1
|
Saha T, Mehrotra S, Gupta P, Kumar A. Exosomal miRNA combined with anti-inflammatory hyaluronic acid-based 3D bioprinted hepatic patch promotes metabolic reprogramming in NAFLD-mediated fibrosis. Biomaterials 2025; 318:123140. [PMID: 39892017 DOI: 10.1016/j.biomaterials.2025.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, where the underlying molecular mechanisms are mostly not well-understood and therefore, warrants the need for therapeutic interventions targeting several metabolic pathways as a unified response. Of late, promising outcomes have been observed with mesenchymal stem cell-derived exosomes. However, reduced bioavailability due to systemic delivery and the need for repeated fresh isolation hinders their feasibility for clinical applications. In this regard, an 'off-the-shelf' 3D bioprinted hyaluronic acid-based hepatic patch to deliver encapsulated exosomes alone/or with hepatocytes (as dual-therapy) is developed as a holistic approach for ameliorating the disease condition and promoting tissue regeneration. The bioprinted hepatic patch demonstrated sustained and localized release of exosomes (∼82 % in 21 days), and healthy liver tissue-like mechanical properties while being biocompatible and biodegradable. Assessment in NAFLD rat models displayed alleviation of the altered biochemical parameters such as fat deposition, deranged liver functions, disrupted lipid, glucose, and insulin metabolism along with a reduction in localized inflammation, and associated liver fibrosis. The study suggests that a synergistic effect between the miRNA population of released exosomes, cell therapy, and the bioprinted matrix materials is crucial in targeting multiple complex metabolic pathways associated with the severity of the disease.
Collapse
Affiliation(s)
- Triya Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Purva Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
2
|
Chen ZQ, Tang TT, Tang RN, Zhang Y, Zhang YL, Yang HB, Song J, Yang Q, Qin SF, Chen F, Zhang YX, Wang YJ, Wang B, Lv LL, Liu BC. A comprehensive evaluation of stability and safety for HEK293F-derived extracellular vesicles as promising drug delivery vehicles. J Control Release 2025; 382:113673. [PMID: 40169120 DOI: 10.1016/j.jconrel.2025.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
HEK293F-derived extracellular vesicles (HEK293F-EVs) have great potential as next-generation drug delivery vehicles. A comprehensive understanding of their batch stability and in vivo safety is prerequisite for clinical translation. HEK293F-EVs were purified using ultracentrifugation combined with size exclusion chromatography, and their physicochemical properties, such as morphology, size distribution, and biomarkers, were thoroughly characterized. Raman spectroscopy and multi-omics analyses were employed to elaborate their molecular composition. Blood kinetics and biodistribution were assessed via IVIS spectrum imaging. Additionally, long-term in vivo safety was evaluated following multiple-dose administration through hematology, serum biochemistry, cytokine/chemokine profiling, and histopathology. HEK293F-EVs exhibited stable yields, purity, physicochemical properties (morphology, size, zeta potential, and marker proteins), and chemical composition across different cell passages (P10, P20, P30), with no significant variations. Content profiling, including protein, miRNA, metabolite, and lipid, confirmed consistent molecular stability across five production batches. GO, Reactome, and KEGG analyses revealed minimal enrichment in pathways related to acute immune response or cytotoxicity. Blood kinetics studies indicated rapid clearance of HEK293F-EVs from circulation, though slightly slower than PEG-Liposomes. Organ biodistribution was comparable between HEK293F-EVs and PEG-Liposomes, with HEK293F-EVs potentially having longer retention times. Importantly, HEK293F-EVs exhibited a favorable preclinical long-term safety profile, showing low immunogenicity and fewer tissue lesions compared to PEG-Liposomes. Our study demonstrates that HEK293F-EVs maintain stable physicochemical characteristics and compositions across batches and possess a superior safety profile, suggesting their significant potential as a safe and reliable drug delivery platform for clinical applications.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yue Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong-Bin Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Jing Song
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qin Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Suo-Fu Qin
- Shenzhen Kexing Pharmaceutical Co., Ltd., Shenzhen, China
| | - Feng Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yu-Xia Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu-Jia Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
3
|
Rodríguez CF, Guzmán-Sastoque P, Santacruz-Belalcazar A, Rodriguez C, Villamarin P, Reyes LH, Cruz JC. Magnetoliposomes for nanomedicine: synthesis, characterization, and applications in drug, gene, and peptide delivery. Expert Opin Drug Deliv 2025:1-30. [PMID: 40372113 DOI: 10.1080/17425247.2025.2506829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Magnetoliposomes represent a transformative advancement in nanomedicine by integrating magnetic nanoparticles with liposomal structures, creating multifunctional delivery platforms that overcome key limitations of conventional drug carriers. These hybrid systems enable precision targeting through external magnetic fields, controlled release via magnetic hyperthermia, and real-time theranostic capabilities, offering unprecedented spatiotemporal control over therapeutic administration. AREAS COVERED This manuscript focused primarily on studies from 2023-2025 however, a few select older references were included to provide background and context.This review examines the fundamental design principles of Magnetoliposomes, including bilayer composition, nanoparticle integration strategies, and physicochemical properties governing their biological performance. We comprehensively assess synthesis methodologies - from traditional thin-film hydration to advanced microfluidic approaches - highlighting their impact on colloidal stability, drug encapsulation, and scaling potential. Characterization techniques essential for quality control and regulatory approval are systematically reviewed, followed by applications across oncology, gene delivery, neurology, and infectious disease treatment, supported by recent experimental evidence. EXPERT OPINION While magnetoliposomes show remarkable therapeutic versatility, their clinical translation requires addressing biocompatibility concerns, manufacturing scalability, and regulatory hurdles. Integration with artificial intelligence, organ-on-chip technologies, and personalized medicine approaches will likely accelerate their development toward clinical reality, potentially revolutionizing treatment paradigms for complex diseases through tailored therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Coryna Rodriguez
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Paula Villamarin
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| | - Juan C Cruz
- Biomedical Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universi-dad de los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Dal Maso T, Sinisgalli C, Zilio G, Franzin E, Tessari I, Pardon E, Steyaert J, Ballet S, Greggio E, Versées W, Plotegher N. Developing nanobodies as allosteric molecular chaperones of glucocerebrosidase function. Nat Commun 2025; 16:4890. [PMID: 40425544 PMCID: PMC12117155 DOI: 10.1038/s41467-025-60134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The enzyme glucocerebrosidase (GCase) catalyses the hydrolysis of glucosylceramide to glucose and ceramide within lysosomes. Homozygous or compound heterozygous mutations in the GCase-encoding GBA1 gene cause the lysosomal storage disorder Gaucher disease, while heterozygous and homozygous mutations are the most frequent genetic risk factor for Parkinson's disease. These mutations commonly affect GCase stability, trafficking or activity. Here, we report the development and characterization of nanobodies (Nbs) targeting and acting as molecular chaperones for GCase. We identify several Nb families that bind with nanomolar affinity to GCase. Based on biochemical characterization, we group the Nbs in two classes: Nbs that improve the activity of the enzyme and Nbs that increase GCase stability in vitro. A selection of the most promising Nbs is shown to improve GCase function in cell models and positively impact the activity of the N370S mutant GCase. These results lay the foundation for the development of new therapeutic routes.
Collapse
Affiliation(s)
- Thomas Dal Maso
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gianluca Zilio
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Franzin
- Department of Biology, University of Padova, Padova, Italy
| | | | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
5
|
Khan MU, Aslam H, Sohail J, Umar A, Ullah A, Ullah H. Golden insights for exploring cancer: delivery, from genes to the human body using bimetallic Au/Ag nanostructures. Discov Oncol 2025; 16:918. [PMID: 40413680 DOI: 10.1007/s12672-025-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
Sweeping contact with cancer continues to rise globally, which has led to advanced research on new treatment approaches; nanotechnology has become crucial to targeted cancer therapy. Within the intimate of nanomaterials, Au/Ag nanostructures have emerged as highly attractive because of their distinctive desirable characteristics and their prospective roles in diagnosis as well as cancer therapy. The nanostructures developed revealed remarkable biocompatibility, optically recursive alteration, and magnificently improved therapeutic effects of gold and silver in conjunction with each other. This review addresses the molecular and systemic aspects of Au/Ag nanostructures in cancer research, including the impact of nanostructures on the molecular genetic pathways and their use of systemic administration in the human organism. We explain some of the related mechanisms of action, such as photothermal therapy (PTT), and photodynamic therapy (PDT), as well as the drug delivery systems where they display potential benefits towards offering a more targeted treatment approach with fewer side effects. The latest development has shown that they have the prospect of real-time imaging and biomarker identification, and owing to this they are being viewed as a tool for individualized treatment. However, there are still some limitations: challenges of scaling up, biological safety, and bringing it to the clinic. It is therefore incumbent upon these managements to overcome these hurdles to optimize for their impact. As a result, the current findings are briefly reviewed, and the development directions are discussed to support the revolutionary role of Au/Ag nanostructures in cancer research and therapy.
