1
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2025; 14:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Li X, Cao L, Li J, Li Z, Ma H, Cheng S, Xu H, Zhao Y. Orally Administrated Inulin-Modified Nanozymes for CT-Guided IBD Theranostics. Int J Nanomedicine 2025; 20:2119-2131. [PMID: 39990289 PMCID: PMC11846537 DOI: 10.2147/ijn.s497558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic inflammatory bowel disease with no clinical cure. Excessive production of reactive oxygen species (ROS) at the inflammatory sites leads to the onset and progression of IBD. And the current non-invasive imaging methods are not ideal for the diagnosis and monitoring of IBD. Methods Herein, we developed inulin (IN)-coated cerium oxide nanoparticles (CeO2@IN NPs) for treatment and monitoring of IBD guided by computed tomography (CT). The physicochemical properties, ROS scavenging ability and CT imaging capabilities of CeO2@IN were investigated in vitro. Moreover, the therapeutic and targeted inflammation imaging effects of CeO2@IN were validated in dextran sulfate sodium (DSS)-induced colitis model. Results CeO2@IN with catalase (CAT) and superoxide dismutase (SOD) capabilities effectively scavenged ROS, thus protecting the cells against oxidative stress. In colitis model mice, orally administered CeO2@IN successfully traversed the gastrointestinal tract to reach the colon under the protection of IN, and effectively reduced intestinal inflammation, thereby maintaining the intestinal epithelial integrity. Notably, CeO2@IN performed better than conventional CT contrast agents for gastrointestinal tract imaging, particularly in detecting the inflamed areas in the colon. In addition, CeO2@IN exhibited excellent biocompatibility in vitro and in vivo. Conclusion The study provided a novel integrated diagnostic and therapeutic tool for the treatment and monitoring of IBD, presenting great potential as a clinical application for IBD.
Collapse
Affiliation(s)
- Xinwen Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Zhengyang Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Hongyu Ma
- Image Center, Cangzhou Integrated Traditional and Western Medicine Hospital, Cangzhou, 061000, People’s Republic of China
| | - Shifeng Cheng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Hongyi Xu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| |
Collapse
|
3
|
Mai H, Lu Y, Fu Y, Luo T, Li X, Zhang Y, Liu Z, Zhang Y, Zhou S, Chen C. Identification of a Susceptible and High-Risk Population for Postoperative Systemic Inflammatory Response Syndrome in Older Adults: Machine Learning-Based Predictive Model. J Med Internet Res 2024; 26:e57486. [PMID: 39501984 PMCID: PMC11624453 DOI: 10.2196/57486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Systemic inflammatory response syndrome (SIRS) is a serious postoperative complication among older adult surgical patients that frequently develops into sepsis or even death. Notably, the incidences of SIRS and sepsis steadily increase with age. It is important to identify the risk of postoperative SIRS for older adult patients at a sufficiently early stage, which would allow preemptive individualized enhanced therapy to be conducted to improve the prognosis of older adult patients. In recent years, machine learning (ML) models have been deployed by researchers for many tasks, including disease prediction and risk stratification, exhibiting good application potential. OBJECTIVE We aimed to develop and validate an individualized predictive model to identify susceptible and high-risk populations for SIRS in older adult patients to instruct appropriate early interventions. METHODS Data for surgical patients aged ≥65 years from September 2015 to September 2020 in 3 independent medical centers were retrieved and analyzed. The eligible patient cohort in the Third Affiliated Hospital of Sun Yat-sen University was randomly separated into an 80% training set (2882 patients) and a 20% internal validation set (720 patients). We developed 4 ML models to predict postoperative SIRS. The area under the receiver operating curve (AUC), F1 score, Brier score, and calibration curve were used to evaluate the model performance. The model with the best performance was further validated in the other 2 independent data sets involving 844 and 307 cases, respectively. RESULTS The incidences of SIRS in the 3 medical centers were 24.3% (876/3602), 29.6% (250/844), and 6.5% (20/307), respectively. We identified 15 variables that were significantly associated with postoperative SIRS and used in 4 ML models to predict postoperative SIRS. A balanced cutoff between sensitivity and specificity was chosen to ensure as high a true positive as possible. The random forest classifier (RF) model showed the best overall performance to predict postoperative SIRS, with an AUC of 0.751 (95% CI 0.709-0.793), sensitivity of 0.682, specificity of 0.681, and F1 score of 0.508 in the internal validation set and higher AUCs in the external validation-1 set (0.759, 95% CI 0.723-0.795) and external validation-2 set (0.804, 95% CI 0.746-0.863). CONCLUSIONS We developed and validated a generalizable RF model to predict postoperative SIRS in older adult patients, enabling clinicians to screen susceptible and high-risk patients and implement early individualized interventions. An online risk calculator to make the RF model accessible to anesthesiologists and peers around the world was developed.
