1
|
He Q, Wang J, Xu T, Tam TLD, Wang J, Liu N, Chang S, Meng H, Xu J. A Novel Solubilizing Fully π-Conjugated Ladder Polymer and Its Thermoelectric Properties. ACS Macro Lett 2025; 14:630-635. [PMID: 40317262 DOI: 10.1021/acsmacrolett.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Fully conjugated ladder polymers (CLPs) have emerged as promising candidates for next-generation organic electronics due to their extended π-conjugation pathways, intrinsic charge transport anisotropy, and exceptional chemical and thermal stability. However, insolubility remains a critical bottleneck, primarily stemming from side reactions that disrupt the linear structure. Herein, we report a soluble CLP, benzo[a]benzo[5,6][1,4]thiazino[3,2-c]phenothiazine ladder (NBBTL), via a stepwise strategy to preserve the linear structure of the polymer. The resulting polymer exhibits unprecedented solution processability while maintaining structural integrity, enabling the first reported thermoelectric generator fabrication. Thermoelectric performance evaluation revealed that FeCl3-doped NBBTL achieved a conductivity of 3.18 ± 0.33 S cm-1 and a power factor of 0.94 ± 0.09 μW m-1 K-2. Further analysis of the polymer chain orientation in films by grazing-incidence wide-angle X-ray scattering revealed that NBBTL exhibits a bimodal orientation with both face-on and edge-on. This study demonstrates that strategic molecular engineering can overcome long-standing insolubility issues in CLPs, potentially paving the way for their wider application in organic electronics and thermoelectric energy conversion.
Collapse
Affiliation(s)
- Qiang He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Jianing Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianhe Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Teck Lip Dexter Tam
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
| | - Jiayu Wang
- Facultyof-Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Na Liu
- Facultyof-Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Shuai Chang
- Facultyof-Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen, Guangdong 518115, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055, China
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Jurong Island 627833, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
2
|
Ma M, Zhang L, Huang M, Kuang Y, Li H, Yang H, Yao T, Ye G, Shao S, Yoon MH, Liu J. Regiochemistry and Side-Chain Engineering Enable Efficient N-Type Mixed Conducting Polymers. Angew Chem Int Ed Engl 2025; 64:e202424820. [PMID: 40087895 DOI: 10.1002/anie.202424820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/17/2025]
Abstract
Developing high-performance n-type organic mixed ionic-electronic conducting (OMIEC) polymers with simple structural motifs is still challenging. We show that high-performance, low-threshold-voltage n-type OMIEC polymers can be achieved using a simple diketopyrrolopyrrole unit flanked by thiazole groups, which is functionalized with glycolated side chains. Interestingly, the regiospecific sp2-N position in the repeating unit's thiazole governs the polymer chains' solvation and molecular packing. This specific backbone chemistry enhances conjugation efficiency, reduces trap density, and improves electrochemical doping efficiency. Moreover, systematic variation of glycolated side-chain lengths induces a sequential shift in molecular orientation-from edge-on through bimodal to face-on preferential alignment. This structural evolution achieves optimized ionic-electronic transport balance, resulting in exceptional device metrics: a geometrically normalized transconductance of 31.9 S cm-1, a figure-of-merit µC* of 96.3 F cm-1 V-1 s-1, and a threshold voltage of 0.31 V, positioning these materials among the highest-performing n-type OMIECs. An organic complementary inverter made from the optimized n-type OMIEC polymer and a reported p-type polymer exhibits a voltage gain of 198 V V-1, effectively amplifying the ECG signal and enhancing signal quality. This work establishes structure-property guidelines for designing bioelectronic n-type OMIECs.
Collapse
Affiliation(s)
- Mingyu Ma
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Linlong Zhang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Minhu Huang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Hangyang Li
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Huanzhou Yang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Tangqing Yao
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Gang Ye
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Shuyan Shao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jian Liu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
3
|
Giri I, Vijayaraghavan RK. Flexible End-Group Triggered Temporal Supramolecular Reordering on Substrate Surfaces and Its Impact on Electron Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502456. [PMID: 40190048 DOI: 10.1002/smll.202502456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Indexed: 05/27/2025]
Abstract
The temporal stability of domain microstructure and morphologies is critical in regulating charge transport in organic field effect transistors (OFETs), ensuring consistent device performance and long-term reliability. Overcoming stability challenges in small molecular weight n-type materials, particularly in solution-processed active layers, necessitates careful molecular design. While flexible end groups or side chains enhance solution processability, they also introduce temporal disorder, or temporal reordering compromising device endurance. This study examines the trade-offs between rigid and flexible end groups in n-type molecular semiconductors, emphasizing their influence on morphological reordering in active layer films. As representative materials, n-Hex2NDI, with flexible end groups, is compared to tBCyH2NDI, which features rigid end groups. Films containing flexible side chains exhibit pronounced sensitivity to thermal annealing, significantly modifying the molecular and supramolecular arrangement and the crystallinity of n-Hex2NDI. Moreover, these flexible chains reduce current-voltage hysteresis, indicating enhanced structural order at elevated temperatures. Conversely, tBCyH2NDI demonstrates minimal temporal disorder at the molecular level organization, maintaining stable optical properties and negligible changes in current-voltage hysteresis upon annealing.
Collapse
Affiliation(s)
- Indrajit Giri
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Nadia, Kolkata, West Bengal, 741246, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Nadia, Kolkata, West Bengal, 741246, India
| |
Collapse
|
4
|
Chen Z, Zhao X, Wang C, Fang W, Ye G, Chen L, Li J, Zhang Y. Organic electrochemical transistors based on a conjugated diketopyrrolopyrrole-dialkoxybithiazole copolymer. NANOSCALE 2025; 17:8892-8900. [PMID: 40099414 DOI: 10.1039/d5nr00379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Organic electrochemical transistors (OECTs) are promising for bioelectronics due to their ability to amplify signals by converting ionic signals into electronic signals. The performance of OECTs relies heavily on the interaction between electrolyte ions and organic mixed ionic-electronic conductors (OMIECs). We examined how different aqueous electrolytes affect OECTs based on an ethylene glycol-substituted diketopyrrolopyrrole-dialkoxybithiazole copolymer (PDPP-TEG-2Tz), which is primarily p-type and electrochemically doped with anions. Our findings show that compared to the small, highly hydrated chloride anion (Cl-), the larger hexafluorophosphate (PF6-) and bis(trifluoromethanesulfonyl)imide (TFSI-) anions result in a lower threshold voltage and a faster transient response. Cations like Li+, Na+, and K+ have little impact on OECT performance. Additionally, we created a complementary inverter using p-type PDPP-TEG-2Tz with an n-type naphthalene diimide-bithiophene copolymer (PNDI2C8TEG-2T), achieving a maximum voltage gain of 22.6 at a supply voltage of 0.7 V.
Collapse
Affiliation(s)
- Zilan Chen
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Xiaowei Zhao
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Chengdong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wenxin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuhan, 430062 China.
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201028, China
| | - Yanxi Zhang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Doshi S, Forner MOA, Wang P, Hadwe SE, Jin AT, Dijk G, Brinson K, Lim J, Dominguez‐Alfaro A, Lim CYJ, Salleo A, Barone DG, Hong G, Brongersma ML, Melosh NA, Malliaras GG, Keene ST. Thermal Processing Creates Water-Stable PEDOT:PSS Films for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415827. [PMID: 40025942 PMCID: PMC11962680 DOI: 10.1002/adma.202415827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Organic mixed ionic-electronic conductors have emerged as a key material for the development of bioelectronic devices due to their soft mechanical properties, biocompatibility, and high volumetric capacitance. In particular, PEDOT:PSS has become a choice material because it is highly conductive, easily processible, and commercially available. However, PEDOT:PSS is dispersible in water, leading to delamination of films when exposed to biological environments. For this reason, chemical cross-linking agents such as (3-glycidyloxypropyl)trimethoxysilane (GOPS) are used to stabilize PEDOT:PSS films in water, but at the cost of decreased electrical performance. Here, it is shown that PEDOT:PSS thin films become water-stable by simply baking at high temperatures (>150 °C) for a short time (≈ 2 min). It is shown that heat-treated PEDOT:PSS films are as stable as their chemically-cross-linked counterparts, with their performance maintained for >20 days both in vitro and in vivo. The heat-treated films eliminate electrically insulating cross-linkers, resulting in a 3× increase in volumetric capacitance. Applying thermal energy using a focused femtosecond laser enables direct patterning of 3D PEDOT:PSS microstructures. The thermal treatment method is compatible with a wide range of substrates and is readily substituted into existing workflows for manufacturing devices, enabling its rapid adoption in the field of bioelectronics.
