1
|
Ventura LR, da Silva RS, Amorim J, Fellows CE. New look at perturbations in the N 2(C 3Π u,v) electronic state. Indirect predissociation through states C [Formula: see text] and 1 7Σ u+ states. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 336:125986. [PMID: 40088844 DOI: 10.1016/j.saa.2025.125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/22/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
To address a puzzle that has persisted for nearly 90 years, this work presents new evidence on the phenomenon of indirect predissociation in the N2 molecule, focusing specifically on the C3Πu→ B3Πg electronic transition, known as the Second Positive System. A high-resolution experimental analysis of C3Πu→ B3Πg emissions is complemented by high-level ab initio calculations of spin-orbit coupling matrix elements as a function of the interatomic distance. Together, these approaches provide comprehensive insights into the predissociation phenomenon observed in the molecular nitrogen spectrum. The mixing of the N2 (C [Formula: see text] ) state with the N2 (C3Πu) state, exhibiting a high spin-orbit coupling of approximately 40 cm-1, significantly influences the emission of the second positive (C3Πu→ B3Πg) and Herman infrared (C [Formula: see text] A [Formula: see text] ) band systems. Additionally, the 17Σu+ state, with a strong spin-orbit coupling with N2 (C [Formula: see text] ), plays a crucial role in enabling indirect predissociation, leading to the formation of two N(4S) atoms. This study provides a crucial step in understanding the indirect predissociation phenomenon in N2 spectroscopy.
Collapse
Affiliation(s)
- Laiz R Ventura
- Departamento de Física, Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, Brazil
| | - Ramon S da Silva
- Departamento de Física, Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Campus do Aterrado, Volta Redonda, RJ 27213-415, Brazil
| | - Jayr Amorim
- Departamento de Física, Instituto Tecnológico de Aeronáutica, 12228-900, São José dos Campos, Brazil; Departamento de Física, Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Campus do Aterrado, Volta Redonda, RJ 27213-415, Brazil
| | - Carlos E Fellows
- Departamento de Física, Instituto de Ciências Exatas - ICEx, Universidade Federal Fluminense, Campus do Aterrado, Volta Redonda, RJ 27213-415, Brazil
| |
Collapse
|
2
|
Wang M, Meng YR, Xu W, Shen T, Wang Y, Yu Q, Liu C, Gu Y, Tie Z, Fan Z, Zuo JL, Su J, Jin Z. Square-Planar Tetranuclear Cluster-Based High-Symmetry Coordination Metal-Organic Polymers for Efficient Electrochemical Nitrate Reduction to Ammonia. J Am Chem Soc 2025; 147:18327-18337. [PMID: 40367342 DOI: 10.1021/jacs.5c06650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Metal-organic polymers (MOPs) are gaining booming attention as atomically precise single-site catalysts for electrochemical nitrate-to-ammonia conversion owing to their regular structures and tunable functionalities. However, a molecular-level understanding is still lacking for the design of more efficient MOP electrocatalysts. Here, we report the construction of high-symmetry coordination MOPs (Mn-TATB, Fe-TATB, and Co-TATB), utilizing square-planar tetranuclear building units [M4(μ4-O)(CO2)8] (M = Mn, Fe, or Co) bridged by 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (H3TATB) ligands. These MOPs possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments. Benefited from the unique metal-organic coordination framework, Co-TATB demonstrated a remarkable ammonia production Faradaic efficiency (FENH3) of ∼98% across a wide potential range (-0.7 to -1.0 V (vs RHE)) in the electrocatalytic nitrate reduction reaction (NITRR) and maintained stable performance over a long duration when tested in a flow cell at an industrially relevant current density of ∼332.1 mA cm-2. Furthermore, in situ spectroscopic analyses, combined with theoretical calculations, elucidate the intrinsic reaction pathway of the Co-TATB model during the NITRR process. These findings offer insightful perspectives on the strategic design of electrocatalysts with symmetrical configurations for the purification of nitrate-containing wastewater and the green synthesis of ammonia.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ya-Ru Meng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Tianyu Shen
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yunhao Wang
- Department of Chemistry, Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Qianchuan Yu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Chongjing Liu
- National Synchrotron Radiation Laboratory, Chinese Academy of Sciences Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yuming Gu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jian Su
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
3
|
Shehzad A, Geng L, Luo Z. Electrocatalytic Nitrogen Reduction to Ammonia Using TiO 2-Supported Cu 4Cl 4(PPh 3) 4 and Ag 4Cl 4(PPh 3) 4 Nanoclusters. J Phys Chem Lett 2025:5538-5545. [PMID: 40424531 DOI: 10.1021/acs.jpclett.5c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The electrocatalytic nitrogen reduction reaction (ENRR) offers a sustainable and promising approach for synthesizing ammonia under ambient conditions, providing an alternative to conventional industrial processes. However, challenges such as the inherent inertness of N2 and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder ammonia yield and Faradaic efficiencies. This research use TiO2-supported Cu4Cl4(PPh3)4 and Ag4Cl4(PPh3)4 nanoclusters (NCs) with quasi-cubic M4Cl4 cores (M = Ag or Cu) for ENRR investigations. The results reveal that TiO2-supported Cu4Cl4(PPh3)4 NCs achieved an ammonia yield of 4.25 μg·h-1·cm-2 with a Faradaic efficiency (FE) of 53.0% at -0.9 V vs RHE. In contrast, TiO2-supported Ag4Cl4(PPh3)4 NCs produced a yield of 3.60 μg·h-1·cm-2 and an FE of 51.39% at -0.8 V vs RHE. Both NCs on the TiO2 support demonstrated superior performance compared to their unsupported counterparts, underscoring the critical role of TiO2 in improving electron transfer and fostering synergistic effects, thereby boosting catalytic activity. This research offers important insights into the design of supported NCs as high-performance catalysts, advancing the development of environmentally sustainable and energy-efficient approaches for ammonia production.
Collapse
Affiliation(s)
- Aamir Shehzad
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Hou T, Shan T, Rong H, Zhang J. Nitrate Electroreduction to Ammonia Over Copper-based Catalysts. CHEMSUSCHEM 2025; 18:e202402331. [PMID: 39676306 DOI: 10.1002/cssc.202402331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
The electrocatalytic reduction of nitrate (NO3 -) to ammonia (NH3) holds substantial promise, as it transforms NO3 - from polluted water into valuable NH3. However, the reaction is limited by sluggish kinetics and low NH3 selectivity. Cu-based catalysts with unique electronic structures demonstrate rapid NO3 - to NO2 - rate-determining step (RDS) and fast electrocatalytic nitrate reduction reaction (eNO3RR) kinetics among non-noble metal catalysts. Nonetheless, achieving high robustness and selectivity for NH3 with Cu-based catalysts remains a significant challenge. This review provides a comprehensive overview of the reaction mechanisms in eNO3RR, highlights how the structures of monometallic and bimetallic Cu-based catalyst affect catalytic properties, and discusses the current challenges as well as prospects in eNO3RR.
Collapse
Affiliation(s)
- Tailei Hou
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianshang Shan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519088, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Chemistry and Chemical Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519088, China
| |
Collapse
|
5
|
Shehzad A, Yi Q, Cui C, Luo Z. Electrocatalytic nitrogen reduction to ammonia by graphene-supported Au 4Cu 2 and Au 2Ag 2 nanoclusters. NANOSCALE 2025; 17:7453-7459. [PMID: 40008436 DOI: 10.1039/d4nr05341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Understanding the impact of size dependence and doping effects in small metal cluster catalysis is crucial for the rational design and development of new catalysts. We synthesized Au2Ag2(PPh3)2(PhCC)4 and Au4Cu2(PPh3)4(PhCC)6 nanoclusters (NCs) and assessed their efficiency in the electrocatalytic nitrogen reduction reaction (ENRR). Our findings demonstrate that graphene-supported Au4Cu2 NCs exhibit remarkable ENRR efficiency, achieving an ammonia yield of 4.14 μg h-1 cm-2 and a faradaic efficiency (FE) of up to 49.60% at -0.8 V relative to the reversible hydrogen electrode (RHE). The Au2Ag2 NCs possess a similar metal core to Au4Cu2 NCs but lack two supplementary Au(PPh3)(PhCC) moieties, resulting in a smaller ammonia yield and FE value. The ENRR activity of graphene-supported Au4Cu2 NCs surpasses that of other supported or unsupported systems, highlighting the significance of gold catalysis, copper doping, and the major influence of graphene as a support. These findings offer critical insights into the design of highly efficient and selective electrocatalysts for improving ammonia production.