Collapse
Affiliation(s)
- Haiyan Mai
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaxin Lu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Fu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tongsen Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyue Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zifeng Liu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuenong Zhang
- Department of Surgery and Anesthesia, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Big Data and Artificial Intelligence Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Nguyen TL, Phan NM, Kim J. Administration of ROS-Scavenging Cerium Oxide Nanoparticles Simply Mixed with Autoantigenic Peptides Induce Antigen-Specific Immune Tolerance against Autoimmune Encephalomyelitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33106-33120. [PMID: 38906850 DOI: 10.1021/acsami.4c05428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ngoc Man Phan
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
6
|
Fu J, Cai W, Pan S, Chen L, Fang X, Shang Y, Xu J. Developments and Trends of Nanotechnology Application in Sepsis: A Comprehensive Review Based on Knowledge Visualization Analysis. ACS NANO 2024; 18:7711-7738. [PMID: 38427687 DOI: 10.1021/acsnano.3c10458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Jiaji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Wentai Cai
- The First Clinical College, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaowei Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Gu J, Zhang P, Li H, Wang Y, Huang Y, Fan L, Ma X, Qian X, Xi J. Cerium-Luteolin Nanocomplexes in Managing Inflammation-Related Diseases by Antioxidant and Immunoregulation. ACS NANO 2024; 18:6229-6242. [PMID: 38345570 DOI: 10.1021/acsnano.3c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and the antioxidant defense system, plays a pivotal role in inflammation-related diseases. Excessive ROS levels can induce cellular damage and impair normal physiological functions, triggering the release of inflammatory mediators and exacerbating the inflammatory response, ultimately leading to irreversible tissue damage. In this study, we synthesized cerium ion-luteolin nanocomplexes (CeLutNCs) by coordinating Ce ions with the natural product luteolin, aiming to develop a therapeutic agent with excellent antioxidant and immunoregulation properties for ROS-related inflammation treatment. In vitro experiments demonstrated that the prepared CeLutNCs effectively scavenged excess ROS, prevented cell apoptosis, down-regulated levels of important inflammatory cytokines, regulated the response of inflammatory macrophages, and suppressed the activation of the nuclear factor-κ-gene binding (NF-κB) pathway. In an acute kidney injury (AKI) animal model, CeLutNCs exhibited significant efficacy in improving kidney function, repairing damaged renal tissue, and reducing oxidative stress, inflammatory response, and cellular apoptosis. Moreover, the therapeutic potential of CeLutNCs in an acute lung injury (ALI) model was confirmed through the assessment of inflammatory responses and histopathological studies. This study emphasizes the effectiveness of these metal-natural product coordination nanocomplexes as a promising therapeutic approach for preventing AKI and other diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Jiake Gu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China
| | - Peiying Zhang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huajun Li
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yisen Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ying Huang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiao Ma
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodong Qian
- Department of Cardiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Juqun Xi
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
8
|
Singh S, Sharma K, Sharma H. Green Extracts with Metal-based Nanoparticles for Treating Inflammatory Diseases: A Review. Curr Drug Deliv 2024; 21:544-570. [PMID: 37278036 DOI: 10.2174/1567201820666230602164325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Globally, high death rates and poor quality of life are caused mainly by inflammatory diseases. Corticosteroids, which may have systemic side effects and would enhance the risk of infection, are the common forms of therapy. The field of nanomedicine has created composite nanoparticles that carry a pharmacological carrier and target ligands for distribution to sites of inflammation with less systemic toxicity. However, their relatively large size often causes systemic clearance. An interesting approach is metal-based nanoparticles that naturally reduce inflammation. They are made not only to be small enough to pass through biological barriers but also to allow label-free monitoring of their interactions with cells. The following literature review discusses the mechanistic analysis of the anti-inflammatory properties of several metal-based nanoparticles, including gold, silver, titanium dioxide, selenium, and zinc oxide. Current research focuses on the mechanisms by which nanoparticles infiltrate cells and the anti-inflammatory techniques using herbal extracts-based nanoparticles. Additionally, it provides a brief overview of the literature on many environmentally friendly sources employed in nanoparticle production and the mechanisms of action of various nanoparticles.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Khushi Sharma
- Institute of Pharmaceutical Research GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh-281406, India
| |
Collapse
|
9
|
Min DK, Kim YE, Kim MK, Choi SW, Park N, Kim J. Orally Administrated Inflamed Colon-Targeted Nanotherapeutics for Inflammatory Bowel Disease Treatment by Oxidative Stress Level Modulation in Colitis. ACS NANO 2023; 17:24404-24416. [PMID: 38039189 DOI: 10.1021/acsnano.3c11089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by an inappropriate and persistent inflammatory immune response and is often accompanied by excessive reactive oxygen species (ROS) production. For effective IBD treatment, there is a high demand for safe and targeted therapy that can be orally administered. In this study, we aimed to propose the use of inflamed colon-targeted antioxidant nanotherapeutics (ICANs) for in situ oxidative stress level modulation in colitis. ICANs consist of mesoporous silica nanoparticles (MSNs) with surface-attached ROS-scavenging ceria nanoparticles (CeNPs), which are further coated with poly(acrylic acid) (PAA) to facilitate preferential adherence to inflamed colon tissues through electrostatic interaction. We achieved a high ROS-scavenging property that remained effective even after artificial gastrointestinal fluid incubation by optimization of the molecular weight and PAA-coating pH. The orally administered ICANs demonstrated enhanced adherence to inflamed colon tissues in an acute inflammation mouse model of IBD induced by dextran sulfate sodium. This targeted delivery resulted in gut microenvironment modulation by regulating redox balance and reducing inflammatory cell infiltration, thereby suppressing the colitis-associated immune response. These findings highlight the potential of noninvasive ICANs as a promising candidate for treating inflammatory intestinal diseases by oxidative stress level modulation in colitis.
