1
|
Sayed M, Qi K, Wu X, Zhang L, García H, Yu J. Cu-based S-scheme photocatalysts. Chem Soc Rev 2025; 54:4874-4921. [PMID: 40171772 DOI: 10.1039/d4cs01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
S-scheme heterojunctions have become a hot topic in photocatalysis. Copper (Cu) compounds are a versatile family of photocatalytic materials, including oxides (CuO, Cu2O), binary oxides (CuBi2O4, CuFe2O4), sulfides (CuxS, (1 ≤ x ≤ 2)), selenides (CuSe), phosphides (Cu3P), metal organic frameworks (MOFs), etc. These materials are characterized by narrow bandgaps, large absorption coefficients, and suitable band positions. To further increase the efficiency of photoinduced charge separation, Cu-based photocatalytic materials are widely integrated into S-scheme heterojunctions and exploited for the hydrogen evolution reaction (HER), CO2 reduction, H2O2 generation, N2 fixation, and pollutant degradation. This review comprehensively discusses recent progress in Cu-based S-scheme heterojunctions, and highlights their considerable potential for targeted applications in sustainable energy conversion, environmental remediation, and beyond. The fundamentals of S-scheme charge transfer, the design principles and verification tools are summarized. Then, the review describes the Cu-based photocatalytic materials, categorized according to their chemical composition, and their integration in S-scheme heterojunctions for photocatalytic applications. In particular, the implications of the S-scheme charge transfer mechanism on promoting the catalytic activity of selected systems are analyzed. Finally, current limitations and outlooks are provided to motivate future studies on developing novel and advanced Cu-based S-scheme photocatalysts with high performance and studying the underlying photocatalytic mechanisms.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, P. R. China.
- Chemistry department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671003, P. R. China
| | - Xinhe Wu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, P. R. China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, P. R. China.
| | - Hermenegildo García
- Department of Chemistry, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Road, Wuhan 430078, P. R. China.
| |
Collapse
|
2
|
Ren J, Wang X, Li J, Sun Q, Li S, Bai L, Liu X, Liu G, Li Z, Zhang H, Huang ZD. Multi-scale carbon@Sb mesoporous composites activated by in situ localized electrochemical pulverization as high-rate and long-life anode materials for potassium-ion batteries. NANOSCALE HORIZONS 2025; 10:770-779. [PMID: 39928096 DOI: 10.1039/d4nh00621f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Hard carbon and antimony (Sb) are two promising anode candidates for future potassium-ion batteries. Herein, we successfully solve the low-capacity problem of highly conductive carbon and poor cycling stability of high-capacity Sb through uniformly dispersing and embedding sub-nano and nanoscale Sb particles (∼36.4 wt%) inside nitrogen-doped two-dimensional hard carbon nanosheets to form a multi-scale carbon@Sb mesoporous composite, denoted as Sb3@HCNS. The electrochemical results show that the optimized Sb3@HCNS anode exhibits an exceptional potassium-ion storage performance, delivering a reversible capacity of 580.8, 413.0, and 215.5 mA h g-1 at the current density of 0.1, 1, and 4 A g-1, respectively. Furthermore, it still maintains a high capacity of 382 mA h g-1 at a high current density of 2 A g-1 after 1000 cycles. The characterization results further manifest that the in situ localized electrochemical pulverization activation of Sb during the (de)alloying process and the pseudo-capacitive effect of good electronic conductive hard carbon nanosheets are mainly responsible for the exceptional properties of Sb3@HCNS. Together with its controllable preparation strategy, the newly-developed Sb3@HCNS composite is expected to be a promising anode material for high-performance potassium-ion batteries.
Collapse
Affiliation(s)
- Jie Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Xiang Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Jihao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Qianzi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Shaozhou Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Ling Bai
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471934, P. R. China
| | - Guilong Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471934, P. R. China
| | - Ziquan Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.
| | - Zhen-Dong Huang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 210023, P. R. China.
| |
Collapse
|
3
|
Goel N, Kumar R. Physics of 2D Materials for Developing Smart Devices. NANO-MICRO LETTERS 2025; 17:197. [PMID: 40117056 PMCID: PMC11928721 DOI: 10.1007/s40820-024-01635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 03/23/2025]
Abstract
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations. To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks. Two-dimensional (2D) materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices. Despite their ground-breaking progress over the last two decades, systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking. Therefore, in this review, we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics. Moreover, the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices. Hence, we discuss the physics of various 2D materials enabling them to fabricate smart devices. We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
Collapse
Affiliation(s)
- Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| | - Rahul Kumar
- Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India.
