1
|
Wang D, Dong W, Wang P, Hu Q, Li D, Lv L, Yang Y, Jia L, Na R, Zheng S, Miao J, Sun H, Xiong Y, Zhou J. A Single-Crystal Antimony Trioxide Dielectric for 2D Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402689. [PMID: 39502011 DOI: 10.1002/smll.202402689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The remarkable potential of two-dimensional (2D) materials in sustaining Moore's law has sparked a research frenzy. Extensive efforts have been made in the research of utilizing 2D semiconductors as channel materials in field-effect transistors. However, the next generation of integrated devices requires the integration of gate dielectrics with wider bandgaps and higher dielectric constants. Here, insulating α-Sb2O3 single-crystal nanosheets are synthesized by one-step chemical vapor deposition method. Importantly, the α-Sb2O3 single-crystal dielectric exhibits a high dielectric constant of 11.8 and a wide bandgap of 3.78 eV. Besides, the atomically smooth interface between α-Sb2O3 and MoS2 enables the fabrication of dual-gated field-effect transistors with the top gate dielectric of α-Sb2O3 nanosheets. The field-effect transistors exhibit a switching ratio of exceeding 108, which achieves the manipulation of field-effect transistors by using 2D dielectric materials. These results hold significant implications for optimizing the performances of 2D devices and innovating microelectronics.
Collapse
Affiliation(s)
- Dainan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Weikang Dong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ping Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingmei Hu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dian Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Lv
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Na
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Hui Sun
- School of Space Science and Physics, Shandong University, Weihai, Shandong, 264209, China
| | - Yan Xiong
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Jiang X, Bai J, Wijerathne B, Zhou Q, Zhang F, Liao T, Sun Z. 3D Printing MXene-Based Electrodes for Supercapacitors. Chem Asian J 2024; 19:e202400568. [PMID: 39155268 PMCID: PMC11613818 DOI: 10.1002/asia.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
3D printing, as an advanced and promising strategy for processing electrode for energy storage devices, such as supercapacitors and batteries, has garnered considerable interest in recent decades. The interest in 3D printed electrodes stems from its exceptional performance and manufacturing features, including customized sizes and shapes and the layer-by-layer processing principle, etc., especially integrating with MXene which allows the manufacturing of electrodes from different raw materials and possessing desired electrochemical properties. Herculean challenges, such as material compatibility of the printing inks, nondurable interfacial or bulk mechanical strength of the printed electrodes, and sometimes the low capacitance, lead to inferior electrochemical performance and hinder the practical applications of this promising technology. In this review, we firstly summarize the representative 3D printing methods, then, review the MXene-based 3D printing electrodes made from different materials, and last, provide electrochemical performance of 3D printing MXene-based electrodes for supercapacitors. Furthermore, based on a summary on the recent progress, an outlook on these promising electrodes for sustainable energy devices is provided. We anticipate that this review could provide some insights into overcoming the challenges and achieving more remarkable electrochemical performance of 3D printing supercapacitor electrodes and offer perspectives in the future for emerging energy devices.
Collapse
Affiliation(s)
- Xudong Jiang
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Juan Bai
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Binodhya Wijerathne
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Qianqin Zhou
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Fan Zhang
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Ting Liao
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- School of Mechanical Medical and Process EngineeringQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbane, QLD4000Australia
| |
Collapse
|
3
|
Xiang J, Ma L, Sun Y, Dong S, Xu Q, He X, Zhou Y, Hai C. Ball-Milling-Assisted N/O Codoping for Enhanced Sodium Storage Performance of Coconut-Shell-Derived Hard Carbon Anodes in Sodium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23853-23863. [PMID: 39473233 DOI: 10.1021/acs.langmuir.4c02868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Sodium-ion batteries (SIBs) are regarded as cost-effective alternatives or competitors to lithium-ion batteries for large-scale electric energy storage applications. However, their development has been hindered by the high cost of hard carbon (HC) anodes and poor electrochemical performance. To enhance the sodium storage capacity and rate performance of HC, this study accelerated the electrochemical performance of coconut-shell-derived HC anodes for SIBs through N/O codoping using ball milling and pyrolysis. Experimental results demonstrate that the simultaneous introduction of N and O generates a synergistic effect, increasing the surface oxygen-containing functional groups, defects, and interlayer spacing of coconut-shell-derived HC through the codoping of light elements. The excellent strategy has increased the slope capacity and platform capacity of HC, and the synergistic modification of N/O has increased its reversible specific capacity from 272 to 343 mA h g-1 (30 mA g-1), with a retention rate of approximately 92.1% after 100 cycles. In addition, it also exhibits an excellent rate performance, reaching 178 mA h g-1 at 1500 mA g-1. In summary, this study presents an effective strategy for modifying biomass-derived HC.
Collapse
Affiliation(s)
- Jiaxing Xiang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Luxiang Ma
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Yanxia Sun
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Shengde Dong
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Qi Xu
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Xin He
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Yuan Zhou
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| | - Chunxi Hai
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu University of Technology, Sichuan 610059, China
| |
Collapse
|
4
|
Zhao Y, Mai G, Mei Z, Deng Q, Feng Z, Tan Y, Li Z, Yao L, Li M. Three-Dimensional Flexible SnO 2@Hard Carbon@MoS 2@Soft Carbon Fiber Film Anode toward Ultrafast and Stable Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361923 DOI: 10.1021/acsami.4c13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Developing flexible electrodes for the application in sodium-ion batteries (SIBs) has received great attention and has been still challenging due to their merits of additive-free, lightweight, and high energy density. In this work, a free-standing 3D flexible SIB anode with the composition of SnO2@hard carbon@MoS2@soft carbon is designed and successfully synthesized. This electrode combines the energy storage advantages and hybrid sodium storage mechanisms of each material, manifested in the enhanced flexibility, specific capacity, conductivity, rate, cycling performances, etc. Based on the synergistic effects, it exhibits much higher specific capacity than SnO2 carbon nanofibers, as well as more excellent cycling performance (250 mA h g-1 after 500 cycles at 1 A g-1) than MoS2 nanospheres (32 mA h g-1). In addition, relevant kinetic mechanisms are also expounded with the aid of theoretical calculation. This work provides a feasible and advantageous strategy for constructing high-performance and flexible energy storage electrodes based on hybrid mechanisms and synergistic effects.
Collapse
Affiliation(s)
- Yang Zhao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Gaorui Mai
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Zining Mei
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Qinglin Deng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Ziwen Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Yipeng Tan
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Zelin Li
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Lingmin Yao
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and Technology, Guangzhou University, Guangzhou 510275, China
| | - Mai Li
- College of Science, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Li W, Jiang L, Jiang W, Wu Y, Guo X, Li Z, Yuan H, Luo M. Preparation of Thin-Layered Hexagonal Boron Nitride Nanosheet with Oxygen Doping. ACS OMEGA 2024; 9:37572-37584. [PMID: 39281964 PMCID: PMC11391457 DOI: 10.1021/acsomega.4c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/17/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024]
Abstract
Hexagonal boron nitride nanosheet (h-BNNS), a structural analogue of graphene, possesses remarkable properties such as exceptional electrical insulation, great resistance to corrosion, excellent mechanical strength, and thermal conductivity. Nonetheless, its continued development is still hampered by the lack of a preparation technique with an easy-to-follow procedure and reliable composition and structure control. In this study, we investigated a two-step protocol for uniform size production of thin-layered h-BNNS. By carefully manipulating the crystallization degree during synthesis of h-BN powder and employing subsequent hydrothermal treatment, we successfully obtained h-BNNS with an even thickness of only a few atomic layers. Compared with the broadly used liquid-phase exfoliation process, not only is the thickness significantly decreased but also the yield is considerably elevated to several grams. Moreover, the in-plane O doping content can be adjusted within a relatively wide range. Overall, our finding demonstrates the potential of this approach in facilitating the exploration and utilization of h-BNNS.