Collapse
Affiliation(s)
- Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhao Yi
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chaonan Cui
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
7
|
Li C, Zhu Q, Song C, Zeng Y, Zheng Y. Electrocatalysts for Urea Synthesis from CO 2 and Nitrogenous Species: From CO 2 and N 2/NOx Reduction to urea synthesis. CHEMSUSCHEM 2024; 17:e202401333. [PMID: 39121168 PMCID: PMC11660754 DOI: 10.1002/cssc.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/11/2024]
Abstract
The traditional industrial synthesis of urea relies on the energy-intensive and polluting process, namely the Haber-Bosch method for ammonia production, followed by the Bosch-Meiser process for urea synthesis. In contrast, electrocatalytic C-N coupling from carbon dioxide (CO2) and nitrogenous species presents a promising alternative for direct urea synthesis under ambient conditions, bypassing the need for ammonia production. This review provides an overview of recent progress in the electrocatalytic coupling of CO2 and nitrogen sources for urea synthesis. It focuses on the role of intermediate species and active site structures in promoting urea synthesis, drawing from insights into reactants' adsorption behavior and interactions with catalysts tailored for CO2 reduction, nitrogen reduction, and nitrate reduction. Advanced electrocatalyst design strategies for urea synthesis from CO2 and nitrogenous species under ambient conditions are explored, providing insights for efficient catalyst design. Key challenges and prospective directions are presented in the conclusion. Mechanistic studies elucidating the C-N coupling reaction and future development directions are discussed. The review aims to inspire further research and development in electrocatalysts for electrochemical urea synthesis.
Collapse
Affiliation(s)
- Chun Li
- Department of Chemical and Biochemical EngineeringWestern University1150 Richmond StreetLondon, ONN6A 3K7Canada
| | - Qiuji Zhu
- Department of Chemical and Biochemical EngineeringWestern University1150 Richmond StreetLondon, ONN6A 3K7Canada
| | - Chaojie Song
- Clean Energy InnovationNational Research Council Canada4250 Wesbrook MallVancouver, BCV6T 1W5Canada
| | - Yimin Zeng
- CanmetMaterial183 Longwood Rd S.Hamilton, OntarioL8P 0A5Canada
| | - Ying Zheng
- Department of Chemical and Biochemical EngineeringWestern University1150 Richmond StreetLondon, ONN6A 3K7Canada
| |
Collapse
|
8
|
Park CH, Kim UJ, Choi JH, Lee SH. Synergistic N/F Dual-Doped MoC/C Catalyst Synthesized via Liquid Phase Plasma for Sustainable Ammonia Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63540-63552. [PMID: 39505495 PMCID: PMC11583126 DOI: 10.1021/acsami.4c12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
NH3 is a versatile solution for the storage and distribution of sustainable energy, offering high energy density and promising applications as a renewable hydrogen carrier. However, electrochemical NH3 synthesis under ambient conditions remains challenging, such as low selectivity and efficiency, owing to the inertness of N≡N and competing reactions. In this study, a catalyst (MoC/NFC) comprising molybdenum carbide evenly dispersed on carbon doped with N and F heteroatoms was successfully synthesized using liquid-phase plasma. The MoC/NFC catalyst exhibited a maximum NH3 yield of 115 μg h-1 mg-1cat. with a faradaic efficiency of 1.15% at -0.7 V vs reversible hydrogen electrode in 0.1 M KOH electrolyte. Pyridinic- and pyrrolic-N atoms adjacent to the carbon pores served as active sites for N2 adsorption and enabled N2 triple bond cleavage. In addition, F doping contributed to N2 activation owing to the high electronegativity of 3.98, resulting in the attraction of more electrons. These findings demonstrate a significant advancement in the development of efficient catalysts for electrochemical ammonia synthesis, potentially paving the way for scalable and sustainable NH3 production methods that can support the growing demand for renewable energy storage solutions.
Collapse
Affiliation(s)
- Chang-Hyeon Park
- Department
of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ui-Jun Kim
- Department
of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Jae-Hyuk Choi
- Division
of Marine System Engineering, Korea Maritime
& Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic
of Korea
| | - Seung-Hyo Lee
- Department
of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| |
Collapse
|
9
|
Chen C, Liu Y, Yu X, Li Z, Li W, Li Q, Zhang X, Xiao B. Unlocking the Nitrogen Reduction Electrocatalyst with a Dual-Metal-Boron System: From High-Throughput Screening to Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39566087 DOI: 10.1021/acsami.4c15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Recently, dual-metal catalysts have attracted much attention due to their abundant active sites and tunable chemical properties. On the other hand, metal borides have been widely applied in splitting the inert chemical bonds in small molecules (such as N2) because of their excellent catalytic performances. As a combination of the above two systems, in this work, 11 kinds of transition metal atoms (TM = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and W) were selected to embed in boron-doped graphene (BG) to construct 66 dual-metal-boron systems, and their performances toward the N2 reduction reaction (NRR) were examined using first-principles simulations. Our results revealed that such a dual-TM@BG system exhibits excellent thermodynamic and electrochemical stabilities, which facilitate the experimental synthesis. In particular, Fe-Fe- and Fe-Co-doped BG exhibit excellent performance for NRR, with the limiting potentials of -0.29 and -0.32 V, respectively, and both of them exhibit inhibitory effects on the H2 evolution reaction. Remarkably, the microkinetic modeling analysis revealed that the turnover frequency for the NH3 production on FeFe@BG reaches up to 7.27 × 108 s-1 site-1 at 700 K and 100 bar, which further confirms its ultrafast reaction rate. In addition, the machine learning method was employed to further understand the catalytic mechanism, and it is found that the NRR performances of dual-TM@BG catalysts are closely related to the sum of radii of two TM atoms. Therefore, our work not only proposed two promising electrocatalysts for NRR but also verified the feasibility for the application of a dual-metal-boron system in NRR.
Collapse
Affiliation(s)
- Chen Chen
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Yi Liu
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xuefang Yu
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Zhongwei Li
- Yantai Gogetter Technology Company, Limited, Yantai, Shandong 264005, People's Republic of China
| | - Wenzuo Li
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xiaolong Zhang
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Bo Xiao
- Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| |
Collapse
|
10
|
Zhang W, Li J, Sun C, Xing X, Lv Y, Xiong W, Li H. Construction of Fe 3O 4@Au catalysts via the surface functional group effect of ferric oxide for efficient electrocatalytic nitrite reduction. Dalton Trans 2024; 53:15618-15629. [PMID: 39234661 DOI: 10.1039/d4dt01956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Surface modification is one of the effective strategies to control the morphology and electrocatalytic performance of noble metal/transition metal oxide matrix composite catalysts. In this work, we successfully introduced modification groups such as -NH2, -COOH, and -SH on the surface of Fe3O4 using the hydrothermal method. It was found that when the modification group -COOH was introduced, the regular spherical morphology of Fe3O4 was still maintained in Fe3O4-COOH, while Fe3O4-COOH had a relatively smaller spherical particle size (≈155.9 nm). Due to its smaller particle size, Fe3O4-COOH has a larger active area than Fe3O4, exposing more active sites. The abundant active sites in Fe3O4-COOH provide more nucleation and growth sites for Au particles, which is beneficial for the recombination between Fe3O4-COOH and Au. In addition, the experimental results of exploring the effect of Au precursor dosage on the synthesis of the Fe3O4-COOH@Au structure and performance show that the synthesized Fe3O4-COOH@Au1.0 catalyst has higher electrocatalytic activity. Due to the larger electrochemically active surface area of the Fe3O4-COOH@Au1.0 catalyst compared to those of Fe3O4-COOH@Au0.5 and Fe3O4-COOH@Au1.5 catalysts, the adsorption and activation of NO2- reactants were accelerated, thereby improving the electrocatalytic performance. Therefore, owing to the morphological and structural characteristics of Fe3O4-COOH combined with the high activity of Au nanoparticles, the synthesized Fe3O4-COOH@Au exhibits effective electrocatalytic activity in the electrocatalytic NO2-RR synthesis of ammonia. At a voltage of -0.8 V (vs. RHE), the ammonia yield reached 2092.8 μg h-1 mgcat-1 and Faraday efficiency reached 81.2%. The findings of this work will enrich our understanding of the construction of efficient Fe3O4@Au catalysts based on surface functionalization and help to design efficient electrocatalytic NO2-RR catalysts for practical applications.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Jin Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Cuilian Sun
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xiujing Xing
- Chemistry Department, University of California, Davis, California 95616, USA
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014 P. R. China
| | - Wei Xiong
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor & Green Chemical Technology, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
11
|
Zhang W, Wen Y, Chen H, Wang M, Zhu C, Wang Y, Lu Z. Sulfur-regulated CoSe 2 nanowires with high-charge active centers for electrochemical nitrate reduction to ammonium. MATERIALS HORIZONS 2024; 11:4454-4461. [PMID: 38958934 DOI: 10.1039/d4mh00593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Developing high-efficiency electrocatalysts for nitrate-to-ammonia transformation holds significant promise for the production of ammonia, a crucial component in agricultural fertilizers and as a carbon-free energy carrier. In this study, we propose a viable strategy involving sulfur doping to modulate both the microstructure and electronic properties of CoSe2 for nitrate reduction. This approach remarkably enhances the conversion of nitrate to ammonia by effectively regulating the adsorption capability of nitrogenous intermediates. Specifically, sulfur-doped CoSe2 nanowires (S-CoSe2 NWs) exhibit a peak faradaic efficiency of 93.1% at -0.6 V vs. RHE and achieve the highest NH3 yield rate of 11.6 mg h-1 cm-2. Mechanistic investigations reveal that sulfur doping facilitates the creation of highly charged active sites, which enhance the adsorption of nitrite and subsequent hydrogenation, leading to improved selectivity towards ammonia production.