| |
Collapse
|
4
|
Serra M, Antonatos N, Lajaunie L, Albero J, Garcia H, Weng M, Bastonero L, Sarkar KJ, Gusmão R, Luxa J, Bartoszewicz R, Ziembicki J, Plutnarová I, Marzari N, Kudrawiec R, Sofer Z. A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnIn 2Se 4. JOURNAL OF MATERIALS CHEMISTRY. C 2025; 13:5356-5369. [PMID: 39896131 PMCID: PMC11783042 DOI: 10.1039/d4tc04380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
Due to their attractive band gap properties and van der Waals structure, 2D binary chalcogenide materials have been widely investigated in the last decade, finding applications in several fields such as catalysis, spintronics, and optoelectronics. Ternary 2D chalcogenide materials are a subject of growing interest in materials science due to their superior chemical tunability which endows tailored properties to the devices prepared thereof. In the family of AIIBIII 2XVI 4, ordered ZnIn2S4-like based photocatalytic systems have been studied meticulously. In contrast, reports on disordered phases appear to a minor extent. Herein, a photoelectrochemical (PEC) detector based on the pseudo-binary MnIn2Se4 system is presented. A combination of optical measurements and DFT calculations confirmed that the nature of the bandgap in MnIn2Se4 is indirect. Its performance outclasses that of parent compounds, reaching responsivity values of 8.41 mA W-1. The role of the non-centrosymmetric crystal structure is briefly discussed as a possible cause of improved charge separation of the photogenerated charge carriers.
Collapse
Affiliation(s)
- Marco Serra
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Luc Lajaunie
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz Campus Río San Pedro S/N Puerto Real 11510 Cádiz Spain
- Instituto Universitario de Investigación de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N Puerto Real 11510 Cádiz Spain
| | - Josep Albero
- Instituto de Universitario Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Universitat Politècnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Hermenegildo Garcia
- Instituto de Universitario Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Universitat Politècnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Mouyi Weng
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015 Lausanne Switzerland
| | - Lorenzo Bastonero
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015 Lausanne Switzerland
| | - Kalyan Jyoti Sarkar
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Rui Gusmão
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Rafał Bartoszewicz
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Jakub Ziembicki
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Iva Plutnarová
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015 Lausanne Switzerland
- U Bremen Excellence Chair, Bremen Center for Computational Materials Science, and MAPEX Center for Materials and Processes, University of Bremen D-28359 Bremen Germany
- Laboratory for Materials Simulations, Paul Scherrer Institut (PSI) 5232 Villigen Switzerland
| | - Robert Kudrawiec
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
5
|
Shi J, Wang D, Liang Y, Xu Q, Li Q. Electronic Buffering Mechanism Enhances Stability and Water Oxidation Efficiency of CeO 2@NiFe-LDH. Chemistry 2025; 31:e202404278. [PMID: 39719402 DOI: 10.1002/chem.202404278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/26/2024]
Abstract
Nickel-iron layered double hydroxide shows significant promise as an electrocatalyst in facilitating oxygen evolution reactions. But its development is hindered by low conductivity and insufficient cycling stability. Herein, the synthesis of a hierarchically structured heterostructure catalyst, CeO2@NiFe LDH, is reported through a straightforward two-step process involving hydrothermal treatment. The catalyst realizes a significant breakthrough in OER catalytic performance and stability. At a current density of 100 mA cm-2, the overpotentials amount to 255 mV in 1 M KOH, 263 mV in simulated seawater with alkaline conditions, and 346 mV in actual alkaline seawater. After 200 hours of continuous operation under high current density in simulated alkaline seawater, the morphology with no significant alterations observed, highlighting its high stability in complex seawater environments. Introducing CeO2 optimizes the binding energy of the OH intermediate, which facilitates the formation and dissociation of the OOH intermediate. In situ Raman analysis demonstrates the positive impact of CeO2 on the generation of active species. This research emphasizes the efficacy of CeO2 in improving the performance and durability of NiFe LDH for oxygen evolution reactions.