Collapse
Affiliation(s)
- Wenqian Li
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
- General Research Institute for Nonferrous Metals, Beijing 100088, People's Republic of China
| | - Lijun Jiang
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Guangdong 528051, People's Republic of China
| | - Wenquan Jiang
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
| | - Yuanfang Wu
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
| | - Xiumei Guo
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
| | - Zhinian Li
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
| | - Huiping Yuan
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRIMAT Engineering Institute Co., Ltd., Beijing 101407, People's Republic of China
| | - Man Luo
- National Engineering Research Center of Nonferrous Metals Materials and Products for New Energy, CHINA GRINM Group Co., Ltd., Beijing 100088, People's Republic of China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Guangdong 528051, People's Republic of China
| |
Collapse
|
6
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
7
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
8
|
Kishimoto F, Takanabe K. Electron Storage in Monolayer Tungstate Nanosheets Produced via a Scalable Exfoliation Method. J Phys Chem Lett 2024; 15:3509-3515. [PMID: 38517369 PMCID: PMC11000239 DOI: 10.1021/acs.jpclett.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Inorganic nanosheet materials with atomic thinness have been widely studied as (photo)catalytic materials due to their unique electronic states and surface structures. One scalable and reproducible method of producing monolayer nanosheets is a top-down approach based on the exfoliation of layered parent compounds using an alkylammonium solution as a surfactant. However, H2W2O7 layered tungstates dissolve in basic aqueous solutions, making them unsuitable for the exfoliation process. This work proposes a scalable method to obtain monolayer WO3 nanosheets with a very high external field responsiveness. This work shows that H2W2O7 topochemically swells in a concentrated octylamine (C8N17NH2) aqueous solution with a concentration above the solubility of octylamine in water. Water was added for exfoliation of the liquid crystalline phase into isolated W2O72- nanosheets with octylammonium (C8N17NH3+) protection. Crystalline WO3 nanosheets on the n-Si substrate obtained with calcination exhibited electron richness in the conduction band due to static electron transfer at the interface.
Collapse
Affiliation(s)
- Fuminao Kishimoto
- Department of Chemical System Engineering,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering,
School of Engineering, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Su J, Huang X, Shao Q. Emerging two dimensional metastable-phase oxides: insights and prospects in synthesis and catalysis. Angew Chem Int Ed Engl 2024; 63:e202318028. [PMID: 38179810 DOI: 10.1002/anie.202318028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Since the discovery of graphene, the development of new two-dimensional (2D) materials has received considerable interest. Recently, as a newly emerging member of the 2D family, 2D metastable-phase oxides that combine the unique advantages of metal oxides, 2D structures, and metastable-phase materials have shown enormous potential in various catalytic reactions. In this review, the potential of various 2D materials to form a metastable-phase is predicted. The advantages of 2D metastable-phase oxides for advanced applications, reliable methods of synthesizing 2D metastable-phase oxides, and the application of these oxides in different catalytic reactions are presented. Finally, the challenges associated with 2D metastable-phase oxides and future perspectives are discussed.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
10
|
Kang Z, Zhang J, Guo X, Mao Y, Yang Z, Kankala RK, Zhao P, Chen AZ. Observing the Evolution of Metal Oxides in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304781. [PMID: 37635095 DOI: 10.1002/smll.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Indexed: 08/29/2023]
Abstract
Metal oxides with diverse compositions and structures have garnered considerable interest from researchers in various reactions, which benefits from transmission electron microscopy (TEM) in determining their morphologies, phase, structural and chemical information. Recent breakthroughs have made liquid-phase TEM a promising imaging platform for tracking the dynamic structure, morphology, and composition evolution of metal oxides in solution under work conditions. Herein, this review introduces the recent advances in liquid cells, especially closed liquid cell chips. Subsequently, the recent progress including particle growth, phase transformation, self-assembly, core-shell nanostructure growth, and chemical etching are introduced. With the late technical advances in TEM and liquid cells, liquid-phase TEM is used to characterize many fundamental processes of metal oxides for CO2 reduction and water-splitting reactions. Finally, the outlook and challenges in this research field are discussed. It is believed this compilation inspires and stimulates more efforts in developing and utilizing in situ liquid-phase TEM for metal oxides at the atomic scale for different applications.
Collapse
Affiliation(s)
- Zewen Kang
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Junyu Zhang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Xiaohua Guo
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yangfan Mao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhimin Yang
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Peng Zhao
- Instrumental Analysis Center, Laboratory and Equipment Management Department, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| |
Collapse
|
11
|
Biochar Derived from Palm Waste Supported Greenly Synthesized MnO2 Nanoparticles as a Novel Adsorbent for Wastewater Treatment. Catalysts 2023. [DOI: 10.3390/catal13020451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Water pollution with dye effluents from different industries is a broadly established environmental and health problem that needs serious attention. In this study, making use of Acacia nilotica seed extract, greenly synthesized MnO2 nanoparticles were loaded on the surface of biochar derived from palm waste (MnO2/PF), with specific surface areas of 70.97 m2/g. Batch experiments were adopted, aiming to evaluate the performance of palm fronds, biochar, and the MnO2/PF adsorbents in methyl orange (MO) removal from an aqueous solution. The feedstock and synthesized biochars were comprehensively characterized using XRD, SEM-EDX, FTIR, and BET surface area techniques. Moreover, the influences of the modification of palm fronds, initial dye concentrations, pH, and adsorbent dosage on MO uptake were examined. The results demonstrated that MnO2/PF biochar nanocomposite led to an increase in the removal efficiency by 6 and 1.5 times more than those of palm fronds and biochar, respectively. In addition, it was found that the second-order kinetic model presented the kinetic adsorption very well. This paper demonstrates that the depositing of greenly synthesized MnO2 nanoparticles on the date palm waste biochar forms a novel adsorbent (MnO2/PF) for the removal of MO from aqueous solutions. Furthermore, this adsorbent was easy to synthesize under moderate conditions without the need for chemical capping agents, and would thus be cost-effective and eco-friendly.
Collapse
|
12
|
Danish MSS. Exploring metal oxides for the hydrogen evolution reaction (HER) in the field of nanotechnology. RSC SUSTAINABILITY 2023; 1:2180-2196. [DOI: 10.1039/d3su00179b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
As the global energy landscape transitions towards a more diversified mix, with electricity and hydrogen constituting half of the final energy consumption by 2050, the focus on efficient and sustainable hydrogen production intensifies.