Collapse
Affiliation(s)
- Wuyong Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Yingjie Wen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Minli Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Caihan Zhu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China.
| |
Collapse
|
12
|
Yuan H, Zhu C, Hou Y, Yang HG, Wang H. Optimizing the Lattice Nitrogen Coordination to Break the Performance Limitation of Metal Nitrides for Electrocatalytic Nitrogen Reduction. JACS AU 2024; 4:3038-3048. [PMID: 39211580 PMCID: PMC11350572 DOI: 10.1021/jacsau.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Metal nitrides (MNs) are attracting enormous attention in the electrocatalytic nitrogen reduction reaction (NRR) because of their rich lattice nitrogen (Nlat) and the unique ability of Nlat vacancies to activate N2. However, continuing controversy exists on whether MNs are catalytically active for NRR or produce NH3 via the reductive decomposition of Nlat without N2 activation in the in situ electrochemical conditions, let alone the rational design of high-performance MN catalysts. Herein, we focus on the common rocksalt-type MN(100) catalysts and establish a quantitative theoretical framework based on the first-principles microkinetic simulations to resolve these puzzles. The results show that the Mars-van Krevelen mechanism is kinetically more favorable to drive the NRR on a majority of MNs, in which Nlat plays a pivotal role in achieving the Volmer process and N2 activation. In terms of stability, activity, and selectivity, we find that MN(100) with moderate formation energy of Nlat vacancy (E vac) can achieve maximum activity and maintain electrochemical stability, while low- or high-E vac ones are either unstable or catalytically less active. Unfortunately, owing to the five-coordinate structural feature of Nlat on rocksalt-type MN(100), this maximum activity is limited to a yield of NH3 of only ∼10-15 mol s-1 cm-2. Intriguingly, we identify a volcano-type activity-regulating role of the local structural features of Nlat and show that the four-coordinate Nlat can exhibit optimal activity and overcome the performance limitation, while less coordinated Nlat fails. This work provides, arguably for the first time, an in-depth theoretical insight into the activity and stability paradox of MNs for NRR and underlines the importance of reaction kinetic assessment in comparison with the prevailing simple thermodynamic analysis.
Collapse
Affiliation(s)
- Haiyang Yuan
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Chen Zhu
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Yu Hou
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Hua Gui Yang
- Key
Laboratory for Ultrafine Materials of Ministry of Education, Shanghai
Engineering Research Center of Hierarchical Nanomaterials, School
of Materials Science and Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Wang
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis,
Center for Computational Chemistry and Research Institute of Industrial
Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Long X, Huang F, Yao Z, Li P, Zhong T, Zhao H, Tian S, Shu D, He C. Advancements in Electrocatalytic Nitrogen Reduction: A Comprehensive Review of Single-Atom Catalysts for Sustainable Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400551. [PMID: 38516940 DOI: 10.1002/smll.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.
Collapse
Affiliation(s)
- Xianhu Long
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fan Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Kalra P, Samolia M, Bashir AU, Avasare VD, Ingole PP. Engineered Electron-Deficient Sites at Boron-Doped Strontium Titanate/Electrolyte Interfaces Accelerate the Electrocatalytic Reduction of N 2 to NH 3: A Combined DFT and Experimental Electrocatalysis Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37938-37951. [PMID: 39012060 DOI: 10.1021/acsami.4c05487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The development of an efficient, selective, and durable catalysis system for the electrocatalytic N2 reduction reaction (ENRR) is a promising strategy for the sustainable production of ammonia. The high-performance ENRR is limited by two major challenges: poor adsorption of N2 over the catalyst surface and abysmal N2 solubility in aqueous electrolytes. Herein, with the help of our combined density functional theory (DFT) calculations and experimental electrocatalysis study, we demonstrate that concurrently induced electron-deficient Lewis acid sites in an electrocatalyst and in an electrolyte medium can significantly boost the ENRR performance. The DFT calculations, ex situ X-ray photoelectron and FTIR spectroscopy, electrochemical measurements, and N2-TPD (temperature-programmed desorption) over boron-doped strontium titanate (BSTO) samples reveal that the Lewis acid-base interactions of N2 synergistically enhance the adsorption and activation of N2. Besides, the B-dopant induces the defect sites (oxygen vacancies and Ti3+) that assist in enhanced N2 adsorption and results in suppressed hydrogen evolution due to B-induced electron-deficient sites for H+ adsorption. The insights from the DFT study evince that B prefers the Srtop position (on top of Sr) where N2 adsorbs in an end-on configuration, which favors the associative alternating pathway and suppresses the competitive hydrogen evolution. Thus, our combined experimental and DFT study demonstrates an insight toward enhancing the ENRR performance along with the suppressed hydrogen evolution via concurrently engineered electron-deficient sites at electrode and electrolyte interfaces.
Collapse
Affiliation(s)
- Paras Kalra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Madhu Samolia
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
| | - Aejaz Ul Bashir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vidya D Avasare
- Department of Chemistry, Sir Parashurambhau College, Pune, Maharashtra 411030, India
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India
| | | |
Collapse
|
15
|
Guo Y, Zhao S, Tang X, Yi H. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. J Environ Sci (China) 2024; 141:261-276. [PMID: 38408827 DOI: 10.1016/j.jes.2023.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 02/28/2024]
Abstract
Metal-organic frameworks (MOFs) have favorable characteristics such as large specific surface area, high porosity, structural diversity, and pore surface modification, giving them great potential for development and attractive prospects in the research area of modern materials electrocatalysis. However, unsatisfactory catalytic activity and poor electronic conductivity are the main challenges facing MOFs. This review focuses on MOF-based materials used in electrocatalysis, based on the types of catalytic reactions that have used MOF-based materials in recent years along with their applications, and also looks at some new electrocatalytic materials and their future development prospects.
Collapse
Affiliation(s)
- Yutong Guo
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shunzheng Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
16
|
Jiang Y, Liu S, Huan Y, He Y, Cheng Q, Yuan X, Liu J, Wang M, Yan C, Qian T. Rare-Earth Lanthanum-Evoked Amorphization and Optimization to Boost Ambient Nitrogen Fixation over Single-Atom Catalysts. J Phys Chem Lett 2024; 15:5495-5500. [PMID: 38748898 DOI: 10.1021/acs.jpclett.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Single-atom catalysts (SACs) have been widely studied in a variety of electrocatalysis. However, its application in the electrocatalytic nitrogen reduction reaction (NRR) field still suffers from unsatisfactory performance, due to the sluggish mass transfer and significant kinetic barriers. Herein, a novel rare-earth-lanthanum-evoked optimization strategy is proposed to boost ambient NRR over SACs. The incorporation of La with a large atomic radius tends to break the atomic long-range order and trigger the amorphization of SACs, endowing a greater density of dangling bonds that could modify affinity for reactants and adsorbates. Moreover, with unique 5d16s2 valence-electron configurations, its presence could further enrich the electron density and enhance the intrinsic activity of single-metal center via the valence orbital coupling. As expected, the La-modified catalyst presents excellent activity toward the electrochemical NRR, delivering a maximum ammonia yield rate of 33.91 μg h-1 mg-1 and a remarkable Faradaic efficiency of 53.82%.