Collapse
Affiliation(s)
- Junyu Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Dandan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yun Liang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Qiaoxia Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| |
Collapse
|
6
|
Cui D, Kong N, Yang W, Yan F. Recent advances in nanoarchitectonics of two-dimensional nanomaterials for dental biosensing and drug delivery. Adv Colloid Interface Sci 2025; 337:103388. [PMID: 39754906 DOI: 10.1016/j.cis.2024.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Two-dimensional (2D) nanoarchitectonics involve the creation of functional material assemblies and structures at the nanoscopic level by combining and organizing nanoscale components through various strategies, such as chemical and physical reforming, atomic and molecular manipulation, and self-assembly. Significant advancements have been made in the field, with the goal of producing functional materials from these nanoscale components. 2D nanomaterials, in particular, have gained substantial attention due to their large surface areas which are ideal for numerous surface-active applications. In this review article, nanoarchitectonics of 2D nanomaterials based biomedical applications are discussed. We aim to provide a concise overview of how nanoarchitectonics using 2D nanomaterials can be applied to dental healthcare, with an emphasis on biosensing and drug delivery. By offering a deeper understanding of nanoarchitectonics with programmable structures and predictable properties, we hope to inspire new innovations in the dental bioapplications of 2D nanomaterials.
Collapse
Affiliation(s)
- Di Cui
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China; School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Na Kong
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia
| | - Wenrong Yang
- School of Life and Environmental Sciences, Centre for Sustainable Bioproducts, Deakin University Waurn Ponds, Victoria, 3216, Australia.
| | - Fuhua Yan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
7
|
Liu Y, Wang Z, Hu G, Chen X, Xu K, Guo Y, Xie Y, Wu C. Precision Intercalation of Organic Molecules in 2D Layered Materials: From Interface Chemistry to Low-Dimensional Physics. PRECISION CHEMISTRY 2025; 3:51-71. [PMID: 40018453 PMCID: PMC11863159 DOI: 10.1021/prechem.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 03/01/2025]
Abstract
The past few decades have witnessed significant development in intercalation chemistry research aimed at precisely controlling material properties. Intercalation, as a powerful surface and interface synthesis strategy, facilitates the insertion of external guests into van der Waals (vdW) gaps in two-dimensional (2D) layered materials, inducing various modulation effects (the weakening of interlayer interactions, changes in electronic structures, interfacial charge transfer, and symmetry manipulation) to tailor material properties while preserving intralayer covalent bonds. Importantly, benefiting from the very diverse structures and properties of organic molecules, their intercalation enables the integration of various molecules with a wide array of 2D materials, resulting in the creation of numerous organic-inorganic hybrid superlattices with exotic properties, which brings extensive potential applications in fields such as spintronics, superconductor electronics, optoelectronics, and thermoelectrics. Herein, based on recent advancements in organic intercalation systems, we briefly discuss a summary and classification of various organic guest species. We also discuss three modulation effects induced by organic intercalation and further introduce intriguing modulations in physicochemical properties, including superconductivity, magnetism, thermoelectricity and thermal conductivity, chiral-induced spin selectivity (CISS) effects, and interlayer-confined chemical reaction. Finally, we offer insights into future research opportunities and emerging challenges in organic intercalation systems.
Collapse
Affiliation(s)
- Yang Liu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ziren Wang
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guoliang Hu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaomeng Chen
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Xu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuqiao Guo
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Xie
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changzheng Wu
- State
Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory
of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
8
|
He C, Yang L, Dong C, Peng X, Ibraheem Y, Usoltsev O, Simonelli L, He R, Cabot A, Lu Y. O-O Radical Coupling in Ultrathin Reconstructed Co 6.8Se 8 Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202419083. [PMID: 39578967 DOI: 10.1002/anie.202419083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Designing ultrathin transition metal electrocatalysts with optimal surface chemistry state is crucial for oxygen evolution reaction (OER). However, the structure-dependent electrochemical performance and the underlying catalytic mechanisms are still not clearly distinguished. Herein, we synthesize ultrathin Co6.8Se8 nanosheets (NSs) with subnanometer thickness by incorporating catalytically inactive selenium (Se) into ultrathin Co(OH)2, thereby switching the OER reaction pathway from adsorbate evolution mechanism (AEM) to oxide path mechanism (OPM). The prepared ultrathin Co6.8Se8 NSs exhibit an overpotential of 253 mV at 10 mA/cm2, outperforming the mostly reported Co-based electrocatalysts. Advanced operando synchrotron spectroscopies and X-ray absorption spectroscopy reveal the ultrathin Co6.8Se8 NSs, whose surface is reconstructed into Se-doped Co(OH)2 during the OER process, could trigger direct O*-O* radical coupling rather than OOH* intermediates within AEM pathway thus lowering the energy input. Density functional theory calculations confirm that Co6.8Se8 NSs with shorter Co-Co bond length and stable Co-Se bond could optimize the rate-determining step barrier via OPM pathway. Besides, rechargeable zinc-air batteries based on Co6.8Se8 NSs exhibit excellent stability for more than 500 h of continuous charge-discharge cycles at 4 mA/cm2. The present study highlights the structural-dependent switch of OER pathways and provides valuable insights for further development of ultrathin OER catalysts.
