1
|
Kamali SA, Teunissen M, van den Broek DHN, Burgers EM, Grinwis GCM, Ito K, Tryfonidou MA, Meij BP. High-intensity zones in dogs with lumbosacral intervertebral disc degeneration: insights from MRI and histopathological findings. Vet Q 2025; 45:1-13. [PMID: 40190253 PMCID: PMC11980243 DOI: 10.1080/01652176.2025.2486765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/03/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The diagnosis and management of lumbosacral pain in dogs is challenging, requiring thorough examination, with MRI playing a crucial diagnostic role. This retrospective study investigates the presence of high-intensity zones (HIZ) in the dorsal annulus fibrosus (AF) of the lumbosacral region on MRI and describes the corresponding histopathological features in dogs with intervertebral disc (IVD) degeneration. T2-weighted (T2W) and T1-weighted (T1W) sagittal MRI scans were evaluated using a classification system developed in human medicine to analyze HIZ characteristics. Among 836 dogs with IVD degeneration, 57 (6.8%) exhibited T2W HIZ, with a median age of 7 years and median weight of 33.7 kg. All cases with HIZ consistently exhibited radiological degenerative lumbosacral stenosis. The most common T2W HIZ shape was round (43%), while 14% of lesions also appeared hyperintense on T1W. Histopathological analysis of 11 dorsal AF samples collected during standard-of-care decompressive surgery revealed two patterns: reactive cystic structures (3/11) and granulation tissue (8/11), with differential MRI presentation. This is the first study to document HIZ in the lumbosacral level of dogs with IVD degeneration. With this recognition, prospective analyses and their correlation with clinical presentations will be essential in determining the role and prognostic significance of HIZ.
Collapse
Affiliation(s)
- S. Amir Kamali
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Michelle Teunissen
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Elisabeth M. Burgers
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Guy C. M. Grinwis
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Keita Ito
- Orthopedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Marianna A. Tryfonidou
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Björn P. Meij
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Zhang Y, Qiu J, Chen Y, Chen Y, Liu X, Zhang H, Li H, Li K, Ye H, Wu Y, Zhang X, Tian N. Novel anti-pyroptosis drug loaded on metal-organic framework for intervertebral disc degeneration therapy. Mater Today Bio 2025; 32:101729. [PMID: 40275959 PMCID: PMC12018054 DOI: 10.1016/j.mtbio.2025.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is the main cause of low back pain, pyroptosis is a major contributor to various diseases, including IVDD; however, there is currently no effective drugs targeting pyroptosis for therapy. In this study, we established pyroptosis model in nucleus pulposus cells (NPCs) in vitro and searched pyroptosis inhibitors in FDA Medicine Library. High throughput screening study revealed that Pirfenidone (PFD) was the most effective pyroptosis inhibitor among 1500+ FDA drugs, which was confirmed by further experiments. As administering PFD alone may lead to poor efficacy due to short action time and low bioavailability, we designed a smart delivery system for PFD. A pH-responsive metal-organic framework (MOF), poly-His6-zinc (PHZ) assembly, loaded with PFD (PFD@PHZ) was designed for IVDD therapy. PHZ was shown to have excellent lysosomal escape properties and bioavailability of PFD. In addition, the release of PDF from PFD@PHZ could be triggered by the acidic microenvironment of degenerated intervertebral discs. PFD@PHZ was also shown to effectively inhibit pyroptosis, senescence, and extracellular matrix (ECM) degradation in NPCs, both in vitro and in vivo, thereby mitigating the progression of IVDD in rats. Thus, the current study shows PFD as a novel inhibitor for pyroptosis, and PFD@PHZ as a potential nanomaterial for efficient IVDD therapy.
Collapse
Affiliation(s)
- Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Jiawei Qiu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Yiji Chen
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Xiaopeng Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Hanwen Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Hualin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Kaiyu Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Haobo Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035, Zhejiang Province, China
| |
Collapse
|
3
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
4
|
Zhang H, Zhang D, Wang H, Liu Y, Ding W, Fan G, Meng X. Heme oxygenase 1‑overexpressing bone marrow mesenchymal stem cell‑derived exosomes suppress interleukin‑1 beta‑induced apoptosis and aging of nucleus pulposus cells. Mol Med Rep 2025; 31:116. [PMID: 40052562 PMCID: PMC11905203 DOI: 10.3892/mmr.2025.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) and heme oxygenase 1 (HO‑1) attenuate intervertebral disc degeneration (IVDD). However, whether BMSC‑derived exosomes attenuate IVDD by delivering HO‑1 to nucleus pulposus (NP) cells remains to be elucidated. Mouse BMSCs were characterized by multilineage differentiation and surface marker molecule detection. Exosomes Exo and Exo‑HO‑1 were isolated from BMSCs and HO‑1‑overexpressing BMSCs by ultracentrifugation and characterized by observing their morphology, detecting the exosome marker proteins, tumor susceptibility gene 101 (TSG101) and CD63 and analyzing their particle size. Interleukin‑1 β (IL‑1β)‑stimulated NP cells were used as the IVDD cell model. The influence of Exo or Exo‑HO‑1 on IL‑1β‑urged apoptosis and senescence in NP cells was determined by flow cytometry, western blotting and senescence‑associated β‑galactosidase (SA‑β‑gal) staining. Exo and Exo‑HO‑1 did not vary in size or morphology. Exo‑HO‑1 markedly repressed IL‑1β‑prompted apoptosis in NP cells, accompanied with a prominent increase in Cleaved caspase 3 and Bax protein levels and a marked decrease in Bcl‑2 protein levels. Exo and Exo‑HO‑1 both decreased the number of SA‑β‑gal‑positive NP cells and arrested NP cells in the G1 phase. Exo‑HO‑1 had stronger effects than Exo, suggesting that Exo‑HO‑1 can weaken IL‑1β‑induced NP cell senescence. In addition, Exo and Exo‑HO‑1 repressed IL‑1β mediating the phosphorylation of p65 and nuclear translocation of p65. In conclusion, HO‑1‑overexpressing BMSC‑derived exosomes blocked the nuclear factor‑kappa B signaling in IL‑1β‑stimulated NP cells, thus impairing cell apoptosis and senescence.
Collapse
Affiliation(s)
- Hao Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Di Zhang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Hui Wang
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Yilei Liu
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Wenyuan Ding
- Spinal Surgery Department 2, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Guangpu Fan
- Department of Cardiac Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Xianzhong Meng
- Spinal Surgery Department 1, Hebei Medical University Third Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
5
|
Dong R, Zheng S, Cheng X. Designing hydrogel for application in spinal surgery. Mater Today Bio 2025; 31:101536. [PMID: 39990734 PMCID: PMC11847550 DOI: 10.1016/j.mtbio.2025.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
Spinal diseases and injuries are prevalent in clinical settings and impose a substantial burden on healthcare systems. Current treatments for spinal diseases are predominantly limited to surgical interventions, drug injections, and conservative treatments. Generally, these treatment modalities have limited or no long-term benefits. Hydrogel-based treatments have emerged as potentially powerful paradigms for improving therapeutic outcomes and the quality of life of patients. Hydrogels can be injected into target sites, including the epidural, intraspinal, and nucleus pulposus spaces, in a minimally invasive manner and fill defects to provide mechanical support. Hydrogels can be designed for the localized and controlled delivery of pharmacological agents to enhance therapeutic effects and reduce adverse reactions. Hydrogels can act as structural supports for transplanted cells to improve cell survival, proliferation, and differentiation, as well as integration into adjacent host tissues. In this review, we summarize recent advances in the design of hydrogels for the treatment of spinal diseases and injuries commonly found in clinical settings, including intervertebral disc degeneration, spinal cord injury, and dural membrane injury. We introduce the design considerations for different hydrogel systems, including precursor polymers and crosslinking mechanisms. Herein, we discuss the therapeutic outcomes of these hydrogels in terms of providing mechanical support, delivering cells/bioactive agents, regulating local inflammation, and promoting tissue regeneration and functional recovery.
Collapse
Affiliation(s)
- Rongpeng Dong
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Shuang Zheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| |
Collapse
|
6
|
Li K, Lin H, Yu Y, Liu Y, Yang W, Chen S, Xu L, Huang W, Wang H, Meng C, Shao Z, Wei Y, Zhao L, Peng Y. Nucleus pulposus cell-mimicking nanoparticles for cell-specific HIF1A editing to modulate SASP-mediated disc inflammation via autophagy activation. Acta Biomater 2025:S1742-7061(25)00156-4. [PMID: 40087134 DOI: 10.1016/j.actbio.2025.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Traditional methods of plasmid delivery, including viral vectors, lipofection, and electroporation, are widely used for gene editing but have limitations, such as cellular toxicity, limited transfection efficiency in primary cells, and nonspecific side effects. Here, we report the development of nucleus pulposus cell (NPC)-mimicking nanoparticles (HIF1A@NNP) with an NPC membrane as the shell and pcDNA3.1+-rHIF1A encapsulated in the core via extrusion. HIF1A@NNP exhibited a protein expression pattern similar to that of the NPC membrane and displayed a typical vesicle profile. Compared to liposomes and lentiviruses, HIF1A@NNP overexpressed HIF1A in NPCs while improving cell viability. HIF1A@NNP was more readily internalized by NPCs than by other cell types, with fewer effects on vascularization, nerve growth, and macrophage polarization than HIF1A overexpression using lipo3000. HIF1A@NNP reduced the apoptotic rate and inhibited the senescent phenotype, as evidenced by reduced DNA damage, lower levels of senescence-related proteins, and fewer SA-β-Gal-positive cells. HIF1A@NNP induced a senescence-associated secretory phenotype (SASP), which enhanced macrophage migration and M1 polarization. Additionally, HIF1A@NNP activated autophagy in NPCs. In summary, HIF1A@NNP demonstrated satisfactory biocompatibility, alleviated the SASP, and inhibited SASP-mediated macrophage recruitment and inflammatory polarization, leading to reduced disc degeneration and providing a promising strategy for combating intervertebral disc degeneration. STATEMENT OF SIGNIFICANCE: Conventional plasmid delivery methods like viral vectors, lipofection, and electroporation struggle with cellular toxicity and inefficiency in primary cells. Non-cell-specific HIF1A activation via these methods may exacerbate inflammation and pain, as HIF1A drives angiogenesis and dendritic ingrowth into the disc. Thus, a cell-specific delivery strategy could circumvent such adverse effects. Our study introduces HIF1A@NNP, a nanoparticle mimicking nucleus pulposus cells (NPCs), with an NPC membrane shell encapsulating pcDNA3.1+-rHIF1A. It preferentially targets NPCs, achieving superior HIF1A overexpression and cell viability compared to liposomes and lentiviruses. This represents a highly promising and potentially transformative approach against intervertebral disc degeneration.