Collapse
Affiliation(s)
- Yuzhuo Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yunfei Huan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanzheng He
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Qiyang Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengfan Wang
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
17
|
Hu Y, Han X, Hu S, Yu G, Chao T, Wu G, Qu Y, Chen C, Liu P, Zheng X, Yang Q, Hong X. Surface-Diffusion-Induced Amorphization of Pt Nanoparticles over Ru Oxide Boost Acidic Oxygen Evolution. NANO LETTERS 2024; 24:5324-5331. [PMID: 38624236 DOI: 10.1021/acs.nanolett.4c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Phase transformation offers an alternative strategy for the synthesis of nanomaterials with unconventional phases, allowing us to further explore their unique properties and promising applications. Herein, we first observed the amorphization of Pt nanoparticles on the RuO2 surface by in situ scanning transmission electron microscopy. Density functional theory calculations demonstrate the low energy barrier and thermodynamic driving force for Pt atoms transferring from the Pt cluster to the RuO2 surface to form amorphous Pt. Remarkably, the as-synthesized amorphous Pt/RuO2 exhibits 14.2 times enhanced mass activity compared to commercial RuO2 catalysts for the oxygen evolution reaction (OER). Water electrolyzer with amorphous Pt/RuO2 achieves 1.0 A cm-2 at 1.70 V and remains stable at 200 mA cm-2 for over 80 h. The amorphous Pt layer not only optimized the *O binding but also enhanced the antioxidation ability of amorphous Pt/RuO2, thereby boosting the activity and stability for the OER.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Shaojin Hu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Tingting Chao
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Cai Chen
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qing Yang
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China
| |
Collapse
|
18
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
19
|
Wang J, Ye J, Chen S, Zhang Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules 2024; 29:1617. [PMID: 38611896 PMCID: PMC11013576 DOI: 10.3390/molecules29071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/14/2024] Open
Abstract
The crystal phase, alongside the composition, morphology, architecture, facet, size, and dimensionality, has been recognized as a critical factor influencing the properties of noble metal nanomaterials in various applications. In particular, unconventional crystal phases can potentially enable fascinating properties in noble metal nanomaterials. Recent years have witnessed notable advances in the phase engineering of nanomaterials (PEN). Within the accessible strategies for phase engineering, the effect of strain cannot be ignored because strain can act not only as the driving force of phase transition but also as the origin of the diverse physicochemical properties of the unconventional crystal phase. In this review, we highlight the development of unconventional crystal-phase noble metal nanomaterials within strain engineering. We begin with a short introduction of the unconventional crystal phase and strain effect in noble metal nanomaterials. Next, the correlations of the structure and performance of strain-engineered unconventional crystal-phase noble metal nanomaterials in electrocatalysis are highlighted, as well as the phase transitions of noble metal nanomaterials induced by the strain effect. Lastly, the challenges and opportunities within this rapidly developing field (i.e., the strain engineering of unconventional crystal-phase noble metal nanocatalysts) are discussed.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | | | | | - Qinyong Zhang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
20
|
Younis MA, Manzoor S, Ali A, Guo L, Yousaf MI, Nosheen S, Naveed A, Ahmad N. Nitrogen-vacancy-rich molybdenum nitride nanosheets as highly efficient electrocatalysts for nitrogen reduction reaction. Dalton Trans 2024; 53:1809-1816. [PMID: 38173319 DOI: 10.1039/d3dt02761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The development of low-cost earth-abundant electrocatalysts to produce ammonia (NH3) with high efficiency for the nitrogen (N2) reduction reaction (NRR) remains challenging. Herein, we propose the development of highly efficient ultrathin nitrogen-vacancy-rich molybdenum nitride nanosheets (MoN-NV) for NRR using basic electrolytes under ambient conditions. In 0.1 M KOH, this catalyst attained a high faradaic efficiency (FE) of ∼14% with an NH3 yield of 22.5 μg h-1 mg-1cat at -0.3 V vs. a reversible hydrogen electrode under ambient conditions. The characterization results and electrochemical studies disclosed that nitrogen vacancies in the MoN-NV nanosheets played a critical role in the enhanced electrocatalytic activity for NRR. Furthermore, the recycling tests confirmed the stability of the catalyst during NRR electrolysis.
Collapse
Affiliation(s)
- Muhammad Adnan Younis
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Saira Manzoor
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Amjad Ali
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice 40-600, Poland
| | - Li Guo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | | | - Sofia Nosheen
- Department of environmental science, Lahore College for Women University, Pakistan
| | - Ahmad Naveed
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
22
|
Yang Y, Zhao S, Pang Y, Tang G, Song Y, Jiang M, Li CP. Promoting electrochemical nitrogen fixation by nanoporous AuCu alloys. Chem Commun (Camb) 2023; 59:12132-12135. [PMID: 37740302 DOI: 10.1039/d3cc02979d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Electrochemical nitrogen fixation provides a sustainable alternative to the Haber-Bosch technique. Herein, nanoporous AuCu alloys are fabricated with more active sites and accessible channels, which promote N2 absorbability and activation. Our catalyst displays superior efficiency of 45.7%, ammonia yield of 25.7 μg h-1 cm-2 and selectivity of 98%, overcoming solid Au and Cu nanoparticles.
Collapse
Affiliation(s)
- Yijie Yang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Shulin Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Yue Pang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Guorui Tang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Yu Song
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Muyang Jiang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, 300387 Tianjin, China.
| |
Collapse
|
23
|
Jeong Y, Janani G, Kim D, An TY, Surendran S, Lee H, Moon DJ, Kim JY, Han MK, Sim U. Roles of Heterojunction and Cu Vacancies in the Au@Cu 2-xSe for the Enhancement of Electrochemical Nitrogen Reduction Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37795987 DOI: 10.1021/acsami.3c07947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The utilization of hydrogen (H2) as a fuel source is hindered by the limited infrastructure and storage requirements. In contrast, ammonia (NH3) offers a promising solution as a hydrogen carrier due to its high energy density, liquid storage capacity, low cost, and sustainable manufacturing. NH3 has garnered significant attention as a key component in the development of next-generation refueling stations, aligning with the goal of a carbon-free economy. The electrochemical nitrogen reduction reaction (ENRR) enables the production of NH3 from nitrogen (N2) under ambient conditions. However, the low efficiency of the ENRR is limited by challenges such as the electron-stealing hydrogen evolution reaction (HER) and the breaking of the stable N2 triple bond. To address these limitations and enhance ENRR performance, we prepared Au@Cu2-xSe electrocatalysts with a core@shell structure using a seed-mediated growth method and a facile hot-injection method. The catalytic activity was evaluated using both an aqueous electrolyte of KOH solution and a nonaqueous electrolyte consisting of tetrahydrofuran (THF) solvent with lithium perchlorate and ethanol as proton donors. ENRR in both aqueous and nonaqueous electrolytes was facilitated by the synergistic interaction between Au and Cu2-xSe (copper selenide), forming an Ohmic junction between the metal and p-type semiconductor that effectively suppressed the HER. Furthermore, in nonaqueous conditions, the Cu vacancies in the Cu2-xSe layer of Au@Cu2-xSe promoted the formation of lithium nitride (Li3N), leading to improved NH3 production. The synergistic effect of Ohmic junctions and Cu vacancies in Au@Cu2-xSe led to significantly higher ammonia yield and faradaic efficiency (FE) in nonaqueous systems compared to those in aqueous conditions. The maximum NH3 yields were approximately 1.10 and 3.64 μg h-1 cm-2, with the corresponding FE of 2.24 and 67.52% for aqueous and nonaqueous electrolytes, respectively. This study demonstrates an attractive strategy for designing catalysts with increased ENRR activity by effectively engineering vacancies and heterojunctions in Cu-based electrocatalysts in both aqueous and nonaqueous media.
Collapse
Affiliation(s)
- Yujin Jeong
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Dohun Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Tae-Yong An
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Hyunjung Lee
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Dae Jun Moon
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
| | - Joon Young Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo 58326, Republic of Korea
| | - Mi-Kyung Han
- Department of Polymer Engineering, Graduate School, Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo 58326, Republic of Korea
- Center for Energy Storage System, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
24
|
Gao R, Dai TY, Meng Z, Sun XF, Liu DX, Shi MM, Li HR, Kang X, Bi B, Zhang YT, Xu TW, Yan JM, Jiang Q. A Bifunctional Catalyst for Green Ammonia Synthesis from Ubiquitous Air and Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303455. [PMID: 37363875 DOI: 10.1002/adma.202303455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Indexed: 06/28/2023]
Abstract
Ammonia (NH3 ) is essential for modern agriculture and industry, and, due to its high hydrogen density and no carbon emission, it is also expected to be the next-generation of "clean" energy carrier. Herein, directly from air and water, a plasma-electrocatalytic reaction system for NH3 production, which combines two steps of plasma-air-to-NOx - and electrochemical NOx - reduction reaction (eNOx RR) with a bifunctional catalyst, is successfully established. Especially, the bifunctional catalyst of CuCo2 O4 /Ni can simultaneously promote plasma-air-to-NOx - and eNOx RR processes. The easy adsorption and activation of O2 by CuCo2 O4 /Ni greatly improve the NOx - production rate at the first step. Further, CuCo2 O4 /Ni can also resolve the overbonding of the key intermediate of * NO, and thus reduce the energy barrier of the second step of eNOx RR. Finally, the "green" NH3 production achieves excellent FENH3 (96.8%) and record-high NH3 yield rate of 145.8 mg h-1 cm-2 with large partial current density (1384.7 mA cm-2 ). Moreover, an enlarged self-made H-type electrolyzer improves the NH3 yield to 3.6 g h-1 , and the obtained NH3 is then rapidly converted to a solid of magnesium ammonium phosphate hexahydrate, which favors the easy storage and transportation of NH3 .