Collapse
Affiliation(s)
- Chuansheng He
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Linlin Yang
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Chengyuan Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaohui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yousef Ibraheem
- MIRAS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Oleg Usoltsev
- CELLS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Laura Simonelli
- CELLS - ALBA Synchrotron, 08290, Cerdanyola del Vallès, Catalonia, Spain
| | - Ren He
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- Departament d'Enginyeria Electrònica i Biomèdica, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Catalonia, Spain
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
9
|
Lv J, Ye H, Yang G, Han S, Zhang H, Zhang Y. Porous fluorine-cerium nanosheets anchored with FeOOH quantum dots for synergistic enhanced visible-light-driven photo-Fenton degradation of phenol. J Colloid Interface Sci 2025; 679:619-632. [PMID: 39471590 DOI: 10.1016/j.jcis.2024.10.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The utilization of two-dimensional (2D) materials to construct heterogeneous catalysts provides opportunities for environmental remediation, while the incorporation of porous structures can further enhance catalytic performance. In this work, a porous 2D FeOOH/fluorine-cerium (F-Ce) nanosheet composite was designed and synthesized by a simple impregnation-precipitation method. The unique 2D porous structure of F-Ce promoted the high dispersion of FeOOH quantum dots (QDs) (∼1.4 nm) and their tight integration to form S-scheme heterojunctions. This structure offered a greater number of active sites, and significantly improved the capacity of light absorption and the separation and migration efficiency of photogenerated carriers, thus improving catalytic activity. This catalyst achieved a phenol removal rate of 98.1 % within 20 min during the photo-Fenton reaction, which significantly surpasses pure FeOOH (32.9 %) and F-Ce (21.7 %) alone. In particular, the optimized 14FeOOH/F-Ce catalyst achieved more than 95.0 % degradation efficiency within a remarkably short period of 5 min. Mott Schottky and in situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) studies demonstrated that the S-scheme charge transfer mechanism of this heterojunction synergistically enhanced the catalytic activity of the Fenton-like reaction. This study provides valuable insights for designing efficient 2D porous heterojunction catalysts for visible-light-driven Fenton applications.
