|