Collapse
Affiliation(s)
- Siddharth Doshi
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Margaux O. A. Forner
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Pingyu Wang
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Salim El Hadwe
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Amy T. Jin
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Gerwin Dijk
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Kenneth Brinson
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juhwan Lim
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
| | - Antonio Dominguez‐Alfaro
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Carina Yi Jing Lim
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Alberto Salleo
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Damiano G. Barone
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0QQUK
| | - Guosong Hong
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Mark L. Brongersma
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Nicholas A. Melosh
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Scott T. Keene
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeCambridgeCB3 0HEUK
- Department of Materials Science and NanoEngineeringRice UniversityHoustonTX77005USA
| |
Collapse
|
6
|
Cho KG, Kim SJ, Park DH, Kim MS, Hong K, Lee KH, Frisbie CD. Band Filling, Electrochemical Reaction, and Re-Entrant Insulating Behavior in Electrolyte-Gated BBL Polymer Semiconductor Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15718-15727. [PMID: 40020178 DOI: 10.1021/acsami.4c22852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Electrochemical doping of the n-type polymer poly(benzimidazobenzophenanthroline) (BBL) in contact with ionic liquids reveals a peak in the drain current (ID) vs gate voltage (VG) behavior, i.e., conductivity versus electron density. The conductivity peak is related to simultaneously acquired gate current-gate voltage (IG-VG) charging curves that are integrated to yield total charge accumulation. The IG-VG traces reveal three separate redox events upon charging BBL that can be correlated with the ID-VG behavior. We assign the first broad IG-VG peak to accumulation of mobile electrons in the BBL LUMO and an increase in ID. Two subsequent sharp IG-VG peaks correspond to electrochemical transformation of BBL to a polymer salt with 2:1 and 1:1 repeat unit-to-cation stoichiometries, respectively. Salt formation correlates with conductivity collapse at high VG; the 1:1 salt phase is insulating. Ex situ grazing incidence wide-angle X-ray scattering (GIWAXS) indicates an initial 5% contraction of the lamellar spacing upon doping with subsequent retention of lamellar (para)crystalline order for repeated doping cycles. Overall, our results reveal a complex interplay between band filling and electrochemical reaction in the transport behavior of electrochemically doped BBL films and provide additional evidence of nonmonotonic conductivity versus charge behavior that appears to be general in polymer semiconductor films.
Collapse
Affiliation(s)
- Kyung Gook Cho
- Advanced Functional Polymers Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Su Jung Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Dong Hyun Park
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Min Su Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Kihyon Hong
- Department of Materials Science and Engineering, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Keun Hyung Lee
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
8
|
Wang Y, Shan W, Li H, Zhong Y, Wustoni S, Uribe J, Chang T, Musteata VE, Castillo TCH, Yue W, Ling H, El-Atab N, Inal S. An optoelectrochemical synapse based on a single-component n-type mixed conductor. Nat Commun 2025; 16:1615. [PMID: 39948373 PMCID: PMC11825661 DOI: 10.1038/s41467-025-56814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are materials that can be used to build bio-inspired electronic devices as they emulate ion-based cellular communication through doping with aqueous ionic charges. The integration of charge photogeneration and electrochemical doping processes in the polymer film enables optoelectronic applications that involve synaptic transistors. However, no OMIEC has yet been implemented to create a miniaturized photoactive platform capable of perceiving and processing multi-spectral visual information. Here, we present a materials and device design concept in which an n-type OMIEC film is incorporated into the micron-scale channel of an electrochemical transistor operating directly in an aqueous electrolyte under ambient conditions. The conjugated polymer channel, consisting of a fluorinated bisistain-lactone-bithiazole acceptor, has a current modulated in response to both electrical and optical stimuli, emulating the multimodal function of the visual nervous system. Our optoelectrochemical synapse achieves multilevel conductance states as well as transduction of visual information covering ultraviolet, visible, and near-infrared regions of the spectrum - a range beyond that of the human visual system's perception. The resulting transistor active-matrix array is capable of adaptive sensing, memory, and pre-processing of visual information, demonstrating an efficient optoelectronic neuromorphic system with multi-task learning capability.
Collapse
Affiliation(s)
- Yazhou Wang
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wentao Shan
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanrui Li
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tianrui Chang
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valentina E Musteata
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wan Yue
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, 510275, China
| | - Haifeng Ling
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Nazek El-Atab
- Smart, Advanced Memory Devices and Applications (SAMA) Laboratory, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Chen Z, Ding X, Wang J, Guo X, Shao S, Feng K. π-Conjugated Polymers for High-Performance Organic Electrochemical Transistors: Molecular Design Strategies, Applications and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202423013. [PMID: 39743846 DOI: 10.1002/anie.202423013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
The last decade has witnessed significant progress in organic electrochemical transistors (OECTs) due to their enormous potential applications in various bioelectronic devices, such as artificial synapses, biological interfaces, and biosensors. The remarkable advance in this field is highly powered by the development of novel organic mixed ionic/electronic conductors (OMIECs). π-Conjugated polymers (CPs), which are widely used in various optoelectronics, are emerging as key channel materials for OECTs. In this review, after briefly introducing OECT, we then mainly focus on the latest progress in CPs for high-performance OECTs. The correlations of their structure, basic physicochemical properties, and device performance are elucidated by evaluating their electronic characters, optoelectronic properties, and OECT performance. Then, the applications of CP-based OECTs are briefly presented. Finally, we discuss several remaining issues or challenges in this field and give our insights into advancing CPs for enhanced OECT performance.
Collapse
Affiliation(s)
- Zhicai Chen
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xinliang Ding
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Shiyang Shao
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Kuang Y, Yao T, Deng S, Dong J, Ye G, Zhang L, Shao S, Zhu Z, Liu J, Liu J. Matching P- and N-type Organic Electrochemical Transistor Performance Enables a Record High-gain Complementary Inverter. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417691. [PMID: 39713921 DOI: 10.1002/adma.202417691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Indexed: 12/24/2024]
Abstract
The charge transport of channel materials in n-type organic electrochemical transistors (OECTs) is greatly limited by the adverse effects of electrochemical doping, posing a long-standing puzzle for the community. Herein, an n-type conjugated polymer with glycolated side chains (n-PT3) is introduced. This polymer can adapt to electrochemical doping and create more organized nanostructures, mitigating the adverse effects of electrochemical doping. This unique characteristic gives n-PT3 excellent charge transport in the doped state and reversible ion storage, making it highly suitable as an n-type organic mixed ionic-electronic conducting (OMIEC) material. n-PT3 exhibits a high electron mobility of µ ≈ 1.0 cm2 V-1 s-1 and a figure of merit value of µC* ≈ 100 F cm-1 V-1 s-1, representing one of the best results for n-type OMIEC materials. A new p-type OMIEC polymer has been synthesized as the channel material for constructing a complementary inverter to match the n-type OECT channel layer based on n-PT3. As a result, a voltage gain value of up to 307 VV-1 has been achieved, which is a record value for sub-1 V complementary inverters based on OECTs. This work offers valuable insights into designing electrochemical doping adaptive n-type OMIEC materials and fabricating high-gain organic complementary inverters.
Collapse
Affiliation(s)
- Yazhuo Kuang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tangqing Yao
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jingjin Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Gang Ye
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Linlong Zhang
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuyan Shao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200003, P.R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry & Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
11
|
Sun Z, Sun M, Qin S, Wang M, Zheng Y, Khau B, Li H, Gartner TE, Takacs CJ, Reichmanis E. Controlling Ion Uptake in Carboxylated Mixed Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414963. [PMID: 39628438 PMCID: PMC11854860 DOI: 10.1002/adma.202414963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Indexed: 02/26/2025]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single-ion injection with little attention to counterion effects. To advance understanding and design strategies toward next-generation OMIEC systems, a series of p-channel carboxylated mixed conductors is investigated. Varying side-chain functionality, distinctive swelling character is uncovered during electrochemical doping/dedoping with model chao-/kosmotropic electrolytes. Carboxylic acid functionalized polymers demonstrate strong deswelling and mass reduction during doping, indicating cation expulsion, while ethoxycarbonyl counterparts exhibit prominent mass increase, pointing to an anion-driven doping mechanism. By employing operando grazing incidence X-ray fluorescence (GIXRF), it is revealed that the carboxyl functionalized polymer engages in robust cation interaction, whereas ester functionalization shifts the mechanism towards no cation involvement. It is demonstrated that cations are pivotal in mitigating swelling by counterbalancing anions, enabling efficient anion uptake without compromising performance. These findings underscore the transformative influence of functionality-driven factors and side-chain chemistry in governing ion dynamics and conduction, providing new frameworks for designing OMIECs with enhanced performance and reduced swelling.