Collapse
Affiliation(s)
- Jing Lv
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Guodong Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shurui Han
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Han Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
10
|
Ju Z, Zheng T, Zhang B, Dolocan A, Marschilok AC, Takeuchi ES, Takeuchi KJ, Yu G. Magnetically oriented nanosheet interlayer for dynamic regeneration in lithium metal batteries. Proc Natl Acad Sci U S A 2024; 121:e2413739121. [PMID: 39441637 PMCID: PMC11536145 DOI: 10.1073/pnas.2413739121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Lithium (Li) metal has been recognized as a promising anode to advance the energy density of current Li-based batteries. However, the growth of the solid-electrolyte interphase (SEI) layer and dendritic Li microstructure pose significant challenges for the long-term operation of Li metal batteries (LMBs). Herein, we propose the utilization of a suspension electrolyte with dispersed magnetically responsive nanosheets whose orientation can be manipulated by an external magnetic field during cell operation for realizing in situ regeneration in LMBs. The regeneration mechanism arises from the redistribution of the ion flux and the formation of an inorganic-rich SEI for uniform and compact Li deposition. With the magnetic-field-induced regeneration process, we show that a Li||Li symmetric cell stably operates for 350 h at 2 mA cm-2 and 2 mA h cm-2, ~5 times that of the cell with the pristine electrolyte. Furthermore, the cycling stability can be significantly extended in the Li||NMC full cell of 3 mA h cm-2, showing a capacity retention of 67% after 500 cycles at 1C. The dynamic Li metal regeneration demonstrated here could bring useful design considerations for reviving the operating cells for achieving high-energy, long-duration battery systems.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Andrei Dolocan
- Texas Materials Institute, University of Texas at Austin, Austin, TX78712
| | - Amy C. Marschilok
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Esther S. Takeuchi
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Kenneth J. Takeuchi
- Institute of Energy: Environment, Sustainability and Equity, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY11794
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
11
|
Vu TV, Hiep NT, Hoa VT, Nguyen CV, Phuc HV, Hoi BD, Kartamyshev AI, Hieu NN. Piezoelectric GaGeX 2 (X = N, P, and As) semiconductors with Raman activity and high carrier mobility for multifunctional applications: a first-principles simulation. RSC Adv 2024; 14:32053-32062. [PMID: 39391622 PMCID: PMC11466001 DOI: 10.1039/d4ra06406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
In the present work, we propose GaGeX2 (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and ab initio molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX2 are found as piezoelectric materials with high piezoelectric coefficient d 11 of -1.23 pm V-1 for the GaGeAs2 monolayer. Furthermore, the results from electronic band structures show that the GaGeX2 have semiconductor behaviours with moderate bandgap energies. At the Heyd-Scuseria-Ernzerhof level, the GaGeP2 and GaGeAs2 exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX2 monolayers, we calculate their carrier mobility. All three investigated GaGeX2 systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs2 monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm2 V-1 s-1 in the x and y directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs2 material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX2 structures but also provide promising materials to apply for multifunctional devices.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T Hoa
- Department of Scientific Management and International Cooperation, Quang Nam University Quang Nam Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University Hanoi 100000 Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Bui D Hoi
- Department of Physics, University of Education, Hue Unversity Hue Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
12
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
13
|
Siddiqui R, Rani M, Shah AA, Siddique S, Ibrahim A. Enhanced electrochemical performance with exceptional capacitive retention in Ce-Co MOFs/Ti 3C 2T x nanocomposite for advanced supercapacitor applications. Heliyon 2024; 10:e36540. [PMID: 39263092 PMCID: PMC11386012 DOI: 10.1016/j.heliyon.2024.e36540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
This study introduces a high-performance Ce-Co MOFs/Ti3C2Tx nanocomposite, synthesized via hydrothermal methods, designed to advance supercapacitor technology. The integration of Ce-Co metal-organic frameworks (MOFs) with Ti3C2Tx (Mxene) yields a composite that exhibits superior electrochemical properties. Structural analyses, including X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), confirm the successful formation of the composite, featuring well-defined rod-like Ce-Co MOFs and layered Ti3C2Tx sheets. Electrochemical evaluation highlights the exceptional performance of the Ce-Co MOFs/Ti3C2Tx nanocomposite, achieving a specific capacitance of 483.3 Fg⁻1 at 10 mVs⁻1, a notable enhancement over the 200 Fg⁻1 of Ce-Co MOFs. It also delivers a high energy density of 78.48 Whkg⁻1 compared to 19 Whkg⁻1 for Ce-Co MOFs. Remarkably, the nanocomposite shows outstanding cyclic stability with a capacitance retention of 109 % after 4000 cycles and electrochemical surface area (ECSA) of 845 cm2, coupled with a reduced charge transfer resistance (Rct) of 2.601 Ω and an equivalent series resistance (ESR) of 0.8 Ω. These findings demonstrate that the Ce-Co MOFs/Ti3C2Tx nanocomposite is a groundbreaking material, offering enhanced energy storage, conductivity, and durability, positioning it as a leading candidate for next-generation supercapacitors.