Collapse
Affiliation(s)
- Mir Sayed Shah Danish
- Energy Systems (Chubu Electric Power) Funded Research Division, IMaSS (Institute of Materials and Systems for Sustainability), Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Hong YR, Choi S, Dutta S, Jeong I, Park S, Lee IS. Nanocrystal Conversion Chemistry within Slit-like 2D Nanogap for High-Rate Cyclic Stability of Lithium-Ion Battery Anodes. ACS NANO 2022; 16:21111-21119. [PMID: 36445197 DOI: 10.1021/acsnano.2c09069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanoscale optimization of late transition-metal oxides for fixing the reversible lithiation/delithiation mechanism with an in-depth mechanistic understanding of nanocrystal (NC) conversion chemistry is important for furthering next-generation Li-ion battery (LIB) technologies. Herein, 1 nm-thin Ni3CoOx (1 nm-NCO) nanosheets synthesized through isomorphic transformation of NiCo layered double hydroxides within a two-dimensional (2D)-SiO2 envelope are chosen. The interconversion of metal/metal-oxide NCs under redox-switching thermal treatment, while retaining reversibility, inspired the accomplishment of identical consequences under the harsh operational conditions of LIB redox cycles by application of the thin-NCO-defined 2D nanospace. During charge/discharge cycles, 1 nm-NCO covered with an in situ formed solid-electrolyte-interphase layer enables fully reversible interconversion between the reactive NC redox pairs, as evidenced by detailed morphological and electrochemical analyses, thus providing high-rate capability with a specific capacity of 61.2% at 5.0 C relative to 0.2 C, outstanding cycle stability delivering a reversible capacity of 1169 mAh g-1, and 913 mAh g-1 with high average Coulombic efficiency (>99.2%) at 3.0 and 5.0 C for 1000 cycles, respectively, which has not been achieved with other transition-metal oxides. Such a nanospace-confinement effect on sustainability of reactive NCs to follow-up a highly reversible conversion reaction at fast charging in LIBs is operative within a slit-like ultrathin 2D nanogap from 1 nm-NCO only, as a relatively thicker 7 nm-NCO anode, with accompanying larger space available, has evidenced poor reversibility of NCs and inadequate cyclic stability under potential high-power density LIB application.
Collapse
Affiliation(s)
- Yu-Rim Hong
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
| | - Sungho Choi
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
| | - Insu Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
| | - Soojin Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul03722, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul03722, Korea
| |
Collapse
|
14
|
Li S, Luo W, He Q, Lu J, Du J, Tao Y, Cheng Y, Wang H. A Lignin-Based Carbon Anode with Long-Cycle Stability for Li-Ion Batteries. Int J Mol Sci 2022; 24:284. [PMID: 36613728 PMCID: PMC9820563 DOI: 10.3390/ijms24010284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Due to its wide source and low cost, biomass-based hard carbon is considered a valuable anode for lithium-ion batteries (LIBs). Lignins, as the second most abundant source in nature, are being intensively studied as candidate anode materials for next generation LIBs. However, direct carbonization of pure lignin usually leads to low specific surface area and porosity. In this paper, we design a porous carbon material from natural lignin assisted by sacrificing a metal-organic framework (MOF) as the template. The MOF nanoparticles can disperse the lignin particles uniformly and form abundant mesopores in the composites to offer fast transfer channels for Li+. The as-prepared carbon anode shows a high specific capacity of 420 mAh g-1 with the capacity retention of 99% after 300 cycles at 0.2 A g-1. Additionally, it keeps the capacity retention of 85% after long cycle of 1000 cycles, indicating the good application value of the designed anode in LIBs. The work provides a renewable and low-cost candidate anode and a feasible design strategy of the anode materials for LIBs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Song Z, Jiang W, Jian X, Hu F. Advanced Nanostructured Materials for Electrocatalysis in Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4341. [PMID: 36500964 PMCID: PMC9736453 DOI: 10.3390/nano12234341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as among the most promising electrochemical energy storage devices due to their high theoretical energy density and low cost. However, the inherently complex electrochemical mechanism in Li-S batteries leads to problems such as slow internal reaction kinetics and a severe shuttle effect, which seriously affect the practical application of batteries. Therefore, accelerating the internal electrochemical reactions of Li-S batteries is the key to realize their large-scale applications. This article reviews significant efforts to address the above problems, mainly the catalysis of electrochemical reactions by specific nanostructured materials. Through the rational design of homogeneous and heterogeneous catalysts (including but not limited to strategies such as single atoms, heterostructures, metal compounds, and small-molecule solvents), the chemical reactivity of Li-S batteries has been effectively improved. Here, the application of nanomaterials in the field of electrocatalysis for Li-S batteries is introduced in detail, and the advancement of nanostructures in Li-S batteries is emphasized.
Collapse
Affiliation(s)
- Zihui Song
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Wanyuan Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Xigao Jian
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| | - Fangyuan Hu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Technology Innovation Center of High Performance Resin Materials (Liaoning Province), Key Laboratory of Energy Materials and Devices (Liaoning Province), Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Zhang Z, Liu P, Song Y, Hou Y, Xu B, Liao T, Zhang H, Guo J, Sun Z. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204297. [PMID: 36266983 PMCID: PMC9762311 DOI: 10.1002/advs.202204297] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Exploring low-cost and high-efficient electrocatalyst is an exigent task in developing novel sustainable energy conversion systems, such as fuel cells and electrocatalytic fuel generations. 2D materials, specifically 2D superlattice materials focused here, featured highly accessible active areas, high density of active sites, and high compatibility with property-complementary materials to form heterostructures with desired synergetic effects, have demonstrated to be promising electrocatalysts for boosting the performance of sustainable energy conversion and storage devices. Nevertheless, the reaction kinetics, and in particular, the functional mechanisms of the 2D superlattice-based catalysts yet remain ambiguous. In this review, based on the recent progress of 2D superlattice materials in electrocatalysis applications, the rational design and fabrication of 2D superlattices are first summarized and the application of 2D superlattices in electrocatalysis is then specifically discussed. Finally, perspectives on the current challenges and the strategies for the future design of 2D superlattice materials are outlined. This review attempts to establish an intrinsic correlation between the 2D superlattice heterostructures and the catalytic properties, so as to provide some insights into developing high-performance electrocatalysts for next-generation sustainable energy conversion and storage.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ying Hou
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
- Materials Institute of Atomic and Molecular ScienceShaanxi University of Science & TechnologyXi'an710021P. R. China
| | - Ting Liao
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Haixia Zhang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of TechnologyTaiyuan030024P. R. China
| | - Ziqi Sun
- School of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
17
|
Ali Awad M, Majdi A, Abbas ZS, Kadhim MM, Abdul Hadi M, Hachim SK, barzan M, Kadhum WR, Abdullaha SA. Monolayer of B3O3 as a promising material in anode of magnesium-ion batteries: A theoretical study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
19
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Jia R, Xia M, Tang L, Yu L, Yang Y, Zhang Y, Bo X, Zhou S, Tu Y, Deng D. Single-Atomic Ir and Mo Co-Confined in a Co Layered Hydroxide Nanobox Mutually Boost Oxygen Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rouna Jia
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian116026, China
| | - Meihan Xia
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Lei Tang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yan Yang
- College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian116026, China
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian116045, China
| | - Yunlong Zhang
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xin Bo
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Shizheng Zhou
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yunchuan Tu
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Dehui Deng
- State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
21
|
Yang X, Shi Y, Xie K, Fang S, Zhang Y, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Approach to Synthesize Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022; 61:e202207816. [DOI: 10.1002/anie.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xuanyu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yatong Shi
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Kefeng Xie
- College of Chemistry and Chemical Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Shaoming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration Zhengzhou University of Light Industry Zhengzhou 450002 P. R. China
| | - Yonghui Deng
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China
- School of Materials and Chemistry University of Shanghai for Science & Technology Shanghai 200093 P. R. China
| |
Collapse
|
22
|
Mei J, Shang J, Zhang C, Qi D, Kou L, Wijerathne B, Hu C, Liao T, MacLeod J, Sun Z. MAX-phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Li-/Na-ions Storage. SMALL METHODS 2022; 6:e2200658. [PMID: 35802910 DOI: 10.1002/smtd.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
2D tin diselenide and its derived 2D heterostructures have delivered promising potentials in various applications ranging from electronics to energy storage devices. The major challenges associated with large-scale fabrication of SnSe2 crystals, however, have hindered its engineering applications. Herein, a tin-extraction synthetic method is proposed for producing large-size SnSe2 bulk crystals. In a typical synthesis, a Sn-containing MAX phase (V2 SnC) and a Se source are heat-treated under a reducing atmosphere, by which Sn is extracted from the V2 SnC phase as a rectified Sn source to form SnSe2 crystals in the cold zone. After the following liquid exfoliation, the obtained 2D SnSe2 nanosheets have a lateral size of a few centimeters and an atomic thickness. Furthermore, by coupling with 2D graphene to form 2D/2D SnSe2 /graphene heterostructured electrodes, as validated by theoretical calculation and experimental studies, the superior Li-/Na-ion storage performance with ultralow surface/interface ion transport barriers are achieved for rechargeable Li-/Na-ion batteries. This innovative synthetic strategy opens a new avenue for the large-scale synthesis of selenides and offers more options into the practical application of emerging 2D/2D heterostructure for electrochemical energy storage.