Collapse
Affiliation(s)
- Zeyuan Sun
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Mengting Sun
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Siyu Qin
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Meng Wang
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Yulong Zheng
- School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Brian Khau
- School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Han Li
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Thomas E. Gartner
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Elsa Reichmanis
- Department of Chemical and Biomolecular EngineeringLehigh UniversityBethlehemPA18015USA
| |
Collapse
|
12
|
Zhang X, Zhu R, Yang W, Wang K, Ding R, Jeong SY, Woo HY, Feng K, Guo X. Backbone Engineering of Bithiophene Imide Dimer-Based Polymeric Mixed Ionic-Electronic Conductors for High-Performance n-Type Organic Electrochemical Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408716. [PMID: 39840488 DOI: 10.1002/smll.202408716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/24/2024] [Indexed: 01/23/2025]
Abstract
Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures. Compared to other PMIECs, the A-A backbone-based PMIEC PBTI2g-BTI features the most suppressed lowest unoccupied molecular orbital energy level, a highly planar backbone, and superior n-type electrochemical dopability. Consequently, polymer PBTI2g-BTI delivers an exceptional unipolar n-type OECT performance with a high electron mobility of 0.25 cm2 V⁻¹ s⁻¹ and a remarkable µC* value of 63.79 F cm⁻¹ V⁻¹ s⁻¹, both of which are significantly higher than those of other types of PMIECs. This study demonstrates that the A-A backbone strategy is an effective approach to developing high-performance n-type PMIECs for applications in OECTs.
Collapse
Affiliation(s)
- Xiage Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Rongjin Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Keli Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
13
|
Cho Y, Gao L, Yao Y, Kim J, Zhang D, Forti G, Duplessis I, Wang Y, Pankow RM, Ji X, Rivnay J, Marks TJ, Facchetti A. Small-Molecule Mixed Ionic-Electronic Conductors for Efficient N-Type Electrochemical Transistors: Structure-Function Correlations. Angew Chem Int Ed Engl 2025; 64:e202414180. [PMID: 39312509 DOI: 10.1002/anie.202414180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The fundamental challenge in electron-transporting organic mixed ionic-electronic conductors (OMIECs) is simultaneous optimization of electron and ion transport. Beginning from Y6-type/U-shaped non-fullerene solar cell acceptors, we systematically synthesize and characterize molecular structures that address the aforementioned challenge, progressively introducing increasing numbers of oligoethyleneglycol (OEG; g) sidechains from 1 g to 3 g, affording OMIECs 1gY, 2gY, and 3gY, respectively. The crystal structure of 1gY preserves key structural features of the Yn series: a U-shaped/planar core, close π-π molecular stacking, and interlocked acceptor groups. Versus inactive Y6 and Y11, all of the new glycolated compounds exhibit mixed ion-electron transport in both conventional organic electrochemical transistor (cOECT) and vertical OECT (vOECT) architectures. Notably, 3gY with the highest OEG density achieves a high transconductance of 16.5 mS, an on/off current ratio of ~106, and a turn-on/off response time of 94.7/5.7 ms in vOECTs. Systematic optoelectronic, electrochemical, architectural, and crystallographic analysis explains the superior 3gY-based OECT performance in terms of denser ngY OEG content, increased crystallite dimensions with decreased long-range crystalline order, and enhanced film hydrophilicity which facilitates ion transport and efficient redox processes. Finally, we demonstrate an efficient small-molecule-based complementary inverter using 3gY vOECTs, showcasing the bioelectronic applicability of these new small-molecule OMIECs.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Lin Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yao Yao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jaehyun Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Dayong Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Giacomo Forti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Isaiah Duplessis
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yuyang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Robert M Pankow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Wisniewski DJ, Ma L, Rauhala OJ, Cea C, Zhao Z, Ranschaert A, Gelinas JN, Khodagholy D. Spatial control of doping in conducting polymers enables complementary, conformable, implantable internal ion-gated organic electrochemical transistors. Nat Commun 2025; 16:517. [PMID: 39788930 PMCID: PMC11717955 DOI: 10.1038/s41467-024-55284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types. When integrated with the vertical channel design and internal ion reservoirs of internal ion-gated organic electrochemical transistors, we produced matched complementary IGTs (cIGTs) that formed high-performance conformable amplifiers with 200 V/V uniform gain and 2 MHz bandwidth. These amplifiers showed long-term in vivo stability, and their miniaturized biocompatible design allowed implantation in developing rodents to monitor network maturation. cIGTs expand the use of organic electronics in standard circuit designs and enhance their biomedical potential.
Collapse
Affiliation(s)
- Duncan J Wisniewski
- Department of Electrical Engineering, University of California, Irvine, CA, USA
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Liang Ma
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Onni J Rauhala
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | | | - Jennifer N Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Pediatrics, University of California, Irvine, CA, USA.
- Children's Hospital of Orange County, Orange, CA, USA.
| | - Dion Khodagholy
- Department of Electrical Engineering, University of California, Irvine, CA, USA.
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Alsufyani M, Moss B, Tait CE, Myers WK, Shahi M, Stewart K, Zhao X, Rashid RB, Meli D, Wu R, Paulsen BD, Thorley K, Lin Y, Combe C, Kniebe-Evans C, Inal S, Jeong SY, Woo HY, Ritchie G, Kim JS, Rivnay J, Paterson A, Durrant JR, McCulloch I. The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403911. [PMID: 39221539 DOI: 10.1002/adma.202403911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N-DMBI doped form, resulting in an excellent and air-stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Benjamin Moss
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Claudia E Tait
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - William K Myers
- Centre for Advanced ESR, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Maryam Shahi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Katherine Stewart
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Xiaolei Zhao
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Yuanbao Lin
- College of Education Sciences, The Hong Kong University of Science and Technology, Guangzhou, 510000, CN
| | - Craig Combe
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Charlie Kniebe-Evans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Grant Ritchie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ji-Seon Kim
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alexandra Paterson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
16
|
Hou K, Chen S, John RA, He Q, Zhou Z, Mathews N, Lew WS, Leong WL. Exploiting Spatial Ionic Dynamics in Solid-State Organic Electrochemical Transistors for Multi-Tactile Sensing and Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405902. [PMID: 39331857 DOI: 10.1002/advs.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage. Large sensory arrays further complicate wiring. An 'in-electrolyte computing' platform is presented by integrating organic electrochemical transistors (OECTs) with a solid-state polymer electrolyte. These devices use synapse-like signal transport and spatially dependent bulk ionic doping, achieving over 400 times modulation in channel conductance, allowing discrimination of locally random-access events without peripheral circuitry or address assignment. It demonstrates information processing from 12 tactile sensors with a single OECT output, showing clear advantages in circuit simplicity over existing all-electronic, all-digital implementations. This self-multiplexer platform offers exciting prospects for circuit-free integration with sensory arrays for high-quality, large-volume analog signal processing.
Collapse
Affiliation(s)
- Kunqi Hou
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rohit Abraham John
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, CH-8093, Switzerland
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nripan Mathews
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Tang H, Liang Y, Yang CY, Luo X, Yu J, Zhang K, Fabiano S, Huang F. Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors. MATERIALS HORIZONS 2024; 11:5419-5428. [PMID: 39188189 DOI: 10.1039/d4mh00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
High-performance n-type organic mixed ionic-electronic conductors (OMIECs) are essential for advancing complementary circuits based on organic electrochemical transistors (OECTs). Despite significant progress, current n-type OMIECs often exhibit lower transconductance and slower response times compared to their p-type counterparts, limiting the development of OECT-based complementary circuits. Optimizing the conjugated backbone and side chain structures of OMIECs is critical for enhancing both ion and electron transport efficiencies while maintaining a delicate balance between the two. In this study, hydrophilic polyethylene glycol (PEG) side chains were incorporated into the highly conductive n-type polymer poly(3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione) (PBFDO) backbone to achieve this goal. The incorporation of PEG chains improved ion accessibility, and by adjusting the PEG content, the electronic and ionic transport properties were fine-tuned, ultimately enhancing the performance of OECTs and related p-n complementary circuits. The n-type OECTs based on PBFDO-PEG50wt% demonstrated exceptional transfer characteristics, including a transient response time (τON) as low as 72 μs, a high geometry-normalized transconductance exceeding 400 S cm-1, and an impressive μC* value surpassing 720 F cm-1 V-1 s-1. Notably, the use of PBFDO-PEG50wt% in a complementary inverter resulted in a voltage gain of 20 V/V, more than five times higher than that achieved with unmodified PBFDO (<4 V/V). These findings highlight the importance of balancing electron and ion transport characteristics in OMIECs to achieve high performance in OECTs and their associated circuits, and they validate PEG decoration as an effective approach.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, Guangdong, China
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Xi Luo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jiangkai Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
18
|
Yuan L, Huang Y, Chen X, Gao Y, Ma X, Wang Z, Hu Y, He J, Han C, Li J, Li Z, Weng X, Huang R, Cui Y, Li L, Hu W. Improving both performance and stability of n-type organic semiconductors by vitamin C. NATURE MATERIALS 2024; 23:1268-1275. [PMID: 38937585 DOI: 10.1038/s41563-024-01933-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Organic semiconductors (OSCs) are one of the most promising candidates for flexible, wearable and large-area electronics. However, the development of n-type OSCs has been severely held back due to the poor stability of their most candidates, that is, the intrinsically high reactivity of negatively charged polarons to oxygen and water. Here we demonstrate a general strategy based on vitamin C to stabilize n-type OSCs, remarkably improving the performance and stability of their device, for example, organic field-effect transistors. Vitamin C scavenges reactive oxygen species and inhibits their generation by sacrificial oxidation and non-sacrificial triplet quenching in a cascade process, which not only lastingly prevents molecular structure from oxidation damage but also passivates the latent electron traps to stabilize electron transport. This study presents a way to overcome the long-standing stability problem of n-type OSCs and devices.