Collapse
Affiliation(s)
- Rabia Siddiqui
- Department of Physics, The Women University, Multan, 66000, Pakistan
| | - Malika Rani
- Department of Physics, The Women University, Multan, 66000, Pakistan
| | - Aqeel Ahmed Shah
- Wet Chemistry Laboratory, Department of Metallurgical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan
| | - Sadaf Siddique
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), 45650, Islamabad, Pakistan
| | - Akram Ibrahim
- Department of Physics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
14
|
Enaiet Allah A, Mohamed F. Growth mechanism of 2D heterostructures of polypyrrole grown on TiO 2 nanoribbons for high-performance supercapacitors. NANOSCALE ADVANCES 2024:d4na00121d. [PMID: 39247864 PMCID: PMC11376071 DOI: 10.1039/d4na00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
The patterning of functional structures is crucial in the field of materials science. Despite the enticing nature of two-dimensional surfaces, the task of directly modeling them with regular structures remains a significant challenge. Here we present a novel method to pattern a two-dimensional polymer in a controlled way assisted by chemical polymerization, which is confirmed through discernible observation. The fabrication process involves in situ polymerization to create 2D layers of polypyrrole (PPy) on extended 2D TiO2 nanoribbons, resulting in oriented arrays known as 2D PPy/TiO2. These arrays exhibit enhanced electrochemical performance, making them ideal for supercapacitor applications. The skeleton structure of this material is distinctive, characterized by a homogeneous distribution of layers containing various elements. Additionally, it possesses a large contact surface, which effectively reduces the distance for ion transport and electron transfer. The 2D PPy/TiO2 electrode has a maximum specific capacitance of 280 F g-1 at an applied current density of 0.5 A g-1. Moreover, it demonstrates excellent rate capability and cycling stability. Therefore, this approach will open an avenue for improving polymerization-based patterning toward recommended applications.
Collapse
Affiliation(s)
- Abeer Enaiet Allah
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Fatma Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University 62514 Beni-Suef Egypt
- Materials Science Lab, Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
- Nanophotonics and Applications Lab, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
15
|
Roy S, Joseph A, Zhang X, Bhattacharyya S, Puthirath AB, Biswas A, Tiwary CS, Vajtai R, Ajayan PM. Engineered Two-Dimensional Transition Metal Dichalcogenides for Energy Conversion and Storage. Chem Rev 2024; 124:9376-9456. [PMID: 39042038 DOI: 10.1021/acs.chemrev.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Designing efficient and cost-effective materials is pivotal to solving the key scientific and technological challenges at the interface of energy, environment, and sustainability for achieving NetZero. Two-dimensional transition metal dichalcogenides (2D TMDs) represent a unique class of materials that have catered to a myriad of energy conversion and storage (ECS) applications. Their uniqueness arises from their ultra-thin nature, high fractions of atoms residing on surfaces, rich chemical compositions featuring diverse metals and chalcogens, and remarkable tunability across multiple length scales. Specifically, the rich electronic/electrical, optical, and thermal properties of 2D TMDs have been widely exploited for electrochemical energy conversion (e.g., electrocatalytic water splitting), and storage (e.g., anodes in alkali ion batteries and supercapacitors), photocatalysis, photovoltaic devices, and thermoelectric applications. Furthermore, their properties and performances can be greatly boosted by judicious structural and chemical tuning through phase, size, composition, defect, dopant, topological, and heterostructure engineering. The challenge, however, is to design and control such engineering levers, optimally and specifically, to maximize performance outcomes for targeted applications. In this review we discuss, highlight, and provide insights on the significant advancements and ongoing research directions in the design and engineering approaches of 2D TMDs for improving their performance and potential in ECS applications.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Antony Joseph
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Abhijit Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Park OK, Kim NH, Lee JH. A facile and scalable fabrication method of scrolled graphene/boron nitride-based van der Waals superlattice heterostructure materials for highly stable supercapacitor electrode application. NANOSCALE 2024; 16:14448-14458. [PMID: 39012377 DOI: 10.1039/d4nr01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Due to the increasing demand for the development of efficient renewable energy supply systems to reduce the mismatch between energy demand and utilization, supercapacitors have attracted increasing attention in the energy industry. However, the development of energy storage electrode materials to be applied at the industrial level is still challenging due to the unsatisfactory durability and scalable production issues. This study suggested a facile and scalable one-pot fabrication method of using graphene/hexagonal boron nitride (G/BN)-based one-dimensional (1D) van der Waals superlattice heterostructures (vdWSLs) as highly stable electrode materials to enhance the energy storage performance by improving the mesopore volume content, specific surface area, electrical properties, and interfacial interaction between the stacked G/BN layers. The G/BN-based vdWSLs were fabricated by a simple scrolling process through the electromagnetic interaction between the attached magnetic iron oxide nanoparticles (Fe3O4 NPs) on the surface of a G/BN vdW heterostructure (vdWH) and the applied magnetic field. The investigation results demonstrate that the changed morphology of the fabricated G/Fe/BN(NS) strongly affects the fine pore distribution, electrochemical performance, and electrical properties. Consequently, as a synergistic effect of an increased mesopore volume content, specific surface area, and C-B-N heterojunction interfacial area, the fabricated G/Fe/BN(NS) electrode showed a 100% enhancement of specific capacitance (207 F g-1 at 0.5 A g-1) and almost 7 times enhancement of electrical conductivity (800 S cm-1) with a nearly 2.3 times increase of carrier mobility (716 cm2 V-1 s-1) compared to that of the G/Fe/BN electrode. Furthermore, it exhibited outstanding long-term cycling stability with almost 119% capacitance retention even after 100 000 charge-discharge cycles. These results suggest that G/Fe/BN(NS) has tremendous potential as an electrode to fabricate high-performance supercapacitors with excellent cycling stability.