Collapse
Affiliation(s)
- Kanglu Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yihan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiran Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Xu
- Department of Emergency, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chunqing Meng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Yang S, Shi J, Qiao Y, Teng Y, Zhong X, Wu T, Liu C, Ge J, Yang H, Zou J. Harnessing Anti-Inflammatory and Regenerative Potential: GelMA Hydrogel Loaded with IL-10 and Kartogenin for Intervertebral Disc Degeneration Therapy. ACS Biomater Sci Eng 2025; 11:1486-1497. [PMID: 39846724 DOI: 10.1021/acsbiomaterials.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to chronic back pain and disability, with limited effective therapeutic options. Current treatment options, including conservative management and surgical interventions, often fail to effectively halt disease progression and come with notable side effects. IVDD is characterized by the breakdown of the extracellular matrix (ECM) and the infiltration of inflammatory cells, which exacerbate disc degeneration. This study presents a novel therapeutic strategy aimed at addressing the dual challenges of inflammation and ECM degradation in IVDD. We developed a gelatin methacryloyl (GelMA) hydrogel system loaded with interleukin-10 (IL-10), an anti-inflammatory cytokine, and kartogenin (KGN), a small-molecule compound known for its regenerative properties. The KGN + IL-10@GelMA hydrogel was designed to deliver these agents in a controlled manner directly to the degenerated disc, targeting both the inflammatory microenvironment and the promotion of nucleus pulposus (NP) tissue regeneration. In a puncture-induced IVDD model, this hydrogel system effectively delayed the degenerative progression and facilitated NP regeneration. Our findings suggest that the KGN + IL-10@GelMA hydrogel holds significant potential as a nonsurgical treatment option for IVDD, offering a promising approach to mitigate the progression of IVDD and enhance disc repair.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinhui Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yun Teng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xianggu Zhong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tianyi Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chao Liu
- Department of Orthopaedic Surgery, Clinical Medicine Institute of Soochow University & Suzhou BenQ Medical Center, Soochow University, Suzhou 215010, Jiangsu, China
| | - Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Orthopaedic Surgery, Clinical Medicine Institute of Soochow University & Suzhou BenQ Medical Center, Soochow University, Suzhou 215010, Jiangsu, China
| |
Collapse
|
8
|
Yu Z, Wu K, Fan C, Wang J, Chu F, He W, Ji Z, Deng Y, Hua D, Zhang Y, Geng D, Wu X, Mao H. Viscoelastic Hydrogel Promotes Disc Mechanical Homeostasis Repair and Delays Intervertebral Disc Degeneration via the Yes-Associated Protein Pathway. Biomater Res 2025; 29:0150. [PMID: 40040957 PMCID: PMC11876543 DOI: 10.34133/bmr.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 03/06/2025] Open
Abstract
Intervertebral disc degeneration (IDD) process is accompanied by overactive inflammation and mechanical instability of the nucleus pulposus (NP). Current treatments do not fully restore the biomechanical environment of discs, limiting their therapeutic efficacy. Thus, novel strategies are required to combat IDD. Hydrogels have outstanding biocompatibility and mechanical properties, most importantly, absorbing and retaining water similar to human NP tissue, showing a unique superiority in the treatment of IDD. In this study, we employed a viscoelastic ionic hydrogel (VIG) composed of polyvinyl alcohol and magnesium ions to investigate the therapeutic effect for IDD. VIG demonstrated an optimal degradation rate and NP-biomimetic swelling behavior in vitro. In the rat model of IDD, VIG-injected discs demonstrated mechanical properties approximating those of native discs, including stiffness, relaxation, and dissipation capacity. Furthermore, finite element analysis demonstrated that VIG improved biomechanical function of degenerated discs. VIG effectively inhibited the progression of IDD in the rat model by increasing extracellular matrix synthesis and decreasing matrix metalloproteinase-13 (MMP-13) expression. Moreover, VIG promoted proliferation and differentiation of NP cells in response to extracellular mechanical changes through the integrin-YAP signaling pathway. These findings suggest that VIG has the potential to modulate the NP inflammatory microenvironment and restore mechanical stability in IDD. This work represents a straightforward and promising strategy for IDD treatment.
Collapse
Affiliation(s)
- Zilin Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Department of Orthopedics, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Kang Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science,
Fudan University, Shanghai 200433, China
| | - Chunyang Fan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Jiale Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Fengcheng Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Wei He
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery,
Zhangjiagang Hospital affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Zhongwei Ji
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
- Center for Rehabilitation Medicine, Department of Pain Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital,
Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yongkang Deng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Di Hua
- Department of Medical Oncology,
The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yao Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Dechun Geng
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Xiexing Wu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| | - Haiqing Mao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College,
Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Ding Y, Li F, Wang Y, Pan W, Fu X, Tan S. Nanomedicine Approaches for Intervertebral Disc Regeneration: From Bench to Bedside. Pharmaceutics 2025; 17:313. [PMID: 40142977 PMCID: PMC11944988 DOI: 10.3390/pharmaceutics17030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP) and neurological dysfunction, contributing significantly to disability-adjusted life years globally. The progression of IDD is driven by excessive oxidative stress, inflammation, apoptosis, and fibrosis, which disrupt the balance between anabolic and catabolic processes, leading to extracellular matrix (ECM) degradation and IDD. Current treatment options, such as conservative therapy and surgical intervention, are limited in halting the disease progression and often exacerbate degeneration in adjacent discs. This review highlights the challenges in treating IDD, particularly due to the limited drug delivery efficiency to the intervertebral disc (IVD). It explores the potential of nanobiomedicine and various nanomaterial-based delivery systems, including nanoparticles, microspheres, gene-nanocomplexes, fullerene, exosomes, and nanomaterial-composite hydrogels. These advanced delivery systems can enhance targeted drug delivery, improve local drug concentration, and sustain drug retention within the IVD, offering promising therapeutic strategies to address IDD. The review also examines the therapeutic effects of these nanomaterials on IDD, focusing on their impact on metabolism, inflammation, apoptosis, fibrosis, and stem cell migration and differentiation, aiming to provide innovative strategies for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Yifan Ding
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Yunyun Wang
- Department of Cardiology, the Fifth Hospital of Wuhan, Jianghan University, Wuhan 430030, China;
| | - Weizhen Pan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xiangning Fu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.D.); (F.L.)
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
10
|
Zhu H, Ren J, Wang X, Qin W, Xie Y. Targeting skeletal interoception: a novel mechanistic insight into intervertebral disc degeneration and pain management. J Orthop Surg Res 2025; 20:159. [PMID: 39940003 PMCID: PMC11823264 DOI: 10.1186/s13018-025-05577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Despite being a leading cause of chronic pain and disability, the underlying mechanisms of intervertebral disc (IVD) degeneration (IVDD) remain unclear. Emerging evidence suggests that mechanosensation (the ability of the skeletal system to perceive mechanical and biochemical signals) mediated by abnormal mechanical loading plays a critical role in the regulation of IVD health. This review examines the complex interactions amongIVDs, intraosseous sensory mechanisms, and the central nervous system (CNS), with a particular focus on the roles of pathways such as PGE2/EP4, Wnt/β-catenin, and NF-κB. This review elucidates the manner in which mechanical stress and aberrant signaling disrupt the homeostasis of the nucleus pulposus (NP), cartilaginous endplate (CEP) and annulus fibrosus (AF), thereby driving degeneration and exacerbating pain. Furthermore, targeted therapeutic strategies, including the modulation of skeletal interoception and dynamic mechanical loading, present novel avenues for reversing IVDD progression. By integrating skeletal biology with spinal pathology, this work offers a novel perspective on the pathogenesis of IVDD and identifies promising strategies for clinical intervention. These findings highlight the potential of targeting skeletal interoception to mitigate IVDD and associated pain, paving the way for innovative, mechanism-driven therapies.
Collapse
Affiliation(s)
- Houcheng Zhu
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - JianHang Ren
- Affiliated Yongchuan Hospital of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 402160, China
| | - Xiangjin Wang
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Wenjing Qin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China
| | - Yong Xie
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610000, China.
| |
Collapse
|
11
|
Su C, Jing X, Liu X, Shao Y, Zheng Y, Liu X, Cui X. Ferristatin II protects nucleus pulposus against degeneration through inhibiting ferroptosis and activating HIF-1α pathway mediated mitophagy. Int Immunopharmacol 2025; 147:113895. [PMID: 39752759 DOI: 10.1016/j.intimp.2024.113895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Nucleus pulposus (NP) degeneration represents a significant contributing factor in the pathogenesis of intervertebral disc (IVD) degeneration (IVDD), and is a key underlying mechanism in several lumbar spine pathologies. Nevertheless, the precise mechanisms that govern NP degeneration remain unclear. A significant contributing factor to IVDD has been identified as ferroptosis. Nevertheless, its function in the degeneration of NP remains uncertain. The transferrin receptor inhibitor Ferristatin II (Fer-II) has been demonstrated to possess neuroprotective properties, which are conferred by its ability to suppress ferroptosis. It is therefore crucial to investigate the mechanisms by which Fer-II exerts its protective effects against NP degradation. METHODS In order to investigate the protective effects of Fer-II, an IVDD rat model was developed by puncturing the rat tail in vivo. Human NP cells extracted with the aid of tert-butyl hydroperoxide (TBHP) and ferric ammonium citrate (FAC) interventions mimic the IVDD pathological environment in vitro. RESULTS The present study demonstrates that Fer-II can delay nucleus pulposus degeneration and IVDD by inhibiting ferroptosis. This conclusion was reached through epidemiological studies and in vitro and in vivo experiments. Furthermore, Fer-II was observed to alleviate oxidative stress-induced NP cell degeneration by activating the HIF-1α pathway, enhancing mitophagy, suppressing NP cell ferroptosis. CONCLUSIONS The findings of our study indicate that Fer-II has the potential to safeguard nucleus pulposus cells from degeneration by triggering HIF-1α-mediated mitophagy. The potential of Fer-II as a promising alternative therapeutic option for the management of IVDD is worthy of further investigation.