Collapse
Affiliation(s)
- Liqian Yuan
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yinan Huang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, China
| | - Xiaosong Chen
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin, China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin, China
| | - Zhongwu Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Yongxu Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Jinbo He
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Cheng Han
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Zhiyun Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xuefei Weng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Rong Huang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Liqiang Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
19
|
Wu X, He Q, Zhou Z, Tam TLD, Tang C, Lin M, Moser M, Griggs S, Marks A, Chen S, Xu J, McCulloch I, Leong WL. Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308823. [PMID: 38531078 DOI: 10.1002/adma.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Organic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione). The device demonstrated fast normalized transient speed of 0.56 ± 0.17 ms um-2 and excellent long-term stability in aqueous electrolytes, with no significant drop in its doping current after 50 000 successive doping/dedoping cycles and 2-month storage at ambient conditions. These unique characteristics make this polymer especially suitable for bioelectronics, such as being used as a pull-down channel in a complementary inverter for long-term stable detection of electrophysiological signals. Moreover, the developed device shows a reversible anti-ambipolar behavior, enabling reconfigurable electronics to be realized using a single material. These results go beyond the conventional OECT and demonstrate the potential of OECTs to exhibit dynamically configurable functionalities for next-generation reconfigurable electronics.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Teck Lip Dexter Tam
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
| | - Cindy Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Lin
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Shuai Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Salvigni L, Nayak PD, Koklu A, Arcangeli D, Uribe J, Hama A, Silva R, Hidalgo Castillo TC, Griggs S, Marks A, McCulloch I, Inal S. Reconfiguration of organic electrochemical transistors for high-accuracy potentiometric sensing. Nat Commun 2024; 15:6499. [PMID: 39090103 PMCID: PMC11294360 DOI: 10.1038/s41467-024-50792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
Organic electrochemical transistors have emerged as a promising alternative to traditional 2/3 electrode setups for sensing applications, offering in-situ transduction, electrochemical amplification, and noise reduction. Several of these devices are designed to detect potentiometric-derived signals. However, potentiometric sensing should be performed under open circuit potential conditions, allowing the system to reach thermodynamic equilibrium. This criterion is not met by conventional organic electrochemical transistors, where voltages or currents are directly applied to the sensing interface, that is, the gate electrode. In this work, we introduce an organic electrochemical transistor sensing configuration called the potentiometric‑OECT (pOECT), which maintains the sensing electrode under open circuit potential conditions. The pOECT exhibits a higher response than the 2-electrode setup and offers greater accuracy, response, and stability compared to conventional organic electrochemical transistors. Additionally, it allows for the implementation of high-impedance electrodes as gate/sensing surfaces, all without compromising the overall device size.
Collapse
Affiliation(s)
- Luca Salvigni
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Prem Depan Nayak
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Anil Koklu
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Danilo Arcangeli
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Johana Uribe
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Adel Hama
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Raphaela Silva
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia
| | - Sophie Griggs
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Adam Marks
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford, UK
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
21
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
22
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
23
|
Qiu F, Deng W, Shi X, Ai D, Ren X, Dong A, Zhang X, Jie J. Large-Area Deposition of Highly Crystalline F4-Tetracyanoquinodimethane Thin Films by Molecular Step Templates. SMALL SCIENCE 2024; 4:2400038. [PMID: 40212117 PMCID: PMC11935238 DOI: 10.1002/smsc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Indexed: 04/13/2025] Open
Abstract
Theoretical studies have unequivocally determined the exceptional electron transport properties of the fluorinated tetracyanoquinodimethane (Fx-TCNQ) family, presenting a promising avenue for the realization of high-performance n-channel organic thin-film transistors (OTFTs). However, owing to the intrinsic low crystallinity of this class of materials, Fx-TCNQ-based n-channel OTFTs have not been experimentally achieved so far. Herein, a molecular step template (MST)-assisted method that dramatically improves the crystallinity of F4-TCNQ thin films is reported. The MST not only lowers the nucleation barrier of F4-TCNQ molecules along the in-plane direction but also reduces the nucleation density. This approach facilitates the realization of compact, oriented, and highly crystalline F4-TCNQ thin films, resulting in impressive electron mobility of up to 2.58 cm2 V-1 s-1. Notably, this achievement surpasses the electron mobility of F4-TCNQ thin films fabricated without the MST by a factor of 107. Furthermore, the incorporation of the p-type MST provides a novel pathway for constructing complementary inverters, showcasing a high voltage gain of 112.6 V V-1 and a substantial noise margin of 89.3% with exceptional uniformity. In this work, a general and efficient route is paved to produce high-performance n-channel OTFTs toward organic complementary circuits.
Collapse
Affiliation(s)
- Fengquan Qiu
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xinmin Shi
- Macao Institute of Materials Science and Engineering (MIMSE)MUST‐SUDA Joint Research Center for Advanced Functional MaterialsMacau University of Science and TechnologyTaipaMacau SAR999078P. R. China
| | - Dewen Ai
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiaobin Ren
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Anyi Dong
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow UniversitySuzhouJiangsu215123P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE)MUST‐SUDA Joint Research Center for Advanced Functional MaterialsMacau University of Science and TechnologyTaipaMacau SAR999078P. R. China
| |
Collapse
|
24
|
Nguyen-Dang T, Bao ST, Kaiyasuan C, Li K, Chae S, Yi A, Joy S, Harrison K, Kim JY, Pallini F, Beverina L, Graham KR, Nuckolls C, Nguyen TQ. Air-Stable Perylene Diimide Trimer Material for N-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312254. [PMID: 38521992 DOI: 10.1002/adma.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- College of Engineering and Computer Science (CECS) and Center for Environmental Intelligence, VinUniversity, Gia-Lam, Hanoi, 12400, Vietnam
| | - Si Tong Bao
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Chokchai Kaiyasuan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Kunyu Li
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Syed Joy
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kelsey Harrison
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Jae Young Kim
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Francesca Pallini
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Colin Nuckolls
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
25
|
Wang X, Zhang Z, Li P, Xu J, Zheng Y, Sun W, Xie M, Wang J, Pan X, Lei X, Wang J, Chen J, Chen Y, Wang SJ, Lei T. Ultrastable N-Type Semiconducting Fiber Organic Electrochemical Transistors for Highly Sensitive Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400287. [PMID: 38433667 DOI: 10.1002/adma.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Organic electrochemical transistors (OECTs) have attracted increasing attention due to their merits of high transconductance, low operating voltage, and good biocompatibility, ideal for biosensors. However, further advances in their practical applications face challenges of low n-type performance and poor stability. Here, it is demonstrated that wet-spinning the commercially available n-type conjugated polymer poly(benzimidazobenzophenanthroline) (BBL) into highly aligned and crystalline fibers enhances both OECT performance and stability. Although BBL is only soluble in high-boiling-point strong acids, it can be wet-spun into high-quality fibers with adjustable diameters. The BBL fiber OECTs exhibit a record-high area-normalized transconductance (gm,A) of 2.40 µS µm-2 and over 10 times higher figure-of-merit (µC*) than its thin-film counterparts. More importantly, these fiber OECTs exhibit remarkable stability with no noticeable performance attenuation after 1500 cycles over 4 h operation, outperforming all previously reported n-type OECTs. The superior performance and stability can be attributed to shorter π-π stacking distance and ordered molecular arrangement in the fibers, endowing the BBL fiber OECT-based biosensors with outstanding sensitivity while keeping a miniaturized form factor. This work demonstrates that, beyond new material development, developing new fabrication technology is also crucial for addressing the performance and stability issues in n-type OECTs.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingcao Xu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuting Zheng
