1
|
Chai S, Lee Y, Owens RM, Lee HR, Lee Y, Kim W, Jung S. Dynamic monitoring of a 3D-printed airway tissue model using an organic electrochemical transistor. Biomaterials 2025; 314:122806. [PMID: 39260031 DOI: 10.1016/j.biomaterials.2024.122806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Assessing the transepithelial resistance to ion flow in the presence of an electric field enables the evaluation of the integrity of the epithelial cell layer. In this study, we introduce an organic electrochemical transistor (OECT) interfaced with a 3D living tissue, designed to monitor the electrical resistance of cellular barriers in real-time. We have developed a non-invasive, tissue-sensing platform by integrating an inkjet-printed large-area OECT with a 3D-bioprinted multilayered airway tissue. This unique configuration enables the evaluation of epithelial barrier integrity through the dynamic response capabilities of the OECT. Our system effectively tracks the formation and integrity of 3D-printed airway tissues in both liquid-liquid and air-liquid interface culture environments. Furthermore, we successfully quantified the degradation of barrier function due to influenza A (H1N1) viral infection and the dose-dependent efficacy of oseltamivir (Tamiflu®) in mitigating this degradation. The tissue-electronic platform offers a non-invasive and label-free method for real-time monitoring of 3D artificial tissue barriers, without disturbing the cellular biology. It holds the potential for further applications in monitoring the structures and functions of 3D tissues and organs, significantly contributing to the advancement of personalized medicine.
Collapse
Affiliation(s)
- Seungjin Chai
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yunji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Hwa-Rim Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Yongwoo Lee
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| | - Woojo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea.
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
2
|
Buchmann S, Stoop P, Roekevisch K, Jain S, Kroon R, Müller C, Hamedi MM, Zeglio E, Herland A. In Situ Functionalization of Polar Polythiophene-Based Organic Electrochemical Transistor to Interface In Vitro Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54292-54303. [PMID: 39327895 PMCID: PMC11472309 DOI: 10.1021/acsami.4c09197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Organic mixed ionic-electronic conductors are promising materials for interfacing and monitoring biological systems, with the aim of overcoming current challenges based on the mismatch between biological materials and convectional inorganic conductors. The conjugated polymer/polyelectrolyte complex poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT/PSS) is, up to date, the most widely used polymer for in vitro or in vivo measurements in the field of organic bioelectronics. However, PEDOT/PSS organic electrochemical transistors (OECTs) are limited by depletion mode operation and lack chemical groups that enable synthetic modifications for biointerfacing. Recently introduced thiophene-based polymers with oligoether side chains can operate in accumulation mode, and their chemical structure can be tuned during synthesis, for example, by the introduction of hydroxylated side chains. Here, we introduce a new thiophene-based conjugated polymer, p(g42T-T)-8% OH, where 8% of the glycol side chains are functionalized with a hydroxyl group. We report for the first time the compatibility of conjugated polymers containing ethylene glycol side chains in direct contact with cells. The additional hydroxyl group allows covalent modification of the surface of polymer films, enabling fine-tuning of the surface interaction properties of p(g42T-T)-8% OH with biological materials, either hindering or promoting cell adhesion. We further use p(g42T-T)-8% OH to fabricate the OECTs and demonstrate for the first time the monitoring of epithelial barrier formation of Caco-2 cells in vitro using accumulation mode OECTs. The conjugated polymer p(g42T-T)-8% OH allows organic-electronic-based materials to be easily modified and optimized to interface and monitor biological systems.
Collapse
Affiliation(s)
- Sebastian Buchmann
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Pepijn Stoop
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kim Roekevisch
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Saumey Jain
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- Division
of Micro and Nano Systems, Department of Intelligent Systems, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Renee Kroon
- Department
of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping 602
21, Sweden
| | - Christian Müller
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Mahiar M. Hamedi
- Division
of Fibre Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- Digital
Futures, Stockholm 100 44, Sweden
| | - Erica Zeglio
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
- Digital
Futures, Stockholm 100 44, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Materials
and Environmental Chemistry, Stockholm University, Stockholm 106 91, Sweden
| | - Anna Herland
- Division
of Nanobiotechnology, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm 177 65, Sweden
- AIMES—Center
for the Advancement of Integrated Medical and Engineering Sciences
at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm 171 65, Sweden
- Department
of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
3
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
5
|
Traberg WC, Uribe J, Druet V, Hama A, Moysidou C, Huerta M, McCoy R, Hayward D, Savva A, Genovese AMR, Pavagada S, Lu Z, Koklu A, Pappa A, Fitzgerald R, Inal S, Daniel S, Owens RM. Organic Electronic Platform for Real-Time Phenotypic Screening of Extracellular-Vesicle-Driven Breast Cancer Metastasis. Adv Healthc Mater 2023; 12:e2301194. [PMID: 37171457 PMCID: PMC11468090 DOI: 10.1002/adhm.202301194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Tumor-derived extracellular vesicles (TEVs) induce the epithelial-to-mesenchymal transition (EMT) in nonmalignant cells to promote invasion and cancer metastasis, representing a novel therapeutic target in a field severely lacking in efficacious antimetastasis treatments. However, scalable technologies that allow continuous, multiparametric monitoring for identifying metastasis inhibitors are absent. Here, the development of a functional phenotypic screening platform based on organic electrochemical transistors (OECTs) for real-time, noninvasive monitoring of TEV-induced EMT and screening of antimetastatic drugs is reported. TEVs derived from the triple-negative breast cancer cell line MDA-MB-231 induce EMT in nonmalignant breast epithelial cells (MCF10A) over a nine-day period, recapitulating a model of invasive ductal carcinoma metastasis. Immunoblot analysis and immunofluorescence imaging confirm the EMT status of TEV-treated cells, while dual optical and electrical readouts of cell phenotype are obtained using OECTs. Further, heparin, a competitive inhibitor of cell surface receptors, is identified as an effective blocker of TEV-induced EMT. Together, these results demonstrate the utility of the platform for TEV-targeted drug discovery, allowing for facile modeling of the transient drug response using electrical measurements, and provide proof of concept that inhibitors of TEV function have potential as antimetastatic drug candidates.
Collapse
Affiliation(s)
- Walther C. Traberg
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Johana Uribe
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Victor Druet
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Adel Hama
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | | | - Miriam Huerta
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Reece McCoy
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Daniel Hayward
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Achilleas Savva
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Amaury M. R. Genovese
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Suraj Pavagada
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Zixuan Lu
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| | - Anil Koklu
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Anna‐Maria Pappa
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
- Healthcare Innovation Engineering CenterKhalifa UniversityAbu DhabiPO Box 127788United Arab Emirates
- Department of Biomedical EngineeringKhalifa University of Science and TechnologyAbu DhabiPO Box 127788United Arab Emirates
| | - Rebecca Fitzgerald
- Early Cancer InstituteUniversity of CambridgeHutchison Research CentreCambridgeCB2 0XZUK
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal3955Kingdom of Saudi Arabia
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityOlin HallIthacaNY14853USA
| | - Róisín M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeCB3 0ASUK
| |
Collapse
|
6
|
Qian S, Zhang S, Chen D, Wang J, Wu W, Zhang S, Geng Z, He Y, Zhu B. Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection. Polymers (Basel) 2023; 15:3739. [PMID: 37765593 PMCID: PMC10535691 DOI: 10.3390/polym15183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Affinity-based organic electrochemical transistor (OECT) sensors offer an attractive approach to point-of-care diagnostics due to their extreme sensitivity and easy operation; however, their application in the real world is frequently challenged by the poor storage stability of antibody proteins and the interference from biofouling in complex biofluids. In this work, we developed an antibody-free and antifouling OECT biosensor to detect C-reactive protein (CRP) at ultra-high specificity and sensitivity. The key to this novel biosensor is the gate coated by phosphorylcholine-functionalized poly (3,4-ethylene dioxythiophene) (PEDOT-PC), which possesses large capacitance and low impedance, prevents biofouling of bovine serum albumin (BSA) and the fetal bovine serum (FBS), and interacts specifically with CRP molecules in the presence of calcium ions. This PEDOT-PC-gated OECT biosensor demonstrated exceptional sensitivity when detecting the CRP molecules at 10 pg/mL, while significantly depressing the signal from the nonspecific binding. This indicates that this biosensor could detect the CRP molecules directly without nonspecific binding blocking, the usual process for the earlier transistor sensors before detection. We envision that this PEDOT-PC-gated OECT biosensor platform may offer a potentially valuable tool for point-of-care diagnostics as it alleviates concerns about poor antibody stability and BSA blocking inconstancy.