Collapse
Affiliation(s)
- Misbah Ullah Khan
- Centre for Nanosciences, University of Okara, Okara, 56130, Pakistan.
| | - Humaira Aslam
- Centre for Nanosciences, University of Okara, Okara, 56130, Pakistan
| | - Jehanzeb Sohail
- Centre for Nanosciences, University of Okara, Okara, 56130, Pakistan
| | - Ali Umar
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | - Aman Ullah
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, 56130, Pakistan.
| |
Collapse
|
6
|
Meyer C, Arizzi A, Henson T, Aviran S, Longo ML, Wang A, Tan C. Designer artificial environments for membrane protein synthesis. Nat Commun 2025; 16:4363. [PMID: 40348791 PMCID: PMC12065789 DOI: 10.1038/s41467-025-59471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Protein synthesis in natural cells involves intricate interactions between chemical environments, protein-protein interactions, and protein machinery. Replicating such interactions in artificial and cell-free environments can control the precision of protein synthesis, elucidate complex cellular mechanisms, create synthetic cells, and discover new therapeutics. Yet, creating artificial synthesis environments, particularly for membrane proteins, is challenging due to the poorly defined chemical-protein-lipid interactions. Here, we introduce MEMPLEX (Membrane Protein Learning and Expression), which utilizes machine learning and a fluorescent reporter to rapidly design artificial synthesis environments of membrane proteins. MEMPLEX generates over 20,000 different artificial chemical-protein environments spanning 28 membrane proteins. It captures the interdependent impact of lipid types, chemical environments, chaperone proteins, and protein structures on membrane protein synthesis. As a result, MEMPLEX creates new artificial environments that successfully synthesize membrane proteins of broad interest but previously intractable. In addition, we identify a quantitative metric, based on the hydrophobicity of the membrane-contacting amino acids, that predicts membrane protein synthesis in artificial environments. Our work allows others to rapidly study and resolve the "dark" proteome using predictive generation of artificial chemical-protein environments. Furthermore, the results represent a new frontier in artificial intelligence-guided approaches to creating synthetic environments for protein synthesis.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis School of Medicine, Davis, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Children's Northern, California, USA
| | - Sharon Aviran
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis School of Medicine, Davis, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Children's Northern, California, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Nam JW, Sridharan B, Kang J, Lim HG. Current developments in diverse biomaterial formulations for ultrasound-mediated drug delivery. Drug Discov Today 2025; 30:104379. [PMID: 40355025 DOI: 10.1016/j.drudis.2025.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we focus on advances in drug delivery systems (DDSs) pertaining to modern therapeutics, with a particular emphasis on the role of ultrasound (US)-mediated drug delivery (UMDD). We highlight the need for advanced systems in response to several challenges, such as the diversity of pharmacological agents and individual patient variations, over traditional methodologies. We detail the mechanisms of UMDD (thermal and mechanical), and discuss various material formulations suitable for UMDD. We also discuss new perspectives on the potential of US to innovate drug delivery methodologies and improve patient outcomes to emphasize the importance of development to enhance treatment effectiveness.
Collapse
Affiliation(s)
- Ji Won Nam
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Juhyun Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Hae Gyun Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
8
|
Spesyvyi A, Cebecauer M, Žabka J, Olżyńska A, Malečková M, Johanovská Z, Polášek M, Charvat A, Abel B. Separation and Detection of Charged Unilamellar Vesicles in Vacuum by a Frequency-Controlled Quadrupole Mass Sensor. Anal Chem 2025; 97:9131-9138. [PMID: 40260580 PMCID: PMC12060092 DOI: 10.1021/acs.analchem.4c05730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/23/2025]
Abstract
Extracellular vesicles (EVs) are membranous particles released by cells and are considered to be promising sources of biomarkers for various diseases. Mass spectrometry (MS) analysis of EVs requires a sample of purified and detergent-lysed EVs. Purification of EVs is laborious, based on size, density, or surface nature, and requires large amounts of the source material (e.g., blood, spinal fluid). We have employed synthetically produced large unilamellar lipid vesicles (LUVs) as analogs of EVs to demonstrate an alternative approach to vesicle separation for subsequent mass spectrometry analysis of their composition. Mass-to-charge ratio m/z separation by frequency-controlled quadrupole was employed to filter narrow-size distributions of LUVs from a water sample. Lipid vesicles were positively charged with nanoelectrospray and transferred into a vacuum using two wide m/z-range frequency-controlled quadrupoles. The m/z, charges, and masses of individual vesicles were obtained by the nondestructive single-pass charge detector. The resolving mode of the second quadrupole with m/z RSD < 10% allowed to separate size selected distributions of vesicles with modal diameters of 88, 112, 130, 162, and 190 nm at corresponding quadrupole m/z settings of 2.5 × 105, 5 × 105, 8 × 105, 1.5 × 106, and 2.5 × 106, respectively with a rate of 20-100 counts per minute. The distributions of bioparticles with masses between 108 and 1010 Da were separated from human blood serum in the pilot experiment. The presented approach for lipid vesicle separation encourages the development of new techniques for the direct mass-spectrometric analysis of biomarkers in MS-separated EVs in a vacuum.
Collapse
Affiliation(s)
- Anatolii Spesyvyi
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Marek Cebecauer
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Ján Žabka
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Agnieszka Olżyńska
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Michaela Malečková
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Zuzana Johanovská
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
- Faculty
of Mathematics and Physics, Charles University, Prague 12116, Czechia
| | - Miroslav Polášek
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
| | - Ales Charvat
- Institute
of Chemical Technology, Leipzig University, Leipzig 04103, Germany
- Leibniz
Institute of Surface Engineering, Leipzig 04318, Germany
| | - Bernd Abel
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Prague 18223, Czechia
- Institute
of Chemical Technology, Leipzig University, Leipzig 04103, Germany
- Leibniz
Institute of Surface Engineering, Leipzig 04318, Germany
| |
Collapse
|
9
|
Uno K, Kubota E, Mori Y, Nishigaki R, Kojima Y, Kanno T, Sasaki M, Fukusada S, Sugimura N, Tanaka M, Ozeki K, Shimura T, Johnston RN, Kataoka H. Mesenchymal stem cell-derived small extracellular vesicles as a delivery vehicle of oncolytic reovirus. Life Sci 2025; 368:123489. [PMID: 39987955 DOI: 10.1016/j.lfs.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
AIM The oncolytic reovirus has demonstrated efficacy against various cancer types in preclinical and clinical studies. However, its anti-tumor activity is limited. This study aimed to develop a novel drug delivery system (DDS) using small extracellular vesicles (sEVs) derived from human adipose-derived mesenchymal stem cells to enhance the therapeutic potential of reovirus. MATERIALS AND METHODS sEVs, which offer distinct advantages over traditional systems such as nanoparticles due to their natural biocompatibility, low immunogenicity, ability to cross biological barriers, and cell-derived targeting properties, were engineered to encapsulate reovirus particles (sEVs-reo). The anti-tumor activity of sEVs-reo was evaluated using colorectal cancer cell lines HCT116 and SW480. Additionally, resistance to neutralizing antibodies, internalization by cancer cells, and efficacy against junctional adhesion molecule-A(JAM-A)-knockout colon cancer cells resistant to reovirus, generated via CRISPR/Cas9, were assessed. KEY FINDINGS sEVs-reo encapsulated reovirus particles effectively, and at a concentration of 0.5 μg/ml, reduced viable tumor cells by 60.3 % in HCT116 and 42.5 % in SW480. Remarkably, sEVs-reo exhibited significant efficacy even in the presence of neutralizing antibodies, including anti-σ1 antibodies and serum from reovirus-infected mice. sEVs-reo were rapidly internalized by cancer cells within 4 h while exhibiting reduced immunogenicity relative to reovirus, and demonstrated significant anti-tumor activity against JAM-A-deficient colon cancer cells. SIGNIFICANCE This study demonstrates that sEVs-reo can address key challenges associated with oncolytic virotherapy. These findings support potential of sEVs as a novel and effective DDS for reovirus in colon cancer treatment, while offering a versatile platform to enhance the efficacy of other oncolytic viruses.
Collapse
Affiliation(s)
- Konomu Uno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yoshinori Mori
- Department of Gastroenterology, Nagoya City University West Medical Center, Kita-ku, Nagoya 462-8508, Japan
| | - Ruriko Nishigaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takuya Kanno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Shigeki Fukusada
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naomi Sugimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Keiji Ozeki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
10
|
Li T, Zhou Y, Wang H, Wang J, Lu R. Leveraging engineered yeast small extracellular vesicles serve as multifunctional platforms for effectively loading methyl salicylate through the "esterase-responsive active loading" strategy. Eur J Pharm Biopharm 2025; 210:114696. [PMID: 40113048 DOI: 10.1016/j.ejpb.2025.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Small extracellular vesicles (sEVs) are a promising vehicle for drug delivery because of their good biocompatibility and nontoxicity. The drug loading and encapsulation efficiencies of them are not satisfactory. This is especially the case when drugs are loaded by co-incubation. In this situation, as the difference in drug concentration between the inside and outside of the membrane of ordinary sEVs decreases, the drugs cannot diffuse efficiently into the inside of the vesicles. As a result, the drug loading efficiency is low. In this study, engineered yeast-derived small extracellular vesicles derived from Pichia pastoris X33 (XPP-sEVs) engineered with carboxylesterase 1 (CES1) were constructed using the "esterase-responsive active loading" method, which is based on the concept of prodrug design and guided by the strategy of immobilized enzymes, to improve the loading efficiency of methyl salicylate (MS) to about twice as much. This was achieved by engineering the CES1-contained small extracellular vesicles to catalyze the esterase hydrolysis reaction of MS to establish a continuous MS transmembrane concentration gradient for efficient loading of the active drugs, including methyl salicylate and its hydrolyzed active product salicylic acid. The results showed that the enzyme activity of the CES1-sEVs group finally reached 7.88 ± 0.43 U/mL, and the drug loading efficiency was about doubled. The results of drug release from the engineered extracellular vesicles showed that the release of the drug reached equilibrium around 100 min-2 h, during which there was no sudden release of the MS, and the final amount of the drug released could be increased by 12.34 % compared with the emulsion dosage form of the MS. Overall, the CES1-sEVs prepared in this study significantly improved the drug-loading efficiency of MS without affecting the anti-inflammatory activity of MS. The MS-CES1-sEVs prepared in this study are non-toxic and have a bright application prospect in the treatment of skin inflammation.