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Zhe Meng
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xue-Feng Sun
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Dong-Xue Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Miao-Miao Shi
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Hong-Rui Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Xia Kang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Bo Bi
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Yu-Tian Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Tong-Wen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun-Min Yan
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
25
|
Ye K, Zhang Y, Mourdikoudis S, Zuo Y, Liang J, Wang M. Application of Oxygen-Group-Based Amorphous Nanomaterials in Electrocatalytic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302341. [PMID: 37337384 DOI: 10.1002/smll.202302341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Indexed: 06/21/2023]
Abstract
Environmentally friendly energy sources (e.g., hydrogen) require an urgent development targeting to address the problem of energy scarcity. Electrocatalytic water splitting is being explored as a convenient catalytic reaction in this context, and promising amorphous nanomaterials (ANMs) are receiving increasing attention due to their excellent catalytic properties.Oxygen group-based amorphous nanomaterials (O-ANMs) are an important component of the broad family of ANMs due to their unique amorphous structure, large number of defects, and abundant randomly oriented bonds, O-ANMs induce the generation of a larger number of active sites, which favors a better catalytic activity. Meanwhile, amorphous materials can disrupt the inherent features of conventional crystalline materials regarding electron transfer paths, resulting in higher flexibility. O-ANMs mainly include VIA elements such as oxygen, sulfur, selenium, tellurium, and other transition metals, most of which are reported to be free of noble metals and have comparable performance to commercial catalysts Pt/C or IrO2 and RuO2 in electrocatalysis. This review covers the features and reaction mechanism of O-ANMs, the synthesis strategies to prepare O-ANMs, as well as the application of O-ANMs in electrocatalytic water splitting. Last, the challenges and prospective remarks for future development in O-ANMs for electrocatalytic water splitting are concluded.
Collapse
Affiliation(s)
- Kang Ye
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuqi Zhang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Stefanos Mourdikoudis
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Yunpeng Zuo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengye Wang
- School of Materials, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Zhang YZ, Li PH, Ren YN, He Y, Zhang CX, Hu J, Cao XQ, Leung MKH. Metal-Based Electrocatalysts for Selective Electrochemical Nitrogen Reduction to Ammonia. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2580. [PMID: 37764608 PMCID: PMC10535433 DOI: 10.3390/nano13182580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Ammonia (NH3) plays a significant role in the manufacture of fertilizers, nitrogen-containing chemical production, and hydrogen storage. The electrochemical nitrogen reduction reaction (e-NRR) is an attractive prospect for achieving clean and sustainable NH3 production, under mild conditions driven by renewable energy. The sluggish cleavage of N≡N bonds and poor selectivity of e-NRR are the primary challenges for e-NRR, over the competitive hydrogen evolution reaction (HER). The rational design of e-NRR electrocatalysts is of vital significance and should be based on a thorough understanding of the structure-activity relationship and mechanism. Among the various explored e-NRR catalysts, metal-based electrocatalysts have drawn increasing attention due to their remarkable performances. This review highlighted the recent progress and developments in metal-based electrocatalysts for e-NRR. Different kinds of metal-based electrocatalysts used in NH3 synthesis (including noble-metal-based catalysts, non-noble-metal-based catalysts, and metal compound catalysts) were introduced. The theoretical screening and the experimental practice of rational metal-based electrocatalyst design with different strategies were systematically summarized. Additionally, the structure-function relationship to improve the NH3 yield was evaluated. Finally, current challenges and perspectives of this burgeoning area were provided. The objective of this review is to provide a comprehensive understanding of metal-based e-NRR electrocatalysts with a focus on enhancing their efficiency in the future.
Collapse
Affiliation(s)
- Yi-Zhen Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Peng-Hui Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yi-Nuo Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430024, China
| | - Cheng-Xu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiao-Qiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Y.-Z.Z.)
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Huang H, Huang A, Liu D, Han W, Kuo CH, Chen HY, Li L, Pan H, Peng S. Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low-Temperature and Knittable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303109. [PMID: 37247611 DOI: 10.1002/adma.202303109] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Indexed: 05/31/2023]
Abstract
High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.
Collapse
Affiliation(s)
- Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Aoming Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Wentao Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
28
|
Ding YQ, Chen ZY, Zhang FX, Ma JB. Coupling of N 2 and O 2 in the Gas Phase to Synthesize Nitric Oxide at Room Temperature: A Zeldovich-Like Strategy. J Phys Chem Lett 2023; 14:7597-7602. [PMID: 37603698 DOI: 10.1021/acs.jpclett.3c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.
Collapse
Affiliation(s)
- Yong-Qi Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhi-Ying Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng-Xiang Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
29
|
Yang X, Tian Y, Mukherjee S, Li K, Chen X, Lv J, Liang S, Yan LK, Wu G, Zang HY. Constructing Oxygen Vacancies via Engineering Heterostructured Fe 3 C/Fe 3 O 4 Catalysts for Electrochemical Ammonia Synthesis. Angew Chem Int Ed Engl 2023; 62:e202304797. [PMID: 37376764 DOI: 10.1002/anie.202304797] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions provides an intriguing pathway to convert N2 into NH3 . However, significant kinetic barriers of the NRR at low temperatures in desirable aqueous electrolytes remain a grand challenge due to the inert N≡N bond of the N2 molecule. Herein, we propose a unique strategy for in situ oxygen vacancy construction to address the significant trade-off between N2 adsorption and NH3 desorption by building a hollow shell structured Fe3 C/Fe3 O4 heterojunction coated with carbon frameworks (Fe3 C/Fe3 O4 @C). In the heterostructure, the Fe3 C triggers the oxygen vacancies of the Fe3 O4 component, which are likely active sites for the NRR. The design could optimize the adsorption strength of the N2 and Nx Hy intermediates, thus boosting the catalytic activity for the NRR. This work highlights the significance of the interaction between defect and interface engineering for regulating electrocatalytic properties of heterostructured catalysts for the challenging NRR. It could motivate an in-depth exploration to advance N2 reduction to ammonia.
Collapse
Affiliation(s)
- Xiaoxuan Yang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yu Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Shreya Mukherjee
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Ke Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xinyu Chen
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jiaqi Lv
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Song Liang
- Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun, 130024, China
| | - Li-Kai Yan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
30
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
31
|
Liu W, Zheng X, Xu Q. Supercritical CO 2 Directional-Assisted Synthesis of Low-Dimensional Materials for Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301097. [PMID: 37093220 DOI: 10.1002/smll.202301097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Supercritical CO2 (SC CO2 ), as one of the unique fluids that possess fascinating properties of gas and liquid, holds great promise in chemical reactions and fabrication of materials. Building special nanostructures via SC CO2 for functional applications has been the focus of intense research for the past two decades, with facile regulated reaction conditions and a particular reaction field to operate compared to the more widely used solvent systems. In this review, the significance of SC CO2 on fabricating various functional materials including modification of 1D carbon nanotubes, 2D materials, and 2D heterostructures is stated. The fundamental aspects involving building special nanostructures via SC CO2 are explored: how their structure, morphology, and chemical composition be affected by the SC CO2 . Various optimization strategies are outlined to improve their performances, and recent advances are combined to present a coherent understanding of the mechanism of SC CO2 acting on these functional nanostructures. The wide applications of these special nanostructures in catalysis, biosensing, optoelectronics, microelectronics, and energy transformation are discussed. Moreover, the current status of SC CO2 research, the existing scientific issues, and application challenges, as well as the possible future directions to advance this fertile field are proposed in this review.