Collapse
Affiliation(s)
- Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China;
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Shouyan Zhang
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Danni Chen
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Jun Wang
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Wei Wu
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Shuhua Zhang
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Zhi Geng
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| | - Yong He
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China; (S.Z.); (D.C.); (J.W.); (W.W.); (S.Z.); (Z.G.)
| |
Collapse
|
7
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
8
|
Decataldo F, Giovannini C, Grumiro L, Marino MM, Faccin F, Brandolini M, Dirani G, Taddei F, Lelli D, Tessarolo M, Calienni M, Cacciotto C, De Pascali AM, Lavazza A, Fraboni B, Sambri V, Scagliarini A. Organic Electrochemical Transistors as Versatile Tool for Real-Time and Automatized Viral Cytopathic Effect Evaluation. Viruses 2022; 14:1155. [PMID: 35746627 PMCID: PMC9227436 DOI: 10.3390/v14061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
In-vitro viral studies are still fundamental for biomedical research since studying the virus kinetics on cells is crucial for the determination of the biological properties of viruses and for screening the inhibitors of infections. Moreover, testing potential viral contaminants is often mandatory for safety evaluation. Nowadays, viral cytopathic effects are mainly evaluated through end-point assays requiring dye-staining combined with optical evaluation. Recently, optical-based automatized equipment has been marketed, aimed at the real-time screening of cell-layer status and obtaining further insights, which are unavailable with end-point assays. However, these technologies present two huge limitations, namely, high costs and the possibility to study only cytopathic viruses, whose effects lead to plaque formation and layer disruption. Here, we employed poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (Pedot:Pss) organic electrochemical transistors (OECTs) for the real-time, electrical monitoring of the infection of cytolytic viruses, i.e., encephalomyocarditis virus (EMCV), and non-cytolytic viruses, i.e., bovine coronavirus (B-CoV), on cells. OECT data on EMCV were validated using a commercially-available optical-based technology, which, however, failed in the B-CoV titration analysis, as expected. The OECTs proved to be reliable, fast, and versatile devices for viral infection monitoring, which could be scaled up at low cost, reducing the operator workload and speeding up in-vitro assays in the biomedical research field.
Collapse
Affiliation(s)
- Francesco Decataldo
- Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (F.D.); (M.T.); (M.C.)
| | - Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Universtity of Bologna, 40138 Bologna, Italy; (C.G.); (C.C.); (A.M.D.P.); (A.S.)
- Center for Applied Biomedical Research (CRBA), S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Laura Grumiro
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Maria Michela Marino
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Francesca Faccin
- Experimental Zooprofilactic Institute of Lombardy and Emilia Romagna“Bruno Ubertini” (IZSLER), 25124 Brescia, Italy; (F.F.); (D.L.); (A.L.)
| | - Martina Brandolini
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Giorgio Dirani
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Francesca Taddei
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Davide Lelli
- Experimental Zooprofilactic Institute of Lombardy and Emilia Romagna“Bruno Ubertini” (IZSLER), 25124 Brescia, Italy; (F.F.); (D.L.); (A.L.)
| | - Marta Tessarolo
- Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (F.D.); (M.T.); (M.C.)
| | - Maria Calienni
- Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (F.D.); (M.T.); (M.C.)
| | - Carla Cacciotto
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Universtity of Bologna, 40138 Bologna, Italy; (C.G.); (C.C.); (A.M.D.P.); (A.S.)
| | - Alessandra Mistral De Pascali
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Universtity of Bologna, 40138 Bologna, Italy; (C.G.); (C.C.); (A.M.D.P.); (A.S.)
| | - Antonio Lavazza
- Experimental Zooprofilactic Institute of Lombardy and Emilia Romagna“Bruno Ubertini” (IZSLER), 25124 Brescia, Italy; (F.F.); (D.L.); (A.L.)
| | - Beatrice Fraboni
- Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy; (F.D.); (M.T.); (M.C.)
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Universtity of Bologna, 40138 Bologna, Italy; (C.G.); (C.C.); (A.M.D.P.); (A.S.)
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy; (L.G.); (M.M.M.); (M.B.); (G.D.); (F.T.)
| | - Alessandra Scagliarini
- Department of Experimental, Diagnostic and Specialty Medicine—DIMES, Universtity of Bologna, 40138 Bologna, Italy; (C.G.); (C.C.); (A.M.D.P.); (A.S.)
| |
Collapse
|
9
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
10
|
Strakosas X, Donahue MJ, Hama A, Braendlein M, Huerta M, Simon DT, Berggren M, Malliaras GG, Owens RM. Biostack: Nontoxic Metabolite Detection from Live Tissue. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2101711. [PMID: 34741447 PMCID: PMC8805579 DOI: 10.1002/advs.202101711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/17/2021] [Indexed: 05/29/2023]
Abstract
There is increasing demand for direct in situ metabolite monitoring from cell cultures and in vivo using implantable devices. Electrochemical biosensors are commonly preferred due to their low-cost, high sensitivity, and low complexity. Metabolite detection, however, in cultured cells or sensitive tissue is rarely shown. Commonly, glucose sensing occurs indirectly by measuring the concentration of hydrogen peroxide, which is a by-product of the conversion of glucose by glucose oxidase. However, continuous production of hydrogen peroxide in cell media with high glucose is toxic to adjacent cells or tissue. This challenge is overcome through a novel, stacked enzyme configuration. A primary enzyme is used to provide analyte sensitivity, along with a secondary enzyme which converts H2 O2 back to O2 . The secondary enzyme is functionalized as the outermost layer of the device. Thus, production of H2 O2 remains local to the sensor and its concentration in the extracellular environment does not increase. This "biostack" is integrated with organic electrochemical transistors to demonstrate sensors that monitor glucose concentration in cell cultures in situ. The "biostack" renders the sensors nontoxic for cells and provides highly sensitive and stable detection of metabolites.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping601 74Sweden
| | - Mary J. Donahue
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping601 74Sweden
| | - Adel Hama
- King Abdullah University of Science and TechnologyKAUSTThuwal23955‐6900Saudi Arabia
| | | | - Miriam Huerta
- Robert F. Smith School of Chemical and Biomolecular EngineeringCornell UniversityIthacaNY14853USA
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping601 74Sweden
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping601 74Sweden
| | | | - Roisin M. Owens
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUKUSA
| |
Collapse
|
11
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
12
|
Tang T, Savva A, Traberg WC, Xu C, Thiburce Q, Liu HY, Pappa AM, Martinelli E, Withers A, Cornelius M, Salleo A, Owens RM, Daniel S. Functional Infectious Nanoparticle Detector: Finding Viruses by Detecting Their Host Entry Functions Using Organic Bioelectronic Devices. ACS NANO 2021; 15:18142-18152. [PMID: 34694775 DOI: 10.1021/acsnano.1c06813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Emerging viruses will continue to be a threat to human health and wellbeing into the foreseeable future. The COVID-19 pandemic revealed the necessity for rapid viral sensing and inhibitor screening in mitigating viral spread and impact. Here, we present a platform that uses a label-free electronic readout as well as a dual capability of optical (fluorescence) readout to sense the ability of a virus to bind and fuse with a host cell membrane, thereby sensing viral entry. This approach introduces a hitherto unseen level of specificity by distinguishing fusion-competent viruses from fusion-incompetent viruses. The ability to discern between competent and incompetent viruses means that this device could also be used for applications beyond detection, such as screening antiviral compounds for their ability to block virus entry mechanisms. Using optical means, we first demonstrate the ability to recapitulate the entry processes of influenza virus using a biomembrane containing the viral receptor that has been functionalized on a transparent organic bioelectronic device. Next, we detect virus membrane fusion, using the same, label-free devices. Using both reconstituted and native cell membranes as materials to functionalize organic bioelectronic devices, configured as electrodes and transistors, we measure changes in membrane properties when virus fusion is triggered by a pH drop, inducing hemagglutinin to undergo a conformational change that leads to membrane fusion.