Collapse
Affiliation(s)
- Tianhao Li
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Yun Zhou
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China.
| | - Haoran Wang
- Weihai Neoland Biosciences Co., Ltd. C-301, Torch Innovative Imbark Base, No. 213-2 Huoju Road, Weihai 264209 Shandong, China.
| | - Junfeng Wang
- Weihai Neoland Biosciences Co., Ltd. C-301, Torch Innovative Imbark Base, No. 213-2 Huoju Road, Weihai 264209 Shandong, China.
| | - Rong Lu
- Marine College, Shandong University, No. 180 Wenhua West Road, Weihai 264209, China; Weihai Neoland Biosciences Co., Ltd. C-301, Torch Innovative Imbark Base, No. 213-2 Huoju Road, Weihai 264209 Shandong, China.
| |
Collapse
|
11
|
Nakama T, Tadokoro M, Ebihara R, Yagi-Utsumi M, Kato K, Fujita M. Proximity-induced saccharide binding to a protein's active site within a confined cavity of coordination cages. Chem Sci 2025:d5sc00782h. [PMID: 40375861 PMCID: PMC12076163 DOI: 10.1039/d5sc00782h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/18/2025] [Indexed: 05/18/2025] Open
Abstract
Enhancing protein-ligand affinity is crucial for regulating protein function; however, redesigning ligand molecules often requires extensive trial and error. In this study, we demonstrate proximity-induced ligand binding to a protein's active site by confining it within coordination cages, thereby enabling precise control of protein activity. Co-encapsulation within the confined cavity of the cage brings lysozyme and a low-affinity saccharide into close proximity, resulting in a 103-fold decrease in the apparent dissociation constant of the monosaccharide. The significant enhancement of the saccharide binding to the lysozyme active site effectively inhibited its enzymatic activity. NMR studies confirmed the formation of lysozyme-saccharide complexes through enhanced weak interactions, which are otherwise unobservable, facilitated by the confined cavity. This cage confinement strategy thus offers a novel approach for ligand-based functional control of native proteins, eliminating the need for elaborate ligand design and protein engineering.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 277-0882 Japan
| | - Miri Tadokoro
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 277-0882 Japan
| | - Risa Ebihara
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 277-0882 Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University 3-1 Tanabe-dori, Mizuho-ku Nagoya 467-8603 Japan
| | - Makoto Fujita
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
- Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
12
|
Xu M, Bai L, Sun M, Yan X, Xiong Y, Wang Y, Guo Y, Liu X, Yu L, Zhong X, Ran M, Wang B, Tang Y, Lee RJ, Xie J. ROS-Responsive Biomimetic Nanocomplexes of Liposomes and Macrophage-Derived Exosomes for Combination Breast Cancer Therapy. Int J Nanomedicine 2025; 20:5161-5180. [PMID: 40297405 PMCID: PMC12036690 DOI: 10.2147/ijn.s514375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Purpose Breast cancer is the most diagnosed cancer in women globally and it poses a major threat to women's lives and health. As an essential therapeutic approach for breast cancer, chemotherapy encounters various clinical challenges like multidrug resistance and systemic toxicity. Nanotechnology has shown progress in addressing chemotherapy drug limitations. However, externally introduced nanoparticles are typically captured by the mononuclear phagocyte system (MPS) post-administration. To mitigate chemotherapy drug toxicity and enhance drug delivery efficiency, we combined ROS-responsive cationic liposomes (cLip) with macrophage-derived exosomes to create biomimetic nanocomplex (E-cLip-DTX/si) for co-delivery docetaxel (DTX) and Bcl-2 siRNA. Methods We encapsulated docetaxel (DTX) and Bcl-2 siRNA as model drugs into biomimetic nanocomplexes and validated their antitumor efficacy in vitro and in vivo. Results In vitro and vivo tests show that E-cLip-DTX/si can react to ROS, promote apoptosis of tumor cells effectively, and prolong circulation time. In breast cancer mouse model, E-cLip-DTX/si displays notable tumor accumulation efficiency, remarkable anti-tumor effects, and a favorable safety profile. Conclusion We have developed a ROS-responsive biomimetic nanocomplexes that efficiently delivers DTX and Bcl-2 siRNA into the tumor site, overcoming the MPS barrier and extending the blood circulation time of the drug. Hence, biomimetic nanocomplex is a promising drug delivery platform with controlled drug release and biocompatibility for effective anti-tumor treatment.
Collapse
Affiliation(s)
- Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Lu Bai
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Meng Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Xinlei Yan
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Ying Xiong
- Enrollment and Employment Department, Alumni-Office, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Yu Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Yue Guo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Xingyou Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Leijie Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Xing Zhong
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Mengqiong Ran
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Ben Wang
- Chengcheng County Hospital, Weinan, 715200, People’s Republic of China
| | - Yaqin Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210-1291, USA
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, People’s Republic of China
| |
Collapse
|
13
|
Stridfeldt F, Pandey V, Kylhammar H, Talebian Gevari M, Metem P, Agrawal V, Görgens A, Mamand DR, Gilbert J, Palmgren L, Holme MN, Gustafsson O, El Andaloussi S, Mitra D, Dev A. Force spectroscopy reveals membrane fluctuations and surface adhesion of extracellular nanovesicles impact their elastic behavior. Proc Natl Acad Sci U S A 2025; 122:e2414174122. [PMID: 40249788 PMCID: PMC12037009 DOI: 10.1073/pnas.2414174122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/07/2025] [Indexed: 04/20/2025] Open
Abstract
The elastic properties of nanoscale extracellular vesicles (EVs) are believed to influence their cellular interactions, thus having a profound implication in intercellular communication. However, accurate quantification of their elastic modulus is challenging due to their nanoscale dimensions and their fluid-like lipid bilayer. We show that the previous attempts to develop atomic force microscopy-based protocol are flawed as they lack theoretical underpinning as well as ignore important contributions arising from the surface adhesion forces and membrane fluctuations. We develop a protocol comprising a theoretical framework, experimental technique, and statistical approach to accurately quantify the bending and elastic modulus of EVs. The method reveals that membrane fluctuations play a dominant role even for a single EV. The method is then applied to EVs derived from human embryonic kidney cells and their genetically engineered classes altering the tetraspanin expression. The data show a large spread; the area modulus is in the range of 4 to 19 mN/m and the bending modulus is in the range of 15 to 33 [Formula: see text], respectively. Surprisingly, data for a single EV, revealed by repeated measurements, also show a spread that is attributed to their compositionally heterogeneous fluid membrane and thermal effects. Our protocol uncovers the influence of membrane protein alterations on the elastic modulus of EVs.
Collapse
Affiliation(s)
- Fredrik Stridfeldt
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vikash Pandey
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Hanna Kylhammar
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | | | - Prattakorn Metem
- Division of Applied Electrochemistry, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
| | - Vipin Agrawal
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
- Department of Physics, Stockholm University, Stockholm11419, Sweden
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen45147, Germany
| | - Doste R. Mamand
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm75105, Sweden
- Karolinska Advanced Therapy Medicinal Products Center, ANA Futura, Huddinge17177, Sweden
| | - Jennifer Gilbert
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Lukas Palmgren
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Margaret N. Holme
- Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg41296, Sweden
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm17177, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm17177, Sweden
| | - Dhrubaditya Mitra
- Nordita, Kungliga Tekniska Högskolan Royal Institute of Technology and Stockholm University, Stockholm11419, Sweden
| | - Apurba Dev
- Department of Applied Physics, Kungliga Tekniska Högskolan Royal Institute of Technology, Stockholm11419, Sweden
- Department of Electrical Engineering, Uppsala University, Uppsala75237, Sweden
| |
Collapse
|
14
|
Scariot DB, Staneviciute A, Machado RRB, Yuk SA, Liu YG, Sharma S, Almunif S, Arona Mbaye EH, Nakamura CV, Engman DM, Scott EA. Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology. Biomaterials 2025; 322:123358. [PMID: 40318604 DOI: 10.1016/j.biomaterials.2025.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The causative agent of Chagas disease, the protozoan Trypanosoma cruzi, is an obligate intracellular parasite that is typically treated with daily oral administration of Benznidazole (BNZ), a parasiticidal pro-drug with considerable side effects. Previously, we effectively targeted intracellular parasites using ∼100 nm diameter BNZ-loaded poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) vesicular nanocarriers (a.k.a. polymersomes) in a T. cruzi-infected mouse model, without causing the typical side effects associated with standard BNZ treatment. Here, we exploit the structural versatility of the PEG-b-PPS system to investigate the impact of nanocarrier structure on the efficacy of BNZ nanotherapy. Despite sharing the same surface chemistry and oxidation-sensitive biodegradation, solid core ∼25 nm PEG-b-PPS micelles failed to produce in vivo trypanocidal effects. By applying the Förster Resonance Energy Transfer strategy, we demonstrated that PEG-b-PPS polymersomes promoted sustained intracellular drug release and enhanced tissue accumulation, offering a significant advantage for intracellular drug delivery compared to micelles with the same surface chemistry. Our studies further revealed that the lack of parasiticidal effect in PEG-b-PPS micelles is likely due to their slower rate of accumulation into solid tissues, consistent with the prolonged circulation time of intact micelles. Considering the cardiac damage typically induced by T. cruzi infection, this study also investigated the contributions of cardiac cellular biodistribution and payload release for both nanocarriers to the treatment outcomes of BNZ delivery. Our findings emphasize the crucial role of cardiac macrophages in the parasiticidal effect of BNZ formulations and highlight the critical importance of nanobiomaterial structure during therapeutic delivery.