Collapse
Affiliation(s)
- Wei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
32
|
Jin H, Kim SS, Venkateshalu S, Lee J, Lee K, Jin K. Electrochemical Nitrogen Fixation for Green Ammonia: Recent Progress and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300951. [PMID: 37289104 PMCID: PMC10427382 DOI: 10.1002/advs.202300951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Ammonia, a key feedstock used in various industries, has been considered a sustainable fuel and energy storage option. However, NH3 production via the conventional Haber-Bosch process is costly, energy-intensive, and significantly contributing to a massive carbon footprint. An electrochemical synthetic pathway for nitrogen fixation has recently gained considerable attention as NH3 can be produced through a green process without generating harmful pollutants. This review discusses the recent progress and challenges associated with the two relevant electrochemical pathways: direct and indirect nitrogen reduction reactions. The detailed mechanisms of these reactions and highlight the recent efforts to improve the catalytic performances are discussed. Finally, various promising research strategies and remaining tasks are presented to highlight future opportunities in the electrochemical nitrogen reduction reaction.
Collapse
Affiliation(s)
- Haneul Jin
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul04620Republic of Korea
| | - Suyeon S. Kim
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Jeseok Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute of Natural ScienceKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
33
|
Huang H, Periyanagounder D, Chen C, Li Z, Lei Q, Han Y, Huang KW, He JH. Artificial Leaf for Solar-Driven Ammonia Conversion at Milligram-Scale Using Triple Junction III-V Photoelectrode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205808. [PMID: 36950725 DOI: 10.1002/advs.202205808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Indexed: 05/18/2023]
Abstract
Developing a green and energy-saving alternative to the traditional Haber-Bosch process for converting nitrogen into ammonia is urgently needed. Imitating from biological nitrogen fixation and photosynthesis processes, this work develops a monolithic artificial leaf based on triple junction (3J) InGaP/GaAs/Ge cell for solar-driven ammonia conversion under ambient conditions. A gold layer serves as the catalytic site for nitrogen fixation with photogenerated electrons. The Au/Ti/3J InGaP/GaAs/Ge photoelectrochemical (PEC) device achieves high ammonia production rates and Faradaic efficiencies in a two-electrode system without applying external potential. For example, at 0.2 sunlight intensity, the solar-to-ammonia (STA) conversion efficiency reaches 1.11% and the corresponding Faradaic efficiency is up to 28.9%. By integrating a Ni foil on the anode side for the oxygen evolution reaction (OER), the monolithic artificial leaf exhibits an ammonia production rate of 8.5 µg cm-2 h at 1.5 sunlight intensity. Additionally, a 3 × 3 cm unassisted wireless PEC device is fabricated that produces 1.0039 mg of ammonia in the 36-h durability test. Thus, the new artificial leaf can successfully and directly convert solar energy into chemical energy and generate useful products in an environmentally friendly approach.
Collapse
Affiliation(s)
- Hao Huang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Dharmaraj Periyanagounder
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cailing Chen
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Advanced Membrances and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhongxiao Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qiong Lei
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Advanced Membrances and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Advanced Membrances and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
34
|
Meng X, Liu T, Qin M, Liu Z, Wang W. Carbon-Free, Binder-Free MnO 2@Mn Catalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20110-20119. [PMID: 37040107 DOI: 10.1021/acsami.3c00651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reasonable design and feasible preparation of low-cost and stable oxygen reduction reaction (ORR) catalysts with excellent performance play a key role in the development of fuel cells and metal-air batteries. A 3D porous superimposed nanosheet catalyst composed of metal manganese covered with MnO2 nanofilms (P-NS-MnO2@Mn) was designed and synthesized by rotating disk electrodes (RDEs) through one-step electrodeposition. The catalyst contains no carbon material. Therefore, the oxidation and corrosion of the carbon material during use can be avoided, resulting in excellent stability. The structural and composition characterizations indicate that the nanosheets with sharp edges exist on the surface of the wall surrounding the macropore (diameter ∼ 5.07 μm) and they connect tightly. Both the nanosheets and the wall of the macropore are composed of metal manganese covered completely with MnO2 film with a thickness of less than 5 nm. The half-wave potential of the synthesized P-NS-MnO2@Mn catalyst is 0.86 V. Besides, the catalyst exhibits good stability with almost no decay after a 30 h chronoamperometric test. Finite element analysis (FEA) simulation reveals the high local electric field intensity surrounding the sharp edges of the nanosheets. Density functional theory (DFT) calculations reveal that the novel nanosheet structure composed of MnO2 nanofilms covered on the surface of the Mn matrix accelerates the electronic transfer of the MnO2 nanofilms during the ORR process. The high local electric field intensity near the sharp edge of the nanosheets effectively promotes the orbital hybridization and strengthens the adsorbing Mn-O bond between the active site Mn in the nanosheets and the intermediate OOH* during the ORR process. This study provides a new strategy for preparing transition metal oxide catalysts and a novel idea about the key factors affecting the catalytic activity of transition metal oxides for the ORR.
Collapse
Affiliation(s)
- Xu Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Meng Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zigeng Liu
- Forschungszentrum Jülich, IEK-9, 52425 Jülich, Germany
| | - Wei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
35
|
Peng X, Zhang R, Mi Y, Wang HT, Huang YC, Han L, Head AR, Pao CW, Liu X, Dong CL, Liu Q, Zhang S, Pong WF, Luo J, Xin HL. Disordered Au Nanoclusters for Efficient Ammonia Electrosynthesis. CHEMSUSCHEM 2023; 16:e202201385. [PMID: 36683007 DOI: 10.1002/cssc.202201385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The electrochemical nitrogen (N2 ) reduction reaction (N2 RR) under mild conditions is a promising and environmentally friendly alternative to the traditional Haber-Bosch process with high energy consumption and greenhouse emission for the synthesis of ammonia (NH3 ), but high-yielding production is rendered challenging by the strong nonpolar N≡N bond in N2 molecules, which hinders their dissociation or activation. In this study, disordered Au nanoclusters anchored on two-dimensional ultrathin Ti3 C2 Tx MXene nanosheets are explored as highly active and selective electrocatalysts for efficient N2 -to-NH3 conversion, exhibiting exceptional activity with an NH3 yield rate of 88.3±1.7 μg h-1 mgcat. -1 and a faradaic efficiency of 9.3±0.4 %. A combination of in situ near-ambient pressure X-ray photoelectron spectroscopy and operando X-ray absorption fine structure spectroscopy is employed to unveil the uniqueness of this catalyst for N2 RR. The disordered structure is found to serve as the active site for N2 chemisorption and activation during the N2 RR process.
Collapse
Affiliation(s)
- Xianyun Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
- Institute of Zhejiang University - Quzhou, Zhejiang, Quzhou, 324000, P. R. China
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Yuying Mi
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Hsiao-Tsu Wang
- Bachelor's Program in Advanced Materials Science, Tamkang University, New Taipei City, 25137, Taiwan
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Yu-Cheng Huang
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Guangxi, Nanning, 530004, P. R. China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Sichuan, Chengdu, 610106, P. R. China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Henan, Zhengzhou, 450000, P. R. China
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies and Tianjin Key Lab of Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
36
|
Jiang Q, Dong Y, Lü L, Zheng Z, Nan ZA, Ye J, Lin H, Jiang Z, Xie Z. High Chemical Potential Driven Amorphization of Pd-based Nanoalloys. SMALL METHODS 2023; 7:e2201513. [PMID: 36908001 DOI: 10.1002/smtd.202201513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Amorphous metals and alloys are promising candidates for superior catalysts in many catalytic and electrocatalytic reactions. It is of great urgency to develop a general method to construct amorphous alloys and further clarify the growth mechanism in a wet-chemical system. Herein, inspired by the conservation of energy during the crystallization process, amorphous PdCu nanoalloys have been successfully synthesized by promoting the chemical potential of the building blocks in solution. Benefiting from the abundant active sites and enhanced corrosion resistance, the synthesized amorphous PdCu nanostructures exhibit superior catalytic activity and durability over the face-centered cubic one in formic acid decomposition reaction. More importantly, the successful fabrications of amorphous PdFe, PdCo, and PdNi further demonstrate the universality of the above strategy. This proposed strategy is promising to diversify the amorphous family.
Collapse
Affiliation(s)
- Qiaorong Jiang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yongdi Dong
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Linzhe Lü
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zhiping Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zi-Ang Nan
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jinyu Ye
- Testing and Analysis Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Haixin Lin
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, P. R. China
| | - Zhiyuan Jiang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, P. R. China
| |
Collapse
|
37
|
Kong Q, An X, Liu Q, Xie L, Zhang J, Li Q, Yao W, Yu A, Jiao Y, Sun C. Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. MATERIALS HORIZONS 2023; 10:698-721. [PMID: 36601800 DOI: 10.1039/d2mh01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is an urgent need for the development of high performance electrocatalysts for the CO2 reduction reaction (CO2RR) to address environmental issues such as global warming and achieve carbon neutral energy systems. In recent years, Cu-based electrocatalysts have attracted significant attention in this regard. The present review introduces fundamental aspects of the electrocatalytic CO2RR process together with a systematic examination of recent developments in Cu-based electrocatalysts for the electroreduction of CO2 to various high-value multicarbon products. Current challenges and future trends in the development of advanced Cu-based CO2RR electrocatalysts providing high activity and selectivity are also discussed.