Collapse
Affiliation(s)
- Tiffany Tang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Cheyan Xu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Eleonora Martinelli
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Mercedes Cornelius
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Torricelli F, Adrahtas DZ, Bao Z, Berggren M, Biscarini F, Bonfiglio A, Bortolotti CA, Frisbie CD, Macchia E, Malliaras GG, McCulloch I, Moser M, Nguyen TQ, Owens RM, Salleo A, Spanu A, Torsi L. Electrolyte-gated transistors for enhanced performance bioelectronics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:66. [PMID: 35475166 PMCID: PMC9037952 DOI: 10.1038/s43586-021-00065-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
Electrolyte-gated transistors (EGTs), capable of transducing biological and biochemical inputs into amplified electronic signals and stably operating in aqueous environments, have emerged as fundamental building blocks in bioelectronics. In this Primer, the different EGT architectures are described with the fundamental mechanisms underpinning their functional operation, providing insight into key experiments including necessary data analysis and validation. Several organic and inorganic materials used in the EGT structures and the different fabrication approaches for an optimal experimental design are presented and compared. The functional bio-layers and/or biosystems integrated into or interfaced to EGTs, including self-organization and self-assembly strategies, are reviewed. Relevant and promising applications are discussed, including two-dimensional and three-dimensional cell monitoring, ultra-sensitive biosensors, electrophysiology, synaptic and neuromorphic bio-interfaces, prosthetics and robotics. Advantages, limitations and possible optimizations are also surveyed. Finally, current issues and future directions for further developments and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Torricelli
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - C. Daniel Frisbie
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Eleonora Macchia
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Maximilian Moser
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Thuc-Quyen Nguyen
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
14
|
Lieberth K, Romele P, Torricelli F, Koutsouras DA, Brückner M, Mailänder V, Gkoupidenis P, Blom PWM. Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity. Adv Healthc Mater 2021; 10:e2100845. [PMID: 34309226 PMCID: PMC11468701 DOI: 10.1002/adhm.202100845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Indexed: 01/28/2023]
Abstract
In this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current-driven configuration is developed. The ion-sensitivity is larger than 1200 mV V-1 dec-1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p-type and an n-type OECT connected in series, as known from digital electronics. The monitoring of cell layer integrity and irreversible disruption of barrier function with the current-driven OECT is demonstrated for an epithelial Caco-2 cell layer, showing the enhanced ion-sensitivity as compared to the standard OECT configuration. As a state-of-the-art application of the current-driven OECT, the in situ monitoring of reversible tight junction modulation under the effect of drug additives, like poly-l-lysine, is discussed. This shows its potential for in vitro and even in vivo toxicological and drug delivery studies.
Collapse
Affiliation(s)
- Katharina Lieberth
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Paolo Romele
- Department of Information EngineeringUniversity of BresciaVia Branze 38Brescia25123Italy
| | - Fabrizio Torricelli
- Department of Information EngineeringUniversity of BresciaVia Branze 38Brescia25123Italy
| | | | - Maximilian Brückner
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University MainzLangenbeckstr. 1Mainz55131Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University MainzLangenbeckstr. 1Mainz55131Germany
| | | | - Paul W. M. Blom
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
15
|
Zhong Y, Saleh A, Inal S. Decoding Electrophysiological Signals with Organic Electrochemical Transistors. Macromol Biosci 2021; 21:e2100187. [PMID: 34463019 DOI: 10.1002/mabi.202100187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Indexed: 11/08/2022]
Abstract
The organic electrochemical transistor (OECT) has unique characteristics that distinguish it from other transistors and make it a promising electronic transducer of biological events. High transconductance, flexibility, and biocompatibility render OECTs ideal for detecting electrophysiological signals. Device properties such as transconductance, response time, and noise level should, however, be optimized to adapt to the needs of various application environments including in vitro cell culture, human skin, and inside of a living system. This review includes an overview of the origin of electrophysiological signals, the working principles of OECTs, and methods for performance optimization. While covering recent research examples of the use of OECTs in electrophysiology, a perspective is provided for next-generation bioelectric sensors and amplifiers for electrophysiology applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|
17
|
Méhes G, Roy A, Strakosas X, Berggren M, Stavrinidou E, Simon DT. Organic Microbial Electrochemical Transistor Monitoring Extracellular Electron Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000641. [PMID: 32775155 PMCID: PMC7404149 DOI: 10.1002/advs.202000641] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Indexed: 05/11/2023]
Abstract
Extracellular electron transfer (EET) denotes the process of microbial respiration with electron transfer to extracellular acceptors and has been exploited in a range of microbial electrochemical systems (MESs). To further understand EET and to optimize the performance of MESs, a better understanding of the dynamics at the microscale is needed. However, the real-time monitoring of EET at high spatiotemporal resolution would require sophisticated signal amplification. To amplify local EET signals, a miniaturized bioelectronic device, the so-called organic microbial electrochemical transistor (OMECT), is developed, which includes Shewanella oneidensis MR-1 integrated onto organic electrochemical transistors comprising poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) combined with poly(vinyl alcohol) (PVA). Bacteria are attached to the gate of the transistor by a chronoamperometric method and the successful attachment is confirmed by fluorescence microscopy. Monitoring EET with the OMECT configuration is achieved due to the inherent amplification of the transistor, revealing fast time-responses to lactate. The limits of detection when using microfabricated gates as charge collectors are also investigated. The work is a first step toward understanding and monitoring EET in highly confined spaces via microfabricated organic electronic devices, and it can be of importance to study exoelectrogens in microenvironments, such as those of the human microbiome.
Collapse
Affiliation(s)
- Gábor Méhes
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Arghyamalya Roy
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Xenofon Strakosas
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
- Wallenberg Wood Science CenterDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| |
Collapse
|
18
|
Liu HY, Pappa AM, Pavia A, Pitsalidis C, Thiburce Q, Salleo A, Owens RM, Daniel S. Self-Assembly of Mammalian-Cell Membranes on Bioelectronic Devices with Functional Transmembrane Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7325-7331. [PMID: 32388991 DOI: 10.1021/acs.langmuir.0c00804] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transmembrane proteins (TMPs) regulate processes occurring at the cell surface and are essential gatekeepers of information flow across the membrane. TMPs are difficult to study, given the complex environment of the membrane and its influence on protein conformation, mobility, biomolecule interaction, and activity. For the first time, we create mammalian biomembranes supported on a transparent, electrically conducting polymer surface, which enables dual electrical and optical monitoring of TMP function in its native membrane environment. Mammalian plasma membrane vesicles containing ATP-gated P2X2 ion channels self-assemble on a biocompatible polymer cushion that transduces the changes in ion flux during ATP exposure. This platform maintains the complexity of the native plasma membrane, the fluidity of its constituents, and protein orientation critical to ion channel function. We demonstrate the dual-modality readout using microscopy to characterize protein mobility by single-particle tracking and sensing of ATP gating of P2X2 using electrical impedance spectroscopy. This measurement of TMP activity important for pain sensing, neurological activity, and sensory activity raises new possibilities for drug screening and biosensing applications.