Collapse
Affiliation(s)
- Dong Kwang Min
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Nuri Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Yan S, Gao Z, Ding J, Chen S, Wang Z, Jin W, Qu B, Zhang Y, Yang L, Guo D, Yin T, Yang Y, Zhang Y, Yang J. Nanocomposites based on nanoceria regulate the immune microenvironment for the treatment of polycystic ovary syndrome. J Nanobiotechnology 2023; 21:412. [PMID: 37936120 PMCID: PMC10631133 DOI: 10.1186/s12951-023-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The immune system is closely associated with the pathogenesis of polycystic ovary syndrome (PCOS). Macrophages are one of the important immune cell types in the ovarian proinflammatory microenvironment, and ameliorate the inflammatory status mainly through M2 phenotype polarization during PCOS. Current therapeutic approaches lack efficacy and immunomodulatory capacity, and a new therapeutic method is needed to prevent inflammation and alleviate PCOS. Here, octahedral nanoceria nanoparticles with powerful antioxidative ability were bonded to the anti-inflammatory drug resveratrol (CeO2@RSV), which demonstrates a crucial strategy that involves anti-inflammatory and antioxidative efficacy, thereby facilitating the proliferation of granulosa cells during PCOS. Notably, our nanoparticles were demonstrated to possess potent therapeutic efficacy via anti-inflammatory activities and effectively alleviated endocrine dysfunction, inflammation and ovarian injury in a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Collectively, this study revealed the tremendous potential of the newly developed nanoparticles in ameliorating the proinflammatory microenvironment and promoting the function of granulosa cells, representing the first attempt to treat PCOS by using CeO2@RSV nanoparticles and providing new insights in combating clinical PCOS.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Zhipeng Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Wenyi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Duanying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Yanbing Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| |
Collapse
|
11
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
12
|
Li M, Wei J, Zhu G, Fu S, He X, Hu X, Yu Y, Mou Y, Wang J, You X, Xiao X, Gu T, Ye Z, Zha Y. Quizartinib inhibits necroptosis by targeting receptor-interacting serine/threonine protein kinase 1. FASEB J 2023; 37:e23178. [PMID: 37698367 DOI: 10.1096/fj.202300600rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Systemic inflammatory response syndrome (SIRS), at least in part driven by necroptosis, is characterized by life-threatening multiple organ failure. Blocking the progression of SIRS and consequent multiple organ dysfunction is challenging. Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an important cell death and inflammatory mediator, making it a potential treatment target in several diseases. Here, using a drug repurposing approach, we show that inhibiting RIPK1 is also an effective treatment for SIRS. We performed cell-based high-throughput drug screening of an US Food and Drug Administration (FDA)-approved drug library that contains 1953 drugs to identify effective inhibitors of necroptotic cell death by SYTOX green staining. Dose-response validation of the top candidate, quizartinib, was conducted in two cell lines of HT-22 and MEFs. The effect of quizartinib on necroptosis-related proteins was evaluated using western blotting, immunoprecipitation, and an in vitro RIPK1 kinase assay. The in vivo effects of quizartinib were assessed in a murine tumor necrosis factor α (TNFα)-induced SIRS model. High-throughput screening identified quizartinib as the top "hit" in the compound library that rescued cells from necroptosis in vitro. Quizartinib inhibited necroptosis by directly inhibiting RIPK1 kinase activity and blocking downstream complex IIb formation. Furthermore, quizartinib protected mice against TNFα-induced SIRS. Quizartinib, as an FDA-approved drug with proven safety and efficacy, was repurposed for targeted inhibition of RIPK1. This work provides essential preclinical data for transferring quizartinib to the treatment of RIPK1-dependent necroptosis-induced inflammatory diseases, including SIRS.