Collapse
Affiliation(s)
- Jun Mei
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jing Shang
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Chao Zhang
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dongchen Qi
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liangzhi Kou
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Binodhya Wijerathne
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunfeng Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ziqi Sun
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
23
|
Li X, Liang H, Liu X, Zhang Y, Liu Z, Fan H. Zeolite Imidazolate Frameworks (ZIFs) Derived Nanomaterials and their Hybrids for Advanced Secondary Batteries and Electrocatalysis. CHEM REC 2022; 22:e202200105. [PMID: 35959942 DOI: 10.1002/tcr.202200105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/07/2022]
Abstract
Zeolite imidazolate frameworks (ZIFs), as a typical class of metal-organic frameworks (MOFs), have attracted a great deal of attention in the field of energy storage and conversation due to their chemical structure stability, facile synthesis and environmental friendliness. Among of ZIFs family, the zinc-based imidazolate framework (ZIF-8) and cobalt-based imidazolate framework (ZIF-67) have considered as promising ZIFs materials, which attributed to their tunable porosity, stable structure, and desirable electrical conductivity. To date, various ZIF-8 and ZIF67 derived materials, including carbon materials, metal oxides, sulfides, selenides, carbides and phosphides, have been successfully synthesized using ZIFs as templates and evaluated as promising electrode materials for secondary batteries and electrocatalysis. This review provides an effective guide for the comprehension of the performance optimization and application prospects of ZIFs derivatives, specifically focusing on the optimization of structure and their application in secondary batteries and electrocatalysis. In detail, we present recent advances in the improvement of electrochemical performance of ZIF-8, ZIF-67 and ZIF-8@ZIF-67 derived nanomaterials and their hybrids, including carbon materials, metal oxides, carbides, oxides, sulfides, selenides, and phosphides for high-performance secondary batteries and electrocatalysis.
Collapse
Affiliation(s)
- Xiaotong Li
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China.,School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huajian Liang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xinlong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yufei Zhang
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| | - Zili Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
24
|
Yang X, Shi Y, Xie K, Fang S, Zhang YH, Deng Y. Cocrystallization Enabled Spatial Self‐Confinement Gives Crystalline Porous Metal Oxide Nanosheets for Gas Sensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuanyu Yang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yatong Shi
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Kefeng Xie
- Lanzhou Jiaotong University School of Chemical and Biological Engineering CHINA
| | - Shaoming Fang
- Zhengzhou University of Light Industry College of Materials and Chemical Engineering CHINA
| | - Yong-Hui Zhang
- Zhengzhou University of Light Industry 5 Dongfeng Road zhengzhou CHINA
| | | |
Collapse
|
25
|
Wang M, Zhang H, Zhang W, Chen Q, Lu K. Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation. SMALL METHODS 2022; 6:e2200335. [PMID: 35560544 DOI: 10.1002/smtd.202200335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Benefiting from the merits of natural abundance, low cost, and ultrahigh theoretical energy density, the room temperature sodium-sulfur (RT NaS) batteries are regarded as one of the promising candidates for the next-generation scalable energy storage devices. However, the uncontrollable sulfur speciation pathways severely hinder its practical applications. Recently, various strategies have been employed to tune the conversion pathways of sulfur, such as physical confinement, chemical inhibition, and electrocatalysis. Herein, the recent advances in electrocatalytic effects manipulate sulfur speciation pathways in advanced RT NaS electrochemistry are reviewed, including the promotion of the nearly full conversion of long-chain polysulfides, short-chain polysulfides, and small sulfur molecules. The underlying catalytic modulation mechanism that fundamentally tunes the electrochemical pathway of sulfur species is comprehensively summarized along with the design strategies for catalytic active centers. Furthermore, the challenge and potential solutions to realize the quasi-solid conversion of sulfur are proposed to accelerate the real application of RT NaS batteries.
Collapse
Affiliation(s)
- Mingli Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hong Zhang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenli Zhang
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qianwang Chen
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
- Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ke Lu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Graphene Engineering Laboratory, Anhui University, Hefei, Anhui, 230601, P. R. China
- Hefei National Laboratory for Physical Science at Microscale, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Liu K, Jin H, Huang L, Luo Y, Zhu Z, Dai S, Zhuang X, Wang Z, Huang L, Zhou J. Puffing ultrathin oxides with nonlayered structures. SCIENCE ADVANCES 2022; 8:eabn2030. [PMID: 35594353 PMCID: PMC9122325 DOI: 10.1126/sciadv.abn2030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) oxides have unique electrical, optical, magnetic, and catalytic properties, which are promising for a wide range of applications in different fields. However, it is difficult to fabricate most oxides as 2D materials unless they have a layered structure. Here, we present a facile strategy for the synthesis of ultrathin oxide nanosheets using a self-formed sacrificial template of carbon layers by taking advantage of the Maillard reaction and violent redox reaction between glucose and ammonium nitrate. To date, 36 large-area ultrathin oxides (with thickness ranging from ~1.5 to ~4 nm) have been fabricated using this method, including rare-earth oxides, transition metal oxides, III-main group oxides, II-main group oxides, complex perovskite oxides, and high-entropy oxides. In particular, the as-obtained perovskite oxides exhibit great electrocatalytic activity for oxygen evolution reaction in an alkaline solution. This facile, universal, and scalable strategy provides opportunities to study the properties and applications of atomically thin oxide nanomaterials.