Collapse
Affiliation(s)
- Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qian Liu
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Lisi Xie
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Jing Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Qinye Li
- Dongguan University of Technology, School Chemistry Engineering and Energy Technology, Dongguan 523808, P. R. China
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, P. R. China
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, P. R. China
| | - Aimin Yu
- School of Science, Computing and Engineering Technology, Swinburne University of Technology, VIC, 3122, Australia
| | - Yan Jiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| |
Collapse
|
38
|
Zhao ZQ, Li K, Liu J, Mao JJ, Lin YQ. Light Field-Enhanced Single-Site Cu Electrocatalyst for Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206626. [PMID: 36642809 DOI: 10.1002/smll.202206626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Direct electrocatalytic reduction of N2 to NH3 under mild conditions is attracting considerable interests but still remains enormous challenges in terms of respect of intrinsic catalytic activity and limited electrocatalytic efficiency. Herein, a photo-enhanced strategy is developed to improve the NRR activity on Cu single atoms catalysts. The atomically dispersed Cu single atoms supported TiO2 nanosheets (Cu SAs/TiO2 ) achieve a Faradaic Efficiency (12.88%) and NH3 yield rate (6.26 µg h-1 mgcat -1 ) at -0.05 V versus RHE under the light irradiation field, in which NH3 yield rate is fivefold higher than that under pure electrocatalytic nitrogen reduction reaction (NRR) process and is remarkably superior in comparison to most of the similar type electrocatalysts. The existence of external light field improves electron transfer ability between CuO and TiO, and thus optimizes the accumulation of surface charges on Cu sites, endowing more electrons involved in nitrogen fixation. This work reveals an atomic-scale mechanistic understanding of field effect-enhanced electrochemical performance of catalysts and it provides predictive guidelines for the rational design of photo-enhanced electrochemical N2 reduction catalysts.
Collapse
Affiliation(s)
- Zhi-Qiang Zhao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jia Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jun-Jie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Yu-Qing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
39
|
Sun W, Sahin NE, Sun D, Wu X, Munoz C, Thakare J, Aulich T, Zhang J, Hou X, Oncel N, Pierce D, Zhao JX. One-Pot Synthesis of Ruthenium-Based Nanocatalyst Using Reduced Graphene Oxide as Matrix for Electrochemical Synthesis of Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1115-1128. [PMID: 36575897 DOI: 10.1021/acsami.2c18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Conventional ammonia production consumes significant energy and causes enormous carbon dioxide (CO2) emissions globally. To lower energy consumption and mitigate CO2 emissions, a facile, environmentally friendly, and cost-effective one-pot method for the synthesis of a ruthenium-based nitrogen reduction nanocatalyst has been developed using reduced graphene oxide (rGO) as a matrix. The nanocatalyst synthesis was based on a single-step simultaneous reduction of RuCl3 into ruthenium-based nanoparticles (Ru-based NPs) and graphene oxide (GO) into rGO using glucose as the reducing agent and stabilizer. The obtained ruthenium-based nanocatalyst with rGO as a matrix (Runano-based/rGO) has shown much higher catalytic activity at lower temperatures and pressures for ammonia synthesis than conventional iron catalysts. The rGO worked as a promising promoter for the electrochemical synthesis of ammonia due to its excellent electrical and thermal conductivity. The developed Runano-based/rGO nanocatalyst was characterized using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), ultraviolet-visible (UV-vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the size of the Ru-based NPs on the surface of rGO was 1.9 ± 0.2 nm and the ruthenium content was 25.03 wt %. Bulk electrolysis measurements were conducted on thin-layer electrodes at various cathodic potentials in a N2-saturated 0.1 M H2SO4 electrolyte at room temperature. From the chronoamperometric measurements, the maximum faradic efficiency (F.E.) of 2.1% for ammonia production on the nanostructured Runano-based/rGO electrocatalyst was achieved at a potential of -0.20 V vs reversible hydrogen electrode (RHE). This electrocatalyst has attained a superior ammonia production rate of 9.14 μg·h-1·mgcat.-1. The results demonstrate the feasibility of reducing N2 into ammonia under ambient conditions and warrant further exploration of the nanostructured Runano-based/rGO for electrochemical ammonia synthesis.
Collapse
|
40
|
Dutta S, Pati SK. Urea Production on Metal-Free Dual Silicon Doped C 9 N 4 Nanosheet Under Ambient Conditions by Electrocatalysis: A First Principles Study. Chemphyschem 2023; 24:e202200453. [PMID: 36094278 DOI: 10.1002/cphc.202200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Indexed: 01/07/2023]
Abstract
The development of cheap, eco-friendly electrocatalysts for urea synthesis which avoids the traditional nitrogen reduction to form ammonia, is very important to meet our growing demand for urea. Herein, based on density functional theory, we propose a novel electrocatalyst (dual Si doped C9 N4 nanosheet) composed of totally environmentally benign non-metal earth abundant elements, which is able to adsorb N2 and CO2 together. Reduction of CO2 to CO happens, which is then inserted into activated N-N bond, and it produces *N(CO)N intermediate, which is the crucial step for urea formation. Eventually following several proton coupled electron transfer processes, urea is formed under ambient conditions. The limiting potential value for urea formation is found to be lower than that of NH3 formation and HER (hydrogen evolution reaction). Moreover, the faradaic efficiency of our proposed catalyst system is 100 % for urea formation, which suggests greater selectivity of urea formation over other competitive reactions.
Collapse
Affiliation(s)
- Supriti Dutta
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Bangalore, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Bangalore, India
| |
Collapse
|
41
|
Excluding false positives: A perspective toward credible ammonia quantification in nitrogen reduction reaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Highly Dispersed In‐Situ Grown Bi
2
O
3
Nanosheets on Ti
3
C
2
T
x
MXene for Selective Electroreduction of Nitrate to Ammonia. ChemElectroChem 2022. [DOI: 10.1002/celc.202201001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Liu S, Li H, Zhong J, Xu K, Wu G, Liu C, Zhou B, Yan Y, Li L, Cha W, Chang K, Li YY, Lu J. A crystal glass-nanostructured Al-based electrocatalyst for hydrogen evolution reaction. SCIENCE ADVANCES 2022; 8:eadd6421. [PMID: 36332028 PMCID: PMC9635819 DOI: 10.1126/sciadv.add6421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 05/22/2023]
Abstract
Platinum-based catalysts are widely used in hydrogen evolution reactions; however, their applications are restricted because of the cost-efficiency trade-off. Here, we present a thermodynamics-based design strategy for synthesizing an Al73Mn7Ru20 (atomic %) metal catalyst via combinatorial magnetron co-sputtering. The new electrocatalyst is composed of ~2 nanometers of medium-entropy nanocrystals surrounded by ~2 nanometers of amorphous regions. The catalyst exhibits exceptional performance, similar to that of single-atom catalysts and better than that of nanocluster-based catalysts. We use aluminum rather than a noble metal as the principal element of the catalyst and ruthenium, which is cheaper than platinum, as the noble metal component. The design strategy provides an efficient route for the development of electrocatalysts for use in large-scale hydrogen production. Moreover, the superior hydrogen reaction evolution created by the synergistic effect of the nano-dual-phase structure is expected to guide the development of high-performance catalysts in other alloy systems.
Collapse
Affiliation(s)
- Sida Liu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hongkun Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jing Zhong
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Ge Wu
- Center for Advancing Materials Performance from the Nanoscale and Hysitron Applied Research Center in China, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Corresponding author. (G.W.); (Y.L.); (J.L.)
| | - Chang Liu
- Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, Düsseldorf 40237, Germany
| | - Binbin Zhou
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yang Yan
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Lanxi Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wenhao Cha
- Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52056, Germany
| | - Keke Chang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yang Yang Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (G.W.); (Y.L.); (J.L.)
| | - Jian Lu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong SAR, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Corresponding author. (G.W.); (Y.L.); (J.L.)
| |
Collapse
|
44
|
Lv Z, Hao L, Yao Z, Li W, Robertson AW, Sun Z. Rigorous Assessment of Cl - -Based Anolytes on Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204205. [PMID: 36253143 PMCID: PMC9685447 DOI: 10.1002/advs.202204205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Many challenges in the electrochemical synthesis of ammonia have been recognized with most effort focused on delineating false positives resulting from unidentified sources of nitrogen. However, the influence of oxidizing anolytes on the crossover and oxidization of ammonium during the electrolysis reaction remains unexplored. Here it is reported that the use of analytes containing halide ions (Cl- and Br- ) can rapidly convert the ammonium into N2 , which further intensifies the crossover of ammonium. Moreover, the extent of migration and oxidation of ammonium is found to be closely associated with external factors, such as applied potentials and the concentration of Cl- . These findings demonstrate the profound impact of oxidizing anolytes on the electrochemical synthesis of ammonia. Based on these results, many prior reported ammonia yield rates are calibrated. This work emphasizes the significance of avoiding selection of anolytes that can oxidize ammonium, which is believed to promote further progress in electrochemical nitrogen fixation.