Collapse
Affiliation(s)
- Debora B Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Rayanne R B Machado
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - Simseok A Yuk
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Yu-Gang Liu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Swagat Sharma
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Sultan Almunif
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Bioengineering Institute, King Abdulaziz City for Science and Technology, Riyadh, 12354, Saudi Arabia
| | - El Hadji Arona Mbaye
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Celso Vataru Nakamura
- Department of Biological Sciences, State University of Maringa, Parana, 87020-900, Brazil
| | - David M Engman
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, NanoSTAR Institute, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
15
|
Takahashi Y, Kubota K, Yoshimoto M, Yoshimoto N. Preparation, Conformational Structure, and Proteolytic Activity of Papain Covalently Conjugated to Poly(ethylene glycol)-Tethered Lipid Bilayer Membranes. Biomacromolecules 2025; 26:2131-2145. [PMID: 40173326 PMCID: PMC12004522 DOI: 10.1021/acs.biomac.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Conjugation of enzymes to lipid membranes is a key approach to reconstitute fascinating features of cell organelles and to deduce the nature of membrane-involved biological events. In this work, papain was covalently conjugated via a cross-linker to phospholipid vesicles (liposomes) tethered with poly(ethylene glycol) (PEG) at 25 °C and pH = 7.0, followed by chromatographic purification. The size of the PEG moiety and the type of cross-linker were optimized to obtain PEG-tethered liposome-conjugated papain (liposome-PEG-papain). Slight conformational changes of the membrane-conjugated papain in both its secondary and tertiary structures were revealed using circular dichroism and intrinsic fluorescence measurements. Notably, heat treatment of a liposome-PEG-papain dispersion at 77 or 84 °C caused permeabilization of the lipid membranes to 5(6)-carboxyfluorescein. Furthermore, liposome-PEG-papain exhibited the digestion activity of casein at 37 °C and pH = 7.6. The structural flexibility of liposomes as enzyme carriers may provide the opportunity to functionalize the membrane-conjugated biomacromolecules.
Collapse
Affiliation(s)
- Yuya Takahashi
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Kyohei Kubota
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Noriko Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| |
Collapse
|
16
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
17
|
Lundy DJ, Liao CT. Extracellular Vesicles in Aging and Age-Related Diseases. How Important Are They? Adv Biol (Weinh) 2025:e2400656. [PMID: 40202045 DOI: 10.1002/adbi.202400656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs), lipid bilayer-bound particles secreted by cells, have attracted significant research attention for their roles in aging-related disorders, including cardiovascular disease, metabolic dysfunction, cancer, and neurodegeneration. Research shows that EV cargo and function are influenced by factors including age, disease state, exercise, nutrition and sleep, and they may modulate various aging-associated processes such as stem cell renewal, nutrient sensing, cell senescence, mitochondrial function, and insulin resistance. This perspective highlights, for a general audience, a selection of studies of EVs in aging and age-related diseases, and their diverse roles in organ crosstalk. While current evidence indicates that EVs play multiple roles in aging, there are numerous challenges including methodological challenges and limitations, heterogeneous reports of EV cargo, limited reproducibility, and apparent context-dependent effects of EVs and their cargo. Together, this limits the interpretation of these studies. This is proposed that EVs may act as fine-tuners of cellular communication within the broader aging-associated secretome and the importance of standardizing methods are emphasized. Last, future directions for EV research are suggested.
Collapse
Affiliation(s)
- David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei, 235603, Taiwan
- Cell Therapy Center, Taipei Medical University Hospital, 250 Wuxing Street, Taipei, 110, Taiwan
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 235603, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan
- Taipei Medical University-Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
18
|
Pareja Tello R, Lamparelli EP, Ciardulli MC, Hirvonen J, Barreto G, Mafulli N, Della Porta G, Santos HA. Hybrid lipid nanoparticles derived from human mesenchymal stem cell extracellular vesicles by microfluidic sonication for collagen I mRNA delivery to human tendon progenitor stem cells. Biomater Sci 2025; 13:2066-2081. [PMID: 40033856 DOI: 10.1039/d4bm01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tendon degeneration remains an intricate pathological process characterized by the coexistence of multiple dysregulated homeostasis processes, including the increase in collagen III production in comparison with collagen I. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) remain a promising therapeutic tool thanks to their pro-regenerative properties and applicability as drug delivery systems, despite their drug loading limitations. Herein, we developed MSC-EV-derived hybrid lipid nanoparticles (MSC-Hyb NPs) using a microfluidic-sonication technique as an alternative platform for the delivery of collagen type I (COL 1A1) mRNA into pathological TSPCs. The MSC-Hyb NPs produced had LNP-like physicochemical characteristics and were 178.6 nm in size with a PDI value of 0.245. Moreover, MSC-Hyb NPs encapsulated mRNA and included EV-derived surface proteins such as CD63, CD81 and CD144. MSC-Hyb NPs remained highly biocompatible with TSPCs and proved to be functional mRNA delivery agents with certain limitations in comparison with lipid nanoparticles (LNPs). In vitro efficacy studies on TSPCs showed a 2-fold increase in procollagen type I carboxy-terminal peptide production comparable with the effect caused by LNPs. Therefore, our work provides an alternative production method for MSC-EV-derived hybrid NPs and supports their potential use as drug delivery systems for tendon regeneration.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Nicola Mafulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
19
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Ohshima K, Mizomichi K, Ohsaki S, Nakamura H, Watano S. Influence of Solvents on Drug Loading Capacity of Metal-Organic Frameworks Focusing on Solvent Dipole Moment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8117-8124. [PMID: 40100142 DOI: 10.1021/acs.langmuir.4c04896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The application of metal-organic frameworks (MOFs) as drug delivery systems with a high drug-loading capacity and targeted delivery is advancing rapidly. This study is the first to elucidate the mechanism of drug-loading in MOFs. It focused on the crucial role of solvents in drug-loading capacity. Ibuprofen, which is widely used as a nonsteroidal antiflammatory drug, was selected as a model drug. The drug-loading capacities of zeolitic imidazolate framework-8 (ZIF-8) and Universitetet i Oslo-66-NH2 (UiO-66-NH2) were investigated in various solvents. For ZIF-8, an increase in the solvent dipole moment corresponded to an increase in the drug-loading capacity. Intriguingly, the converse trend was observed for UiO-66-NH2. Therein, a decrease in the solvent dipole moment caused an increase in the drug-loading. These observations indicated that the solvent dipole moment plays a critical role in the drug-loading mechanism of the MOFs. Furthermore, Raman spectroscopy in the solvents with different polarities revealed significant variations in the molecular vibrations of ZIF-8 and UiO-66-NH2. It was indicated that in both the MOFs, the drug-loading amount increased in the solvents when the molecular vibrations of the MOF were constrained. This study revealed that the solvent plays a crucial role in the drug-loading in MOFs, and the polarity of the solvents contributes significantly to the molecular vibration of MOFs during drug-loading, thereby affecting the drug-loading capacity.
Collapse
Affiliation(s)
- Kazuki Ohshima
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Keisuke Mizomichi
- Analytical & Testing Technology Department, Horiba Techno Service, Co., Ltd., Miyanohigashi-cho, Kisshoin Minami-ku, Kyoto 601-8305, Japan
| | - Shuji Ohsaki
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideya Nakamura
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Satoru Watano
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
21
|
Beheshtkhoo N, Jadidi Kouhbanani MA, Daghighi SM, Shakouri Nikjeh M, Esmaeili Z, Khosravani M, Adabi M. Effect of oral resveratrol-loaded nanoliposomes on hyperlipidemia via toll-like receptor 3 and TIR domain-containing adaptor inducing interferon-β protein expression in an animal model. J Liposome Res 2025:1-27. [PMID: 40098438 DOI: 10.1080/08982104.2025.2476529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
Hyperlipidemia, a critical risk factor for various health conditions, necessitates innovative therapeutic strategies. Investigating the effectiveness of liposomal formulations in managing hyperlipidemia is essential. Resveratrol (RES)-loaded nanoliposomes present a promising new approach for hyperlipidemia treatment. In this study, we investigated the anti-hyperlipidemic potential of RES-loaded nanoliposomes in high-fat diet (HFD)-fed rats. The nanoliposomes were prepared using a thin-film hydration method. According to transmission electron microscopy (TEM) and dynamic light scattering (DLS) results, the mean size of prepared RES-loaded nanoliposomes were about 42 nm and 68 nm, respectively, with a zeta potential of -65.6 mV. The entrapment efficiency and loading content were 83.78% and 14.25%, respectively. Additionally, the RES-loaded nanoliposomes exhibited controlled release kinetics compared to the free RES form. Moreover, in a hyperlipidemic rat model induced by an HFD, orally administered RES-loaded nanoliposomes significantly reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG), while concurrently increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, liver damage induced by HFD was alleviated by RES-loaded nanoliposomes. The expression levels of Toll-like receptor 3 (TLR3) and TIR domain-containing adaptor-inducing interferon-β (TRIF) were assessed using fluorescence immunohistochemistry. Notably, RES-loaded nanoliposomes significantly reduced the expression of these protein. The effect of RES-loaded nanoliposomes was measured on body weight of HFD rats, demonstrting RES-loaded nanoliposomes hold promise for weight management. These findings underscore the potential of RES-loaded nanoliposomes as a safe and effective therapeutic option for hyperlipidemia.