Collapse
|
27
|
Liang D, Liu J, Heinz H, Mason SE, Hamers RJ, Cui Q. Binding of polar and hydrophobic molecules at the LiCoO 2 (001)-water interface: force field development and molecular dynamics simulations. NANOSCALE 2022; 14:7003-7014. [PMID: 35470836 DOI: 10.1039/d2nr00672c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A classical model in the framework of the INTERFACE force field has been developed for treating the LiCoO2 (LCO) (001)/water interface. In comparison to ab initio molecular dynamics (MD) simulations based on density functional theory, MD simulations using the classical model lead to generally reliable descriptions of interfacial properties, such as the density distribution of water molecules. Water molecules in close contact with the LCO surface form a strongly adsorbed layer, which leads to a free energy barrier for the adsorption of polar or charged molecules to the LCO surface. Moreover, due to the strong hydrogen bonding interactions with the LCO surface, the first water layer forms an interface that exhibits hydrophobic characters, leading to favorable adsorption of non-polar molecules to the interface. Therefore, despite its highly polar nature, the LCO (001) surface binds not only polar/charged but also non-polar solutes. As an application, the model is used to analyze the adsorption of reduced nicotinamide adenine dinucleotide (NADH) and its molecular components to the LCO (001) surface in water. The results suggest that recently observed redox activity of NADH at the LCO/water interface was due to the co-operativity between the ribose component, which drives binding to the LCO surface, and the nicotinamide moiety, which undergoes oxidation.
Collapse
Affiliation(s)
- Dongyue Liang
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Juan Liu
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80303-0596, USA
- Department of Materials Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado-Boulder, Boulder, CO 80303-0596, USA
| | - Sara E Mason
- Department of Chemistry, University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue Boston, MA 02215, USA.
| |
Collapse
|
28
|
Le PA, Le VQ, Tran TL, Nguyen NT, Phung TVB. Computation and Investigation of Two-Dimensional WO 3·H 2O Nanoflowers for Electrochemical Studies of Energy Conversion and Storage Applications. ACS OMEGA 2022; 7:10115-10126. [PMID: 35382300 PMCID: PMC8973110 DOI: 10.1021/acsomega.1c06150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study is to prepare a two-dimensional (2D) WO3·H2O nanostructure assembly into a flower shape with good chemical stability for electrochemical studies of catalyst and energy storage applications. The 2D-WO3·H2O nanoflowers structure is created by a fast and simple process at room condition. This cost-effective and scalable technique to obtain 2D-WO3·H2O nanoflowers illustrates two attractive applications of electrochemical capacitor with an excellent energy density value of 25.33 W h kg-1 for high power density value of 1600 W kg-1 and good hydrogen evolution reaction results (low overpotential of 290 mV at a current density of 10 mA cm-2 with a low Tafel slope of 131 mV dec-1). A hydrogen evolution reaction (HER) study of WO3 in acidic media of 0.5 M H2SO4 and electrochemical capacitor (supercapacitors) in 1 M Na2SO4 aqueous electrolyte (three electrode system measurements) demonstrates highly desirable characteristics for practical applications. Our design for highly uniform 2D-WO3·H2O as catalyst material for HER and active material for electrochemical capacitor studies offers an excellent foundation for design and improvement of electrochemical catalyst based on 2D-transition metal oxide materials.
Collapse
Affiliation(s)
- Phuoc Anh Le
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| | - Van Qui Le
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Thien Lan Tran
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
- Department
of Physics, Hue University of Education, Hue University, 34 Le
Loi Stress, Hue 530000, Vietnam
| | - Nghia Trong Nguyen
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Thi Viet Bac Phung
- Institute
of Sustainability Science, VNU Vietnam Japan University, Vietnam National University, Hanoi 100000, Vietnam
| |
Collapse
|
29
|
Lin S, Wang F, Hong R. Polyacrylic acid and β-cyclodextrin polymer cross-linking binders to enhance capacity performance of silicon/carbon composite electrodes in lithium-ion batteries. J Colloid Interface Sci 2022; 613:857-865. [PMID: 35114521 DOI: 10.1016/j.jcis.2022.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
Binders play a key role in maintaining the integrity of high-capacity silicon anodes, which otherwise experience serious capacity decay during cycling caused by huge volume variation of the silicon. With an aim to developing a highly efficient polymeric binder to mitigate this capacity decay, we present a novel binder synthesized from polyacrylic acid (PAA) and polymerized β-cyclodextrin (β-CDp) for Si anodes for the lithium-ion batteries. This PAA-β-CDp binder has a 3D network structure, which provides strong adhesion between the active material and the current collector. PAA-β-CDp binder makes silicon anode achieve a specific capacity of 2326.4 mAhg-1 at the current density of 0.2 A g-1 with a capacity retention of 64.6% after 100 cycles. The experimental results show that the PAA-β-CDp binder can effectively mitigate the huge volume change and improve the capacity and cycling performance of Si anodes.
Collapse
Affiliation(s)
- Song Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fangfang Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ruoyu Hong
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
30
|
Song R, Li D, Xu Y, Gao J, Wang L, Li Y. Interface engineering of heterogeneous transition metal chalcogenides for electrocatalytic hydrogen evolution. NANOSCALE ADVANCES 2022; 4:865-870. [PMID: 36131830 PMCID: PMC9418672 DOI: 10.1039/d1na00768h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/14/2021] [Indexed: 06/15/2023]
Abstract
MoS2 and MoSe2 are recognized as promising electrocatalysts for the hydrogen evolution reaction (HER), but the active sites are mainly located on the edge, limiting their electrochemical efficiency. Here we have introduced the 2H-1T' interface structures in MoSSe and MoS2-MoSe2 heterostructures to enhance the HER activity in the basal planes by using the density functional theory (DFT) calculations. The structural stability and electronic properties of different 2H-1T' interface structures are investigated and the HER activities are evaluated by using the H adsorption free energy (ΔG H). The H adsorption free energy along the interface boundaries is very close to zero, and the optimal sites for the HER are the S or Se atoms, which are bonded with three Mo atoms and located in the center of a hexagonal ring composed of three Mo atoms and three halogen atoms. Our study provides a different approach to activate the basal planes and efficiently improve the electrochemical HER performance of transition metal dichalcogenide materials.
Collapse
Affiliation(s)
- Ruru Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Deyu Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Yafeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Junfeng Gao
- Key laboratory of Material Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education Dalian 116024 China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology Taipa 999078 Macau SAR China
| |
Collapse
|
31
|
Mei J, Liao T, Peng H, Sun Z. Bioinspired Materials for Energy Storage. SMALL METHODS 2022; 6:e2101076. [PMID: 34954906 DOI: 10.1002/smtd.202101076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Nature offers a variety of interesting structures and intriguing functions for researchers to be learnt for advanced materials innovations. Recently, bioinspired materials have received intensive attention in energy storage applications. Inspired by various natural species, many new configurations and components of energy storage devices, such as rechargeable batteries and supercapacitors, have been designed and innovated. The bioinspired designs on energy devices, such as electrodes and electrolytes, have brought about excellent physical, chemical, and mechanical properties compared to the counterparts at their conventional forms. In this review, the design principles for bioinspired materials ranging from structures, synthesis, and functionalization to multi-scale ordering and device integration are first discussed, and then a brief summary is given on the recent progress on bioinspired materials for energy storage systems, particularly the widely studied rechargeable batteries and supercapacitors. Finally, a critical review on the current challenges and brief perspective on the future research focuses are proposed. It is expected that this review can offer some insights into the smart energy storage system design by learning from nature.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hong Peng
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
32
|
Wang Y, Yin J, Zhu J. Two‐Dimensional
Cathode Materials for Aqueous Rechargeable
Zinc‐Ion
Batteries
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yurou Wang
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jun Yin
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| | - Jian Zhu
- School of Materials Science and Engineering, Nankai University Tianjin 300350 China
| |
Collapse
|
33
|
Xie H, Li Z, Cheng L, Haidry AA, Tao J, Xu Y, Xu K, Ou JZ. Recent advances in the fabrication of 2D metal oxides. iScience 2022; 25:103598. [PMID: 35005545 PMCID: PMC8717458 DOI: 10.1016/j.isci.2021.103598] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.