Collapse
Affiliation(s)
- Han-Yuan Liu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| | - Anna-Maria Pappa
- Department of Chemical Engineering and BiotechnologyUniversity of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - Aimie Pavia
- Department of Flexible Electronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, 13541 Gardanne, France
- Panaxium SAS, 13100 Aix-en-Provence, France
| | - Charalampos Pitsalidis
- Department of Chemical Engineering and BiotechnologyUniversity of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305, United States
| | - Róisín M Owens
- Department of Chemical Engineering and BiotechnologyUniversity of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, UK
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Gerasimenko T, Nikulin S, Zakharova G, Poloznikov A, Petrov V, Baranova A, Tonevitsky A. Impedance Spectroscopy as a Tool for Monitoring Performance in 3D Models of Epithelial Tissues. Front Bioeng Biotechnol 2020; 7:474. [PMID: 32039179 PMCID: PMC6992543 DOI: 10.3389/fbioe.2019.00474] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
In contrast to traditional 2D cell cultures, both 3D models and organ-on-a-chip devices allow the study of the physiological responses of human cells. These models reconstruct human tissues in conditions closely resembling the body. Translation of these techniques into practice is hindered by associated labor costs, a need which may be remedied by automation. Impedance spectroscopy (IS) is a promising, automation-compatible label-free technology allowing to carry out a wide range of measurements both in real-time and as endpoints. IS has been applied to both the barrier cultures and the 3D constructs. Here we provide an overview of the impedance-based analysis in different setups and discuss its utility for organ-on-a-chip devices. Most attractive features of impedance-based assays are their compatibility with high-throughput format and supports for the measurements in real time with high temporal resolution, which allow tracing of the kinetics. As of now, IS-based techniques are not free of limitations, including imperfect understanding of the parameters that have their effects on the impedance, especially in 3D cell models, and relatively high cost of the consumables. Moreover, as the theory of IS stems from electromagnetic theory and is quite complex, work on popularization and explanation of the method for experimental biologists is required. It is expected that overcoming these limitations will lead to eventual establishing IS based systems as a standard for automated management of cell-based experiments in both academic and industry environments.
Collapse
Affiliation(s)
| | - Sergey Nikulin
- Scientific Research Centre Bioclinicum, Moscow, Russia
- Laboratory of Microphysiological Systems, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Galina Zakharova
- Laboratory of Molecular Oncoendocrinology, Endocrinology Research Centre, Moscow, Russia
| | - Andrey Poloznikov
- Laboratory of Microphysiological Systems, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- Department of Translational Oncology, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Vladimir Petrov
- Scientific Research Centre Bioclinicum, Moscow, Russia
- Department of Development and Research of Micro- and Nanosystems, Institute of Nanotechnologies of Microelectronics RAS, Moscow, Russia
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Functional Genomics, “Research Centre for Medical Genetics”, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- art photonics GmbH, Berlin, Germany
| |
Collapse
|
20
|
Decataldo F, Barbalinardo M, Gentili D, Tessarolo M, Calienni M, Cavallini M, Fraboni B. Organic Electrochemical Transistors for Real‐Time Monitoring of In Vitro Silver Nanoparticle Toxicity. ACTA ACUST UNITED AC 2019; 4:e1900204. [DOI: 10.1002/adbi.201900204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Francesco Decataldo
- Department of Physics and AstronomyAlma Mater Studiorum – University of Bologna Viale Berti Pichat 6/2 40127 Bologna Italy
| | - Marianna Barbalinardo
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali Nanostrutturati (CNR‐ISMN) via P. Gobetti 101 40129 Bologna Italy
| | - Denis Gentili
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali Nanostrutturati (CNR‐ISMN) via P. Gobetti 101 40129 Bologna Italy
| | - Marta Tessarolo
- Department of Physics and AstronomyAlma Mater Studiorum – University of Bologna Viale Berti Pichat 6/2 40127 Bologna Italy
| | - Maria Calienni
- Department of Physics and AstronomyAlma Mater Studiorum – University of Bologna Viale Berti Pichat 6/2 40127 Bologna Italy
| | - Massimiliano Cavallini
- Consiglio Nazionale delle RicercheIstituto per lo Studio dei Materiali Nanostrutturati (CNR‐ISMN) via P. Gobetti 101 40129 Bologna Italy
| | - Beatrice Fraboni
- Department of Physics and AstronomyAlma Mater Studiorum – University of Bologna Viale Berti Pichat 6/2 40127 Bologna Italy
| |
Collapse
|
21
|
Scuratti F, Bonacchini GE, Bossio C, Salazar-Rios JM, Talsma W, Loi MA, Antognazza MR, Caironi M. Real-Time Monitoring of Cellular Cultures with Electrolyte-Gated Carbon Nanotube Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37966-37972. [PMID: 31532607 DOI: 10.1021/acsami.9b11383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-based biosensors constitute a fundamental tool in biotechnology, and their relevance has greatly increased in recent years as a result of a surging demand for reduced animal testing and for high-throughput and cost-effective in vitro screening platforms dedicated to environmental and biomedical diagnostics, drug development, and toxicology. In this context, electrochemical/electronic cell-based biosensors represent a promising class of devices that enable long-term and real-time monitoring of cell physiology in a noninvasive and label-free fashion, with a remarkable potential for process automation and parallelization. Common limitations of this class of devices at large include the need for substrate surface modification strategies to ensure cell adhesion and immobilization, limited compatibility with complementary optical cell-probing techniques, and the need for frequency-dependent measurements, which rely on elaborated equivalent electrical circuit models for data analysis and interpretation. We hereby demonstrate the monitoring of cell adhesion and detachment through the time-dependent variations in the quasi-static characteristic current curves of a highly stable electrolyte-gated transistor, based on an optically transparent network of printable polymer-wrapped semiconducting carbon-nanotubes.
Collapse
Affiliation(s)
- Francesca Scuratti
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
- Department of Electronics, Information and Bioengineering , Politecnico di Milano , Piazza Leonardo da Vinci, 32 , 20133 Milano , Italy
| | - Giorgio E Bonacchini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Caterina Bossio
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Jorge M Salazar-Rios
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Wytse Talsma
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria A Loi
- Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4 9747 AG Groningen , The Netherlands
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| | - Mario Caironi
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia , Via Giovanni Pascoli, 70/3 , 20133 Milano , Italy
| |
Collapse
|
22
|
Wang K, Parekh U, Ting JK, Yamamoto NAD, Zhu J, Costantini T, Arias AC, Eliceiri BP, Ng TN. A Platform to Study the Effects of Electrical Stimulation on Immune Cell Activation During Wound Healing. ACTA ACUST UNITED AC 2019; 3:e1900106. [DOI: 10.1002/adbi.201900106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kaiping Wang
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Jonathan K. Ting
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Natasha A. D. Yamamoto
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Juan Zhu
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | - Todd Costantini
- Department of Surgery University of California San Diego USA
| | - Ana Claudia Arias
- Department of Electrical Engineering and Computer Sciences University of California Berkeley 253 Cory Hall, Berkeley CA 94720 USA
| | | | - Tse Nga Ng
- Department of Electrical and Computer Engineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
23
|
Lingstedt LV, Ghittorelli M, Brückner M, Reinholz J, Crăciun NI, Torricelli F, Mailänder V, Gkoupidenis P, Blom PWM. Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor. Adv Healthc Mater 2019; 8:e1900128. [PMID: 31318183 DOI: 10.1002/adhm.201900128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/01/2019] [Indexed: 02/01/2023]
Abstract
The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2 O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and critical changes in tight junctions, relevant for clinical applications as drug targeting and screening.