- College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenxi Sun
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingyue Xie
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Juanrong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yiheng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shu-Jen Wang
- Department of Physics, Hong Kong Baptist University, Hong Kong, SAR, P. R. China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
26
|
Kimpel J, Kim Y, Asatryan J, Martín J, Kroon R, Müller C. High-mobility organic mixed conductors with a low synthetic complexity index via direct arylation polymerization. Chem Sci 2024; 15:7679-7688. [PMID: 38784738 PMCID: PMC11110131 DOI: 10.1039/d4sc01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Through direct arylation polymerization, a series of mixed ion-electron conducting polymers with a low synthetic complexity index is synthesized. A thieno[3,2-b]thiophene monomer with oligoether side chains is used in direct arylation polymerization together with a wide range of aryl bromides with varying electronic character from electron-donating thiophene to electron-accepting benzothiadiazole. The obtained polymers are less synthetically complex than other mixed ion-electron conducting polymers due to higher yield, fewer synthetic steps and less toxic reagents. Organic electrochemical transistors (OECTs) based on a newly synthesized copolymer comprising thieno[3,2-b]thiophene with oligoether side chains and bithiophene exhibit excellent device performance. A high charge-carrier mobility of up to μ = 1.8 cm2 V-1 s-1 was observed, obtained by dividing the figure of merit [μC*] from OECT measurements by the volumetric capacitance C* from electrochemical impedance spectroscopy, which reached a value of more than 215 F cm-3.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI Esteiro 15403 Ferrol Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University Norrköping Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University Norrköping Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology 412 96 Göteborg Sweden
| |
Collapse
|
27
|
Song J, Liu H, Zhao Z, Lin P, Yan F. Flexible Organic Transistors for Biosensing: Devices and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300034. [PMID: 36853083 DOI: 10.1002/adma.202300034] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable biosensors can offer seamless and conformable biological-electronic interfaces for continuously acquiring high-fidelity signals, permitting numerous emerging applications. Organic thin film transistors (OTFTs) are ideal transducers for flexible and stretchable biosensing due to their soft nature, inherent amplification function, biocompatibility, ease of functionalization, low cost, and device diversity. In consideration of the rapid advances in flexible-OTFT-based biosensors and their broad applications, herein, a timely and comprehensive review is provided. It starts with a detailed introduction to the features of various OTFTs including organic field-effect transistors and organic electrochemical transistors, and the functionalization strategies for biosensing, with a highlight on the seminal work and up-to-date achievements. Then, the applications of flexible-OTFT-based biosensors in wearable, implantable, and portable electronics, as well as neuromorphic biointerfaces are detailed. Subsequently, special attention is paid to emerging stretchable organic transistors including planar and fibrous devices. The routes to impart stretchability, including structural engineering and material engineering, are discussed, and the implementations of stretchable organic transistors in e-skin and smart textiles are included. Finally, the remaining challenges and the future opportunities in this field are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials and Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
28
|
Gryszel M, Byun D, Burtscher B, Abrahamsson T, Brodsky J, Simon DT, Berggren M, Glowacki ED, Strakosas X, Donahue MJ. Vertical organic electrochemical transistor platforms for efficient electropolymerization of thiophene based oligomers. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5339-5346. [PMID: 38645749 PMCID: PMC11025323 DOI: 10.1039/d3tc04730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 04/23/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.
Collapse
Affiliation(s)
- Maciej Gryszel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Donghak Byun
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Bernhard Burtscher
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Tobias Abrahamsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Jan Brodsky
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| | - Daniel Theodore Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Eric Daniel Glowacki
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
| | - Mary Jocelyn Donahue
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University 60174 Norrköping Sweden
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology Purkyňova 123 61200 Brno Czech Republic
| |
Collapse
|
29
|
Shakya J, Kang MA, Li J, VahidMohammadi A, Tian W, Zeglio E, Hamedi MM. 2D MXene electrochemical transistors. NANOSCALE 2024; 16:2883-2893. [PMID: 38259225 DOI: 10.1039/d3nr06540e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The solid-state field-effect transistor, FET, and its theories were paramount in the discovery and studies of graphene. In the past two decades another transistor based on conducting polymers, called organic electrochemical transistor (ECT), has been developed and largely studied. The main difference between organic ECTs and FETs is the mode and extent of channel doping; while in FETs the channel only has surface doping through dipoles, the mixed ionic-electronic conductivity of the channel material in organic ECTs enables bulk electrochemical doping. As a result, organic ECTs maximize conductance modulation at the expense of speed. To date ECTs have been based on conducting polymers, but here we show that MXenes, a class of 2D materials beyond graphene, enable the realization of electrochemical transistors (ECTs). We show that the formulas for organic ECTs can be applied to these 2D ECTs and used to extract parameters like mobility. These MXene ECTs have high transconductance values but low on-off ratios. We further show that conductance switching data measured using ECT, in combination with other in situ-ex situ electrochemical measurements, is a powerful tool for correlating the change in conductance to that of the redox state, to our knowledge, this is the first report of this important correlation for MXene films. 2D ECTs can draw great inspiration and theoretical tools from the field of organic ECTs and have the potential to considerably extend the capabilities of transistors beyond those of conducting polymer ECTs, with added properties such as extreme heat resistance, tolerance for solvents, and higher conductivity for both electrons and ions than conducting polymers.
Collapse
Affiliation(s)
- Jyoti Shakya
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Min-A Kang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jian Li
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Armin VahidMohammadi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
- Innovation Partnership Building, UConn Tech Park, University of Conneticut, Storrs, CT 06269, USA
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
- School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Erica Zeglio
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology and Digital Futures, Solna, Sweden.
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 114 18, Sweden
| | - Mahiar Max Hamedi
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| |
Collapse
|
30
|
Huang Z, Li P, Lei Y, Deng XY, Chen YN, Tian S, Pan X, Lei X, Song C, Zheng Y, Wang JY, Zhang Z, Lei T. Azonia-Naphthalene: A Cationic Hydrophilic Building Block for Stable N-Type Organic Mixed Ionic-Electronic Conductors. Angew Chem Int Ed Engl 2024; 63:e202313260. [PMID: 37938169 DOI: 10.1002/anie.202313260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Conjugated polymers that can efficiently transport both ionic and electronic charges have broad applications in next-generation optoelectronic, bioelectronic, and energy storage devices. To date, almost all the conjugated polymers have hydrophobic backbones, which impedes efficient ion diffusion/transport in aqueous media. Here, we design and synthesize a novel hydrophilic polymer building block, 4a-azonia-naphthalene (AN), drawing inspiration from biological systems. Because of the strong electron-withdrawing ability of AN, the AN-based polymers show typical n-type charge transport behaviors. We find that cationic aromatics exhibit strong cation-π interactions, leading to smaller π-π stacking distance, interesting ion diffusion behavior, and good morphology stability. Additionally, AN enhances the hydrophilicity and ionic-electronic coupling of the polymer, which can help to improve ion diffusion/injection speed, and operational stability of organic electrochemical transistors (OECTs). The integration of cationic building blocks will undoubtedly enrich the material library for high-performance n-type conjugated polymers.