Collapse
Affiliation(s)
- Huaguang Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Cheng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yi Xu
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne 3000, Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
34
|
Du W, Yu Z, Wang X, Wu J, Zhang L. Large-scale and clean preparation of low-defect few-layered graphene from commercial graphite via hydroxyl radical exfoliation in an acidic medium. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00289a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanism diagram of hydroxyl radical stripping graphite.
Collapse
Affiliation(s)
- Wenqiao Du
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Zaiqian Yu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Xin Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jingdong Wu
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| | - Long Zhang
- Jilin Provincial Engineering Laboratory for the Complex Utilization of Petro-resources and Biomass, School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
35
|
Effect of different shell structure on lithium storage properties of MoS2 anode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Mei J, Liao T, Sun Z. Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries. Chemistry 2021; 28:e202103938. [PMID: 34881478 DOI: 10.1002/chem.202103938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/27/2022]
Abstract
Ion transport behaviours through cell membranes are commonly identified in biological systems, which are crucial for sustaining life for organisms. Similarly, ion transport is significant for electrochemical ion storage in rechargeable batteries, which has attracted much attention in recent years. Rapid ion transport can be well achieved by crystal channels engineering, such as creating pores or tailoring interlayer spacing down to the nanometre or even sub-nanometre scale. Furthermore, some functional channels, such as ion selective channels and stimulus-responsive channels, are developed for smart ion storage applications. In this review, the typical ion transport phenomena in the biological systems, including ion channels and pumps, are first introduced, and then ion transport mechanisms in solid and liquid crystals are comprehensively reviewed, particularly for the widely studied porous inorganic/organic hybrid crystals and ultrathin inorganic materials. Subsequently, recent progress on the ion transport properties in electrodes and electrolytes is reviewed for rechargeable batteries. Finally, current challenges in the ion transport behaviours in rechargeable batteries are analysed and some potential research approaches, such as bioinspired ultrafast ion transport structures and membranes, are proposed for future studies. It is expected that this review can give a comprehensive understanding on the ion transport mechanisms within crystals and provide some novel design concepts on promoting electrochemical ion storage capability in rechargeable batteries.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,School of Mechanical Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
37
|
Jin X, Gu TH, Kwon NH, Hwang SJ. Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005922. [PMID: 33890336 DOI: 10.1002/adma.202005922] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Indexed: 05/05/2023]
Abstract
2D nanostructured materials, including inorganic and graphene nanosheets, have evoked plenty of scientific research activity due to their intriguing properties and excellent functionalities. The complementary advantages and common 2D crystal shapes of inorganic and graphene nanosheets render their homogenous mixtures powerful building blocks for novel high-performance functional hybrid materials. The nanometer-level thickness of 2D inorganic/graphene nanosheets allows the achievement of unusually strong electronic couplings between sheets, leading to a remarkable improvement in preexisting functionalities and the creation of unexpected properties. The synergetic merits of atomically coupled 2D inorganic-graphene nanosheets are presented here in the exploration of novel heterogeneous functional materials, with an emphasis on their critical roles as hybridization building blocks, interstratified sheets, additives, substrates, and deposited monolayers. The great flexibility and controllability of the elemental compositions, defect structures, and surface natures of inorganic-graphene nanosheets provide valuable opportunities for exploring high-performance nanohybrids applicable as electrodes for supercapacitors and rechargeable batteries, electrocatalysts, photocatalysts, and water purification agents, to give some examples. An outlook on future research perspectives for the exploitation of emerging 2D nanosheet-based hybrid materials is also presented along with novel synthetic strategies to maximize the synergetic advantage of atomically mixed 2D inorganic-graphene nanosheets.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Ha Gu
- Department of Chemistry and Nanoscience, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Nam Hee Kwon
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seong-Ju Hwang
- Department of Materials Science and Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
38
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
39
|
Wang K, Zhao T, Zhang N, Feng T, Li L, Wu F, Chen R. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. NANOSCALE 2021; 13:16690-16695. [PMID: 34590652 DOI: 10.1039/d1nr04825b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for stable lithium-sulfur (Li-S) batteries due to its shuttle-free redox mechanism. However, the redox kinetics of SPAN needs to be enhanced to improve Li-S batteries. Herein, a salt-templating method is proposed for the fabrication of ultrathin SPAN nanosheets, which can afford a large contact area with the electrolyte and shorten the transport paths of electrons/ions involved in the reaction. In situ Raman analysis confirms the reversible breaking and formation of C-S/S-S bonds in SPAN nanosheets during cycling while ex situ SEM reveals the formation of lithium sulfide particles on the surface of SPAN nanosheets at the end of discharge. At a high current density of 2 A g-1, coin cells based on a SPAN nanosheet cathode can deliver a reversible capacity of 408 mA h g-1composite over 100 cycles with a capacity retention rate of 95%. Meanwhile, pouch cells using a SPAN nanosheet cathode exhibit a capacity retention rate close to 100% after 100 cycles at the same current density. These results herald a new approach for powering Li-S batteries by the nanoscale design of the SPAN cathode.
Collapse
Affiliation(s)
- Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Teng Zhao
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
| | - Nanxiang Zhang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tao Feng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China
| |
Collapse
|
40
|
Bobrinetskiy I, Radovic M, Rizzotto F, Vizzini P, Jaric S, Pavlovic Z, Radonic V, Nikolic MV, Vidic J. Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2700. [PMID: 34685143 PMCID: PMC8538910 DOI: 10.3390/nano11102700] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Electrochemical biosensors utilizing nanomaterials have received widespread attention in pathogen detection and monitoring. Here, the potential of different nanomaterials and electrochemical technologies is reviewed for the development of novel diagnostic devices for the detection of foodborne pathogens and their biomarkers. The overview covers basic electrochemical methods and means for electrode functionalization, utilization of nanomaterials that include quantum dots, gold, silver and magnetic nanoparticles, carbon nanomaterials (carbon and graphene quantum dots, carbon nanotubes, graphene and reduced graphene oxide, graphene nanoplatelets, laser-induced graphene), metal oxides (nanoparticles, 2D and 3D nanostructures) and other 2D nanomaterials. Moreover, the current and future landscape of synergic effects of nanocomposites combining different nanomaterials is provided to illustrate how the limitations of traditional technologies can be overcome to design rapid, ultrasensitive, specific and affordable biosensors.