Collapse
Affiliation(s)
- Zengxiang Lv
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Leiduan Hao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhibo Yao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Weixiang Li
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | | | - Zhenyu Sun
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
45
|
Lv C, Liu J, Lee C, Zhu Q, Xu J, Pan H, Xue C, Yan Q. Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS NANO 2022; 16:15512-15527. [PMID: 36240028 DOI: 10.1021/acsnano.2c07260] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial nitrogen conversion reactions, such as the production of ammonia via dinitrogen or nitrate reduction and the synthesis of organonitrogen compounds via C-N coupling, play a pivotal role in the modern life. As alternatives to the traditional industrial processes that are energy- and carbon-emission-intensive, electrocatalytic nitrogen conversion reactions under mild conditions have attracted significant research interests. However, the electrosynthesis process still suffers from low product yield and Faradaic efficiency, which highlight the importance of developing efficient catalysts. In contrast to the transition-metal-based catalysts that have been widely studied, the p-block-element-based catalysts have recently shown promising performance because of their intriguing physiochemical properties and intrinsically poor hydrogen adsorption ability. In this Perspective, we summarize the latest breakthroughs in the development of p-block-element-based electrocatalysts toward nitrogen conversion applications, including ammonia electrosynthesis from N2 reduction and nitrate reduction and urea electrosynthesis using nitrogen-containing feedstocks and carbon dioxide. The catalyst design strategies and the underlying reaction mechanisms are discussed. Finally, major challenges and opportunities in future research directions are also proposed.
Collapse
Affiliation(s)
- Chade Lv
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China
| | - Can Xue
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| |
Collapse
|
46
|
Zhang W, Zhan S, Qin Q, Heil T, Liu X, Hwang J, Ferber TH, Hofmann JP, Oschatz M. Electrochemical Generation of Catalytically Active Edge Sites in C 2 N-Type Carbon Materials for Artificial Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204116. [PMID: 36114151 DOI: 10.1002/smll.202204116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) is a potentially carbon-neutral and decentralized supplement to the established Haber-Bosch process. Catalytic activation of the highly stable dinitrogen molecules remains a great challenge. Especially metal-free nitrogen-doped carbon catalysts do not often reach the desired selectivity and ammonia production rates due to their low concentration of NRR active sites and possible instability of heteroatoms under electrochemical potential, which can even contribute to false positive results. In this context, the electrochemical activation of nitrogen-doped carbon electrocatalysts is an attractive, but not yet established method to create NRR catalytic sites. Herein, a metal-free C2 N material (HAT-700) is electrochemically etched prior to application in NRR to form active edge-sites originating from the removal of terminal nitrile groups. Resulting activated metal-free HAT-700-A shows remarkable catalytic activity in electrochemical nitrogen fixation with a maximum Faradaic efficiency of 11.4% and NH3 yield of 5.86 µg mg-1 cat h-1 . Experimental results and theoretical calculations are combined, and it is proposed that carbon radicals formed during activation together with adjacent pyridinic nitrogen atoms play a crucial role in nitrogen adsorption and activation. The results demonstrate the possibility to create catalytically active sites on purpose by etching labile functional groups prior to NRR.
Collapse
Affiliation(s)
- Wuyong Zhang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Shaoqi Zhan
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Qing Qin
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tobias Heil
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Xiyu Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinyeon Hwang
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Thimo H Ferber
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Martin Oschatz
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Institute for Technical Chemistry and Environmental Chemistry, Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
47
|
Li X, Li Z, Zhang L, Zhao D, Li J, Sun S, Xie L, Liu Q, Alshehri AA, Luo Y, Liao Y, Kong Q, Sun X. Ni nanoparticle-decorated biomass carbon for efficient electrocatalytic nitrite reduction to ammonia. NANOSCALE 2022; 14:13073-13077. [PMID: 36069959 DOI: 10.1039/d2nr03540e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrocatalytic nitrite (NO2-) reduction to ammonia (NH3) can not only synthesize value-added NH3, but also remove NO2- pollutants from the environment. However, the low efficiency of NO2--to-NH3 conversion hinders its applications. Here, Ni nanoparticle-decorated juncus-derived biomass carbon prepared at 800 °C (Ni@JBC-800) serves as an efficient catalyst for NH3 synthesis by selective electroreduction of NO2-. This catalyst shows a remarkable NH3 yield of 4117.3 μg h-1 mgcat.-1 and a large faradaic efficiency of 83.4% in an alkaline electrolyte. The catalytic mechanism is further investigated by theoretical calculations.
Collapse
Affiliation(s)
- Xiuhong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Zerong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Donglin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Yonglan Luo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Qingquan Kong
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
48
|
Fang B, Wang H, Zhao M, Xu J, Wang X, Song S, Zhang H. Highly efficient electrochemical N 2 reduction over strongly coupled CeO 2-Mo 2C nanocomposites anchored by reduced graphene oxide. Dalton Trans 2022; 51:15089-15093. [PMID: 36124864 DOI: 10.1039/d2dt02131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic N2 fixation has been considered a most promising approach for sustainably producing NH3 under ambient conditions. However, owing to the strong chemical inertness of N2, it is highly desired to explore efficient electrocatalysts for improving the yield and selectivity of nitrogen reduction. Herein, CeO2 and Mo2C nanoparticles embedded simultaneously in reduced graphene oxide nanosheets (CeO2/Mo2C@rGO) are successfully fabricated for catalyzing N2 fixation. The as-obtained CeO2/Mo2C@rGO catalyst shows superior catalytic performance with an NH3 yield of 22.3 μg h-1 mg-1 and a faradaic efficiency (FE) of 12.7% at -0.3 V vs. the RHE, distinctly outperforming the undoped Ce counterpart of Mo2C@rGO. The experimental and DFT calculations reveal that the introduced Ce optimized the electronic structure, contributing to the improved NRR performance.
Collapse
Affiliation(s)
- Bin Fang
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Huilin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Recent Advances in Electrochemical Nitrogen Reduction Reaction to Ammonia from the Catalyst to the System. Catalysts 2022. [DOI: 10.3390/catal12091015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As energy-related issues increase significantly, interest in ammonia (NH3) and its potential as a new eco-friendly fuel is increasing substantially. Accordingly, many studies have been conducted on electrochemical nitrogen reduction reaction (ENRR), which can produce ammonia in an environmentally friendly manner using nitrogen molecule (N2) and water (H2O) in mild conditions. However, research is still at a standstill, showing low performances in faradaic efficiency (FE) and NH3 production rate due to the competitive reaction and insufficient three-phase boundary (TPB) of N2(g)-catalyst(s)-H2O(l). Therefore, this review comprehensively describes the main challenges related to the ENRR and examines the strategies of catalyst design and TPB engineering that affect performances. Finally, a direction to further develop ENRR through perspective is provided.
Collapse
|
50
|
Lin W, Chen H, Lin G, Yao S, Zhang Z, Qi J, Jing M, Song W, Li J, Liu X, Fu J, Dai S. Creating Frustrated Lewis Pairs in Defective Boron Carbon Nitride for Electrocatalytic Nitrogen Reduction to Ammonia. Angew Chem Int Ed Engl 2022; 61:e202207807. [DOI: 10.1002/anie.202207807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Wenwen Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 China
| | - Hao Chen
- College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Gaobo Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 China
| | - Siyu Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Zihao Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Jizhen Qi
- i-Lab CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) Chinese Academy of Sciences Suzhou 215123 China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing College of Science China University of Petroleum-Beijing Beijing 102249 China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing College of Science China University of Petroleum-Beijing Beijing 102249 China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
| | - Xi Liu
- School of Chemistry and Chemical Engineering In situ Center for Physical Sciences Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
- Institute of Zhejiang University-Quzhou 78 Jiuhua Boulevard North Quzhou 324000 China
| | - Sheng Dai
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|