Collapse
Affiliation(s)
- Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shakouri Nikjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
López RR, Ben El Khyat CZ, Chen Y, Tsering T, Dickinson K, Bustamante P, Erzingatzian A, Bartolomucci A, Ferrier ST, Douanne N, Mounier C, Stiharu I, Nerguizian V, Burnier JV. A synthetic model of bioinspired liposomes to study cancer-cell derived extracellular vesicles and their uptake by recipient cells. Sci Rep 2025; 15:8430. [PMID: 40069225 PMCID: PMC11897354 DOI: 10.1038/s41598-025-91873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Extracellular vesicles (EVs) are secreted by most cell types and play a central role in cell-cell communication. These naturally occurring nanoparticles have been particularly implicated in cancer, but EV heterogeneity and lengthy isolation methods with low yield make them difficult to study. To circumvent the challenges in EV research, we aimed to develop a unique synthetic model by engineering bioinspired liposomes to study EV properties and their impact on cellular uptake. We produced EV-like liposomes mimicking the physicochemical properties as cancer EVs. First, using a panel of cancer and non-cancer cell lines, small EVs were isolated by ultracentrifugation and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Cancer EVs ranged in mean size from 107.9 to 161 nm by NTA, hydrodynamic diameter from 152 to 355 nm by DLS, with a zeta potential ranging from - 25 to -6 mV. EV markers TSG101 and CD81 were positive on all EVs. Using a microfluidics bottom-up approach, liposomes were produced using the nanoprecipitation method adapted to micromixers developed by our group. A library of liposome formulations was created that mimicked the ranges of size (90-222 nm) and zeta potential (anionic [-47 mV] to neutral [-1 mV]) at a production throughput of up to 41 mL/h and yielding a concentration of 1 × 1012 particles per mL. EV size and zeta potential were reproduced by controlling the flow conditions and lipid composition set by a statistical model based on the response surface methodology. The model was fairly accurate with an R-squared > 70% for both parameters between the targeted EV and the obtained liposomes. Finally, the internalization of fluorescently labeled EV-like liposomes was assessed by confocal microscopy and flow cytometry, and correlated with decreasing liposome size and less negative zeta potential, providing insights into the effects of key EV physicochemical properties. Our data demonstrated that liposomes can be used as a powerful synthetic model of EVs. By mimicking cancer cell-derived EV properties, the effects on cellular internalization can be assessed individually and in combination. Taken together, we present a novel system that can accelerate research on the effects of EVs in cancer models.
Collapse
Affiliation(s)
- Rubén R López
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Chaymaa Zouggari Ben El Khyat
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Sarah Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Catherine Mounier
- Department of biological sciences, Université du Québec à Montréal, 141 avenue du président Kennedy, Montreal, QC, H2X 1Y4, Canada
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC, H3G 1M8, Canada
| | - Ion Stiharu
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, QC, H4A 3T2, Canada
| | - Vahé Nerguizian
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Department of Pathology, McGill University, Quebec, Canada.
| |
Collapse
|
23
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, Nadeau A, Juncker D, Nerguizian V, Burnier JV. Leveraging nature's nanocarriers: Translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. SCIENCE ADVANCES 2025; 11:eads5249. [PMID: 40009680 PMCID: PMC11864201 DOI: 10.1126/sciadv.ads5249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Naturally occurring extracellular vesicles (EVs) and synthetic nanoparticles like liposomes have revolutionized precision diagnostics and medicine. EVs excel in biocompatibility and cell targeting, while liposomes offer enhanced drug loading capacity and scalability. The clinical translation of EVs is hindered by challenges including low yield and heterogeneity, whereas liposomes face rapid immune clearance and limited targeting efficiency. To bridge these gaps, biomimetic synthetic vesicles (SVs) have emerged as innovative platforms, combining the advantageous properties of EVs and liposomes. This review emphasizes critical aspects of EV biology, such as mechanisms of EV-cell interaction and source-dependent functionalities in targeting, immune modulation, and tissue regeneration, informing biomimetic SV engineering. We reviewed a broad array of biomimetic SVs, with a focus on lipid bilayered vesicles functionalized with proteins. These include cell-derived nanovesicles, protein-functionalized liposomes, and hybrid vesicles. By addressing current challenges and highlighting opportunities, this review aims to advance biomimetic SVs for transformative biomedical applications.
Collapse
Affiliation(s)
- Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Tad Wu
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Ishman Kaur
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- École de technologie supérieure ÉTS, Montreal, QC, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - David Juncker
- Department of Biomedical Engineering and Victor Philippe Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | | | - Julia V. Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
25
|
Morsy HM, Zaky MY, Yassin NYS, Khalifa AYZ. Nanoparticle-based flavonoid therapeutics: Pioneering biomedical applications in antioxidants, cancer treatment, cardiovascular health, neuroprotection, and cosmeceuticals. Int J Pharm 2025; 670:125135. [PMID: 39732216 DOI: 10.1016/j.ijpharm.2024.125135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Flavonoids, a type of natural polyphenolic molecule, have garnered significant research interest due to their ubiquitous nature and diverse biological activities, including antioxidant, anti-inflammatory, and anticancer effects, making them appealing to various scientific disciplines. In this regard, the use of a flavonoid nanoparticle delivery system is to overcome low bioavailability, bioactivity, poor aqueous solubility, systemic absorption, and intensive metabolism. Therefore, this review summarizes the classification of nanoparticles (liposomes, polymeric, and solid lipid nanoparticles) and the advantages of using nanoparticle-flavonoid formulations to boost flavonoid bioavailability. Moreover, this review illustrated the pioneering biomedical applications of nanoparticle-based flavonoid therapeutics, as well as safety and toxicity considerations of using a flavonoid nanoparticle delivery system.
Collapse
Affiliation(s)
- Hadeer M Morsy
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt.
| | - Nour Y S Yassin
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O.Box 62521, Beni-Suef, Egypt
| | - Ashraf Y Z Khalifa
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
26
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
27
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
28
|
Balaraman AK, Babu MA, Moglad E, Mandaliya V, Rekha MM, Gupta S, Prasad GVS, Kumari M, Chauhan AS, Ali H, Goyal K. Exosome-mediated delivery of CRISPR-Cas9: A revolutionary approach to cancer gene editing. Pathol Res Pract 2025; 266:155785. [PMID: 39708520 DOI: 10.1016/j.prp.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Several molecular strategies based on targeted gene delivery systems have been developed in recent years; however, the CRISPR-Cas9 technology introduced a new era of targeted gene editing, precisely modifying oncogenes, tumor suppressor genes, and other regulatory genes involved in carcinogenesis. However, efficiently and safely delivering CRISPR-Cas9 to cancer cells across the cell membrane and the nucleus is still challenging. Using viral vectors and nanoparticles presents issues of immunogenicity, off-target effects, and low targeting affinity. Naturally, extracellular vesicles called exosomes have garnered the most attention as delivery vehicles in oncology-related CRISPR-Cas9 calls due to their biocompatibility, loading capacity, and inherent targeting features. The following review discusses the current progress in using exosomes to deliver CRISPR-Cas9 components, the approaches to load the CRISPR components into exosomes, and the modification of exosomes to increase stability and tumor-targeted delivery. We discuss the latest strategies in targeting recently accomplished in the exosome field, including modifying the surface of exosomes to enhance their internalization by cancer cells, as well as the measures taken to overcome the impacts of TME on delivery efficiency. Focusing on in vitro and in vivo experimentation, this review shows that exosome-mediated CRISPR-Cas9 can potentially treat cancer types, including pancreatic, lymphoma, and leukemia, for given gene targets. This paper compares exosome-mediated delivery and conventional vectors regarding safety, immune response, and targeting ability. Last but not least, we present the major drawbacks and potential development of the seemingly promising field of exosome engineering in gene editing, with references to CRISPR technologies and applications that may help make the target exosomes therapeutic in oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| |
Collapse
|
29
|
Young TW, Cox-Vázquez SJ, Call ED, Shah DC, Jacobson SC, Vázquez RJ. Resistive-Pulse Sensing Coupled with Fluorescence Lifetime Imaging Microscopy for Differentiation of Individual Liposomes. ACS NANO 2025; 19:2162-2170. [PMID: 39741459 PMCID: PMC11811929 DOI: 10.1021/acsnano.4c10813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Characterization of individual biological nanoparticles can be significantly improved by coupling complementary analytical methods. Here, we combine resistive-pulse sensing (RPS) with fluorescence lifetime imaging microscopy (FLIM) to differentiate liposomes at the single-particle level. RPS measures the particle volume, shape, and surface-charge density, and FLIM determines the fluorescence lifetime of the fluorophore associated with the lipid membrane. The RPS devices are fabricated in-plane on a glass substrate to facilitate coupling of RPS with FLIM measurements. For proof-of-concept, we studied liposomes containing various cholesterol concentrations with membrane-intercalated Di-8-ANEPPS, whose fluorescence lifetime is known to be sensitive to cholesterol concentrations in the membrane. RPS-FLIM revealed that increasing cholesterol concentrations in the liposome from 0% to 50% increased the fluorescence lifetimes from 2.1 ± 0.2 to 3.4 ± 0.5 ns, respectively. Moreover, RPS-FLIM discerned liposome populations with the same cholesterol concentration but labeled with dyes that have different fluorescence lifetimes (Di-8-ANEPPS and COE-S6), parsing two particle populations with statistically identical volumes, cholesterol concentration, and lipid composition. Interrogation with RPS-FLIM occurred with individual particles making a single pass through the detection region and overcomes issues with fluorescence spectral overlap that limits traditional methods. We envision RPS-FLIM as a versatile and scalable technique with the potential to differentiate biological particles at the single-particle level to simultaneously inform on particle size, surface-charge density, membrane composition, and identity.