Collapse
Affiliation(s)
- Ok-Kyung Park
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.
- Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
17
|
Vu TV, Vi VTT, Hiep NT, Hoang KV, Kartamyshev AI, Phuc HV, Hieu NN. A first-principles prediction of novel Janus ZrGeZ 3H (Z = N, P, and As) monolayers: Raman active modes, piezoelectric responses, electronic properties, and carrier mobility. RSC Adv 2024; 14:21982-21990. [PMID: 38993506 PMCID: PMC11238037 DOI: 10.1039/d4ra04107k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
In this article, an attempt is made to explore new materials for applications in piezoelectric and electronic devices. Based on density functional theory calculation, we construct three Janus ZrGeZ3H (Z = N, P, and As) monolayers and study their stability, piezoelectricity, Raman response, and carrier mobility. The results from phonon dispersion spectra, ab initio molecular dynamics simulation, and elastic coefficients confirm the structural, thermal, and mechanical stability of these proposed structures. The ZrGeZ3H monolayers are indirect band gap semiconductors with favourable band gap energy of 1.15 and 1.00 eV for the ZrGeP3H and ZrGeAs3H, respectively, from Heyd-Scuseria-Ernzerhof functional method. It is found that the Janus ZrGeZ3H monolayers possess both in-plane and out-of-plane piezoelectric coefficients, revealing that they are potential piezoelectric candidates. In addition, the carrier mobilities of electrons and holes along transport directions are anisotropic. Notably, the ZrGeP3H and ZrGeAs3H monolayers have high electron mobility of 3639.20 and 3408.37 cm2 V-1 s-1, respectively. Our findings suggest the potential application of the Janus ZrGeZ3H monolayers in the piezoelectric and electronic fields.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Khanh V Hoang
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Hanoi 12116 Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
18
|
Li Q, Fang G, Wu Z, Guo J, You Y, Jin H, Wan J. Advanced Microwave Strategies Facilitate Structural Engineering for Efficient Electrocatalysis. CHEMSUSCHEM 2024; 17:e202301874. [PMID: 38323505 DOI: 10.1002/cssc.202301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
In the dynamic realm of energy conversion, the demand for efficient electrocatalysis has surged due to the urgent need to seamlessly integrate renewable energy. Traditional electrocatalyst preparation faces challenges like poor controllability, elevated costs, and stringent operational conditions. The introduction of microwave strategies represents a transformative shift, offering rapid response, high-temperature energy, and superior controllability. Notably, non-liquid-phase advanced microwave technology holds promise for introducing novel models and discoveries compared to traditional liquid-phase microwave methods. This review examines the nuanced applications of microwave technology in electrocatalyst structural engineering, emphasizing its pivotal role in the energy paradigm and addressing challenges in conventional methods. The ensuing discussion explores the profound impact of advanced microwave strategies on electrocatalyst structural engineering, highlighting discernible advantages in optimizing performance. Various applications of advanced microwave techniques in electrocatalysis are comprehensively discussed, providing a forward-looking perspective on their untapped potential to propel transformative strides in renewable energy research. It provides a forward-looking perspective, delving into the untapped potential of microwaves to propel transformative strides in renewable energy research.