Collapse
Affiliation(s)
- Min Li
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Jun Wei
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Guofeng Zhu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Shufang Fu
- Yichang Central People's Hospital, Yichang, China
- Department of Paediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xiaoyan He
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xinqian Hu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yajie Yu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yan Mou
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Jia Wang
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xiaoling You
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xin Xiao
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Tanrong Gu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Zhi Ye
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
13
|
Cao Y, Cheng K, Yang M, Deng Z, Ma Y, Yan X, Zhang Y, Jia Z, Wang J, Tu K, Liang J, Zhang M. Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J Nanobiotechnology 2023; 21:21. [PMID: 36658555 PMCID: PMC9854161 DOI: 10.1186/s12951-023-01770-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific disease with unknown etiology. Currently, the anti-inflammatory therapeutic approaches have achieved a certain extent of effects in terms of inflammation alleviation. Still, the final pathological outcome of intestinal fibrosis has not been effectively improved yet. RESULTS In this study, dextran-coated cerium oxide (D-CeO2) nanozyme with superoxide dismutase (SOD) and catalase (CAT) activities was synthesized by chemical precipitation. Our results showed that D-CeO2 could efficiently scavenge reactive oxide species (ROS) as well as downregulate the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and iNOS) to protect cells from H2O2-induced oxidative damage. Moreover, D-CeO2 could suppress the expression of fibrosis-related gene levels, such as α-SMA, and Collagen 1/3, demonstrating the anti-fibrotic effect. In both TBNS- and DSS-induced colitis models, oral administration of D-CeO2 in chitosan/alginate hydrogel alleviated intestinal inflammation, reduced colonic damage by scavenging ROS, and decreased inflammatory factor levels. Notably, our findings also suggested that D-CeO2 reduced fibrosis-related cytokine levels, predicting a contribution to alleviating colonic fibrosis. Meanwhile, D-CeO2 could also be employed as a CT contrast agent for noninvasive gastrointestinal tract (GIT) imaging. CONCLUSION We introduced cerium oxide nanozyme as a novel therapeutic approach with computed tomography (CT)-guided anti-inflammatory and anti-fibrotic therapy for the management of IBD. Collectively, without appreciable systemic toxicity, D-CeO2 held the promise of integrated applications for diagnosis and therapy, pioneering the exploration of nanozymes with ROS scavenging capacity in the anti-fibrotic treatment of IBD.
Collapse
Affiliation(s)
- Yameng Cao
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Kai Cheng
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Mei Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhichao Deng
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yana Ma
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Xiangji Yan
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Yuanyuan Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Zhenzhen Jia
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| | - Jun Wang
- grid.452438.c0000 0004 1760 8119Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Kangsheng Tu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jie Liang
- grid.417295.c0000 0004 1799 374XXijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi’an, 710068 Shaanxi China
| | - Mingzhen Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243School of Basic Medical Sciences, Xian Key Laboratory of Immune Related Diseases, Xian Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.43169.390000 0001 0599 1243Key Laboratory of Environment and Genes Related to Diseases, Xian Jiaotong University, Ministry of Education, Xi’an, 710061 Shaanxi China
| |
Collapse
|
14
|
Nguyen TL, Choi Y, Im J, Shin H, Phan NM, Kim MK, Choi SW, Kim J. Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance. Nat Commun 2022; 13:7449. [PMID: 36460677 PMCID: PMC9718828 DOI: 10.1038/s41467-022-35263-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Current therapies for autoimmune diseases, such as multiple sclerosis (MS), induce broad suppression of the immune system, potentially promoting opportunistic infections. Here, we report an immunosuppressive biomaterial-based therapeutic vaccine carrying self-antigen and tolerance-inducing inorganic nanoparticles to treat experimental autoimmune encephalomyelitis (EAE), a mouse model mimicking human MS. Immunization with self-antigen-loaded mesoporous nanoparticles generates Foxp3+ regulatory T-cells in spleen and systemic immune tolerance in EAE mice, reducing central nervous system-infiltrating antigen-presenting cells (APCs) and autoreactive CD4+ T-cells. Introducing reactive oxygen species (ROS)-scavenging cerium oxide nanoparticles (CeNP) to self-antigen-loaded nanovaccine additionally suppresses activation of APCs and enhances antigen-specific immune tolerance, inducing recovery in mice from complete paralysis at the late, chronic stage of EAE, which shows similarity to chronic human MS. This study clearly shows that the ROS-scavenging capability of catalytic inorganic nanoparticles could be utilized to enhance tolerogenic features in APCs, leading to antigen-specific immune tolerance, which could be exploited in treating MS.