Collapse
Affiliation(s)
- Tanner W Young
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Sarah J Cox-Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ethan D Call
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Dhari C Shah
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Stephen C Jacobson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Ricardo J Vázquez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
30
|
Parvin N, Joo SW, Mandal TK. Biodegradable and Stimuli-Responsive Nanomaterials for Targeted Drug Delivery in Autoimmune Diseases. J Funct Biomater 2025; 16:24. [PMID: 39852580 PMCID: PMC11766201 DOI: 10.3390/jfb16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Autoimmune diseases present complex therapeutic challenges due to their chronic nature, systemic impact, and requirement for precise immunomodulation to avoid adverse side effects. Recent advancements in biodegradable and stimuli-responsive nanomaterials have opened new avenues for targeted drug delivery systems capable of addressing these challenges. This review provides a comprehensive analysis of state-of-the-art biodegradable nanocarriers such as polymeric nanoparticles, liposomes, and hydrogels engineered for targeted delivery in autoimmune therapies. These nanomaterials are designed to degrade safely in the body while releasing therapeutic agents in response to specific stimuli, including pH, temperature, redox conditions, and enzymatic activity. By achieving localized and controlled release of anti-inflammatory and immunosuppressive agents, these systems minimize systemic toxicity and enhance therapeutic efficacy. We discuss the underlying mechanisms of stimuli-responsive nanomaterials, recent applications in treating diseases such as rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease, and the design considerations essential for clinical translation. Additionally, we address current challenges, including biocompatibility, scalability, and regulatory hurdles, as well as future directions for integrating advanced nanotechnology with personalized medicine in autoimmune treatment. This review highlights the transformative potential of biodegradable and stimuli-responsive nanomaterials, presenting them as a promising strategy to advance precision medicine and improve patient outcomes in autoimmune disease management.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas K. Mandal
- School of Mechanical Engineering, School of Basic Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
31
|
Lerussi G, Villagrasa-Araya V, Moltó-Abad M, del Toro M, Pintos-Morell G, Seras-Franzoso J, Abasolo I. Extracellular Vesicles as Tools for Crossing the Blood-Brain Barrier to Treat Lysosomal Storage Diseases. Life (Basel) 2025; 15:70. [PMID: 39860010 PMCID: PMC11766495 DOI: 10.3390/life15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB. EVs offer a viable alternative, allowing for targeted delivery to the CNS and improving therapeutic outcomes. We discuss recent advancements in the engineering and modification of EVs to enhance targeting, circulation time and cargo stability, and provide a detailed overview of their application in LSDs, such as Gaucher and Fabry diseases, and Sanfilippo syndrome. Despite their potential, challenges remain in scaling production, ensuring isolation purity, and meeting regulatory requirements. Future developments will focus on overcoming these barriers, paving the way for the clinical translation of EV-based therapies in LSDs and other CNS disorders.
Collapse
Affiliation(s)
- Giovanni Lerussi
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Verónica Villagrasa-Araya
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Mireia del Toro
- Pediatric Neurology Unit, Hospital Universitari Vall d’Hebron and MetabERN, 08035 Barcelona, Spain;
- Networking Research Center on Rare Diseases (CIBERER), 08035 Barcelona, Spain
| | - Guillem Pintos-Morell
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
| | - Joaquin Seras-Franzoso
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain; (G.L.); (V.V.-A.); (M.M.-A.); (G.P.-M.); (J.S.-F.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Institute of Advanced Chemistry of Catalonia (IQAC), Centro Superior de Investigaciones Científicas (CSIC), 08034 Barcelona, Spain
| |
Collapse
|
32
|
Muolokwu CE, Gothwal A, Kanekiyo T, Singh J. Synthesis and Characterization of Transferrin and Cell-Penetrating Peptide-Functionalized Liposomal Nanoparticles to Deliver Plasmid ApoE2 In Vitro and In Vivo in Mice. Mol Pharm 2025; 22:229-241. [PMID: 39665408 PMCID: PMC11888121 DOI: 10.1021/acs.molpharmaceut.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative condition characterized by the aggregation of amyloid-β plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and neuronal degeneration. Recently, new treatment approaches involving drugs such as donanemab and lecanemab have been introduced for AD. However, these drug regimens have been associated with adverse effects, leading to the exploration of gene therapy as a potential treatment option. The apolipoprotein E (ApoE) isoforms (ApoE2, ApoE3, and ApoE4) play pivotal roles in AD pathology, with ApoE2 known for its protective effects against AD, making it a promising candidate for gene therapy interventions. However, delivering therapeutics across the blood-brain barrier (BBB) remains a crucial challenge in treating neurological disorders. Liposomes, lipid-based vesicles, are effective nanocarriers due to their ability to shield therapeutics from degradation, though they often lack specificity for brain delivery. To address this issue, liposomes were functionalized with cell-penetrating peptides such as penetratin (Pen), cingulin (Cgn), and a targeting ligand transferrin (Tf). This modification strategy aimed to enhance the delivery of therapeutic ApoE2 plasmids across the BBB to neurons, thereby increasing the level of ApoE2 protein expression. Experimental findings demonstrated that dual-functionalized liposomes (CgnTf and PenTf) exhibited higher cellular uptake, biodistribution, and transfection efficiency than single-functionalized (Pen, Cgn, or Tf) and nonfunctionalized liposomes. In vitro studies using primary neuronal cells, bEnd.3 cells, and primary astrocytes consistently supported these findings. Following a single dose treatment via tail vein administration in C57BL6/J mice, in vivo biodistribution results showed significantly higher biodistribution levels in the brain (∼12% ID/gram of tissue) for dual-functionalized liposomes. Notably, treatment with dual-functionalized liposomes resulted in a 2-fold increase in ApoE2 expression levels compared to baseline levels. These findings highlight the potential of dual-functionalized liposomes as an efficacious delivery system for ApoE2 gene therapy in AD, highlighting a promising strategy to address the disease's underlying mechanisms.
Collapse
Affiliation(s)
- Chinenye Edith Muolokwu
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Avinash Gothwal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
33
|
Mo L, Yang C, Dai Y, Liu W, Gong Y, Guo Y, Zhu Y, Cao Y, Xiao X, Du S, Lu S, He J. Novel drug delivery systems for hirudin-based product development and clinical applications. Int J Biol Macromol 2025; 287:138533. [PMID: 39657884 DOI: 10.1016/j.ijbiomac.2024.138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Hirudin, a natural biological polypeptide macromolecule secreted by the salivary glands of medicinal leech, is a specific thrombin inhibitor with multiple favourable bioactivities, including anti-coagulation, anti-fibrotic, and anti-tumour. Despite several anticoagulants have been widely applied in clinic, hirudin shows advantages in reducing the incidence of bleeding side effects by virtue of its high specificity in binding to thrombin. As a result, hirudin has been tested in clinical practice to prevent and treat several complex diseases. However, the application of this polypeptide macromolecule is compromised by its low bioavailability and bioactivity due to poor serum stability and susceptibility to protease degradation in vivo. To overcome these drawbacks, several studies have proposed novel drug delivery systems (NDDSs) to prevent the degradation and increase the targeting efficiency of hirudin. This systematic review summarises the clinical research on hirudin, including its classification and bioactivities, and highlights the opportunities and challenges in the clinical use of hirudin. The NDDSs designed to enhance the bioavailability and bioactivity of hirudin are discussed to explore its application in the treatment of related diseases. This review may considerably contribute to the advancement of delivery science and technology, particularly in the context of polypeptide-based therapeutics.
Collapse
Affiliation(s)
- Liqing Mo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yingxuan Dai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Wei Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yuhong Gong
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Yuxi Zhu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Department of Pediatrics, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China
| | - Shi Du
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Hubei Shizhen Laboratory, Wuhan, 430061, PR China.
| |
Collapse
|
34
|
Ovchinnikova LA, Tanygina DY, Dzhelad SS, Evtushenko EG, Bagrov DV, Gabibov AG, Lomakin YA. Targeted macrophage mannose receptor (CD206)-specific protein delivery via engineered extracellular vesicles. Heliyon 2024; 10:e40940. [PMID: 39759348 PMCID: PMC11697562 DOI: 10.1016/j.heliyon.2024.e40940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Extracellular vesicles (EVs) show great potential for therapeutic delivery to human cells, with a focus on modulating immune responses. The most promising targets for inducing humoral and cellular immunity against a specific antigen are macrophages (Mϕs) and dendritic cells (DCs). Targeting mannose receptors (CD206), which are highly expressed on these antigen-presenting cells, to promote the presentation of specific antigens through EV-mediated uptake, is a promising strategy in clinical immunotherapy. Our study compares two EV-fused anti-CD206 nanobodies in delivering cargo proteins to human activated antigen-presenting cells. We demonstrated that nanobody-functionalized EVs exhibit enhanced interaction and increased uptake by CD206+ cells compared to non-targeted EVs. Furthermore, replacing the full-length vesicular stomatitis virus protein G (VSV-G) with its truncated form, fused to a monoclonal anti-CD206 nanobody, significantly improves the specificity of EV uptake by CD206+ cells. Our study outlines an optimized platform for the production of targeted EVs designed for specific protein delivery to CD206-positive human cells.