Collapse
Affiliation(s)
- Zhen Huang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peiyun Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuqiu Lei
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Nan Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuangyan Tian
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiran Pan
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xun Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Cheng Song
- College of Engineering, Peking University, Beijing, 100871, China
| | - Yuting Zheng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Yang W, Feng K, Ma S, Liu B, Wang Y, Ding R, Jeong SY, Woo HY, Chan PKL, Guo X. High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors: The Impacts of Halogen Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305416. [PMID: 37572077 DOI: 10.1002/adma.202305416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Developing high-performance n-type polymer mixed ionic-electronic conductors (PMIECs) is a grand challenge, which largely determines their applications in vaious organic electronic devices, such as organic electrochemical transistors (OECTs) and organic thermoelectrics (OTEs). Herein, two halogen-functionalized PMIECs f-BTI2g-TVTF and f-BTI2g-TVTCl built from fused bithiophene imide dimer (f-BTI2) as the acceptor unit and halogenated thienylene-vinylene-thienylene (TVT) as the donor co-unit are reported. Compared to the control polymer f-BTI2g-TVT, the fluorinated f-BTI2g-TVTF shows lower-positioned lowest unoccupied molecular orbital (LUMO), improved charge transport property, and greater ion uptake capacity. Consequently, f-BTI2g-TVTF delivers a state-of-the-art µC* of 90.2 F cm-1 V-1 s-1 with a remarkable electron mobility of 0.41 cm2 V-1 s-1 in OECTs and an excellent power factor of 64.2 µW m-1 K-2 in OTEs. An OECT-based inverter amplifier is further demonstrated with voltage gain up to 148 V V-1 , which is among the highest values for OECT inverters. Such results shed light on the impacts of halogen atoms on developing high-performing n-type PMIECs.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Riqing Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Paddy Kwok Leung Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science and Technology Park, Shatin, Hong Kong, 999077, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
32
|
Wu W, Feng K, Wang Y, Wang J, Huang E, Li Y, Jeong SY, Woo HY, Yang K, Guo X. Selenophene Substitution Enabled High-Performance n-Type Polymeric Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors and Glucose Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310503. [PMID: 37961011 DOI: 10.1002/adma.202310503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
High-performance n-type polymeric mixed ionic-electronic conductors (PMIECs) are essential for realizing organic electrochemical transistors (OECTs)-based low-power complementary circuits and biosensors, but their development still remains a great challenge. Herein, by devising two novel n-type polymers (f-BTI2g-SVSCN and f-BSeI2g-SVSCN) containing varying selenophene contents together with their thiophene-based counterpart as the control, it is demonstrated that gradually increasing selenophene loading in polymer backbones can simultaneously yield lowered lowest unoccupied molecular orbital levels, boosted charge-transport properties, and improved ion-uptake capabilities. Therefore, a remarkable volumetric capacitance (C*) of 387.2 F cm-3 and a state-of-the-art OECT electron mobility (µe,OECT ) of 0.48 cm2 V-1 s-1 are synchronously achieved for f-BSeI2g-SVSCN having the highest selenophene content, yielding an unprecedented geometry-normalized transconductance (gm,norm ) of 71.4 S cm-1 and record figure of merit (µC*) value of 191.2 F cm-1 V-1 s-1 for n-type OECTs. Thanks to such excellent performance of f-BSeI2g-SVSCN-based OECTs, a glucose sensor with a remarkably low detection limit of 10 nMm and decent selectivity is further implemented, demonstrating the power of selenophene substitution strategy in enabling high-performance n-type PMIECs for biosensing applications.
Collapse
Affiliation(s)
- Wenchang Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410080, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
33
|
Kim D, Kim IJ, Lee JS. Demonstration of the threshold-switching memory devices using EMIm(AlCl 3)Cl and ZnO for neuromorphic applications. NANOTECHNOLOGY 2023; 35:015203. [PMID: 37830748 DOI: 10.1088/1361-6528/acf93d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The threshold-switching behaviors of the synapses lead to energy-efficient operation in the neural computing system. Here, we demonstrated the threshold-switching memory devices by inserting the ZnO layer into the ionic synaptic devices. The EMIm(AlCl3)Cl is utilized as the electrolyte because its conductance can be tuned by the charge states of the Al-based ions. The redox reactions of the Al ions in the electrolyte can lead to the analog resistive switching characteristics, such as excitatory postsynaptic current, paired-pulse facilitation, potentiation, and depression. By inserting the ZnO layer into the EMIm(AlCl3)-based ionic synaptic devices, the threshold switching behaviors are demonstrated. Using the resistivity difference between ZnO and EMIm(AlCl3)Cl, the analog resistive switching behaviors are tunned as the threshold-switching behaviors. The threshold-switching behaviors are achieved by applying the spike stimuli to the device. Demonstration of the threshold-switching behaviors of the ionic synaptic devices has a possibility to achieve high energy-efficiency for the ion-based artificial synapses.
Collapse
Affiliation(s)
- Dongshin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ik-Jyae Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
34
|
Wu HY, Huang JD, Jeong SY, Liu T, Wu Z, van der Pol T, Wang Q, Stoeckel MA, Li Q, Fahlman M, Tu D, Woo HY, Yang CY, Fabiano S. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. MATERIALS HORIZONS 2023; 10:4213-4223. [PMID: 37477499 DOI: 10.1039/d3mh00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in μC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tom van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| |
Collapse
|
35
|
Kim J, Ren X, Zhang Y, Fazzi D, Manikandan S, Andreasen JW, Sun X, Ursel S, Un H, Peralta S, Xiao M, Town J, Marathianos A, Roesner S, Bui T, Ludwigs S, Sirringhaus H, Wang S. Efficient N-Type Organic Electrochemical Transistors and Field-Effect Transistors Based on PNDI-Copolymers Bearing Fluorinated Selenophene-Vinylene-Selenophenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303837. [PMID: 37551064 PMCID: PMC10582458 DOI: 10.1002/advs.202303837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
n-Type organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) are less developed than their p-type counterparts. Herein, polynaphthalenediimide (PNDI)-based copolymers bearing novel fluorinated selenophene-vinylene-selenophene (FSVS) units as efficient materials for both n-type OECTs and n-type OFETs are reported. The PNDI polymers with oligo(ethylene glycol) (EG7) side chains P(NDIEG7-FSVS), affords a high µC* of > 0.2 F cm-1 V-1 s-1 , outperforming the benchmark n-type Pg4NDI-T2 and Pg4NDI-gT2 by two orders of magnitude. The deep-lying LUMO of -4.63 eV endows P(NDIEG7-FSVS) with an ultra-low threshold voltage of 0.16 V. Moreover, the conjugated polymer with octyldodecyl (OD) side chains P(NDIOD-FSVS) exhibits a surprisingly low energetic disorder with an Urbach energy of 36 meV and an ultra-low activation energy of 39 meV, resulting in high electron mobility of up to 0.32 cm2 V-1 s-1 in n-type OFETs. These results demonstrate the great potential for simultaneously achieving a lower LUMO and a tighter intermolecular packing for the next-generation efficient n-type organic electronics.
Collapse
Affiliation(s)
- Jongho Kim
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
- Present address:
Department of Textile System Eng.Kyungpook National UniversityDaegu41566Republic of Korea
| | - Xinglong Ren
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Youcheng Zhang
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Daniele Fazzi
- Dipartimento di Chimica “Giacomo Ciamician”Università di BolognaVia F. Selmi 2Bologna40126Italy
| | - Suraj Manikandan
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Jens Wenzel Andreasen
- Department of Energy Conversion and StorageTechnical University of DenmarkKgs. Lyngby2800Denmark
| | - Xiuming Sun
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sarah Ursel
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Hio‐Ieng Un
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Sébastien Peralta
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Mingfei Xiao
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - James Town
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Stefan Roesner
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Thanh‐Tuan Bui
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry and Center for Integrated Quantum Science and Technology(IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Henning Sirringhaus
- Optoelectronics GroupCavendish LaboratoryUniversity of CambridgeJJ Thomson AvenueCambridgeCB3 0HEUK
| | - Suhao Wang
- Laboratoire de Physicochimie des Polymères et des InterfacesCY Cergy Paris Université5 Mail Gay LussacNeuville‐sur‐Oise95000France
| |
Collapse
|
36
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
37
|
Keene ST, Laulainen JEM, Pandya R, Moser M, Schnedermann C, Midgley PA, McCulloch I, Rao A, Malliaras GG. Hole-limited electrochemical doping in conjugated polymers. NATURE MATERIALS 2023; 22:1121-1127. [PMID: 37414944 PMCID: PMC10465356 DOI: 10.1038/s41563-023-01601-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Simultaneous transport and coupling of ionic and electronic charges is fundamental to electrochemical devices used in energy storage and conversion, neuromorphic computing and bioelectronics. While the mixed conductors enabling these technologies are widely used, the dynamic relationship between ionic and electronic transport is generally poorly understood, hindering the rational design of new materials. In semiconducting electrodes, electrochemical doping is assumed to be limited by motion of ions due to their large mass compared to electrons and/or holes. Here, we show that this basic assumption does not hold for conjugated polymer electrodes. Using operando optical microscopy, we reveal that electrochemical doping speeds in a state-of-the-art polythiophene can be limited by poor hole transport at low doping levels, leading to substantially slower switching speeds than expected. We show that the timescale of hole-limited doping can be controlled by the degree of microstructural heterogeneity, enabling the design of conjugated polymers with improved electrochemical performance.
Collapse
Affiliation(s)
- Scott T Keene
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | | | - Raj Pandya
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire Kastler Brossel, École Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France, Paris, France
| | | | | | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, UK
- KAUST Solar Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Le VN, Bombile JH, Rupasinghe GS, Baustert KN, Li R, Maria IP, Shahi M, Alarcon Espejo P, McCulloch I, Graham KR, Risko C, Paterson AF. New Chemical Dopant and Counterion Mechanism for Organic Electrochemical Transistors and Organic Mixed Ionic-Electronic Conductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207694. [PMID: 37466175 PMCID: PMC10520668 DOI: 10.1002/advs.202207694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Indexed: 07/20/2023]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low-cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n-dopant, tetrabutylammonium hydroxide (TBA-OH), and identifying a new design consideration underpinning its success. TBA-OH behaves as both a chemical n-dopant and morphology additive in donor acceptor co-polymer naphthodithiophene diimide-based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+ counterion adopts an "edge-on" location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped-OECTs and doped-OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.