Collapse
Affiliation(s)
- Leona V. Lingstedt
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Matteo Ghittorelli
- Department of Information EngineeringUniversity of Brescia Via Branze 38 25123 Brescia Italy
| | - Maximilian Brückner
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - Jonas Reinholz
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | - N. Irina Crăciun
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Fabrizio Torricelli
- Department of Information EngineeringUniversity of Brescia Via Branze 38 25123 Brescia Italy
| | - Volker Mailänder
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Dermatology ClinicUniversity Medical Center of the Johannes Gutenberg‐University, Mainz Langenbeckstr. 1 55131 Mainz Germany
| | | | - Paul W. M. Blom
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
24
|
Tabet A, Mommer S, Vigil JA, Hallou C, Bulstrode H, Scherman OA. Mechanical Characterization of Human Brain Tissue and Soft Dynamic Gels Exhibiting Electromechanical Neuro-Mimicry. Adv Healthc Mater 2019; 8:e1900068. [PMID: 30945474 DOI: 10.1002/adhm.201900068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Synthetic hydrogels are an important class of materials in tissue engineering, drug delivery, and other biomedical fields. Their mechanical and electrical properties can be tuned to match those of biological tissues. In this work, hydrogels that exhibit both mechanical and electrical biomimicry are reported. The presented dual networks consist of supramolecular networks formed from 2:1 homoternary complexes of imidazolium-based guest molecules in cucubit[8]uril and covalent networks of oligoethylene glycol-(di)methacrylate. The viscoelastic properties of human brain tissues are also investigated. The mechanical properties of the dual network gels are benchmarked against the human tissue, and it is found that they both are neuro-mimetic and exhibit cytocompatibility in a neural stem cell model.
Collapse
Affiliation(s)
- Anthony Tabet
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of PaediatricsAddenbrooke's HospitalUniversity of Cambridge Hills Road Cambridge CB2 0QQ UK
| | - Stefan Mommer
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Julian A. Vigil
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Clement Hallou
- Department of PaediatricsAddenbrooke's HospitalUniversity of Cambridge Hills Road Cambridge CB2 0QQ UK
| | - Harry Bulstrode
- Department of PaediatricsAddenbrooke's HospitalUniversity of Cambridge Hills Road Cambridge CB2 0QQ UK
| | - Oren A. Scherman
- Melville Laboratory for Polymer SynthesisDepartment of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
25
|
Strakosas X, Selberg J, Zhang X, Christie N, Hsu P, Almutairi A, Rolandi M. A Bioelectronic Platform Modulates pH in Biologically Relevant Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1800935. [PMID: 30989015 PMCID: PMC6446605 DOI: 10.1002/advs.201800935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/20/2018] [Indexed: 05/08/2023]
Abstract
Bioelectronic devices that modulate pH can affect critical biological processes including enzymatic activity, oxidative phosphorylation, and neuronal excitability. A major challenge in controlling pH is the high buffering capacity of many biological media. To overcome this challenge, devices need to be able to store and deliver a large number of protons on demand. Here, a bioelectronic modulator that controls pH using palladium nanoparticles contacts with high surface area as a proton storage medium is developed. Reversible electronically triggered acidosis (low pH) and alkalosis (high pH) in physiologically relevant buffer conditions are achieved. As a proof of principle, this new platform is used to control the degradation and fluorescence of acid sensitive polymeric microparticles loaded with a pH sensitive fluorescent dye.
Collapse
Affiliation(s)
- Xenofon Strakosas
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - John Selberg
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Xiaolin Zhang
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Noah Christie
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| | - Peng‐Hao Hsu
- UCSD Center of ExcellenceDepartment of NanoEngineeringJacobs School of EngineeringUniversity of California San Diego9500 Gilman Dr.La JollaCA92093USA
| | - Adah Almutairi
- UCSD Center of ExcellenceDepartment of NanoEngineeringJacobs School of EngineeringUniversity of California San Diego9500 Gilman Dr.La JollaCA92093USA
| | - Marco Rolandi
- Department of Electrical EngineeringUniversity of California Santa CruzSanta CruzCA95064USA
| |
Collapse
|
26
|
Yola ML, Atar N. Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens Bioelectron 2018; 126:418-424. [PMID: 30471567 DOI: 10.1016/j.bios.2018.11.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
The cardiac Troponin-I (cTnI) is one of the subunits of cardiac troponin complexes and a pivotal biochemical marker of acute myocardial infarction (AMI). Due to its myocardial specificity, cTnI is widely used for the diagnosis of AMI diseases. In this study, a novel imprinted biosensor approach based on boron nitride quantum dots (BNQDs) was presented for cTnI detection in plasma samples. Various characterization methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for all characterizations of nanomaterials. After the characterization analysis, cTnI imprinted electrode was developed in the presence of 100.0 mM pyrrole containing 25.0 mM cTnI. After that, the analytical studies of cTnI in plasma samples were performed by using cTnI imprinted biosensor. The results of the study have revealed that 0.01-5.00 ng mL-1 and 0.0005 ng mL-1 were found as the linearity range and the detection limit (LOD). Moreover, the selectivity of cTnI imprinted glassy carbon electrode (GCE) was investigated for plasma sample analysis in the presence of other nonspecific and specific proteins including cardiac myoglobin (MYG), bovine serum albumin (BSA) and cardiac troponin T (cTnT), respectively. Furthermore, the prepared biosensor was examined in terms of stability, repeatability, reproducibility and reusability. Finally, the imprinted biosensor was applied to the plasma samples having high recovery.
Collapse
Affiliation(s)
- Mehmet Lütfi Yola
- Iskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey.
| | - Necip Atar
- Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey
| |
Collapse
|
27
|
Pitsalidis C, Ferro MP, Iandolo D, Tzounis L, Inal S, Owens RM. Transistor in a tube: A route to three-dimensional bioelectronics. SCIENCE ADVANCES 2018; 4:eaat4253. [PMID: 30397642 PMCID: PMC6203411 DOI: 10.1126/sciadv.aat4253] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/19/2018] [Indexed: 05/06/2023]
Abstract
Advances in three-dimensional (3D) cell culture materials and techniques, which more accurately mimic in vivo systems to study biological phenomena, have fostered the development of organ and tissue models. While sophisticated 3D tissues can be generated, technology that can accurately assess the functionality of these complex models in a high-throughput and dynamic manner is not well adapted. Here, we present an organic bioelectronic device based on a conducting polymer scaffold integrated into an electrochemical transistor configuration. This platform supports the dual purpose of enabling 3D cell culture growth and real-time monitoring of the adhesion and growth of cells. We have adapted our system to a 3D tubular geometry facilitating free flow of nutrients, given its relevance in a variety of biological tissues (e.g., vascular, gastrointestinal, and kidney) and processes (e.g., blood flow). This biomimetic transistor in a tube does not require photolithography methods for preparation, allowing facile adaptation to the purpose. We demonstrate that epithelial and fibroblast cells grow readily and form tissue-like architectures within the conducting polymer scaffold that constitutes the channel of the transistor. The process of tissue formation inside the conducting polymer channel gradually modulates the transistor characteristics. Correlating the real-time changes in the steady-state characteristics of the transistor with the growth of the cultured tissue, we extract valuable insights regarding the transients of tissue formation. Our biomimetic platform enabling label-free, dynamic, and in situ measurements illustrates the potential for real-time monitoring of 3D cell culture and compatibility for use in long-term organ-on-chip platforms.