Collapse
Affiliation(s)
- Cheng Su
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Zhoukou Orthopaedic Hospital, Zhoukou 466000, China
| | - Xingzhi Jing
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China.
| | - Xiaoyang Liu
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China
| | - Yuandong Shao
- Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China; Department of Spine Surgery, Binzhou People's Hospital. Binzhou, Shandong 256600, China
| | - Yong Zheng
- Xinjiang Production and Construction Corps Fourth Division Hospital, Yining, Xinjiang, 835000, China
| | - Xiaodong Liu
- Department of Spine Surgery, Zhoukou Orthopaedic Hospital, Zhoukou 466000, China
| | - Xingang Cui
- Department of Spine Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250000, China; Department of Spine Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250000, China.
| |
Collapse
|
12
|
Zhong H, Li M, Wu H, Ying H, Zhong M, Huang M. Silencing DDX3 Attenuates Interleukin-1β-Induced Intervertebral Disc Degeneration Through Inhibiting Pyroptosis. Inflammation 2025; 48:104-117. [PMID: 38735906 DOI: 10.1007/s10753-024-02042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common disorder associated with chronic inflammation and cell death. In this study, an IVDD rat model was created through Interleukin-1β (IL-1β) injection. The degeneration of intervertebral disc tissues was assessed using magnetic resonance imaging (MRI), followed by hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining. RNA sequencing was performed to identify differentially expressed genes (DEGs) between the IVDD model and control rats. The expression levels of DEGs (DEAD-box polypeptide 3 (DDX3), lysine-specific demethylase 5D (KDM5D), interferon-induced gene-1 (IFIT1), ribosomal protein S10 (RPS10), tenomodulin (TNMD), and pentraxin 3 (PTX3)) were measured by real-time quantitative polymerase chain reaction (RT-qPCR). The regulatory effect of DDX3 on pyroptosis in IL-1β-treated nucleus pulpous (NP) cells was assessed after transfection with siRNA of DDX3. A total of 601 DEGs were identified from the IVDD model rat, and were abundant in extracellular matrix (ECM) organization, ECM-receptor interaction, and inflammatory pathways, including the PI3K-Akt, TNF, and AMPK signaling pathways. DDX3, KDM5D, and IFIT1 levels were notably elevated, whereas RPS10, TNMD, and PTX3 levels were decreased in the IL-1β-induced IVDD rat model. Moreover, silencing DDX3 promoted cell proliferation and abolished IL-1β-induced cell apoptosis and pyroptosis. This study revealed the role of DDX3 in IVDD pyroptosis, providing potential target for IVDD management.
Collapse
Affiliation(s)
- Hongfa Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China.
| | - Mingheng Li
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Haijian Wu
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Hui Ying
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mingliang Zhong
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| | - Mouzhang Huang
- Department of Orthopaedics, Ganzhou People's Hospital, No.16 Meiguang Avenue, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
13
|
Tripathi G, Bhombe K, Kumar H. Backbone breakthroughs: How rodent models are shaping intervertebral disc disease treatment. THE JOURNAL OF PAIN 2025:105326. [PMID: 39900322 DOI: 10.1016/j.jpain.2025.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Intervertebral disc degeneration (IVDD) is a widespread, disabling condition that significantly contributes to the global burden of musculoskeletal disorders. To better understand its underlying mechanisms and explore potential therapeutic strategies, animal models serve as valuable tools for simulating the complicated pathophysiology of IVDD. Rodent models are extensively used due to their genetic similarities to humans, cost-effectiveness, and rapid attainment of maturity. These models enable the study of specific molecular pathways involved in IVDD, such as inflammation, matrix degradation, tissue repair, and disc microenvironment homeostasis. This review provides a comprehensive overview of the current status of rodent models used in IVDD research, highlighting their advantages, limitations, and contributions to our understanding of the disease. Specifically, we discussed various rodent models, including traumatic (such as needle puncture in the lumbar and coccygeal region, nucleotomy, and annulus fibrosus defect), non-traumatic (including compression models, lumbar spine instability, and bipedalism), chemically induced models (chymopapain, chondroitinase ABC), and genetically modified models. These models offer insights into the severity of IVDD under different conditions, such as trauma, aging, and genetics. In conclusion, rodent models remain indispensable tools for advancing our understanding of IVDD mechanisms and therapeutic interventions. Carefully selecting animal species and models can provide valuable insights that guide future clinical research and treatment approaches. Our review aims to leverage these models to identify therapeutic targets and strategies that may ultimately reduce the impact of IVDD on human health. PERSPECTIVE: This review describes the role of rodent models in IVDD, highlighting their utility in unraveling disease mechanisms and evaluating therapeutics. By replicating the complex molecular pathways and conditions of disc disease, like trauma, aging, and genetics, these models aid in identifying future advancements in managing lower back pain.
Collapse
Affiliation(s)
- Gyanoday Tripathi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Komal Bhombe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025:S1529-9430(25)00008-7. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
15
|
Chen S, Dou Y, Zhang Y, Sun X, Liu X, Yang Q. Innovating intervertebral disc degeneration therapy: Harnessing the power of extracellular vesicles. J Orthop Translat 2025; 50:44-55. [PMID: 39868351 PMCID: PMC11761297 DOI: 10.1016/j.jot.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Intervertebral disc degeneration is the leading cause of low back pain, imposing significant burdens on patients, societies, and economies. Advancements in regenerative medicine have spotlighted extracellular vesicles as promising nanoparticles for intervertebral disc degeneration treatment. Extracellular vesicles retain the potential of cell therapy and serve as carriers to deliver their cargo to target cells, thereby regulating cell activity. This review summarizes the biogenesis and molecular composition of extracellular vesicles and explores their therapeutic roles in intervertebral disc degeneration treatment through various mechanisms. These mechanisms include mitigating cell loss and senescence, delaying extracellular matrix degeneration, and modulating the inflammatory microenvironment. Additionally, it highlights recent efforts in engineering extracellular vesicles to enhance their targeting and therapeutic efficacy. The integration of extracellular vesicle-based acellular therapy is anticipated to drive significant advancements in disc regenerative medicine. The translational potential of this article Existing clinical treatment strategies often fail to effectively address the challenges associated with regenerating degenerated intervertebral discs. As a new regenerative medicine strategy, the extracellular vesicle strategy avoids the risks associated with cell transplantation and shows great promise in treating intervertebral disc degeneration by carrying therapeutic cargo. This review comprehensively examines the latest research, underlying mechanisms, and therapeutic potential of extracellular vesicles, offering a promising new strategy for intervertebral disc degeneration treatment.
Collapse
Affiliation(s)
- Shanfeng Chen
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
16
|
Shi S, Ou X, Liu C, Li R, Zheng Q, Hu L. Nanotechnology-Enhanced Pharmacotherapy for Intervertebral Disc Degeneration Treatment. Int J Nanomedicine 2024; 19:14043-14058. [PMID: 39742093 PMCID: PMC11687283 DOI: 10.2147/ijn.s500364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/21/2024] [Indexed: 01/03/2025] Open
Abstract
Intervertebral disc degeneration (IDD) is a primary contributor to chronic back pain and disability globally, with current therapeutic approaches often proving inadequate due to the complex nature of its pathophysiology. This review assesses the potential of nanoparticle-driven pharmacotherapies to address the intricate challenges presented by IDD. We initially analyze the primary mechanisms driving IDD, with particular emphasis on mitochondrial dysfunction, oxidative stress, and the inflammatory microenvironment, all of which play pivotal roles in disc degeneration. Then, we evaluate the application of metal-phenolic and catalytic nanodots in targeting mitochondrial defects and alleviating oxidative stress within the degenerative disc environment. Additionally, multifunctional and stimuli-responsive nanoparticles are explored for their capacity to provide precise targeting and controlled therapeutic release, offering improved localization and sustained delivery. Finally, we outline future research directions and identify emerging trends in nanoparticle-based therapies, highlighting their potential to significantly advance IDD treatment by overcoming the limitations of conventional therapeutic modalities and enabling more effective, targeted management strategies.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Chao Liu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Rui Li
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Qianjin Zheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
17
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
18
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
19
|
Sang P, Li X, Wang Z. Bone Mesenchymal Stem Cells Inhibit Oxidative Stress-Induced Pyroptosis in Annulus Fibrosus Cells to Alleviate Intervertebral Disc Degeneration Based on Matric Hydrogels. Appl Biochem Biotechnol 2024; 196:8043-8057. [PMID: 38676833 DOI: 10.1007/s12010-024-04953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain. Stem cell transplantation may be a possible approach to promote IVDD. This study was aimed to investigate the role of bone mesenchymal stem cells (BMSCs) in IVDD and the molecular mechanism. Annulus fibrosus cells (AFCs) were treated with tert-butyl hydroperoxide (TBHP) to induce oxidative stress injury. AFC biological functions were analyzed using a lactate dehydrogenase kit, enzyme-linked immunosorbent assay, flow cytometry, and western blot. The molecular mechanisms of BMSC functions were assessed using quantitative real-time PCR, western blot, immunoprecipitation (IP), co-IP, GST pull-down, and cycloheximide treatment. Furthermore, the impacts of BMSCs in IVDD progression in vivo were evaluated by magnetic resonance imaging (MRI) and H&E analysis. BMSCs inhibited TBHP-induced inflammation and pyroptosis in AFCs. Knockdown of SIRT1 reversed the effects on inflammation and pyroptosis of BMSCs. Moreover, SIRT1 promoted the deacetylation of ASC rather than NLRP3. SIRT1 interacted with ASC to reduce its protein stability, thereby negatively regulating ASC protein levels. In addition, BMSCs alleviated LPS-induced IVDD based on matrix hydrogels. BMSCs inhibited oxidative stress-induced pyroptosis and inflammation in AFCs, thereby alleviating IVDD, suggesting that BMSCs may contribute to treating intervertebral disc generation.