Collapse
Affiliation(s)
- Vianna N. Le
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Joel H. Bombile
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Gehan S. Rupasinghe
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Kyle N. Baustert
- Department of ChemistryUniversity of KentuckyLexingtonKY40506USA
| | | | - Iuliana P. Maria
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Maryam Shahi
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Paula Alarcon Espejo
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Iain McCulloch
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
- King Abdullah University of Science and TechnologyKAUST Solar CentreThuwal23955‐6900Saudi Arabia
| | | | - Chad Risko
- Department of Chemistryand Centre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| | - Alexandra F. Paterson
- Department of Chemical and Materials EngineeringDepartment of Electrical EngineeringCentre for Applied Energy ResearchUniversity of KentuckyLexingtonKY40506USA
| |
Collapse
|
39
|
Li N, Li Y, Cheng Z, Liu Y, Dai Y, Kang S, Li S, Shan N, Wai S, Ziaja A, Wang Y, Strzalka J, Liu W, Zhang C, Gu X, Hubbell JA, Tian B, Wang S. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 2023; 381:686-693. [PMID: 37561870 PMCID: PMC10768720 DOI: 10.1126/science.adg8758] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/14/2023] [Indexed: 08/12/2023]
Abstract
The use of bioelectronic devices relies on direct contact with soft biotissues. For transistor-type bioelectronic devices, the semiconductors that need to have direct interfacing with biotissues for effective signal transduction do not adhere well with wet tissues, thereby limiting the stability and conformability at the interface. We report a bioadhesive polymer semiconductor through a double-network structure formed by a bioadhesive brush polymer and a redox-active semiconducting polymer. The resulting semiconducting film can form rapid and strong adhesion with wet tissue surfaces together with high charge-carrier mobility of ~1 square centimeter per volt per second, high stretchability, and good biocompatibility. Further fabrication of a fully bioadhesive transistor sensor enabled us to produce high-quality and stable electrophysiological recordings on an isolated rat heart and in vivo rat muscles.
Collapse
Affiliation(s)
- Nan Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhe Cheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Youdi Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yahao Dai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Seounghun Kang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Songsong Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Naisong Shan
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Shinya Wai
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Aidan Ziaja
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Yunfei Wang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Wei Liu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Cheng Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
- Nanoscience and Technology Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
| |
Collapse
|
40
|
Hao P, Zhu R, Tao Y, Jiang W, Liu X, Tan Y, Wang Y, Wang D. Dual-Analyte Sensing with a Molecularly Imprinted Polymer Based on Enhancement-Mode Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37311014 DOI: 10.1021/acsami.3c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Novel enhancement-mode organic electrochemical transistors (OECTs) have been prepared by poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) de-doped polyethylenimine on the multi-walled carbon nanotube-modified viscose yarn. The fabricated devices exhibit low power consumption with a high transconductance of 6.7 mS, rapid response time < 2 s, and excellent cyclic stability. In addition, the device has washing durability and bending and long-term stability suitable for wearable applications. Biosensors based on enhancement-mode OECTs for the selective detection of adrenaline and uric acid (UA) are developed by using molecularly imprinted polymer (MIP)-functionalized gate electrodes. The detection limits of adrenaline and UA analysis are as low as 1 pM, with the linear ranges of 0.5 pM to 10 μM and 1 pM to 1 mM, respectively. Moreover, the sensor based on enhancement-mode transistors can efficiently amplify the current signals according to the modulation of the gate voltage. The MIP-modified biosensor has high selectivity in the presence of interferents and desirable reproducibility. Additionally, due to the wearable nature of the developed biosensor, this sensing tool has the capability of being integrated with fabrics. Therefore, it has successfully been applied in textiles for the determination of adrenaline and UA in artificial urine samples. The excellent recoveries and rsds are 90.22-109.05% and 3.97-6.94%, respectively. Ultimately, these sensitive, low-power, wearable, and dual-analyte sensors help to develop non-laboratory tools for early disease diagnosis and clinical research.
Collapse
Affiliation(s)
- Panpan Hao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Rufeng Zhu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Yang Tao
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Wei Jiang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Xue Liu
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Yan Tan
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yuedan Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, China
| |
Collapse
|
41
|
Brodský J, Gablech I, Migliaccio L, Havlíček M, Donahue MJ, Głowacki ED. Downsizing the Channel Length of Vertical Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37216209 DOI: 10.1021/acsami.3c02049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organic electrochemical transistors (OECTs) are promising building blocks for bioelectronic devices such as sensors and neural interfaces. While the majority of OECTs use simple planar geometry, there is interest in exploring how these devices operate with much shorter channels on the submicron scale. Here, we show a practical route toward the minimization of the channel length of the transistor using traditional photolithography, enabling large-scale utilization. We describe the fabrication of such transistors using two types of conducting polymers. First, commercial solution-processed poly(dioxyethylenethiophene):poly(styrene sulfonate), PEDOT:PSS. Next, we also exploit the short channel length to support easy in situ electropolymerization of poly(dioxyethylenethiophene):tetrabutyl ammonium hexafluorophosphate, PEDOT:PF6. Both variants show different promising features, leading the way in terms of transconductance (gm), with the measured peak gm up to 68 mS for relatively thin (280 nm) channel layers on devices with the channel length of 350 nm and with widths of 50, 100, and 200 μm. This result suggests that the use of electropolymerized semiconductors, which can be easily customized, is viable with vertical geometry, as uniform and thin layers can be created. Spin-coated PEDOT:PSS lags behind with the lower values of gm; however, it excels in terms of the speed of the device and also has a comparably lower off current (300 nA), leading to unusually high on/off ratio, with values up to 8.6 × 104. Our approach to vertical gap devices is simple, scalable, and can be extended to other applications where small electrochemical channels are desired.
Collapse
Affiliation(s)
- Jan Brodský
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Institute of Scientific Instruments of the CAS, Královopolská 147, 61264 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Electrical and Electronic Technology, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00 Brno, Czech Republic
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Marek Havlíček
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Czech Metrology Institute, 638 00 Brno, Czech Republic
| | - Mary J Donahue
- Laboratory of Organic Electronics, ITN Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Eric D Głowacki
- Bioelectronics Materials and Devices Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
42
|
West SM, Tran DK, Guo J, Chen SE, Ginger DS, Jenekhe SA. Phenazine-Substituted Poly(benzimidazobenzophenanthrolinedione): Electronic Structure, Thin Film Morphology, Electron Transport, and Mechanical Properties of an n-Type Semiconducting Ladder Polymer. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sarah M. West
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Duyen K. Tran
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Jiajie Guo
- Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - Shinya E. Chen
- Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - David S. Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Samson A. Jenekhe
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
43
|
Sun F, Jiang H, Wang H, Zhong Y, Xu Y, Xing Y, Yu M, Feng LW, Tang Z, Liu J, Sun H, Wang H, Wang G, Zhu M. Soft Fiber Electronics Based on Semiconducting Polymer. Chem Rev 2023; 123:4693-4763. [PMID: 36753731 DOI: 10.1021/acs.chemrev.2c00720] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Fibers, originating from nature and mastered by human, have woven their way throughout the entire history of human civilization. Recent developments in semiconducting polymer materials have further endowed fibers and textiles with various electronic functions, which are attractive in applications such as information interfacing, personalized medicine, and clean energy. Owing to their ability to be easily integrated into daily life, soft fiber electronics based on semiconducting polymers have gained popularity recently for wearable and implantable applications. Herein, we present a review of the previous and current progress in semiconducting polymer-based fiber electronics, particularly focusing on smart-wearable and implantable areas. First, we provide a brief overview of semiconducting polymers from the viewpoint of materials based on the basic concepts and functionality requirements of different devices. Then we analyze the existing applications and associated devices such as information interfaces, healthcare and medicine, and energy conversion and storage. The working principle and performance of semiconducting polymer-based fiber devices are summarized. Furthermore, we focus on the fabrication techniques of fiber devices. Based on the continuous fabrication of one-dimensional fiber and yarn, we introduce two- and three-dimensional fabric fabricating methods. Finally, we review challenges and relevant perspectives and potential solutions to address the related problems.