Collapse
Affiliation(s)
- C. Pitsalidis
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - M. P. Ferro
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, Gardanne 13541, France
| | - D. Iandolo
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - L. Tzounis
- Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
| | - S. Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - R. M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
28
|
Inal S, Rivnay J, Suiu AO, Malliaras GG, McCulloch I. Conjugated Polymers in Bioelectronics. Acc Chem Res 2018; 51:1368-1376. [PMID: 29874033 DOI: 10.1021/acs.accounts.7b00624] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The emerging field of organic bioelectronics bridges the electronic world of organic-semiconductor-based devices with the soft, predominantly ionic world of biology. This crosstalk can occur in both directions. For example, a biochemical reaction may change the doping state of an organic material, generating an electronic readout. Conversely, an electronic signal from a device may stimulate a biological event. Cutting-edge research in this field results in the development of a broad variety of meaningful applications, from biosensors and drug delivery systems to health monitoring devices and brain-machine interfaces. Conjugated polymers share similarities in chemical "nature" with biological molecules and can be engineered on various forms, including hydrogels that have Young's moduli similar to those of soft tissues and are ionically conducting. The structure of organic materials can be tuned through synthetic chemistry, and their biological properties can be controlled using a variety of functionalization strategies. Finally, organic electronic materials can be integrated with a variety of mechanical supports, giving rise to devices with form factors that enable integration with biological systems. While these developments are innovative and promising, it is important to note that the field is still in its infancy, with many unknowns and immense scope for exploration and highly collaborative research. The first part of this Account details the unique properties that render conjugated polymers excellent biointerfacing materials. We then offer an overview of the most common conjugated polymers that have been used as active layers in various organic bioelectronics devices, highlighting the importance of developing new materials. These materials are the most popular ethylenedioxythiophene derivatives as well as conjugated polyelectrolytes and ion-free organic semiconductors functionalized for the biological interface. We then discuss several applications and operation principles of state-of-the-art bioelectronics devices. These devices include electrodes applied to sense/trigger electrophysiological activity of cells as well as electrolyte-gated field-effect and electrochemical transistors used for sensing of biochemical markers. Another prime application example of conjugated polymers is cell actuators. External modulation of the redox state of the underlying conjugated polymer films controls the adhesion behavior and viability of cells. These smart surfaces can be also designed in the form of three-dimensional architectures because of the processability of conjugated polymers. As such, cell-loaded scaffolds based on electroactive polymers enable integrated sensing or stimulation within the engineered tissue itself. A last application example is organic neuromorphic devices, an alternative computing architecture that takes inspiration from biology and, in particular, from the way the brain works. Leveraging ion redistribution inside a conjugated polymer upon application of an electrical field and its coupling with electronic charges, conjugated polymers can be engineered to act as artificial neurons or synapses with complex, history-dependent behavior. We conclude this Account by highlighting main factors that need to be considered for the design of a conjugated polymer for applications in bioelectronics-although there can be various figures of merit given the broad range of applications, as emphasized in this Account.
Collapse
Affiliation(s)
- Sahika Inal
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Andreea-Otilia Suiu
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ, U.K
- Physical Sciences and Engineering Division, KAUST Solar Center, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
29
|
Marchiori B, Delattre R, Hannah S, Blayac S, Ramuz M. Laser-patterned metallic interconnections for all stretchable organic electrochemical transistors. Sci Rep 2018; 8:8477. [PMID: 29855553 PMCID: PMC5981432 DOI: 10.1038/s41598-018-26731-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
We describe a process allowing the patterning of fully stretchable organic electrochemical transistors (OECTs). The device consists of an active stretchable area connected with stretchable metallic interconnections. The current literature does not provide a complete, simple and accurate process using the standard thin film microelectronic techniques allowing the creation of such sensors. An innovative patterning process based on the combination of laser ablation and thermal release tape ensures the fabrication of highly stretchable metallic lines - encapsulated in polydimethylsiloxane - from conventional aluminium tape. State-of-the-art stretchability up to 70% combined with ultra-low mOhms resistance is demonstrated. We present a photolithographic process to pattern the organic active area onto stretchable substrate. Finally the formulation of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is tuned to achieve an OECT with a maximum stretchability of 38% while maintaining transconductance up to 0.35 mS and channel current as high as 0.2 mA.
Collapse
Affiliation(s)
- Bastien Marchiori
- Mines Saint-Etienne, Centre of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France
| | - Roger Delattre
- Mines Saint-Etienne, Centre of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France
| | - Stuart Hannah
- Mines Saint-Etienne, Centre of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France
| | - Sylvain Blayac
- Mines Saint-Etienne, Centre of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France
| | - Marc Ramuz
- Mines Saint-Etienne, Centre of Microelectronics in Provence, Department of Flexible Electronics, F-13541, Gardanne, France.
| |
Collapse
|
30
|
Curto VF, Ferro MP, Mariani F, Scavetta E, Owens RM. A planar impedance sensor for 3D spheroids. LAB ON A CHIP 2018; 18:933-943. [PMID: 29459934 DOI: 10.1039/c8lc00067k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three dimensional cell culture systems have witnessed rapid expansion in the fields of tissue engineering and drug testing owing to their inherent ability to mimic native tissue microenvironments. High throughput technologies have also facilitated rapid and reproducible generation of spheroids and subsequently their use as in vitro tissue models in drug screening platforms. However, drug screening technologies are in need of monitoring platforms to study these 3D culture models. In this work we present a novel platform to measure the electrical impedance of 3D spheroids, through the use of a planar organic electrochemical transistor (OECT) and a novel circular-shaped microtrap. A new strategy was generated to overcome incompatibility of the integration of polydimethylsiloxane (PDMS) microdevices with OECT fabrication. The impedance platform for 3D spheroids was tested by using spheroids formed from mono-cultures of fibroblast and epithelial cells, as well as co-culture of the two cell types. We validated the platform by showing its ability to measure the spheroid resistance (Rsph) of the 3D spheroids and differences in Rsph were found to be related to the ion permeability of the spheroid. Additionally, we showed the potential use of the platform for the on-line Rsph monitoring when a co-culture spheroid was exposed to a porogenic agent affecting the integrity of the cell membrane.
Collapse
Affiliation(s)
- V F Curto
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | | | | | | | | |
Collapse
|
31
|
Stříteský S, Marková A, Víteček J, Šafaříková E, Hrabal M, Kubáč L, Kubala L, Weiter M, Vala M. Printing inks of electroactive polymer PEDOT:PSS: The study of biocompatibility, stability, and electrical properties. J Biomed Mater Res A 2018; 106:1121-1128. [PMID: 29274101 DOI: 10.1002/jbm.a.36314] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Biocompatibility tests and a study of the electrical properties of thin films prepared from six electroactive polymer ink formulations based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were performed. The aim was to find a suitable formulation of PEDOT:PSS and conditions for preparing thin films in order to construct printed bioelectronic devices for biomedical applications. The stability and electrical properties of such films were tested on organic electrochemical transistor (OECT)-based sensor platforms and their biocompatibility was evaluated in assays with 3T3 fibroblasts and murine cardiomyocytes. It was found that the thin films prepared from inks without an additive or any thin film post-treatment provide limited conductivity and stability for use in biomedical applications. These properties were greatly improved by using ethylene glycol and thermal annealing. Addition or post-treatment by ethylene glycol in combination with thermal annealing provided thin films with electrical resistance and a stability sufficient to be used in sensing of animal cell physiology. These films coated with collagen IV showed good biocompatibility in the assay with 3T3 fibroblasts when compared to standard cell culture plastics. Selected films were then used in assays with murine cardiomyocytes. We observed that these cells were able to attach to the PEDOT:PSS films and form an active sensor element. Spontaneously beating clusters were formed, indicating a good physiological status for the cardiomyocyte cells. These results open the door to construction of cheap printed electronic devices for biointerfacing in biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1121-1128, 2018.