Collapse
Affiliation(s)
- Ping Sang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China.
| | - Xuepeng Li
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| | - Ziyu Wang
- Department of Spine Surgery, Jilin Provincial People's Hospital, No. 1183, Gongnong Road, Changchun, 130021, Jilin, China
| |
Collapse
|
20
|
Xue B, Peng Y, Zhang Y, Yang S, Zheng Y, Hu H, Gao X, Yu B, Gao X, Li S, Wu H, Ma T, Hao Y, Wei Y, Guo L, Yang Y, Wang Z, Xue T, Zhang J, Luo B, Xia B, Huang J. A Novel Superparamagnetic-Responsive Hydrogel Facilitates Disc Regeneration by Orchestrating Cell Recruitment, Proliferation, and Differentiation within Hostile Inflammatory Niche. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408093. [PMID: 39373392 PMCID: PMC11600201 DOI: 10.1002/advs.202408093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/21/2024] [Indexed: 10/08/2024]
Abstract
In situ disc regeneration is a meticulously orchestrated process, which involves cell recruitment, proliferation and differentiation within a local inflammatory niche. Thus far, it remains a challenge to establish a multi-staged regulatory framework for coordinating these cellular events, therefore leading to unsatisfactory outcome. This study constructs a super paramagnetically-responsive cellular gel, incorporating superparamagnetic iron oxide nanoparticles (SPIONs) and aptamer-modified palladium-hydrogen nanozymes (PdH-Apt) into a double-network polyacrylamide/hyaluronic acid (PAAm/HA) hydrogel. The Aptamer DB67 within magnetic hydrogel (Mag-gel) showed a high affinity for disialoganglioside (GD2), a specific membrane ligand of nucleus pulposus stem cells (NPSCs), to precisely recruit them to the injury site. The Mag-gel exhibits remarkable sensitivity to a magnetic field (MF), which exerts tunable micro/nano-scale forces on recruited NPSCs and triggers cytoskeletal remodeling, consequently boosting cell expansion in the early stage. By altering the parameters of MF, the mechanical cues within the hydrogel facilitates differentiation of NPSCs into nucleus pulposus cells to restore disc structure in the later stage. Furthermore, the PdH nanozymes within the Mag-gel mitigate the harsh inflammatory microenvironment, favoring cell survival and disc regeneration. This study presents a remote and multi-staged strategy for chronologically regulating endogenous stem cell fate, supporting disc regeneration without invasive procedures.
Collapse
Affiliation(s)
- Borui Xue
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
- Air Force 986(th) HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yan Peng
- College of Advanced ManufacturingFuzhou UniversityJinjiang362200P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Huiling Hu
- Air Force 986(th) HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Xueli Gao
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710032P. R. China
| | - Xue Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Shengyou Li
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Zhenguo Wang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Tingfeng Xue
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jin Zhang
- College of Chemical EngineeringFuzhou UniversityXueyuan RoadFuzhou350108P. R. China
| | - Beier Luo
- Department of Spinal SurgeryShanghai Changhai HospitalAffiliated to Naval Medical UniversityShanghai200433P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
21
|
Sun Y, Li Z, Duan J, Liu E, Yang L, Sun F, Chen L, Yang S. From structure to therapy: the critical influence of cartilaginous endplates and microvascular network on intervertebral disc degeneration. Front Bioeng Biotechnol 2024; 12:1489420. [PMID: 39530056 PMCID: PMC11550963 DOI: 10.3389/fbioe.2024.1489420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular structure in the human body. The cartilaginous endplate (CEP) is a layer of translucent cartilage located at the upper and lower edges of the vertebral bodies. On one hand, CEPs endure pressure from within the IVD and the tensile and shear forces of the annulus fibrosus, promoting uniform distribution of compressive loads on the vertebral bodies. On the other hand, microvascular diffusion channels within the CEP serve as the primary routes for nutrient supply to the IVD and the transport of metabolic waste. Degenerated CEP, characterized by increased stiffness, decreased permeability, and reduced water content, impairs substance transport and mechanical response within the IVD, ultimately leading to intervertebral disc degeneration (IDD). Insufficient nutrition of the IVD has long been considered the initiating factor of IDD, with CEP degeneration regarded as an early contributing factor. Additionally, CEP degeneration is frequently accompanied by Modic changes, which are common manifestations in the progression of IDD. Therefore, this paper comprehensively reviews the structure and physiological functions of CEP and its role in the cascade of IDD, exploring the intrinsic relationship between CEP degeneration and Modic changes from various perspectives. Furthermore, we summarize recent potential therapeutic approaches targeting CEP to delay IDD, offering new insights into the pathological mechanisms and regenerative repair strategies for IDD.
Collapse
Affiliation(s)
- Yu Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaoyong Li
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Jiahao Duan
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Enxu Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fei Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Long Chen
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shaofeng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
22
|
Zhang X, Zhai H, Zhu X, Geng H, Zhang Y, Cui J, Zhao Y. Polyphenol-Mediated Adhesive and Anti-Inflammatory Double-Network Hydrogels for Repairing Postoperative Intervertebral Disc Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53541-53554. [PMID: 39344595 DOI: 10.1021/acsami.4c11901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels have garnered tremendous attention for their applications in the repair of intervertebral disk (IVD) degeneration and postoperative IVD defects. However, it is still challenging to develop a hydrogel fulfilling the requirements for high mechanical properties, adhesive capability, biocompatibility, antibacterial properties, and anti-inflammatory performance. Herein, we report a multifunctional double-network (DN) hydrogel composed of physically cross-linked carboxymethyl chitosan (CMCS) and tannic acid (TA) networks as well as chemically cross-linked acrylamide (AM) networks, which integrates the properties of high strength, adhesion, biocompatibility, antimicrobial activity, and anti-inflammation for the repair of postoperative IVD defects. The treatment with CMCS/TA/PAM DN hydrogels can significantly decrease the levels of inflammatory cytokines and degeneration-related factors and upregulated collagen type II alpha 1. In addition, the hydrogels can effectively seal the annulus fibrosus defect, prevent nucleus pulposus degeneration, retain IVD height, and restore the biomechanical properties of the disc to some extent. This polyphenol-mediated DN hydrogel is promising for sealing IVD defects and preventing herniation after lumbar discectomy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xuetao Zhu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanqiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
23
|
Wang J, Zhang Y, Huang Y, Hao Z, Shi G, Guo L, Chang C, Li J. Application trends and strategies of hydrogel delivery systems in intervertebral disc degeneration: A bibliometric review. Mater Today Bio 2024; 28:101251. [PMID: 39318370 PMCID: PMC11421353 DOI: 10.1016/j.mtbio.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Hydrogels are widely used to explore emerging minimally invasive strategies for intervertebral disc degeneration (IVDD) due to their suitability as drug and cell delivery vehicles. There has been no review of the latest research trends and strategies of hydrogel delivery systems in IVDD for the last decade. In this study, we identify the application trends and strategies in this field through bibliometric analysis, including aspects such as publication years, countries and institutions, authors and publications, and co-occurrence of keywords. The results reveal that the literature in this field has been receiving increasing attention with a trend of growth annually. Subsequently, the hotspots of hydrogels in this field were described and discussed in detail, and we proposed the "four core factors", hydrogels, cells, cell stimulators, and microenvironmental regulation, required for a multifunctional hydrogel for IVDD. Finally, we discuss the popular and emerging mechanistic strategies of hydrogel therapy for IVDD in terms of five aspects: fundamental pathologic changes in IVDD, counteracting cellular senescence, counteracting cell death, improving organelle function, and replenishing exogenous cells. This study provides a reference and a new perspective for future research in this urgently needed field.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Zhang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yilong Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanhong Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
24
|
Zhang Y, Pan Y, Mao X, He D, Zhang L, Cheng W, Zhu C, Zhu H, Zhang W, Jin H, Pan H, Wang D. Finite element model reveals the involvement of cartilage endplate in quasi-static biomechanics of intervertebral disc degeneration. Heliyon 2024; 10:e37524. [PMID: 39309961 PMCID: PMC11414571 DOI: 10.1016/j.heliyon.2024.e37524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background and objective The intrinsic link between the compositional and structural attributes and the biomechanical functionality is evident in intervertebral discs. However, it remains unclear from a biomechanical perspective whether cartilage endplate (CEP) degeneration exacerbates intervertebral disc degeneration. Methods This study developed and quantitatively validated four biphasic swelling-based finite element models. We then applied four quasi-static tests and simulated daily loading scenarios to examine the effects of CEP degradation. Results Under free-swelling conditions, short-term responses were prevalent, with CEP performance changes not significantly impacting response proportionality. The creep test results showed the more than 50 % of the strain was attributed to long-term responses. Stress-relaxation testing indicated that all responses increased with disc degeneration, yet CEP degeneration's impact was minimal. Daily load analyses revealed that disc degeneration significantly reduces nucleus pulposus pressure and disc height, whereas CEP degeneration marginally increases nucleus pressure and slightly decreases disc height. Conclusions Glycosaminoglycan content and CEP permeability are critical to the fluid-dependent viscoelastic response of intervertebral discs. Our findings suggest that CEP contributes to disc degeneration under daily loading conditions.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Yanli Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Xinning Mao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, China
| | - Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, China
| |
Collapse
|
25
|
Zhao Y, Xia Q, Zhu L, Xia J, Xiang S, Mao Q, Dong H, Weng Z, Liao W, Xin Z. Mapping knowledge structure and themes trends of non-surgical treatment in intervertebral disc degeneration. Heliyon 2024; 10:e36509. [PMID: 39286189 PMCID: PMC11402762 DOI: 10.1016/j.heliyon.2024.e36509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a chronic disabling disease caused by degeneration of nucleus pulposus cells, decreased activity and the number of nucleus pulposus cells, decreased extracellular matrix, and infiltration of inflammatory factors, resulting in low back and leg pain. Recent studies have shown that non-surgical treatment is of great significance in reversing the progression of degenerative disc disease, and there are more relevant literature reports. However, there is no bibliometric analysis in this area. This study aimed to describe the knowledge structure and thematic trends of non-surgical treatment methods for IDD through bibliometrics. Methods Articles and reviews on non-surgical treatment of disc degeneration from 1998 to 2022 were collected on the Web of Science. VOSviewer 1.6.18, CiteSpace 6.1.R3, R package "bibliometrix" and two online analysis platforms were used for bibliometric and visual literature analysis. Results 961 articles were screened for inclusion, including 821 articles and 140 reviews. The analysis of our study shows that publications in the non-surgical treatment of disc degeneration are increasing annually, with publications coming mainly from North America and Asia, with China and the United States dominating. Huazhong Univ Sci & Technol and Wang K are the most prolific institutions and authors, respectively, and Le Maitre CL is the most co-cited author. However, there is less collaboration between institutions in different countries. Spine is both the most published and the most cited journal. According to the co-citation and co-occurrence analysis results, "mesenchymal stem cells," "exosomes," "medication," and "tissue engineering" are the current research hotspots in this field. Conclusions This study employs bibliometric analysis to explore the knowledge structure and trends of non-surgical treatments for IDD from 2013 to 2022. Key research hotspots include mesenchymal stem cells, exosomes, medication, and tissue engineering. The number of publications, especially from China and the USA, has increased significantly, though international collaboration needs improvement. Influential contributors include Wang K and the journal Spine. These findings provide a comprehensive overview and highlight important future directions for the field.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Shaojie Xiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
26
|
Mohd Razak R, Harizal NAA, Azman MAZ, Mohd Redzuan NS, Ogaili RH, Kamarrudin AH, Mohamad Azmi MF, Kamaruddin NA, Abdul Jamil AS, Mokhtar SA, Mohd Isa IL. Deciphering the Effect of Hyaluronic Acid/Collagen Hydrogel for Pain Relief and Tissue Hydration in a Rat Model of Intervertebral Disc Degeneration. Polymers (Basel) 2024; 16:2574. [PMID: 39339037 PMCID: PMC11435062 DOI: 10.3390/polym16182574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the primary causes of low back pain, causing disability; hence, there is no regenerative nature of the current treatments. Hyaluronic acid (HA) was reported to facilitate tissue repair and alleviate pain. Herein, we determined the therapeutic effect of HA and type II collagen (COLII) hydrogel for tissue repair targeting pain in IVD degeneration. We implanted HA/COLII hydrogel following surgically induced disc injury at coccygeal levels in the rat tail model of pain. We assessed the efficacy of the HA/COLII hydrogel in reducing pain behaviour by using the von Frey assessment, protein expression of growth-associated protein (GAP) 43 for sensory nerve innervation, and disc hydration by magnetic resonance imaging (MRI). We observed the anti-nociceptive effect of the HA/COLII hydrogel in alleviating mechanical allodynia in rats. There was an inhibition of sensory hyperinnervation indicated by the GAP43 protein in the treatment group. We revealed an increase in T1ρ mapping of MRI, indicating that the hydrogel restored disc hydration in vivo. Our findings suggest the HA/COLII hydrogel alleviates pain behaviour, inhibits hyperinnervation and promotes disc hydration for tissue repair, implying that it is a potential candidate for the treatment of degenerative disc-associated low back pain.
Collapse
Affiliation(s)
- Rusydi Mohd Razak
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Arina Amira Harizal
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohammad Ali Zuhdi Azman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Najwa Syakirah Mohd Redzuan
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hafiz Kamarrudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Nur Aqilah Kamaruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Aminatul Saadiah Abdul Jamil
- Health Industry Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai 71800, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
27
|
Wang Y, Zhang W, Yang Y, Qin J, Wang R, Wang S, Fu W, Niu Q, Wang Y, Li C, Li H, Zhou Y, Liu M. Osteopontin deficiency promotes cartilaginous endplate degeneration by enhancing the NF-κB signaling to recruit macrophages and activate the NLRP3 inflammasome. Bone Res 2024; 12:53. [PMID: 39242551 PMCID: PMC11379908 DOI: 10.1038/s41413-024-00355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of discogenic pain, and is attributed to the dysfunction of nucleus pulposus, annulus fibrosus, and cartilaginous endplate (CEP). Osteopontin (OPN), a glycoprotein, is highly expressed in the CEP. However, little is known on how OPN regulates CEP homeostasis and degeneration, contributing to the pathogenesis of IDD. Here, we investigate the roles of OPN in CEP degeneration in a mouse IDD model induced by lumbar spine instability and its impact on the degeneration of endplate chondrocytes (EPCs) under pathological conditions. OPN is mainly expressed in the CEP and decreases with degeneration in mice and human patients with severe IDD. Conditional Spp1 knockout in EPCs of adult mice enhances age-related CEP degeneration and accelerates CEP remodeling during IDD. Mechanistically, OPN deficiency increases CCL2 and CCL5 production in EPCs to recruit macrophages and enhances the activation of NLRP3 inflammasome and NF-κB signaling by facilitating assembly of IRAK1-TRAF6 complex, deteriorating CEP degeneration in a spatiotemporal pattern. More importantly, pharmacological inhibition of the NF-κB/NLRP3 axis attenuates CEP degeneration in OPN-deficient IDD mice. Overall, this study highlights the importance of OPN in maintaining CEP and disc homeostasis, and proposes a promising therapeutic strategy for IDD by targeting the NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wanqian Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jinghao Qin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ruoyu Wang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanxia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
28
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Zhao L, Li Y, Zheng Z, Liu H, Wu D. Injectable Inflammation-Responsive Hydrogels for Microenvironmental Regulation of Intervertebral Disc Degeneration. Adv Healthc Mater 2024; 13:e2400717. [PMID: 38649143 DOI: 10.1002/adhm.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed. The gelatin methacryloyl is functionalized with phenylboronic acid groups to enhance drug loading capacity and enable dual stimuli-responsive behavior, while the incorporation of oxidized hyaluronic acid further improves the adhesive properties. The prepared hydrogel exhibits an enhanced drug loading capacity for diol-containing drugs, pH- and reactive oxygen species (ROS)-responsive behaviors, excellent radical scavenging efficiency, potent antibacterial activity, and favorable biocompatibility. Furthermore, the hydrogel shows a beneficial protective efficacy on NP cells within an in vitro oxidative stress microenvironment. The in vivo results demonstrate the hydrogel's excellent therapeutic effect on treating IDD by maintaining water retention, restoring disc height, and promoting NP regeneration, indicating that this hydrogel holds great potential as a promising therapeutic approach for regulating the microenvironment and alleviating the progression of IDD.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
29
|
Rudnik‐Jansen I, van Kruining Kodele S, Creemers L, Joosten B. Biomolecular therapies for chronic discogenic low back pain: A narrative review. JOR Spine 2024; 7:e1345. [PMID: 39114580 PMCID: PMC11303450 DOI: 10.1002/jsp2.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 05/01/2024] [Indexed: 08/10/2024] Open
Abstract
Chronic low back pain caused by intervertebral disc (IVD) degeneration, also termed chronic discogenic low back pain (CD-LBP), is one of the most prevalent musculoskeletal diseases. Degenerative processes in the IVD, such as inflammation and extra-cellular matrix breakdown, result in neurotrophin release. Local elevated neurotrophin levels will stimulate sprouting and innervation of sensory neurons. Furthermore, sprouted sensory nerves that are directly connected to adjacent dorsal root ganglia have shown to increase microglia activation, contributing to the maintenance and chronification of pain. Current pain treatments have shown to be insufficient or inadequate for long-term usage. Furthermore, most therapeutic approaches aimed to target the underlying pathogenesis of disc degeneration focus on repair and regeneration and neglect chronic pain. How biomolecular therapies influence the degenerative IVD environment, pain signaling cascades, and innervation and excitability of the sensory neurons often remains unclear. This review addresses the relatively underexplored area of chronic pain treatment for CD-LBP and summarizes effects of therapies aimed for CD-LBP with special emphasis on chronic pain. Approaches based on blocking pro-inflammatory mediators or neurotrophin activity have been shown to hamper neuronal ingrowth into the disc. Furthermore, the tissue regenerative and neuro inhibitory properties of extracellular matrix components or transplanted mesenchymal stem cells are potentially interesting biomolecular approaches to not only block IVD degeneration but also impede pain sensitization. At present, most biomolecular therapies are based on acute IVD degeneration models and thus do not reflect the real clinical chronic pain situation in CD-LBP patients. Future studies should aim at investigating the effects of therapeutic interventions applied in chronic degenerated discs containing established sensory nerve ingrowth. The in-depth understanding of the ramifications from biomolecular therapies on pain (chronification) pathways and pain relief in CD-LBP could help narrow the gap between the pre-clinical bench and clinical bedside for novel CD-LBP therapeutics and optimize pain treatment.