Collapse
Affiliation(s)
- Thanh Loc Nguyen
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Youngjin Choi
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.35541.360000000121053345Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Jihye Im
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Hyunsu Shin
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Ngoc Man Phan
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Min Kyung Kim
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea
| | - Seung Woo Choi
- grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620 Republic of Korea
| | - Jaeyun Kim
- grid.264381.a0000 0001 2181 989XSchool of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul, 06355 Republic of Korea ,grid.264381.a0000 0001 2181 989XBiomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XInstitute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
15
|
Kang DW, Cha BG, Lee JH, Yang W, Ki SK, Han JH, Cho HY, Park E, Jeon S, Lee SH. Ultrasmall polymer-coated cerium oxide nanoparticles as a traumatic brain injury therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102586. [PMID: 35868519 DOI: 10.1016/j.nano.2022.102586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
No medication has been approved for secondary injuries after traumatic brain injury (TBI). While free radicals are considered a major mediator of secondary injury, conventional antioxidants only have modest clinical efficacy. Here, we synthesized CX201 consisting of core cerium oxide nanoparticles coated with 6-aminocaproic acid and polyvinylpyrrolidone in aqueous phase. CX201 with 3.49 ± 1.11 nm of core and 6.49 ± 0.56 nm of hydrodynamic diameter showed multi-enzymatic antioxidant function. Owing to its excellent physiological stability and cell viability, CX201 had a neuroprotective effect in vitro. In a TBI animal model, an investigator-blinded randomized experiment showed a single intravenously injected CX201 significantly improved functional recovery compared to the control. CX201 reduced lipid peroxidation and inflammatory cell recruitment at the damaged brain. These suggest ultrasmall CX201 can efficiently reduce secondary brain injuries after TBI. Given the absence of current therapies, CX201 may be proposed as a novel therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Dong-Wan Kang
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | | | - Jee Hoon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Wookjin Yang
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seul Ki Ki
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Ju Hee Han
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Ha Yoon Cho
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Eunchae Park
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Sohyun Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea
| | - Seung-Hoon Lee
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Cenyx Biotech, Inc., Seoul, Republic of Korea; Korean Cerebrovascular Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm Sin B 2022; 13:1847-1865. [DOI: 10.1016/j.apsb.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
|
17
|
Xia F, Hu X, Zhang B, Wang X, Guan Y, Lin P, Ma Z, Sheng J, Ling D, Li F. Ultrasmall Ruthenium Nanoparticles with Boosted Antioxidant Activity Upregulate Regulatory T Cells for Highly Efficient Liver Injury Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201558. [PMID: 35748217 DOI: 10.1002/smll.202201558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Nanozymes exhibiting antioxidant activity are beneficial for the treatment of oxidative stress-associated diseases. Ruthenium nanoparticles (RuNPs) with multiple enzyme-like activities have attracted growing attention, but the relatively low antioxidant enzyme-like activities hinder their practical biomedical applications. Here, a size regulation strategy is presented to significantly boost the antioxidant enzyme-like activities of RuNPs. It is found that as the size of RuNPs decreases to ≈2.0 nm (sRuNP), the surface-oxidized Ru atoms become dominant, thus possessing an unprecedentedly boosted antioxidant activity as compared to medium-sized (≈3.9 nm) or large-sized counterparts (≈5.9 nm) that are mainly composed of surface metallic Ru atoms. Notably, based on their antioxidant enzyme-like activities and ultrasmall size, sRuNP can not only sustainably ameliorate oxidative stress but also upregulate regulatory T cells in late-stage acetaminophen (APAP)-induced liver injury (ALI). Consequently, sRuNPs perform highly efficient therapeutic efficiency on ALI mice even when treated at 6 h after APAP intoxication. This strategy is insightful for tuning the catalytic performances of nanozymes for their extensive biomedical applications.