Collapse
Affiliation(s)
- Ivan Bobrinetskiy
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Marko Radovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Francesco Rizzotto
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Priya Vizzini
- Department of Agriculture Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| | - Stefan Jaric
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Zoran Pavlovic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Vasa Radonic
- BioSense Institute, University of Novi Sad, 21102 Novi Sad, Serbia; (I.B.); (M.R.); (S.J.); (Z.P.); (V.R.)
| | - Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Jasmina Vidic
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| |
Collapse
|
41
|
Vimalanathan K, Palmer T, Gardner Z, Ling I, Rahpeima S, Elmas S, Gascooke JR, Gibson CT, Sun Q, Zou J, Andersson MR, Darwish N, Raston CL. High shear in situ exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. NANOSCALE ADVANCES 2021; 3:5785-5792. [PMID: 36132680 PMCID: PMC9419649 DOI: 10.1039/d1na00598g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 06/14/2023]
Abstract
A diversity of two-dimensional nanomaterials has recently emerged with recent attention turning to the post-transition metal elements, in particular material derived from liquid metals and eutectic melts below 330 °C where processing is more flexible and in the temperature regime suitable for industry. This has been explored for liquid gallium using an angled vortex fluidic device (VFD) to fabricate ultrathin gallium oxide (Ga2O3) sheets under continuous flow conditions. We have established the nanosheets to form highly insulating material and have electrocatalytic activity for hydrogen evolution, with a Tafel slope of 39 mV dec-1 revealing promoting effects of the surface oxidation (passivation layer).
Collapse
Affiliation(s)
- Kasturi Vimalanathan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Timotheos Palmer
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Irene Ling
- School of Science, Monash University Malaysia Jalan Lagoon Selatan, Bandar Sunway 47500 Selangor Malaysia
| | - Soraya Rahpeima
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Sait Elmas
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Jason R Gascooke
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Christopher T Gibson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Qiang Sun
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Jin Zou
- Centre for Microscopy and Microanalysis, The University of Queensland Brisbane QLD 4072 Australia
- Materials Engineering, The University of Queensland Brisbane QLD 4072 Australia
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute for Functional Molecule and Interfaces, Curtin University Bentley Western Australia 6102 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Adelaide SA 5001 Australia
| |
Collapse
|
42
|
Zhang H, Xu Z, Shi B, Ding F, Liu X, Wu H, Shi C, Zhao N. Enhanced Cyclability of Cr 8O 21 Cathode for PEO-Based All-Solid-State Lithium-Ion Batteries by Atomic Layer Deposition of Al 2O 3. MATERIALS 2021; 14:ma14185380. [PMID: 34576601 PMCID: PMC8468447 DOI: 10.3390/ma14185380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Cr8O21 can be used as the cathode material in all-solid-state batteries with high energy density due to its high reversible specific capacity and high potential plateau. However, the strong oxidation of Cr8O21 leads to poor compatibility with polymer-based solid electrolytes. Herein, to improve the cycle performance of the battery, Al2O3 atomic layer deposition (ALD) coating is applied on Cr8O21 cathodes to modify the interface between the electrode and the electrolyte. X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and Fourier transform infrared spectroscopy, etc., are used to estimate the morphology of the ALD coating and the interface reaction mechanism. The electrochemical properties of the Cr8O21 cathodes are investigated. The results show that the uniform and dense Al2O3 layer not only prevents the polyethylene oxide from oxidization but also enhances the lithium-ion transport. The 12-ALD-cycle-coated electrode with approximately 4 nm Al2O3 layer displays the optimal cycling performance, which delivers a high capacity of 260 mAh g−1 for the 125th cycle at 0.1C with a discharge-specific energy of 630 Wh kg−1.
Collapse
Affiliation(s)
- Haichang Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; (H.Z.); (N.Z.)
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; (Z.X.); (B.S.); (X.L.)
| | - Zhibin Xu
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; (Z.X.); (B.S.); (X.L.)
| | - Bin Shi
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; (Z.X.); (B.S.); (X.L.)
| | - Fei Ding
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; (Z.X.); (B.S.); (X.L.)
- Correspondence: (F.D.); (C.S.)
| | - Xingjiang Liu
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China; (Z.X.); (B.S.); (X.L.)
| | - Hongzhao Wu
- School of Automotive Engineering, Tianjin Vocational Institute, Tianjin 300410, China;
| | - Chunsheng Shi
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; (H.Z.); (N.Z.)
- Correspondence: (F.D.); (C.S.)
| | - Naiqin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China; (H.Z.); (N.Z.)
| |
Collapse
|
43
|
Fang L, Bahlawane N, Sun W, Pan H, Xu BB, Yan M, Jiang Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101137. [PMID: 34331406 DOI: 10.1002/smll.202101137] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Indexed: 06/13/2023]
Abstract
The past decade has witnessed a rapidly growing interest toward sodium ion battery (SIB) for large-scale energy storage in view of the abundance and easy accessibility of sodium resources. Key to addressing the remaining challenges and setbacks and to translate lab science into commercializable products is the development of high-performance anode materials. Anode materials featuring combined conversion and alloying mechanisms are one of the most attractive candidates, due to their high theoretical capacities and relatively low working voltages. The current understanding of sodium-storage mechanisms in conversion-alloying anode materials is presented here. The challenges faced by these materials in SIBs, and the corresponding improvement strategies, are comprehensively discussed in correlation with the resulting electrochemical behavior. Finally, with the guidance and perspectives, a roadmap toward the development of advanced conversion-alloying materials for commercializable SIBs is created.
Collapse
Affiliation(s)
- Libin Fang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Naoufal Bahlawane
- Material Research and Technology Department, Luxembourg Institute of Science and Technology, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Ben Bin Xu
- Smart Materials and Surfaces Lab, Mechanical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Mi Yan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
44
|
Mei J, Wang T, Qi D, Liu J, Liao T, Yamauchi Y, Sun Z. Three-Dimensional Fast Na-Ion Transport in Sodium Titanate Nanoarchitectures via Engineering of Oxygen Vacancies and Bismuth Substitution. ACS NANO 2021; 15:13604-13615. [PMID: 34355881 DOI: 10.1021/acsnano.1c04479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered sodium titanates (NTO), one of the most promising anode materials for advanced sodium-ion batteries (SIBs), feature high theoretical capacity and no serious safety concerns. The pristine NTO electrode, however, has unfavorable Na+ transport kinetics, due to the dominant two-dimensional (2D) Na-ion transport channels within the crystal along the low energy barrier octahedron layers, which impedes the practical application of this class of potential materials. Herein, an interesting concept of opening three-dimensional (3D) fast ion transport channels within the intrinsic NTO frameworks is proposed to enhance the electrochemical performance through a combination of oxygen vacancy generation and cation substitution strategies, by which the interlayer spacing of the NTO frameworks is expanded for fast 3D Na-ion transport. It is evidenced that the oxygen-deficient and bismuth-substituted HBNTO (BixNa2-xTi3Oy, 0 < x < 2, 0 < y < 7, HBNTO) exhibits obvious enhancements on the reversible capacity (∼145% enhancement at 20 mAh g-1 compared with NTO), the rate capability (∼200% enhancement at 500 mAh g-1 compared with NTO), and the cycling stability (∼210% enhancement of retention capacity after 150 cycles at 20 mAh g-1 compared with NTO). The molecular dynamic simulations and theoretical calculations demonstrate that the enhanced performance of HBNTO is contributed by the multiplied sodium diffusion pathways and the increased ion migration rates with the successful opening of 3D internal ion transport channels. This work demonstrates the effectiveness of the strategies in opening the 3D intercrystal ion transport channels for boosting the electrochemical performance of SIBs.