Collapse
Affiliation(s)
- Imke Rudnik‐Jansen
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Sanda van Kruining Kodele
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| | - Laura Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Bert Joosten
- Department of Anesthesiology and Pain ManagementMaastricht University Medical Center (MUMC+)Maastrichtthe Netherlands
- Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNs)University of MaastrichtMaastrichtthe Netherlands
| |
Collapse
|
30
|
Chen DQ, Que ZQ, Xu WB, Xiao KY, Sun NK, Feng JY, Lin GX, Rui G. Discovering Potential Mechanisms of Intervertebral Disc Disease Using Systematic Mendelian Randomization of Human Circulating Immunocytomics. World Neurosurg 2024; 189:e688-e695. [PMID: 38968991 DOI: 10.1016/j.wneu.2024.06.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Although intervertebral disc degeneration (IVDD) is a critical factor in many spine-related diseases and has an extremely high prevalence in the aging population, the potential pathogenesis remains to be clarified entirely. Immune cells have been found to perform an essential function during the onset and progression of IVDD in recent years. Therefore, we explored the association between immune cell characteristics and IVDD through Mendelian randomization (MR) analysis and further delved into the mediating role of potential metabolites. METHODS Based on the MR analysis, the association of 731 immune cell phenotypes and 1400 metabolites on IVDD were assessed. Single nucleotide polymorphisms were closely associated the expression levels of immune cell characteristics and the concentrations of metabolites and have been used as instrumental variables for deducing them as risk factors or protective factors for IVDD. In addition, mediation analyses have been performed to identify potential metabolite mediators between immune cell characteristics and IVDD. RESULTS MR analysis identified 27 immune cell phenotypes and 79 metabolites significantly associated with IVDD. In addition, mediation analysis was performed by selecting the immune cell phenotype that most significantly increased the risk of IVDD - CD86 on monocytes. A total of 4 metabolite-mediated mediation relationships were revealed (3 b-hydroxy-5-cholenoic acid, X-22509, N-acetyl-L-glutamine, and N2-acetyl, N6, N6-dimethyllysine). CONCLUSIONS The findings of this analysis identified underlying association between immune cell phenotypes, metabolite, and IVDD that may serve as predictive and prognostic clinical biomarkers and benefit IVDD pathogenesis research.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ke-Yi Xiao
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Nai-Kun Sun
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
31
|
Han Y, Zheng D, Ji Y, Feng Y, Chen Z, Chen L, Li H, Jiang X, Shen H, Tao B, Zhuang H, Bu W. Active Magnesium Boride/Alginate Hydrogels Rejuvenate Senescent Cells. ACS NANO 2024; 18:23566-23578. [PMID: 39145584 DOI: 10.1021/acsnano.4c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The clearance of senescent cells may be detrimental to low cell density diseases, such as intervertebral disc degeneration (IVDD), and rejuvenating these cells presents a formidable obstacle. In this study, we investigate a mild-alkalization strategy employing magnesium boride-alginate (MB-ALG) hydrogels to rejuvenate senescent cells associated with age-related diseases. MB-ALG hydrogels proficiently ensnare senescent cells owing to their surface roughness. The hydrolysis of MB-ALG hydrogels liberates hydroxide ions (OH-), effecting a transition from an acidic microenvironment (pH ∼ 6.2) to a mildly alkaline state (pH ∼ 8.0), thereby fostering senescent cell proliferation via activation of the PI3K/Akt/mTOR pathway. Additionally, H2 aids in ROS clearance, which reduces cellular oxidative stress. And, Mg2+ rejuvenates senescent cells by inhibiting Ca2+ influx and fine-tuning the sirt1-p53 signaling pathways. Both in vitro and in vivo experiments conducted on rat intervertebral discs corroborate the sustained antisenescence and rejuvenation properties of MB-ALG hydrogels, with effects persisting for up to 12 weeks postoperation. These discoveries elucidate the role of mild-alkalization in dictating cellular destiny and provide key insights for addressing age-related diseases.
Collapse
Affiliation(s)
- Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Dandan Zheng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Lijie Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Huiyan Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Xingwu Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P. R. China
| | - Bangbao Tao
- Department of Neurosurgery, Xinhua Hospital School of Medicine, Shanghai Jiaotong University, Shanghai 200092, P. R. China
| | - Hongjun Zhuang
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, P. R. China
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Academy for Engineering and Technology, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
32
|
Chen DQ, Que ZQ, Xu WB, Xiao KY, Sun NK, Song HY, Feng JY, Lin GX, Rui G. Nucleotide polymorphism-based study utilizes human plasma liposomes to discover potential therapeutic targets for intervertebral disc disease. Front Endocrinol (Lausanne) 2024; 15:1403523. [PMID: 39211445 PMCID: PMC11357925 DOI: 10.3389/fendo.2024.1403523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background While intervertebral disc degeneration (IVDD) is crucial in numerous spinally related illnesses and is common among the elderly, the complete understanding of its pathogenic mechanisms is still an area of ongoing study. In recent years, it has revealed that liposomes are crucial in the initiation and progression of IVDD. However, their intrinsic mediators and related mechanisms remain unclear. With the development of genomics, an increasing amount of data points to the contribution of genetics in the etiology of disease. Accordingly, this study explored the causality between liposomes and IVDD by Mendelian randomization (MR) analysis and deeply investigated the intermediary roles of undetected metabolites. Methods According to MR analysis, 179 liposomes and 1400 metabolites were evaluated for their causal association with IVDD. Single nucleotide polymorphisms (SNPs) are strongly associated with the concentrations of liposomes and metabolites. Consequently, they were employed as instrumental variables (IVs) to deduce if they constituted risk elements or protective elements for IVDD. Furthermore, mediation analysis was conducted to pinpoint possible metabolic mediators that link liposomes to IVDD. The inverse variance weighting (IVW) was the main analytical technique. Various confidence tests in the causality estimates were performed, including consistency, heterogeneity, pleiotropy, and sensitivity analyses. Inverse MR analysis was also utilized to estimate potential reverse causality. Results MR analysis identified 13 liposomes and 79 metabolites markedly relevant to IVDD. Moreover, the mediation analysis was carried out by choosing the liposome, specifically the triacylglycerol (48:2) levels, which were found to be most notably associated with an increased risk of IVDD. In all, three metabolite-associated mediators were identified (3-methylcytidine levels, inosine 5'-monophosphate (IMP) to phosphate ratio, and adenosine 5'-diphosphate (ADP) to glycine ratio). Conclusion The analysis's findings suggested possible causal connections between liposomes, metabolites, and IVDD, which could act as both forecast and prognosis clinical indicators, thereby aiding in the exploration of the pathogenesis behind IVDD.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ke-Yi Xiao
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Nai-Kun Sun
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hong-Yu Song
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jin-Yi Feng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Chen A, Wang W, Mao Z, He Y, Chen S, Liu G, Su J, Feng P, Shi Y, Yan C, Lu J. Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307686. [PMID: 37737521 DOI: 10.1002/adma.202307686] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications.
Collapse
Affiliation(s)
- Annan Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Wanying Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhengyi Mao
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Yunhu He
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Shiting Chen
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Guo Liu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
| | - Jin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Pei Feng
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Yusheng Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Chunze Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Engineering Research Center of Ceramic Materials for Additive Manufacturing, Ministry of Education, Wuhan, 430074, China
| | - Jian Lu
- Centre for Advanced Structural Materials, Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, 518057, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research, Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
34
|
Penolazzi L, Chierici A, Notarangelo MP, Dallan B, Lisignoli G, Lambertini E, Greco P, Piva R, Nastruzzi C. Wharton's jelly-derived multifunctional hydrogels: New tools to promote intervertebral disc regeneration in vitro and ex vivo. J Biomed Mater Res A 2024; 112:973-987. [PMID: 38308554 DOI: 10.1002/jbm.a.37683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Anna Chierici
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Beatrice Dallan
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Pantaleo Greco
- Obstetrics and Gynecology Unit, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Piva
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Claudio Nastruzzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
36
|
Peng B, Li Q, Chen J, Wang Z. Research on the role and mechanism of IL-17 in intervertebral disc degeneration. Int Immunopharmacol 2024; 132:111992. [PMID: 38569428 DOI: 10.1016/j.intimp.2024.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the primary causes of low back pain (LBP), which seriously affects patients' quality of life. In recent years, interleukin (IL)-17 has been shown to be highly expressed in the intervertebral disc (IVD) tissues and serum of patients with IDD, and IL-17A has been shown to promote IDD through multiple pathways. We first searched databases such as PubMed, Cochrane, Embase, and Web of Science using the search terms "IL-17 or interleukin 17″ and "intervertebral discs". The search period ranged from the inception of the databases to December 2023. A total of 24 articles were selected after full-text screening. The main conclusion of the clinical studies was that IL-17A levels are significantly increased in the IVD tissues and serum of IDD patients. The results from the in vitro studies indicated that IL-17A can activate signaling pathways such as the NF-κB and MAPK pathways; promote inflammatory responses, extracellular matrix degradation, and angiogenesis; and inhibit autophagy in nucleus pulposus cells. The main finding of the in vivo experiments was that puncture of animal IVDs resulted in elevated levels of IL-17A within the IVD, thereby inducing IDD. Clinical studies, in vitro experiments, and in vivo experiments confirmed that IL-17A is closely related to IDD. Therefore, drugs that target IL-17A may be novel treatments for IDD, providing a new theoretical basis for IDD therapy.
Collapse
Affiliation(s)
- Bing Peng
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Li
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang City, Hunan Province, China
| | - Zhexiang Wang
- Hunan Provincial Hospital of Integrative Traditional Chinese and Western Medicine, Changsha City, Hunan Province, China.
| |
Collapse
|
37
|
Liu X, Astudillo Potes MD, Serdiuk V, Dashtdar B, Schreiber AC, Rezaei A, Miller AL, Hamouda AM, Shafi M, Elder BD, Lu L. Bioactive Moldable Click Chemistry Polymer Cement with Nano-Hydroxyapatite and Growth Factor-Enhanced Posterolateral Spinal Fusion in a Rabbit Model. ACS APPLIED BIO MATERIALS 2024; 7:2450-2459. [PMID: 38500414 DOI: 10.1021/acsabm.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Spinal injuries or diseases necessitate effective fusion solutions, and common clinical approaches involve autografts, allografts, and various bone matrix products, each with limitations. To address these challenges, we developed an innovative moldable click chemistry polymer cement that can be shaped by hand and self-cross-linked in situ for spinal fusion. This self-cross-linking cement, enabled by the bioorthogonal click reaction, excludes the need for toxic initiators or external energy sources. The bioactivity of the cement was promoted by incorporating nanohydroxyapatite and microspheres loaded with recombinant human bone morphogenetic protein-2 and vascular endothelial growth factor, fostering vascular induction and osteointegration. The release kinetics of growth factors, mechanical properties of the cement, and the ability of the scaffold to support in vitro cell proliferation and differentiation were evaluated. In a rabbit posterolateral spinal fusion model, the moldable cement exhibited remarkable induction of bone regeneration and effective bridging of spine vertebral bodies. This bioactive moldable click polymer cement therefore presents a promising biomaterial for spinal fusion augmentation, offering advantages in safety, ease of application, and enhanced bone regrowth.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Babak Dashtdar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Areonna C Schreiber
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abdelrahman M Hamouda
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Mahnoor Shafi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
38
|
Luo J, Jin G, Cui S, Wang H, Liu Q. Regulatory mechanism of FCGR2A in macrophage polarization and its effects on intervertebral disc degeneration. J Physiol 2024; 602:1341-1369. [PMID: 38544414 DOI: 10.1113/jp285871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.