Collapse
Affiliation(s)
- Stanislav Stříteský
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno, 612 00, Czech Republic
| | - Aneta Marková
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno, 612 00, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.,International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 656 91, Czech Republic
| | - Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, University Campus Bohunice, Kamenice 5, Brno, 625 00, Czech Republic
| | - Michal Hrabal
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno, 612 00, Czech Republic
| | - Lubomír Kubáč
- Centrum Organické Chemie, Rybitví 296, Rybitví, 533 54, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno, 612 65, Czech Republic.,International Clinical Research Center-Center of Biomolecular and Cell Engineering, St. Anne's University Hospital Brno, Pekařská 53, Brno, 656 91, Czech Republic
| | - Martin Weiter
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno, 612 00, Czech Republic
| | - Martin Vala
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, Brno, 612 00, Czech Republic
| |
Collapse
|
32
|
Santoro F, van de Burgt Y, Keene ST, Cui B, Salleo A. Enhanced Cell-Chip Coupling by Rapid Femtosecond Laser Patterning of Soft PEDOT:PSS Biointerfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39116-39121. [PMID: 29083144 DOI: 10.1021/acsami.7b12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interfacing soft materials with biological systems holds considerable promise for both biosensors and recording live cells. However, the interface between cells and organic substrates is not well studied, despite its crucial role in the effectiveness of the device. Furthermore, well-known cell adhesion enhancers, such as microgrooves, have not been implemented on these surfaces. Here, we present a nanoscale characterization of the cell-substrate interface for 3D laser-patterned organic electrodes by combining electrochemical impedance spectroscopy (EIS) and scanning electron microscopy/focused ion beam (SEM/FIB). We demonstrate that introducing 3D micropatterned grooves on organic surfaces enhances the cell adhesion of electrogenic cells.
Collapse
Affiliation(s)
- Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia , Naples 80125, Italy
| | - Yoeri van de Burgt
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology , Eindhoven 5612 AZ, The Netherlands
| | | | | | | |
Collapse
|
33
|
Rudolph M, Ratcliff EL. Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes. Nat Commun 2017; 8:1048. [PMID: 29051498 PMCID: PMC5715087 DOI: 10.1038/s41467-017-01264-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/01/2017] [Indexed: 11/24/2022] Open
Abstract
Conductive polymer electrodes have exceptional promise for next-generation bioelectronics and energy conversion devices due to inherent mechanical flexibility, printability, biocompatibility, and low cost. Conductive polymers uniquely exhibit hybrid electronic-ionic transport properties that enable novel electrochemical device architectures, an advantage over inorganic counterparts. Yet critical structure-property relationships to control the potential-dependent rates of charge transfer at polymer/electrolyte interfaces remain poorly understood. Herein, we evaluate the kinetics of charge transfer between electrodeposited poly-(3-hexylthiophene) films and a model redox-active molecule, ferrocenedimethanol. We show that the kinetics directly follow the potential-dependent occupancy of electronic states in the polymer. The rate increases then decreases with potential (both normal and inverted kinetic regimes), a phenomenon distinct from inorganic semiconductors. This insight can be invoked to design polymer electrodes with kinetic selectivity toward redox active species and help guide synthetic approaches for the design of alternative device architectures and approaches.
Collapse
Affiliation(s)
- M Rudolph
- Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, 85721, USA
| | - E L Ratcliff
- Department of Materials Science and Engineering, University of Arizona, 1235 E. James E. Rogers Way, Tucson, AZ, 85721, USA.
| |
Collapse
|
34
|
Wang K, Parekh U, Pailla T, Garudadri H, Gilja V, Ng TN. Stretchable Dry Electrodes with Concentric Ring Geometry for Enhancing Spatial Resolution in Electrophysiology. Adv Healthc Mater 2017; 6. [PMID: 28714587 DOI: 10.1002/adhm.201700552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/13/2017] [Indexed: 11/05/2022]
Abstract
The multichannel concentric-ring electrodes are stencil printed on stretchable elastomers modified to improve adhesion to skin and minimize motion artifacts for electrophysiological recordings of electroencephalography, electromyography, and electrocardiography. These dry electrodes with a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate interface layer are optimized to show lower noise level than that of commercial gel disc electrodes. The concentric ring geometry enables Laplacian filtering to pinpoint the bioelectric potential source with spatial resolution determined by the ring distance. This work shows a new fabrication approach to integrate and create designs that enhance spatial resolution for high-quality electrophysiology monitoring devices.
Collapse
Affiliation(s)
- Kaiping Wang
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| | - Udit Parekh
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| | - Tejaswy Pailla
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| | - Harinath Garudadri
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| | - Tse Nga Ng
- Department of Electrical and Computer Engineering; University of California San Diego; 9500 Gilman Drive La Jolla CA 92093-0407 USA
| |
Collapse
|
35
|
Organic Electrochemical Transistor Microplate for Real-Time Cell Culture Monitoring. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7100998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Curto VF, Marchiori B, Hama A, Pappa AM, Ferro MP, Braendlein M, Rivnay J, Fiocchi M, Malliaras GG, Ramuz M, Owens RM. Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring. MICROSYSTEMS & NANOENGINEERING 2017; 3:17028. [PMID: 31057869 PMCID: PMC6445009 DOI: 10.1038/micronano.2017.28] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 05/02/2023]
Abstract
Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from in vitro models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow. Here we present a microfluidic platform integrated with in-line electronic sensors based on the organic electrochemical transistor. Our goals are two-fold, first to generate a platform to host cells in a more physiologically relevant environment (using physiologically relevant fluid shear stress (FSS)) and second to show efficient integration of multiple different methods for assessing cell morphology, differentiation, and integrity. These include optical imaging, impedance monitoring, metabolite sensing, and a wound-healing assay. We illustrate the versatility of this multi-parametric monitoring in giving us increased confidence to validate the improved differentiation of cells toward a physiological profile under FSS, thus yielding more accurate data when used to assess the effect of drugs or toxins. Overall, this platform will enable high-content screening for in vitro drug discovery and toxicology testing and bridges the existing gap in the integration of in-line sensors in microfluidic devices.
Collapse
Affiliation(s)
- Vincenzo F. Curto
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Bastien Marchiori
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
- Flexible Electronics Department, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Adel Hama
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Anna-Maria Pappa
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Magali P. Ferro
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Marcel Braendlein
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Jonathan Rivnay
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Michel Fiocchi
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - George G. Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Marc Ramuz
- Flexible Electronics Department, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| | - Róisín M. Owens
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France
| |
Collapse
|
37
|
Mantione D, Del Agua I, Sanchez-Sanchez A, Mecerreyes D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers (Basel) 2017; 9:E354. [PMID: 30971030 PMCID: PMC6418870 DOI: 10.3390/polym9080354] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022] Open
Abstract
Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. To finish, we review the applications of innovative PEDOT-type materials such as biocompatible conducting polymer layers, conducting hydrogels, biosensors, selective detachment of cells, scaffolds for tissue engineering, electrodes for electrophysiology, implantable electrodes, stimulation of neuronal cells or pan-bio electronics.
Collapse
Affiliation(s)
- Daniele Mantione
- Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain.
| | - Isabel Del Agua
- Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain.
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France.
| | - Ana Sanchez-Sanchez
- Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain.
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France.
| | - David Mecerreyes
- Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.
| |
Collapse
|
38
|
Inal S, Hama A, Ferro M, Pitsalidis C, Oziat J, Iandolo D, Pappa AM, Hadida M, Huerta M, Marchat D, Mailley P, Owens RM. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700052] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sahika Inal
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
- Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Adel Hama
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Magali Ferro
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Charalampos Pitsalidis
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Julie Oziat
- CEA; LETI; MINATEC Campus; 38054 Grenoble France
| | - Donata Iandolo
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Anna-Maria Pappa
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Mikhael Hadida
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | - Miriam Huerta
- Department of Infectomics and Molecular Pathogenesis; Cinvestav 14-740, 070000 Mexico
| | - David Marchat
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | | | - Róisín M. Owens
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| |
Collapse
|
39
|
Braendlein M, Lonjaret T, Leleux P, Badier J, Malliaras GG. Voltage Amplifier Based on Organic Electrochemical Transistor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600247. [PMID: 28105401 PMCID: PMC5238735 DOI: 10.1002/advs.201600247] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/04/2016] [Indexed: 05/29/2023]
Abstract
Organic electrochemical transistors (OECTs) are receiving a great deal of attention as amplifying transducers for electrophysiology. A key limitation of this type of transistors, however, lies in the fact that their output is a current, while most electrophysiology equipment requires a voltage input. A simple circuit is built and modeled that uses a drain resistor to produce a voltage output. It is shown that operating the OECT in the saturation regime provides increased sensitivity while maintaining a linear signal transduction. It is demonstrated that this circuit provides high quality recordings of the human heart using readily available electrophysiology equipment, paving the way for the use of OECTs in the clinic.