Collapse
Affiliation(s)
- Jun Mei
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Tiantian Wang
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongchen Qi
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ziqi Sun
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
45
|
Ma J, Yang C, Ma X, Liu S, Yang J, Xu L, Gao J, Quhe R, Sun X, Yang J, Pan F, Yang X, Lu J. Improvement of alkali metal ion batteries via interlayer engineering of anodes: from graphite to graphene. NANOSCALE 2021; 13:12521-12533. [PMID: 34263895 DOI: 10.1039/d1nr01946e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interlayer engineering of graphite anodes in alkali metal ion (M = Li, Na, and K) batteries is carried out based on the first-principles calculations. By increasing the interlayer spacing of graphite, the specific capacity of Li or Na does not increase while that of K increases continuously (from 279 mA h g-1 at the equilibrium interlayer spacing to 1396 mA h g-1 at the interlayer spacing of 20.0 Å). As the interlayer spacing increases, the electrostatic potential of graphite becomes smoother, and the ability to buffer the electrostatic potential fluctuation becomes poorer in M ions. These two effects jointly lead to minima of the diffusion barrier of M ions on graphite (0.01-0.05 eV), instead of strictly monotonous declines with the increasing interlayer spacing. To perform the interlayer engineering of anode candidates more efficiently, a set of high-throughput programs has been developed and can be easily applied to other systems. Our research has guiding significance for achieving the optimal effect in interlayer engineering experimentally.
Collapse
Affiliation(s)
- Jiachen Ma
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A bioinspired approach to fabricate fluorescent nanotubes with strong water adhesion by soft template electropolymerization and post-grafting. J Colloid Interface Sci 2021; 606:236-247. [PMID: 34390991 DOI: 10.1016/j.jcis.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS In this original work, we aim to control both the surface wetting and fluorescence properties of extremely ordered and porous conducting polymer nanotubes prepared by soft template electropolymerization and post-grafting. For reaching this aim, various substituents of different hydrophobicity and fluorescence were post-grafted and the post-grafting yields were evaluated by surface analyses. We show that the used polymer is already fluorescent before post-grafting while the post-grafting yield and as a consequence the surface hydrophobicity highly depend on the substituent. EXPERIMENTS Here, we have chosen to chemically grafting various fluorinated and aromatic substituents using a post-grafting in order to keep the same surface topography. Flat conducting polymer surfaces with similar properties have been also prepared for determining the surface energy with the Owens-Wendt equation and estimating the post-grafting yield by X-ray Photoemission Spectroscopy (XPS) and Time of Flight Secondary Emission Spectrometry (ToF-SIMS). For example, using fluorinated chains of various length (C4F9, C6F13 and C8F17), it is demonstrated that the surface hydrophobicity and oleophobicity do not increase with the fluorinated chain length due to the different post-grafting yields and because of the presence of nanoroughness after post-grafting. FINDINGS These surfaces have high apparent water contact angle up to 130.5° but also strong water adhesion, comparable to rose petal effect even if there are no nanotubes on petal surface. XPS and ToF-SIMS analyses provided a detailed characterisation of the surface chemistry with a qualitative classification of the grafted surfaces (F6 > F4 > F8). SEM analysis shows that grafting does not alter the surface morphology. Finally, fluorescence analyses show that the polymer surfaces before post-treatment are already nicely fluorescent. Although the main goal of this paper was and is to understand the role of surface chemistry in tailoring the wetting properties of these surfaces rather than provide specific application examples, we believe that the obtained results can help the development of specific nanostructured materials for potential applications in liquid transport, or in stimuli responsive antimicrobial surfaces.
Collapse
|
47
|
Su S, Wang X, Xue J. Nanopores in two-dimensional materials: accurate fabrication. MATERIALS HORIZONS 2021; 8:1390-1408. [PMID: 34846448 DOI: 10.1039/d0mh01412e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials such as graphene and molybdenum disulfide have been demonstrated with a wide range of applications in electronic devices, chemical catalysis, single-molecule detection, and energy conversion. In the 2D materials, nanopores can be created, and the 2D nanoporous membranes possess many unique properties such as ultrathin thickness, high surface area, and excellent particle sieving capability, showing extraordinary promise in plenty of applications, such as sea water desalination, gas separation, and DNA sequencing. The performances of these membranes are mainly determined by the nanopore size, structure, and density, which, in turn, rely on the fabrication techniques of the nanopores. This review covers the important progress of nanopore fabrication in 2D materials and comprehensively compares these methods for the features of the introduced nanopores and their formation processes. Future perspectives are discussed on the opportunities and challenges in fabricating high-grade 2D nanopores.
Collapse
Affiliation(s)
- Shihao Su
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, P. R. China.
| | | | | |
Collapse
|
48
|
Abdullah OH, Mohammed AM. Biosynthesis and characterization of MgO nanowires using Prosopis farcta and evaluation of their applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Zhao S, Zhang J, Fu L. Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005544. [PMID: 33448060 DOI: 10.1002/adma.202005544] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Indexed: 06/12/2023]
Abstract
2D metal oxides (2DMOs) have been widely applied in the fields of electronic, magnetic, optical, and catalytic materials, owing to their rich surface chemistry and unique electronic structures. However, their further development faces challenges such as the difficulty in fabricating 2DMOs with unstable surface induced by strong surface polarizability, or the high cost and limited yield of the fabrication process. Recently, liquid metals have shown great potential in the fabrication of 2DMOs. The native oxide skin formed on the surface of liquid metals can be considered as a perfect 2D planar material. Due to the solubility, fluidity, and reactivity of liquid metals, they can act as the solvent, reactant, and interface in the fabrication of 2DMOs. Moreover, liquid metals undergo a liquid-solid phase transition, enabling them to be a symmetric matched substrate for growing high-quality 2DMOs. An insightful survey of the recent progress in this research direction is presented. The features of liquid metals including good solubility, chemical reactivity, weak interface force, and liquid-solid phase transitions are introduced in detail. Furthermore, strategies for the fabrication of 2DMOs by virtue of these features are summarized comprehensively. Finally, current challenges and prospects regarding the future development in the fabrication of 2DMOs via liquid metals are highlighted.
Collapse
Affiliation(s)
- Shasha Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiaqian Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
50
|
Song Y, Xu B, Liao T, Guo J, Wu Y, Sun Z. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2002240. [PMID: 32851763 DOI: 10.1002/smll.202002240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
2D metal (hydr)oxide nanosheets have captured increasing interest in electrocatalytic applications aroused by their high specific surface areas, enriched chemically active sites, tunable physiochemical properties, etc. In particular, the electrocatalytic reactivities of materials greatly rely on their surface electronic structures. Generally speaking, the electronic structures of catalysts can be well adjusted via controlling their morphologies, defects, and heterostructures. In this Review, the latest advances in 2D metal (hydr)oxide nanosheets are first reviewed, including the applications in electrocatalysis for the hydrogen evolution reaction, oxygen reduction reaction, and oxygen evolution reaction. Then, the electronic structure-property relationships of 2D metal (hydr)oxide nanosheets are discussed to draw a picture of enhancing the electrocatalysis performances through a series of electronic structure tuning strategies. Finally, perspectives on the current challenges and the trends for the future design of 2D metal (hydr)oxide electrocatalysts with prominent catalytic activity are outlined. It is expected that this Review can shed some light on the design of next generation electrocatalysts.
Collapse
Affiliation(s)
- Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Yucheng Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|