Collapse
Affiliation(s)
- Jiaying Luo
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Guoxin Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Shaoqian Cui
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Huan Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| | - Qi Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
39
|
Liu L, Wang W, Huang L, Xian Y, Ma W, Fan J, Li Y, Liu H, Zheng Z, Wu D. Injectable pathological microenvironment-responsive anti-inflammatory hydrogels for ameliorating intervertebral disc degeneration. Biomaterials 2024; 306:122509. [PMID: 38377847 DOI: 10.1016/j.biomaterials.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair. The hydrogel system was prepared by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with the naturally extracted anti-inflammatory drug epigallocatechin-3-gallate (EGCG) through dynamic boronic esters. The hydrogel exhibited excellent degradability, injectability, antioxidant properties, anti-inflammatory effects, and biocompatibility. It also displayed responsive-release of EGCG under high reactive oxygen species (ROS) levels and acidic conditions. The hydrogel demonstrated remarkable cytoprotective effects on NP cells in both hyperactive ROS environments and inflammatory cytokine-overexpressed environments in vitro. In vivo studies revealed that the hydrogel injected in situ could effectively ameliorate the intervertebral disc degeneration by maintaining the disc height and NP tissue structure in a rat IDD model. The hydrogel system exhibited excellent biocompatibility and responsive-release of diol-containing drugs in pathological microenvironments, indicating its potential application as a drug delivery platform.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China; Pain Research Center, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Zhang C, Gordon MD, Joseph KM, Diaz‐Hernandez ME, Drissi H, Illien‐Jünger S. Differential efficacy of two small molecule PHLPP inhibitors to promote nucleus Pulposus cell health. JOR Spine 2024; 7:e1306. [PMID: 38222816 PMCID: PMC10782076 DOI: 10.1002/jsp2.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc (IVD) degeneration is associated with chronic back pain. We previously demonstrated that the phosphatase pleckstrin homology domain and leucine-rich repeat protein phosphatase (PHLPP) 1 was positively correlated with IVD degeneration and its deficiency decelerated IVD degeneration in both mouse IVDs and human nucleus pulposus (NP) cells. Small molecule PHLPP inhibitors may offer a translatable method to alleviate IVD degeneration. In this study, we tested the effectiveness of the two PHLPP inhibitors NSC117079 and NSC45586 in promoting a healthy NP phenotype. Methods Tail IVDs of 5-month-old wildtype mice were collected and treated with NSC117079 or NSC45586 under low serum conditions ex vivo. Hematoxylin & eosin staining was performed to examine IVD structure and NP cell morphology. The expression of KRT19 was analyzed through immunohistochemistry. Cell apoptosis was assessed by TUNEL assay. Human NP cells were obtained from patients with IVD degeneration. The gene expression of KRT19, ACAN, SOX9, and MMP13 was analyzed via real time qPCR, and AKT phosphorylation and the protein expression of FOXO1 was analyzed via immunoblot. Results In a mouse IVD organ culture model, NSC45586, but not NSC117079, preserved vacuolated notochordal cell morphology and KRT19 expression while suppressing cell apoptosis, counteracting the degenerative changes induced by serum deprivation, especially in males. Likewise, in degenerated human NP cells, NSC45586 increased cell viability and the expression of KRT19, ACAN, and SOX9 and reducing the expression of MMP13, while NSC117079 treatment only increased KRT19 expression. Mechanistically, NSC45586 treatment increased FOXO1 protein expression in NP cells, and inhibiting FOXO1 offset NSC45586-induced regenerative potential, especially in males. Conclusions Our study indicates that NSC45586 was effective in promoting NP cell health, especially in males, suggesting that PHLPP plays a key role in NP cell homeostasis and that NSC45586 might be a potential drug candidate in treating IVD degeneration.
Collapse
Affiliation(s)
- Changli Zhang
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Madeleine D. Gordon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Katherine M. Joseph
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - Hicham Drissi
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Atlanta VA Health Care SystemDecaturGeorgiaUSA
| | - Svenja Illien‐Jünger
- Department of OrthopaedicsEmory University School of MedicineAtlantaGeorgiaUSA
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
41
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|
42
|
Chen S, Croft AS, Bigdon S, Albers CE, Li Z, Gantenbein B. Conditioned Medium of Intervertebral Disc Cells Inhibits Osteo-Genesis on Autologous Bone-Marrow-Derived Mesenchymal Stromal Cells and Osteoblasts. Biomedicines 2024; 12:376. [PMID: 38397978 PMCID: PMC10886592 DOI: 10.3390/biomedicines12020376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Low back pain (LBP) is associated with the degeneration of human intervertebral discs (IVDs). Despite progress in the treatment of LBP through spinal fusion, some cases still end in non-fusion after the removal of the affected IVD tissue. In this study, we investigated the hypothesis that the remaining IVD cells secrete BMP inhibitors that are sufficient to inhibit osteogenesis in autologous osteoblasts (OBs) and bone marrow mesenchymal stem cells (MSCs). A conditioned medium (CM) from primary human IVD cells in 3D alginate culture was co-cultured with seven donor-matched OB and MSCs. After ten days, osteogenesis was quantified at the transcript level using qPCR to measure the expression of bone-related genes and BMP antagonists, and at the protein level by alkaline phosphatase (ALP) activity. Additionally, cells were evaluated histologically using alizarin red (ALZR) staining on Day 21. For judging ALP activity and osteogenesis, the Noggin expression in samples was investigated to uncover the potential causes. The results after culture with the CM showed significantly decreased ALP activity and the inhibition of the calcium deposit formation in alizarin red staining. Interestingly, no significant changes were found among most bone-related genes and BMP antagonists in OBs and MSCs. Noteworthy, Noggin was relatively expressed higher in human IVD cells than in autologous OBs or MSCs (relative to autologous OB, the average fold change was in 6.9, 10.0, and 6.3 in AFC, CEPC, and NPC, respectively; and relative to autologous MSC, the average fold change was 2.3, 3.4, and 3.2, in AFC, CEPC, and NPC, respectively). The upregulation of Noggin in residual human IVDs could potentially inhibit the osteogenesis of autologous OB and MSC, thus inhibiting the postoperative spinal fusion after discectomy surgery.
Collapse
Affiliation(s)
- Shuimu Chen
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Andreas S Croft
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Sebastian Bigdon
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Zhen Li
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopedics & Mechanobiology (TOM), Bone & Joint Program, Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
43
|
Leão Monteiro R. Future of low back pain: unravelling IVD components and MSCs' potential. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:1. [PMID: 38227139 PMCID: PMC10792145 DOI: 10.1186/s13619-023-00184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Low back pain (LBP) mainly emerges from intervertebral disc (IVD) degeneration. However, the failing mechanism of IVD ́s components, like the annulus fibrosus (AF) and nucleus pulposus (NP), leading to IVD degeneration/herniation is still poorly understood. Moreover, the specific role of cellular populations and molecular pathways involved in the inflammatory process associated with IVD herniation remains to be highlighted. The limited knowledge of inflammation associated with the initial steps of herniation and the lack of suitable models to mimic human IVD ́s complexity are some of the reasons for that. It has become essential to enhance the knowledge of cellular and molecular key players for AF and NP cells during inflammatory-driven degeneration. Due to unique properties of immunomodulation and pluripotency, mesenchymal stem cells (MSCs) have attained diverse recognition in this field of bone and cartilage regeneration. MSCs therapy has been particularly valuable in facilitating repair of damaged tissues and may benefit in mitigating inflammation' degenerative events. Therefore, this review article conducts comprehensive research to further understand the intertwine between the mechanisms of action of IVD components and therapeutic potential of MSCs, exploring their characteristics, how to optimize their use and establish them safely in distinct settings for LPB treatment.