Collapse
Affiliation(s)
- Fengqiang Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoyu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yueheng Zhong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiman Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yi Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Muhuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Lightweight Structural Composites, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liang-Wen Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Jun Liu
- National Key Laboratory on Electromagnetic Environment Effects and Electro-Optical Engineering, Nanjing 210007, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
44
|
Ohayon D, Druet V, Inal S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023; 52:1001-1023. [PMID: 36637165 DOI: 10.1039/d2cs00920j] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The organic electrochemical transistor (OECT) is one of the most versatile devices within the bioelectronics toolbox, with its compatibility with aqueous media and the ability to transduce and amplify ionic and biological signals into an electronic output. The OECT operation relies on the mixed (ionic and electronic charge) conduction properties of the material in its channel. With the increased popularity of OECTs in bioelectronics applications and to benchmark mixed conduction properties of channel materials, the characterization methods have broadened somewhat heterogeneously. We intend this review to be a guide for the characterization methods of the OECT and the channel materials used. Our review is composed of two main sections. First, we review techniques to fabricate the OECT, introduce different form factors and configurations, and describe the device operation principle. We then discuss the OECT performance figures of merit and detail the experimental procedures to obtain these characteristics. In the second section, we shed light on the characterization of mixed transport properties of channel materials and describe how to assess films' interactions with aqueous electrolytes. In particular, we introduce experimental methods to monitor ion motion and diffusion, charge carrier mobility, and water uptake in the films. We also discuss a few theoretical models describing ion-polymer interactions. We hope that the guidelines we bring together in this review will help researchers perform a more comprehensive and consistent comparison of new materials and device designs, and they will be used to identify advances and opportunities to improve the device performance, progressing the field of organic bioelectronics.
Collapse
Affiliation(s)
- David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division, Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
45
|
Chen J, Cong S, Wang L, Wang Y, Lan L, Chen C, Zhou Y, Li Z, McCulloch I, Yue W. Backbone coplanarity manipulation via hydrogen bonding to boost the n-type performance of polymeric mixed conductors operating in aqueous electrolyte. MATERIALS HORIZONS 2023; 10:607-618. [PMID: 36511773 DOI: 10.1039/d2mh01100j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of high-performance n-type semiconducting polymers remains a significant challenge. Reported here is the construction of a coplanar backbone via intramolecular hydrogen bonds to dramatically enhance the performance of n-type polymeric mixed conductors operating in aqueous electrolyte. Specifically, glycolated naphthalene tetracarboxylicdiimide (gNDI) couples with vinylene and thiophene to give gNDI-V and gNDI-T, respectively. The hydrogen bonding functionalities are fused to the backbone to ensure a more coplanar backbone and much tighter π-π stacking of gNDI-V than gNDI-T, which is evidenced by density functional theory simulations and grazing-incidence wide-angle X-ray scattering. Importantly, these copolymers are fabricated as the active layer of the aqueous-based electrochromic devices and organic electrochemical transistors (OECTs). gNDI-V exhibits a larger electrochromic contrast (ΔT = 30%) and a higher coloration efficiency (1988 cm2 C-1) than gNDI-T owing to its more efficient ionic-electronic coupling. Moreover, gNDI-V gives the highest electron mobility (0.014 cm2 V-1 s-1) and μC* (2.31 FV-1 cm-1 s-1) reported to date for NDI-based copolymers in OECTs, attributed to the improved thin-film crystallinity and molecular packing promoted by hydrogen bonds. Overall, this work marks a remarkable advance in the n-type polymeric mixed conductors and the hydrogen bond functionalization strategy opens up an avenue to access desirable performance metrics for aqueous-based electrochemical devices.
Collapse
Affiliation(s)
- Junxin Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Shengyu Cong
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Lewen Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yazhou Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Liuyuan Lan
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Chaoyue Chen
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yecheng Zhou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Zhengke Li
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Wan Yue
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
46
|
Kang S, Fan J, Soares JBP, Gupta M. Naphthalene diimide-based n-type small molecule organic mixed conductors for accumulation mode organic electrochemical transistors. RSC Adv 2023; 13:5096-5106. [PMID: 36762077 PMCID: PMC9907564 DOI: 10.1039/d2ra07081b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Organic mixed ionic-electronic conductors (OMIECs), which transport both ionic and electronic charges, development are important for progressing bioelectronic and energy storage devices. The p-type OMIECs are extensively investigated and used in various applications, whereas the n-type ones lag far behind due to their moisture and air instability. Here, we report the synthesis of the novel n-type naphthalene diimide (NDI)-based small-molecule OMIECs for organic electrochemical transistors (OECTs). The electro-active NDI molecule with the linear ethylene glycol side chains is a promising candidate for n-type channel material to obtain accumulation mode OECTs. This NDI-based small-molecule OMIEC, gNDI-Br2, demonstrates ion permeability due to the attachment of the glycol side chains with optimized ionic-electronic conductions. OECT devices with gNDI-Br2 channel material displays excellent performance in water and ambient stability. OECTs fabricated with two different concentrations, 50 mg mL-1 and 100 mg mL-1 of gNDI-Br2 demonstrate a transconductance value of 344 ± 19.7 μS and 814 ± 124.2 μS with the mobility capacitance product (μC*) of 0.13 ± 0.03 F cm-1 V-1 s-1 and 0.23 ± 0.04 F cm-1 V-1 s-1, respectively. These results demonstrate the n-type OMIEC behaviour of the NDI-based small-molecule and its applicability as an OECT channel material.
Collapse
Affiliation(s)
- Seongdae Kang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Jiaxin Fan
- Department of Electrical and Computer Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - João B P Soares
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Manisha Gupta
- Department of Electrical and Computer Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| |
Collapse
|
47
|
Insight into conjugated polymers for organic electrochemical transistors. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
48
|
Song J, Tang G, Cao J, Liu H, Zhao Z, Griggs S, Yang A, Wang N, Cheng H, Liu CK, McCulloch I, Yan F. Perovskite Solar Cell-Gated Organic Electrochemical Transistors for Flexible Photodetectors with Ultrahigh Sensitivity and Fast Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207763. [PMID: 36373546 DOI: 10.1002/adma.202207763] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Photodetectors (PDs) are the building block of various imaging and sensing applications. However, commercially available PDs based on crystalline inorganic semiconductors cannot meet the requirements of emerging wearable/implantable applications due to their rigidity and fragility, which creates the need for flexible devices. Here, a high-performance flexible PD is presented by gating an organic electrochemical transistor (OECT) with a perovskite solar cell. Due to the ultrahigh transconductance of the OECT, the device demonstrates a high gain of ≈106 , a fast response time of 67 µs and an ultrahigh detectivity of 6.7 × 1017 Jones to light signals under a low working voltage (≤0.6 V). Thanks to the ultrahigh sensitivity and fast response, the device can track photoplethysmogram signals and peripheral oxygen saturation under ambient light and even provide contactless remote sensing, offering a low-power and convenient way for continuous vital signs monitoring. This work offers a novel strategy for realizing high-performance flexible PDs that are promising for low-power, user-friendly and wearable optoelectronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Guanqi Tang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiupeng Cao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Anneng Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Naixiang Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Haiyang Cheng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Chun-Ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
49
|
Guo J, Flagg LQ, Tran DK, Chen SE, Li R, Kolhe NB, Giridharagopal R, Jenekhe SA, Richter LJ, Ginger DS. Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping. J Am Chem Soc 2023; 145:1866-1876. [PMID: 36630664 DOI: 10.1021/jacs.2c11468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance gravimetry, in-operando atomic force microscopy, and both ex-situ and in-operando grazing incidence wide-angle X-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Lucas Q Flagg
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Duyen K Tran
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Nagesh B Kolhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States.,Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
50
|
Song J, Liu H, Zhao Z, Guo X, Liu CK, Griggs S, Marks A, Zhu Y, Law HKW, McCulloch I, Yan F. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. SCIENCE ADVANCES 2023; 9:eadd9627. [PMID: 36630506 PMCID: PMC9833676 DOI: 10.1126/sciadv.add9627] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical transistors (ECTs) have shown broad applications in bioelectronics and neuromorphic devices due to their high transconductance, low working voltage, and versatile device design. To further improve the device performance, semiconductor materials with both high carrier mobilities and large capacitances in electrolytes are needed. Here, we demonstrate ECTs based on highly oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs). The ion-conductive vertical nanopores formed within the 2D c-MOFs films lead to the most convenient ion transfer in the bulk and high volumetric capacitance, endowing the devices with fast speeds and ultrahigh transconductance. Ultraflexible device arrays are successfully used for wearable on-skin recording of electrocardiogram (ECG) signals along different directions, which can provide various waveforms comparable with those of multilead ECG measurement systems for monitoring heart conditions. These results indicate that 2D c-MOFs are excellent semiconductor materials for high-performance ECTs with promising applications in flexible and wearable electronics.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Hong Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Chun-ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
| | - Helen Ka-wai Law
- Department of Health Technology and Informatics Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong, People’s Republic of China
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, People’s Republic of China
| |
Collapse
|