Collapse
Affiliation(s)
| | - Daria Y. Tanygina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Samir S. Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Dmitriy V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
35
|
Yousfan A, Moursel N, Hanano A. Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy. Sci Rep 2024; 14:32057. [PMID: 39738802 PMCID: PMC11685383 DOI: 10.1038/s41598-024-83715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach. The lipid droplets were fractionated, and their physicochemical and biochemical properties were assessed. Our results showed that both DPLDs and MLLDs were spherical, with average diameters of 257 ± 36 nm and 416 ± 83 nm, respectively, and contained oil-rich cores of 392.5 and 612.4 mg mL-1. The MLLDs displayed a distinct lipid profile with low triglyceride content and high monoglyceride and diglyceride content. Conversely, the DPLDs primarily consisted of triglycerides, with stable granularity at around 83% and 79% for MLLDs and DPLDs, respectively. Both lipid droplets showed high encapsulation efficiencies, reaching 48.6 ± 3.2% and 45.4 ± 2.4% for MLLDs and DPLDs, respectively, after 4 h of incubation. The bio-distribution kinetics of paclitaxel post-intranasal administration demonstrated lower plasma paclitaxel levels in formulations compared to free paclitaxel. Notably, the accumulation of paclitaxel in the brain was significantly higher for paclitaxel-DPLD at early time points, with 1.527 ± 0.1% ID g-1 and 2.4 ± 0.16% ID g-1 at 5 and 30 min, respectively, compared to paclitaxel-MLLD and free paclitaxel. In Conclusion, the study highlights the potential of intranasal DPLD and MLLD formulations for enhanced brain targeting in brain tumor therapy, offering improved paclitaxel delivery and overcoming solubility and toxicity challenges.
Collapse
Affiliation(s)
- Amal Yousfan
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy College, Al Andalus University for Medical Sciences, Tartus, Syria
| | - Nour Moursel
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| |
Collapse
|
36
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
37
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
38
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
39
|
Zhao LX, Sun Q, Wang C, Liu JJ, Yan XR, Shao MC, Yu L, Xu WH, Xu R. Toxoplasma gondii-Derived Exosomes: A Potential Immunostimulant and Delivery System for Tumor Immunotherapy Superior to Toxoplasma gondii. Int J Nanomedicine 2024; 19:12421-12438. [PMID: 39600411 PMCID: PMC11590659 DOI: 10.2147/ijn.s483626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Immunotherapies such as immune checkpoint blockade (ICB) therapy and chimeric antigen receptor T-cell (CAR-T) therapy have ushered in a new era of tumor treatment. However, most patients do not benefit from immunotherapy due to limitations such as narrow indications, low response rates, and high rates of adverse effects. Toxoplasma gondii (T. gondii), a specialized intracellular protozoan, can modulate host immune responses by inhibiting or stimulating cytokines. The ability of T. gondii to enhance an organism's immune response was found to have a direct anti-tumor effect and enhance the sensitivity of patients with tumors to ICB therapy. However, the application of T. gondii for tumor therapy faces several challenges, such as biosafety concerns. Exosomes, a subtype of extracellular vesicle that contains active components such as proteins, nucleic acids, and lipids, have become effective therapeutic tools for various diseases, including tumors. Parasites, such as T. gondii, mediate the communication of pathogens with immune cells and modulate host cellular immune responses through exosomes. Growing evidence indicates that T. gondii-derived exosomes mediate communication between pathogens and immune cells, modulate host immune responses, and have great potential as new tools for tumor therapy. In this review, we highlight recent advances in isolation and identification techniques, profiling analysis, host immunomodulatory mechanisms, and the role of T. gondii-derived exosomes in tumor immunotherapy. Additionally, we emphasize the potential of T. gondii-derived exosomes as delivery platform to enhance anti-tumor efficacy in combination with other therapies. This review proposes that T. gondii-derived exosomes may serve as a novel tool for tumor immunotherapy owing to their ability to activate host immune function and properties such as high modifiability, stability, and low toxicity. This work will assist in promoting the application of parasite exosomes in tumor therapy.
Collapse
Affiliation(s)
- Lai-Xi Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Qiong Sun
- Department of Stomatology, Anhui Province Direct Subordinate Hospital, Hefei, 230601, People’s Republic of China
| | - Chong Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Jia-Jia Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Xiao-Rong Yan
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Meng-Ci Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Li Yu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, Hefei, Anhui Province, 230032, People’s Republic of China
| | - Wen-Hua Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| | - Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, People’s Republic of China
| |
Collapse
|
40
|
Abdelall LM, Nagy YI, Kashef MT. Restoring vancomycin activity against resistant Enterococcus faecalis using a transcription factor decoy as a vanA operon-inhibitor. J Antimicrob Chemother 2024; 79:2999-3006. [PMID: 39255254 DOI: 10.1093/jac/dkae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) represent a public health threat due to the few available treatments. Such alarm has triggered worldwide initiatives to develop effective antimicrobial compounds and novel delivery and therapeutic strategies. vanA operon is responsible for most cases of acquired vancomycin resistance in enterococci. OBJECTIVES Development of a transcription factor decoy (TFD) system as a vanA gene transcription-inhibitor. METHODS Vancomycin MIC was determined in the presence of TFD-lipoplexes. Additionally, the effect of TFD-lipoplexes on the expression level of the vanA gene and the growth pattern of E. faecalis was evaluated. The haemolytic activity of the developed TFD-lipoplexes and their cytotoxicity were examined. TFD-lipoplexes efficiency in treating vancomycin-resistant E. faecalis (VREF) infection was tested in vivo using a systemic mice infection model. RESULTS A reduction in vancomycin MIC against VRE from 256 mg/L (resistant) to 16 mg/L (intermediate susceptible), in the presence of TFD-lipoplexes, was recorded. The developed TFD-lipoplexes lacked any effect on E. faecalis growth and significantly reduced the transcription level of the vanA gene by about 3-fold. In an initial evaluation of the safety of TFD-lipoplexes, they were found not to be overtly haemolytic to human blood or cytotoxic to human skin fibroblast cells. The co-administration of TFD-lipoplexes and vancomycin efficiently eradicated VREF infection in vivo. CONCLUSIONS The developed TFD-lipoplexes successfully restored vancomycin activity against VREF. They offer a safe effective unconventional therapy against this stubborn organism and present a revolution in gene therapy that can be applied to other resistance-encoding genes in various organisms.
Collapse
Affiliation(s)
- Loai M Abdelall
- Department of General Administration of Factories Inspection, Central Administration of Operations, Egyptian Drug Authority, Giza 12654, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
41
|
Zhang J, Zhang B, Zhang L, Xu X, Cheng Q, Wang Y, Li Y, Jiang R, Duan S, Zhang L. Engineered nanovesicles mediated cardiomyocyte survival and neovascularization for the therapy of myocardial infarction. Colloids Surf B Biointerfaces 2024; 243:114135. [PMID: 39106630 DOI: 10.1016/j.colsurfb.2024.114135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Myocardial infarction (MI) leads to substantial cellular necrosis as a consequence of reduced blood flow and oxygen deprivation. Stimulating cardiomyocyte proliferation and angiogenesis can promote functional recovery after cardiac events. In this study, we explored a novel therapeutic strategy for MI by synthesizing a biomimetic nanovesicle (NV). This biomimetic NVs are composed of exosomes sourced from umbilical cord mesenchymal stem cells, which have been loaded with placental growth factors (PLGF) and surface-engineered with a cardiac-targeting peptide (CHP) through covalent bonding, termed Exo-P-C NVs. With the help of the myocardial targeting effect of homing peptides, NVs can be enriched in the MI site, thus improve cardiac regeneration, reduce fibrosis, stimulate cardiomyocyte proliferation, and promote angiogenesis, ultimately resulted in improved cardiac functional recovery. It was demonstrated that Exo-P-C NVs have the potential to offer novel therapeutic strategies for the improvement of cardiac function and management of myocardial infarction.
Collapse
Affiliation(s)
- Juan Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Beibei Zhang
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan University of Technology, Zhengzhou 450001, China
| | - Linlin Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiaoxia Xu
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qiwei Cheng
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Yuzhou Wang
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Yaqiong Li
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Ru Jiang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Shaobo Duan
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Lianzhong Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China.
| |
Collapse
|
42
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
43
|
Jayasinghe MK, Lay YS, Liu DXT, Lee CY, Gao C, Yeo BZ, How FYX, Prajogo RC, Hoang DV, Le HA, Pham TT, Peng B, Phung CD, Tenen DG, Le MTN. Extracellular vesicle surface display enhances the therapeutic efficacy and safety profile of cancer immunotherapy. Mol Ther 2024; 32:3558-3579. [PMID: 39033322 PMCID: PMC11489549 DOI: 10.1016/j.ymthe.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy has emerged as a mainstay in cancer therapy, yet its efficacy is constrained by the risk of immune-related adverse events. In this study, we present a nanoparticle-based delivery system that enhances the therapeutic efficacy of immunomodulatory ligands while concurrently limiting systemic toxicity. We demonstrate that extracellular vesicles (EVs), lipid bilayer enclosed particles released by cells, can be efficiently engineered via inverse electron demand Diels-Alder (iEDDA)-mediated conjugation to display multiple immunomodulatory ligands on their surface. Display of immunomodulatory ligands on the EV surface conferred substantial enhancements in signaling efficacy, particularly for tumor necrosis factor receptor superfamily (TNFRSF) agonists, where the EV surface display served as an alternative FcγR-independent approach to induce ligand multimerization and efficient receptor crosslinking. EVs displaying a complementary combination of immunotherapeutic ligands were able to shift the tumor immune milieu toward an anti-tumorigenic phenotype and significantly suppress tumor burden and increase survival in multiple models of metastatic cancer to a greater extent than an equivalent dose of free ligands. In summary, we present an EV-based delivery platform for cancer immunotherapeutic ligands that facilitates superior anti-tumor responses at significantly lower doses with fewer side effects than is possible with conventional delivery approaches.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yock Sin Lay
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Dawn Xiao Tian Liu
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chang Yu Lee
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chang Gao
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Brendon Zhijie Yeo
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Faith Yuan Xin How
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Rebecca Carissa Prajogo
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Dong Van Hoang
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Hong Anh Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thach Tuan Pham
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Cao Dai Phung
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Minh T N Le
- Institute for Digital Medicine and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore.