Collapse
Affiliation(s)
- Marcel Braendlein
- Department of BioelectronicsEcole Nationale Supérieure des MinesCMP‐EMSE, MOCGardanne13541France
| | - Thomas Lonjaret
- Department of BioelectronicsEcole Nationale Supérieure des MinesCMP‐EMSE, MOCGardanne13541France
- MicroVitae TechnologiesHôtel TechnologiqueMeyreuil13590France
| | - Pierre Leleux
- Department of BioelectronicsEcole Nationale Supérieure des MinesCMP‐EMSE, MOCGardanne13541France
| | - Jean‐Michel Badier
- Institut de Neurosciences des SystèmesAix‐Marseille Université, INS/Inserm13005MarseilleFrance
| | - George G. Malliaras
- Department of BioelectronicsEcole Nationale Supérieure des MinesCMP‐EMSE, MOCGardanne13541France
| |
Collapse
|
40
|
Strakosas X, Huerta M, Donahue MJ, Hama A, Pappa AM, Ferro M, Ramuz M, Rivnay J, Owens RM. Catalytically enhanced organic transistors forin vitrotoxicology monitoring through hydrogel entrapment of enzymes. J Appl Polym Sci 2016. [DOI: 10.1002/app.44483] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xenofon Strakosas
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Miriam Huerta
- Department of Infectomics and Molecular Pathogenesis; Cinvestav; Mexico City Mexico
| | - Mary J. Donahue
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Adel Hama
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Anna-Maria Pappa
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Magali Ferro
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Marc Ramuz
- Department of Flexible Electronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Jonathan Rivnay
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| | - Roisin M. Owens
- Department of Bioelectronics; Center of Microelectronics in Provence, École des Mines de Saint-Étienne; Gardanne 13541 France
| |
Collapse
|
41
|
Friedlein JT, Donahue MJ, Shaheen SE, Malliaras GG, McLeod RR. Microsecond Response in Organic Electrochemical Transistors: Exceeding the Ionic Speed Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8398-8404. [PMID: 27457055 DOI: 10.1002/adma.201602684] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Organic electrochemical transistors (OECTs) are transistors that can have extrinsic transconductances as high as 400 S m-1 , but they typically have response times on the order of 1 ms or longer. These response speeds are limited by ion transport. It is shown that OECTs can exceed the ionic response speed by a factor of 30 when operated in a high-speed bias regime.
Collapse
Affiliation(s)
- Jacob T Friedlein
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Campus box 425, Boulder, CO, 80309-0425, USA
| | - Mary J Donahue
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541, Gardanne, France
| | - Sean E Shaheen
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Campus box 425, Boulder, CO, 80309-0425, USA
- Department of Physics, University of Colorado, Campus box 390, Boulder, CO, 80309-0390, USA
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541, Gardanne, France
| | - Robert R McLeod
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Campus box 425, Boulder, CO, 80309-0425, USA.
| |
Collapse
|
42
|
Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem Rev 2016; 116:13009-13041. [PMID: 27367172 DOI: 10.1021/acs.chemrev.6b00146] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
Collapse
Affiliation(s)
- Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Erik O Gabrielsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden.,Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich , 8092 Zürich, Switzerland
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University , 60174 Norrköping, Sweden
| |
Collapse
|
43
|
Huerta M, Rivnay J, Ramuz M, Hama A, Owens RM. Early Detection of NephrotoxicityIn VitroUsing a Transparent Conducting Polymer Device. ACTA ACUST UNITED AC 2016. [DOI: 10.1089/aivt.2015.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miriam Huerta
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Jonathan Rivnay
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Marc Ramuz
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Adel Hama
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| | - Roisin M. Owens
- Department of Bioelectronics, École Nationale Supérieure des Mines, Gardanne, France
| |
Collapse
|
44
|
|
45
|
Rivnay J, Leleux P, Hama A, Ramuz M, Huerta M, Malliaras GG, Owens RM. Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. Sci Rep 2015; 5:11613. [PMID: 26112429 PMCID: PMC4481393 DOI: 10.1038/srep11613] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the “tightness” of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Pierre Leleux
- 1] Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France [2] Microvitae Technologies, Hôtel Technologique, Europarc Sainte Victoire Bât 6 Route de Valbrillant, 13590 Meyreuil, France
| | - Adel Hama
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Marc Ramuz
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Miriam Huerta
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - George G Malliaras
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| | - Roisin M Owens
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
| |
Collapse
|
46
|
Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens Bioelectron 2015; 68:791-797. [DOI: 10.1016/j.bios.2015.01.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/22/2015] [Accepted: 01/31/2015] [Indexed: 01/12/2023]
|
47
|
Löffler S, Libberton B, Richter-Dahlfors A. Organic bioelectronics in infection. J Mater Chem B 2015; 3:4979-4992. [PMID: 32262450 DOI: 10.1039/c5tb00382b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Organic bioelectronics is a rapidly growing field of both academic and industrial interest. Specific attributes make this class of materials particularly interesting for biomedical and medical applications, and a whole new class of biologically compatible devices is being created owing to structural and functional similarities to biological systems. In parallel, modern advances in biomedical research call for dynamically controllable systems. In infection biology, a progressing bacterial infection can be studied dynamically, at much higher resolution and on a smaller spatial scale than ever before, and it is now understood that minute changes in the tissue microenvironment play pivotal roles in the outcome of infections. This review merges the fields of infection biology and organic bioelectronics, describing the ability of conducting polymer devices to sense, modify, and interact with the infected tissue microenvironment. Though the primary focus is from the perspective of bacterial infections, general examples from cell biology and regenerative medicine are included where relevant. Spatially and temporally controlled biomimetic in vitro systems will greatly aid our molecular understanding of the infection process, thereby providing exciting opportunities for organic bioelectronics in future diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Susanne Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
48
|
March G, Nguyen TD, Piro B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. BIOSENSORS-BASEL 2015; 5:241-75. [PMID: 25938789 PMCID: PMC4493548 DOI: 10.3390/bios5020241] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
Abstract
Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form), or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene) or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins), enzymes or whole cells.
Collapse
Affiliation(s)
| | - Tuan Dung Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam.
| | - Benoit Piro
- Chemistry Department, University Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France.
| |
Collapse
|
49
|
Strakosas X, Bongo M, Owens RM. The organic electrochemical transistor for biological applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.41735] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xenofon Strakosas
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 avenue de Mimet; 13541 Gardanne France
| | - Manuelle Bongo
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 avenue de Mimet; 13541 Gardanne France
| | - Róisín M. Owens
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 avenue de Mimet; 13541 Gardanne France
| |
Collapse
|
50
|
Löffler S, Richter-Dahlfors A. Phase angle spectroscopy on transparent conducting polymer electrodes for real-time measurement of epithelial barrier integrity. J Mater Chem B 2015; 3:4997-5000. [DOI: 10.1039/c5tb00381d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PEDOT:PSS based sensor for continuous electronic monitoring of epithelial barrier formation and disruption compatible with microscopy.
Collapse
Affiliation(s)
- S. Löffler
- Swedish Medical Nanoscience Center
- Department of Neuroscience
- Karolinska Institutet
- Stockholm, Sweden
| | - A. Richter-Dahlfors
- Swedish Medical Nanoscience Center
- Department of Neuroscience
- Karolinska Institutet
- Stockholm, Sweden
| |
Collapse
|