Collapse
Affiliation(s)
- Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xi Hu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| | - Xun Wang
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, P. R. China
| | - Yunan Guan
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianpeng Sheng
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Wang N, Lin JY, Luo SH, Zhou YJ, Yang K, Chen RH, Yang GX, Wang ZY. Furanonyl amino acid derivatives as hemostatic drugs: design, synthesis and hemostasis performance. Amino Acids 2022; 54:989-999. [PMID: 35305164 DOI: 10.1007/s00726-022-03155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
Using 3,4-dihalo-2(5H)-furanones and easily available hemostatic drugs, such as tranexamic acid (TA), 4-aminomethylbenzoic acid (ABA), aminocaproic acid (AA) as starting materials, serial multi-functional molecules 2(5H)-furanonyl amino acids are designed by the combination of different pharmacophores, and successfully synthesized by a transition metal-free Michael addition-elimination reaction. The reaction is carried out under mild conditions with ethanol-dichloromethane as solvent and only stirring at room temperature for 24 h, and the yield can be up to 91%. All products are well characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), high-resolution mass spectra (HRMS). Ten typical target compounds among them are selected out for the experiments of hemostasis performance by the evaluation of in vitro clot formation model and liver hemorrhage model. The test results show that, their hemostasis effect is better than the original drugs. Especially the target compound G, a TA derivative from 5-borneoloxy-3,4-dibromo-2(5H)-furanone, has the best hemostasis effect among all the tested compounds. These obtained target molecules are expected to be used as multi-functional hemostatic drugs.
Collapse
Affiliation(s)
- Neng Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Yun Lin
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Shi-He Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Yong-Jun Zhou
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Kai Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Ren-Hong Chen
- Guangdong Food and Drug Vocational College, Guangzhou, 510520, People's Republic of China.
| | - Guo-Xian Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhao-Yang Wang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, People's Republic of China. .,School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China. .,School of Chemistry, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, South China Normal University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
19
|
Kim YE, Choi SW, Kim MK, Nguyen TL, Kim J. Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress. NANO LETTERS 2022; 22:2038-2047. [PMID: 35226507 DOI: 10.1021/acs.nanolett.1c04899] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease associated with unbalanced immune responses in skin tissue. Although steroid drugs and antihistamines are generally used to treat AD, continuous administration causes multiple side effects. High oxidative stress derived from reactive oxygen species (ROS) has been implicated in the pathogenesis of AD. A high level of ROS promotes the release of pro-inflammatory cytokines and T-cell differentiation, resulting in the onset and deterioration of AD. Here, we report a therapeutic hydrogel patch suppressing the high oxidative stress generated in AD lesions. The hydrogel embedded with ROS-scavenging ceria nanoparticles leads to the decrease of both extracellular and intracellular ROS and exhibits cytoprotective effects in a highly oxidative condition. AD-induced mouse model studies show enhanced therapeutic outcomes, including a decrease in the epidermal thickness and levels of AD-associated immunological biomarkers. These findings indicate that a ROS-scavenging hydrogel could be a promising therapeutic hydrogel patch for treating and managing AD.
Collapse
Affiliation(s)
- Ye Eun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seung Woo Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Min Kyung Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
| | - Thanh Loc Nguyen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University (SKKU), Seoul 06355, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Kim J, Hong G, Mazaleuskaya L, Hsu JC, Rosario-Berrios DN, Grosser T, Cho-Park PF, Cormode DP. Ultrasmall Antioxidant Cerium Oxide Nanoparticles for Regulation of Acute Inflammation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60852-60864. [PMID: 34914872 PMCID: PMC8720076 DOI: 10.1021/acsami.1c16126] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cerium oxide nanoparticles (CeONP), having potent antioxidant properties, are highly promising nanomaterials for treatment of diseases in which oxidative stress from excessive reactive oxygen species (ROS) plays a critical role in the pathogenesis and progression. However, most previously reported CeONP formulations were not efficiently cleared from the body, precluding their clinical translation. Herein, we report ultrasmall CeONP that can mitigate activation of macrophages and subsequent acute inflammation. It is found that these CeONP can effectively scavenge reactive species, inhibit macrophage activation, and minimize their recruitment and infiltration to the inflammation site, which lead to alleviation of edema and pain hypersensitivity. Moreover, we demonstrate that CeONP can be effectively excreted from the body within 24 h of systemic administration, minimizing long-term toxicity concerns. Altogether, our findings suggest that CeONP may be explored as both antioxidant and anti-inflammatory agents that can reduce acute inflammation with a better safety profile than existing nanoparticles.