| |
Collapse
|
44
|
Villanueva ME, Bar L, Redondo-Morata L, Namdar P, Ruysschaert JM, Pabst G, Vandier C, María Bouchet A, Losada-Pérez P. Spontaneous nanotube formation of an asymmetric glycolipid. J Colloid Interface Sci 2024; 671:410-422. [PMID: 38815376 DOI: 10.1016/j.jcis.2024.05.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Over the past decades, advances in lipid nanotechnology have shown that self-assembled lipid structures providing ease of preparation, chemical stability, and biocompatibility represent a landmark on the development of multidisciplinary technologies. Lipid nanotubes (LNTs) are a unique class of lipid self-assembled structures, bearing unique properties such as high-aspect ratio, tunable diameter size, and precise molecular recognition. They can be obtained either by the action of external factors to already formed vesicles or spontaneously, the latter depending strongly on subtle molecular features. Here, we report on the spontaneous formation of supported lipid nanotubes of a particular type of glycolipid, ohmline, whose hydrophobic core displays remarkable asymmetry. The combination of bulk and surface-sensitive techniques indicates that below its main transition, ohmline displays an interdigitated gel phase, likely driven by the unique asymmetry in its hydrophobic core. Enhanced order packing by interdigitation favors the formation of ohmline nanotubes in agreement with chiral-based models of nanotube formation. The findings presented in this work call for additional studies to link lipid molecular structure-assembly relationships, whose understanding is relevant for the controlled design of lipid nanotubes networks in particular and controlled design of soft-matter nanomaterials in general.
Collapse
Affiliation(s)
- Martín E Villanueva
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium.
| | - Laure Bar
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Lorena Redondo-Morata
- Aix-Marseille University, INSERM, DyNaMo, Turing Centre for Living systems, Marseille 13009, France
| | - Peter Namdar
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz 8010, Austria
| | - Jean-Marie Ruysschaert
- Structure and Functions of Biological Membranes, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium; Lifesome Therapeutics S. L., Calle Faraday 7, Madrid 28049, Spain
| | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstr 50/III, Graz 8010, Austria
| | - Christophe Vandier
- Niche, Nutrition, Cancer and Oxidative Metabolism (N2Cox) UMR 1069, University of Tours, INSERM, Tours, France; Lifesome Therapeutics S. L., Calle Faraday 7, Madrid 28049, Spain
| | | | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium.
| |
Collapse
|
45
|
El-Fakharany EM, El-Gendi H, Abdel-Wahhab K, Abu-Serie MM, El-Sahra DG, Ashry M. Therapeutic efficacy of α-lactalbumin coated oleic acid based liposomes against colorectal carcinoma in Caco-2 cells and DMH-treated albino rats. J Biomol Struct Dyn 2024; 42:9220-9234. [PMID: 37624964 DOI: 10.1080/07391102.2023.2250452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Colorectal cancer (CRC) is a malignant tumor recognized as a major cause of morbidity and mortality throughout the world. Therefore, novel liposomes of oleic acid coated with camel α-lactalbumin (α-LA coated liposomes) were developed for their potential antitumor activity against CRC, both in vitro and in DMH-induced CRC-modeled animal. In vitro results indicated the high safety of α-LA coated liposomes towards normal human cells with potent antitumor activity against Caco-2 cells at an IC50 value of 57.01 ± 3.55 µM with selectivity index of 6.92 ± 0.48. This antitumor activity has been attributed to induction of the apoptotic mechanism, as demonstrated by nuclear condensation and arrest of Caco-2 cells in sub-G1 populations. α-LA coated liposomes also revealed a significant up-regulation of the p53 gene combined with a down-regulation of the Bcl2 gene. Moreover, in vivo results revealed that treatment of induced-CRC modeled animals with α-LA coated liposomes for six weeks markedly improved the CRC-disorders; this was achieved from the significant reduction in the values of AFP, CEA, CA19.9, TNF-α, IL-1β, MDA, and NO coupled with remarkable rise in SOD, GPx, GSH, CAT, and CD4+ levels. The histopathological findings asserted the therapeutic potential of α-LA coated liposomes in the treatment of CRC. Therefore, the present results proved the antitumor activity of α-LA coated liposomes against CRC through the restoration of impaired oxidative stress, improved immune response, and reduced inflammation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, GEBRI, SRTA-City, Alexandria, Egypt
| | | | - Marwa M Abu-Serie
- Medical Biotechnology Department, GEBRI, SRTA-City, Alexandria, Egypt
| | - Doaa Galal El-Sahra
- Medical Surgical Nursing Department, Faculty of Nursing, Modern University for Technology and Information, Cairo, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
46
|
Pilkington CP, Gispert I, Chui SY, Seddon JM, Elani Y. Engineering a nanoscale liposome-in-liposome for in situ biochemical synthesis and multi-stage release. Nat Chem 2024; 16:1612-1620. [PMID: 39009794 PMCID: PMC11446840 DOI: 10.1038/s41557-024-01584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Soft-matter nanoscale assemblies such as liposomes and lipid nanoparticles have the potential to deliver and release multiple cargos in an externally stimulated and site-specific manner. Such assemblies are currently structurally simplistic, comprising spherical capsules or lipid clusters. Given that form and function are intertwined, this lack of architectural complexity restricts the development of more sophisticated properties. To address this, we have devised an engineering strategy combining microfluidics and conjugation chemistry to synthesize nanosized liposomes with two discrete compartments, one within another, which we term concentrisomes. We can control the composition of each bilayer and tune both particle size and the dimensions between inner and outer membranes. We can specify the identity of encapsulated cargo within each compartment, and the biophysical features of inner and outer bilayers, allowing us to imbue each bilayer with different stimuli-responsive properties. We use these particles for multi-stage release of two payloads at defined time points, and as attolitre reactors for triggered in situ biochemical synthesis.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Gispert
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Suet Y Chui
- Department of Chemical Engineering, Imperial College London, London, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
47
|
Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, Pejovic T, Marks DL, Taratula O. Development and Perspectives: Multifunctional Nucleic Acid Nanomedicines for Treatment of Gynecological Cancers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301776. [PMID: 37518857 PMCID: PMC10827528 DOI: 10.1002/smll.202301776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Brennan Olson
- Mayo Clinic Department of Otolaryngology-Head and Neck Surgery, 200 First St. SW, Rochester, MN, 55905, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tanja Pejovic
- Departments of Obstetrics and Gynecology and Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481, Portland, OR, 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, Oregon, 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue Portland, Portland, OR, 97239, USA
| |
Collapse
|
48
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
49
|
Hosseini M, Ezzeddini R, Hashemi SM, Soudi S, Salek Farrokhi A. Enhanced anti-tumor efficacy of S3I-201 in breast cancer mouse model through Wharton jelly- exosome. Cancer Cell Int 2024; 24:318. [PMID: 39294673 PMCID: PMC11409531 DOI: 10.1186/s12935-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVE Exosomes, membrane-enveloped vesicles found in various cell types, including Wharton's jelly mesenchymal stem cells, play a crucial role in intercellular communication and regulation. Their use as a cell-free nanotechnology and drug delivery system has attracted attention. Triple-negative breast cancer (TNBC) is a major global health problem and is characterized by a high mortality rate. This study investigates the potential of Wharton's Jelly mesenchymal stem cell-derived exosomes (WJ-Exo) as carriers of S3I-201 and their effects on STAT3 expression in breast cancer cell lines, and evaluates whether these exosomes can enhance the anti-tumor effect of S3I-201. METHODS The filtered WJ-Exos were analyzed by Transmission Electron Microscopy (TEM), Scanning electron microscopy (SEM), Dynamic Light Scattering (DLS), flow cytometry, and Western blotting. These exosomes were then used for loading with S3I-201, resulting in the nano-formulation WJ-Exo(S3I-201). The effect of WJ-Exo(S3I-201) on 4T1 cancer cells was investigated in vitro using MTT assay, flow cytometry, wound healing assay, Western blotting and Quantitative Real-Time Polymerase chain reaction (qPCR) analysis. Finally, the therapeutic efficacy of the nano-formulation was investigated in vivo using a tumor-bearing mouse model. RESULTS In vitro experiments showed that co-incubation of 4T1 cells with the nano-formulation resulted in a significant reduction in p-STAT3 levels, induction of apoptosis, modulation of Bcl-2, Bax and caspase-3 protein and gene expression, and inhibition of migration. In vivo, treatment of tumor-bearing mice with WJ-Exo(S3I-201) showed a strong antitumor effect that exceeded the efficacy observed in the S3I-201 group. CONCLUSION Our results demonstrate that WJ-Exo is an effective carrier for targeting S3I-201 to tumor cells and enhances the therapeutic efficacy of S3I-201 in tumor-bearing mice.
Collapse
Affiliation(s)
- Masoomeh Hosseini
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Rana Ezzeddini
- Department of Clinical Biochemistry, Tarbiat Modares University, P.O. Box: 156352698, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Tarbiat Modares University, Tehran, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Immunology, Pasteur Institute of Iran, P.O. Box: 1316943551, Tehran, Iran.
| |
Collapse
|
50
|
Sharma S, Chakraborty M, Yadav D, Dhullap A, Singh R, Verma RK, Bhattacharya S, Singh S. Strategic Developments in Polymer-Functionalized Liposomes for Targeted Colon Cancer Therapy: An Updated Review of Clinical Trial Data and Future Horizons. Biomacromolecules 2024; 25:5650-5669. [PMID: 39162323 DOI: 10.1021/acs.biomac.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Moitrai Chakraborty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Dharmendra Yadav
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Aniket Dhullap
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Sankha Bhattacharya
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, Dist. Dhule, Maharashtra 425405, India
| | - Sanjiv Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| |
Collapse
|