Collapse
|
44
|
Zhou D, Liu H, Zheng Z, Wu D. Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review. Bioact Mater 2024; 31:422-439. [PMID: 37692911 PMCID: PMC10485601 DOI: 10.1016/j.bioactmat.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
45
|
Wang N, Mi Z, Chen S, Fang X, Xi Z, Xu W, Xie L. Analysis of global research hotspots and trends in immune cells in intervertebral disc degeneration: A bibliometric study. Hum Vaccin Immunother 2023; 19:2274220. [PMID: 37941392 PMCID: PMC10760394 DOI: 10.1080/21645515.2023.2274220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Intervertebral disc degeneration is an important pathological basis for spinal degenerative diseases. The imbalance of the immune microenvironment and the involvement of immune cells has been shown to lead to nucleus pulposus cells death. This article presents a bibliometric analysis of studies on immune cells in IDD in order to clarify the current status and hotspots. We searched the WOSCC, Scopus and PubMed databases from 01/01/2001 to 08/03/2023. We analyzed and visualized the content using software such as Citespace, Vosviewer and the bibliometrix. This study found that the number of annual publications is increasing year on year. The journal study found that Spine had the highest number of articles and citations. The country/regions analysis showed that China had the highest number of publications, the USA had the highest number of citations and total link strength. The institutional analysis found that Shanghai Jiao Tong University and Huazhong University of Science Technology had the highest number of publications, Tokai University had the highest citations, and the University of Bern had the highest total link strength. Sakai D and Risbud MV had the highest number of publications. Sakai D had the highest total link strength, and Risbud MV had the highest number of citations. The results of the keyword analysis suggested that the current research hotspots and future directions continue to be the study of the mechanisms of immune cells in IDD, the therapeutic role of immune cells in IDD and the role of immune cells in tissue engineering for IDD.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Shuang Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Xiaoyang Fang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Wenqiang Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
46
|
Mohd Isa IL, Zulkiflee I, Ogaili RH, Mohd Yusoff NH, Sahruddin NN, Sapri SR, Mohd Ramli ES, Fauzi MB, Mokhtar SA. Three-dimensional hydrogel with human Wharton jelly-derived mesenchymal stem cells towards nucleus pulposus niche. Front Bioeng Biotechnol 2023; 11:1296531. [PMID: 38149172 PMCID: PMC10749916 DOI: 10.3389/fbioe.2023.1296531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: A regenerative strategy employing extracellular matrix (ECM)-based biomaterials and stem cells provide a better approach to mimicking the three-dimensional (3D) microenvironment of intervertebral disc for endogenous tissue regeneration. However, there is currently limited understanding regarding the human Wharton Jelly derived-mesenchymal stem cells (hWJ-MSCs) towards nucleus pulposus (NP)-like cells. Our study focused on the development of 3D bioengineered hydrogel based on the predominant ECM of native NP, including type II collagen (COLII) and hyaluronic acid (HA), which aims to tailor the needs of the microenvironment in NP. Methods: We have fabricated a 3D hydrogel using from COLII enriched with HA by varying the biomacromolecule concentration and characterised it for degradation, stability and swelling properties. The WJ-MSC was then encapsulated in the hydrogel system to guide the cell differentiation into NP-like cells. Results: We successfully fabricated COLII hydrogel (2 mg/ml) and HA 10 mg/ml at a weight ratio of HA and COLII at 1:9 and 4.5:9, and both hydrogels physically maintained their 3D sphere-shaped structure after complete gelation. The higher composition of HA in the hydrogel system indicated a higher water intake capacity in the hydrogel with a higher amount of HA. All hydrogels showed over 60% hydrolytic stability over a month. The hydrogel showed an increase in degradation on day 14. The hWJ-MSCs encapsulated in hydrogel showed a round morphology shape that was homogenously distributed within the hydrogel of both groups. The viability study indicated a higher cell growth of hWJ-MSCs encapsulated in all hydrogel groups until day 14. Discussion: Overall, our findings demonstrate that HA/COLII hydrogel provides an optimal swelling capacity, stability, degradability, and non-cytotoxic, thus mimics the NP microenvironment in guiding hWJ-MSCs towards NP phenotype, which is potentially used as an advanced cell delivery system for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
- School of Medicine, University of Galway, Galway, Ireland
| | - Izzat Zulkiflee
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Raed H. Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Huda Mohd Yusoff
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Natasya Nadia Sahruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shaiful Ridzwan Sapri
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Chen DQ, Xu WB, Chen X, Xiao KY, Que ZQ, Sun NK, Feng JY, Rui G. Genetically predicted triglycerides mediate the relationship between type 2 diabetes Mellitus and intervertebral disc degeneration. Lipids Health Dis 2023; 22:195. [PMID: 37964277 PMCID: PMC10644578 DOI: 10.1186/s12944-023-01963-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND To validate the causal relationship between type 2 diabetes mellitus (T2DM) and intervertebral disc degeneration (IVDD) and to identify and quantify the role of triglycerides (TGs) as potential mediators. METHODS A two-sample Mendelian randomization (MR) analyses of T2DM (61,714 cases and 1178 controls) and IVDD (20,001 cases and 164,682 controls) was performed using genome-wide association studies (GWAS). Moreover, two-step MR was employed to quantify the proportionate impact of TG-mediated T2DM on IVDD. RESULTS MR analysis showed that T2DM increased IVDD risk (OR: 1.0466, 95% CI 1.0049-1.0899, P = 0.0278). Reverse MR analyses demonstrated that IVDD does not affect T2DM risk (P = 0.1393). The proportion of T2DM mediated through TG was 11.4% (95% CI 5.5%-17.4%). CONCLUSION This work further validates the causality between T2DM and IVDD, with a part of the effect mediated by TG, but the greatest impacts of T2DM on IVDD remain unknown. Further studies are needed to identify other potential mediators.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Wen-Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xin Chen
- Department of Cardiac Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke-Yi Xiao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Que
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Nai-Kun Sun
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jin-Yi Feng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Rui
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
48
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
49
|
Francisco V, Ait Eldjoudi D, González-Rodríguez M, Ruiz-Fernández C, Cordero-Barreal A, Marques P, Sanz MJ, Real JT, Lago F, Pino J, Farrag Y, Gualillo O. Metabolomic signature and molecular profile of normal and degenerated human intervertebral disc cells. Spine J 2023; 23:1549-1562. [PMID: 37339697 DOI: 10.1016/j.spinee.2023.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Accepted: 06/03/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND CONTEXT Intervertebral disc degeneration (IVDD) is an incurable, specific treatment-orphan disease with an increasing burden worldwide. Although great efforts have been made to develop new regenerative therapies, their clinical success is limited. PURPOSE Characterize the metabolomic and gene expression changes underpinning human disc degeneration. This study also aimed to disclose new molecular targets for developing and optimizing novel biological approaches for IVDD. STUDY DESIGN Intervertebral disc cells were obtained from IVDD patients undergoing circumferential arthrodesis surgery or from healthy subjects. Mimicking the harmful microenvironment of degenerated discs, cells isolated from the nucleus pulposus (NP) and annulus fibrosus (AF) were exposed to the proinflammatory cytokine IL-1β and the adipokine leptin. The metabolomic signature and molecular profile of human disc cells were unraveled for the first time. METHODS The metabolomic and lipidomic profiles of IVDD and healthy disc cells were analyzed by high-performance liquid chromatography-mass spectrometry (UHPLC-MS). Gene expression was investigated by SYBR green-based quantitative real-time RT-PCR. Altered metabolites and gene expression were documented. RESULTS Lipidomic analysis revealed decreased levels of triacylglycerols (TG), diacylglycerol (DG), fatty acids (FA), phosphatidylcholine (PC), lysophosphatidylinositols (LPI) and sphingomyelin (SM), and increased levels of bile acids (BA) and ceramides, likely promoting disc cell metabolism changing from glycolysis to fatty acid oxidation and following cell death. The gene expression profile of disc cells suggests LCN2 and LEAP2/GHRL as promising molecular therapeutic targets for disc degeneration and demonstrates the expression of genes related to inflammation (NOS2, COX2, IL-6, IL-8, IL-1β, and TNF-α) or encoding adipokines (PGRN, NAMPT, NUCB2, SERPINE2, and RARRES2), matrix metalloproteinases (MMP9 and MMP13), and vascular adhesion molecules (VCAM1). CONCLUSIONS Altogether, the presented results disclose the NP and AF cell biology changes from healthy to degenerated discs, allowing the identification of promising molecular therapeutic targets for intervertebral disc degeneration. CLINICAL SIGNIFICANCE Our results are relevant to improving current biological-based strategies aiming to repair IVD by restoring cellular lipid metabolites as well as adipokines homeostasis. Ultimately, our results will be valuable for successful, long-lasting relief of painful IVDD.
Collapse
Affiliation(s)
- Vera Francisco
- Institute of Health Research INCLIVA and Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Calle Menéndez y Pelayo nº4, 46010 Valencia, Spain; SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Patrice Marques
- University Clinic Hospital of Valencia and Department of Pharmacology, Faculty of Medicine and Odontology, Institute of Health Research INCLIVA, University of Valencia, Calle Menéndez y Pelayo, nº4, 46010 Valencia, Spain
| | - Maria Jesus Sanz
- University Clinic Hospital of Valencia and Department of Pharmacology, Faculty of Medicine and Odontology, Institute of Health Research INCLIVA, University of Valencia, Calle Menéndez y Pelayo, nº4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - José T Real
- Institute of Health Research INCLIVA and Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Calle Menéndez y Pelayo nº4, 46010 Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, ISCIII, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Av. de Blasco Ibáñez nº15, 46010 Valencia, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain.
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, Tr.ª da Choupana s/n, 15706 Santiago de Compostela, Spain
| |
Collapse
|
50
|
Huang L, Wang W, Xian Y, Liu L, Fan J, Liu H, Zheng Z, Wu D. Rapidly in situ forming an injectable Chitosan/PEG hydrogel for intervertebral disc repair. Mater Today Bio 2023; 22:100752. [PMID: 37576872 PMCID: PMC10415788 DOI: 10.1016/j.mtbio.2023.100752] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023] Open
Abstract
Intervertebral disc (IVD) degeneration occurred with the increasing age or accidents has puzzled peoples in daily life. To seal IVD defect by injectable hydrogels is a promising method for slowing down IVD degeneration. Herein, we reported a rapidly in situ forming injectable chitosan/PEG hydrogel (CSMA-PEGDA-L) through integrating photo-crosslink of methacrylate chitosan (CSMA) with Schiff base reaction between CSMA and aldehyde polyethylene glycol (PEGDA). The CSMA-PEGDA-L possessed a stronger compressive strength than the photo-crosslinked CSMA-L hydrogel and Schiff-base-crosslinked CSMA-PEGDA hydrogel. This chitosan/PEG hydrogel showed low cytotoxicity from incubation experiments of nucleus pulpous cells. When implanted on the punctured IVD of rat's tail, the CSMA-PEGDA-L hydrogel could well retard the progression of IVD degeneration through physical plugging, powerfully proven by radiological and histological evaluations. This work demonstrated the strategy of in situ injectable glue may be a potential solution for prevention of IVD degeneration.
Collapse
Affiliation(s)
- Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|