Collapse
|
21
|
Lord MS, Berret JF, Singh S, Vinu A, Karakoti AS. Redox Active Cerium Oxide Nanoparticles: Current Status and Burning Issues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102342. [PMID: 34363314 DOI: 10.1002/smll.202102342] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applications, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In light of its current research interest, it is critical to understand the behavior of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyzes the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | | | - Sanjay Singh
- National Institute of Animal Biotechnology, Hyderabad, Telangana, 500032, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials, College of Engineering Science and Environment, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
22
|
Choi S, Kim J. Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1'-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. ACS OMEGA 2021; 6:26477-26488. [PMID: 34661003 PMCID: PMC8515608 DOI: 10.1021/acsomega.1c03700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Ceria nanoparticles (CeONPs) are versatile materials due to their unique catalytic properties, and cerium carbonate particles (CeCbPs) have been widely used as precursors for cerium oxide due to their ease of production. Urea is a widely used precipitant and a source of carbonate ions for the synthesis of CeONPs and CeCbPs, and the reaction temperature is important for controlling the rate of urea decomposition. However, the precise control of the temperature is often difficult, especially in large-scale reactions. Herein, we propose a homogeneous precipitation method that uses 1,1'-carbonyldiimidazole (CDI) and imidazole in acetone without heating. The decomposition rate of CDI can be controlled by the amount of water in the reaction mixture. In the synthesis of CeCbPs, unique particle morphologies of plate-, flying-saucer-, and macaron-like shapes and a wide range of sizes from 180 nm to 13 μm can be achieved by adjusting the amount of CDI, imidazole, and water in the reaction. These CeCbPs are transformed into ceria particles by calcination while maintaining their characteristic morphology. Moreover, the direct synthesis of 130 nm spherical CeONPs was possible by decreasing the amount of CDI in the reaction and the mixing time. These nanoparticles exhibited higher production efficiency and superior reactive oxygen species (ROS) scavenging properties compared to the other CeONPs obtained from calcination. These results demonstrate a novel method using CDI and imidazole in the synthesis of CeONPs and CeCbPs without the aid of a heating process, which may be useful in the large-scale synthesis and application of CeO nanomaterials.
Collapse
Affiliation(s)
- Seung
Woo Choi
- Department
of Health Sciences and Technology, Samsung Advanced Institute for
Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic
of Korea
| | - Jaeyun Kim
- Department
of Health Sciences and Technology, Samsung Advanced Institute for
Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Republic
of Korea
- School
of Chemical Engineering, Sungkyunkwan University
(SKKU), Suwon 16419, Republic of Korea
- Biomedical
Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic
of Korea
- Institute
of Quantum Biophysics (IQB), Sungkyunkwan
University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Wang Y, Li C, Wan Y, Qi M, Chen Q, Sun Y, Sun X, Fang J, Fu L, Xu L, Dong B, Wang L. Quercetin-Loaded Ceria Nanocomposite Potentiate Dual-Directional Immunoregulation via Macrophage Polarization against Periodontal Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101505. [PMID: 34499411 DOI: 10.1002/smll.202101505] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Macrophage polarization toward M1 phenotype (pro-inflammation) is closely associated with the destructive phase of periodontal inflammation. Nanoceria is verified to inhibit M1 polarization of macrophages by the favorable ability of reactive oxygen species (ROS) scavenging. However, the function of nanoceria on macrophage polarization toward M2 phenotype (anti-inflammation) in reparative phase of periodontal inflammation is quite limited. In this work, by introducing an antioxidant drug quercetin onto nano-octahedral ceria, synergistic and intense regulation of host immunity against periodontal disease is realized. Such nanocomposite can control the phenotypic switch of macrophages by not only inhibition of M1 polarization for suppressing the damage in the destructive phase but also promotion of M2 polarization for regenerating the surrounding tissues in reparative phase of periodontal disease. As-prepared nanocomposite can effectively increase the M2/M1 ratio of macrophage polarization in inflammatory cellular models by lipopolysaccharide stimulation. More importantly, the nanocomposite also exerts an improved therapeutic potential against local inflammation by significant downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines in an animal model with periodontal inflammation. Therefore, this newly developed nanomedicine is efficient in ROS scavenging and driving pro-inflammatory macrophages to the anti-inflammatory phenotype to eliminate inflammation, thereby providing a promising candidate for treating periodontal inflammation.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yao Wan
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Qiuhan Chen
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Sciences and Technology of Stomatology Nanoengineering, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Jiao Fang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Li Fu
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lin Wang
- Department of Oral Implantology, School of Dentistry, Jilin University, Changchun, 130021, China
| |
Collapse
|
24
|
Chen L, Huang Q, Zhao T, Sui L, Wang S, Xiao Z, Nan Y, Ai K. Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biol 2021; 45:102046. [PMID: 34174559 PMCID: PMC8205260 DOI: 10.1016/j.redox.2021.102046] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 has caused up to 127 million cases of COVID-19. Approximately 5% of COVID-19 patients develop severe illness, and approximately 40% of those with severe illness eventually die, corresponding to more than 2.78 million people. The pathological characteristics of COVID-19 resemble typical sepsis, and severe COVID-19 has been identified as viral sepsis. Progress in sepsis research is important for improving the clinical care of these patients. Recent advances in understanding the pathogenesis of sepsis have led to the view that an uncontrolled inflammatory response and oxidative stress are core factors. However, in the traditional treatment of sepsis, it is difficult to achieve a balance between the inflammation, pathogens (viruses, bacteria, and fungi), and patient tolerance, resulting in high mortality of patients with sepsis. In recent years, nanomaterials mediating reactive oxygen and nitrogen species (RONS) and the inflammatory response have shown previously unattainable therapeutic effects on sepsis. Despite these advantages, RONS and inflammatory response-based nanomaterials have yet to be extensively adopted as sepsis therapy. To the best of our knowledge, no review has yet discussed the pathogenesis of sepsis and the application of nanomaterials. To help bridge this gap, we discuss the pathogenesis of sepsis related to inflammation and the overproduction RONS, which activate pathogen-associated molecular pattern (PAMP)-pattern recognition receptor (PRR) and damage-associated molecular pattern (DAMP)-PRR signaling pathways. We also summarize the application of nanomaterials in the treatment of sepsis. As highlighted here, this strategy could synergistically improve the therapeutic efficacy against both RONS and inflammation in sepsis and may prolong survival. Current challenges and future developments for sepsis treatment are also summarized.
Collapse
Affiliation(s)
- Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, Hunan, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
| |
Collapse
|
25
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
26
|
Cheng F, Wang S, Zheng H, Yang S, Zhou L, Liu K, Zhang Q, Zhang H. Cu-doped cerium oxide-based nanomedicine for tumor microenvironment-stimulative chemo-chemodynamic therapy with minimal side effects. Colloids Surf B Biointerfaces 2021; 205:111878. [PMID: 34058693 DOI: 10.1016/j.colsurfb.2021.111878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023]
Abstract
CeO2 nanoenzyme possesses multiple enzyme-mimicking activities and excellent biocompatibility. However, its weak peroxidase (POD)-mimicking property in the tumor microenvironment (TME) hinders its further tumor therapy application. To enhance CeO2 nanoenzyme's POD activity and overcome limitations of single therapeutic modality, a novel antitumor controlled drug release system (CCCs NPs) was designed using Cu doped cerium oxide nanoparticles (Cu-CeO2 NPs) loaded with clinical anti-cancer drug doxorubicin (DOX) as the core and the breast cancer cell membrane as the outer shell. Cu doping endowed CeO2 NPs' with significantly enhanced POD-mimicking activity in the TME due to a remarkably higher Ce3+/Ce4+ ratio. The cancer cell membrane coating enabled our nanomedicine with homotypic targeting property. Combined with chemotherapeutic drug DOX, a selective and nearly complete tumor suppression was demonstrated in vitro and in vivo. Remarkably, under physiological condition, CCCs NPs worked as a radical scavenger to protect normal cells from oxidative stress caused by anti-cancer drug DOX and OH generated via Fenton-like reaction. Collectively, our CCCs NPs offered a therapeutic potential for effective breast cancer therapy while being free of side effects.
Collapse
Affiliation(s)
- Fang Cheng
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shenqiang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shaowei Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Li Zhou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Kangkai Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Qiuyu Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hepeng Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China; Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| |
Collapse
|
27
|
Li H, Xia P, Pan S, Qi Z, Fu C, Yu Z, Kong W, Chang Y, Wang K, Wu D, Yang X. The Advances of Ceria Nanoparticles for Biomedical Applications in Orthopaedics. Int J Nanomedicine 2020; 15:7199-7214. [PMID: 33061376 PMCID: PMC7535115 DOI: 10.2147/ijn.s270229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The ongoing biomedical nanotechnology has intrigued increasingly intense interests in cerium oxide nanoparticles, ceria nanoparticles or nano-ceria (CeO2-NPs). Their remarkable vacancy-oxygen defect (VO) facilitates the redox process and catalytic activity. The verification has illustrated that CeO2-NPs, a nanozyme based on inorganic nanoparticles, can achieve the anti-inflammatory effect, cancer resistance, and angiogenesis. Also, they can well complement other materials in tissue engineering (TE). Pertinent to the properties of CeO2-NPs and the pragmatic biosynthesis methods, this review will emphasize the recent application of CeO2-NPs to orthopedic biomedicine, in particular, the bone tissue engineering (BTE). The presentation, assessment, and outlook of the orthopedic potential and shortcomings of CeO2-NPs in this review expect to provide reference values for the future research and development of therapeutic agents based on CeO2-NPs.
Collapse
Affiliation(s)
- Hongru Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Peng Xia
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Ziyuan Yu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Yuxin Chang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Kai Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Dankai Wu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|