Collapse
Affiliation(s)
- Qingxiang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Guangyu Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Zhiao Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Jiayue Guo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Yongfei You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| | - Huanyu Jin
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Institute for Sustainability, Energy, and Resources, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Wan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, Hubei, China
| |
Collapse
|
19
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
20
|
Gadtya AS, Moharana S. Electrical, Plasmonic, and Optical Properties of 2D Nanomaterials. 2D NANOMATERIALS 2024:73-101. [DOI: 10.1002/9781394167883.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X. Interlayer Engineering of Layered Materials for Efficient Ion Separation and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311141. [PMID: 38306408 DOI: 10.1002/adma.202311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.
Collapse
Affiliation(s)
- Jinlin Yang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yanzeng Ge
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Si Tang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
22
|
Cao M. Recent Development of Nanomaterials for Chemical Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:456. [PMID: 38470786 DOI: 10.3390/nano14050456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
There has been an explosive growth in research on nanomaterials since the late 1980s and early 1990s [...].
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
23
|
Wang MM, Liu PX, Ye F, Liu LJ, Wen JT, Ni BJ, Luo HW, Wang WK, Xu J. 2D Ni-Co bimetallic oxide nanosheets activate persulfate for targeted conversion of bisphenol A in wastewater into polymers. ENVIRONMENT INTERNATIONAL 2024; 184:108466. [PMID: 38310816 DOI: 10.1016/j.envint.2024.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The selective removal of targeted pollutants from complex wastewater is challenging. Herein, a novel persulfate (PS)-based advanced oxidation system equipped with a series of two-dimensional (2D) bimetallic oxide nanosheets (NSs) catalysts is developed to selectively degrade bisphenol A (BPA) within mixed pollutants via initiating nonradical-induced polymerization. Results indicate that the Ni0.60Co0.40Ox NSs demonstrate the highest catalytic efficiency among all Ni-Co NSs catalysts. Specifically, BPA degradation rate is 47.34, 27.26, and 9.72 times higher than that of 4-chlorophenol, phenol, and 2,4-dichlorophenol in the mixed solution, respectively. The lower oxidative potential of BPA in relation to the other pollutants renders it the primary target for oxidation within the PDS activation system. PDS molecules combine on the surface of Ni0.60Co0.40Ox NSs to form the surface-activated complex, triggering the generation of BPA monomer radicals through H-abstraction or electron transfer. These radicals subsequently polymerize on the surface of the catalyst through coupling reactions. Importantly, this polymerization process can occur under typical aquatic environmental conditions and demonstrates resistance to background matrices like Cl- and humic acid due to its inherent nonradical attributes. This study offers valuable insights into the targeted conversion of organic pollutants in wastewater into value-added polymers, contributing to carbon recycle and circular economy.
Collapse
Affiliation(s)
- Mei-Mei Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng-Xi Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Ye
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Li-Juan Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jia-Tai Wen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Hong-Wei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei-Kang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Juan Xu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
24
|
Lin H, Yang Y, Diamond BG, Yan TH, Bakhmutov VI, Festus KW, Cai P, Xiao Z, Leng M, Afolabi I, Day GS, Fang L, Hendon CH, Zhou HC. Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal-Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer. J Am Chem Soc 2024; 146:1491-1500. [PMID: 38170908 PMCID: PMC10863068 DOI: 10.1021/jacs.3c10917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Brian G. Diamond
- Department
of Chemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Vladimir I. Bakhmutov
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kelechi W. Festus
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mingwan Leng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ibukun Afolabi
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gregory S. Day
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Lei Fang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
26
|
Wang L, Song J, Yu C. Metal-organic framework-derived metal oxides for resistive gas sensing: a review. Phys Chem Chem Phys 2023. [PMID: 38047729 DOI: 10.1039/d3cp04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gas sensors with exceptional sensitivity and selectivity are vital in the real-time surveillance of noxious and harmful gases. Despite this, traditional gas sensing materials still face a number of challenges, such as poor selectivity, insufficient detection limits, and short lifespan. Metal oxides, which are derived from metal-organic framework materials (MOFs), have been widely used in the field of gas sensors because they have a high surface area and large pore volume. Incorporating metal oxides derived from MOFs into gas sensors can improve their sensitivity and selectivity, thus opening up new possibilities for the development of innovative, high-performance gas sensors. This article examines the gas sensing process of metal oxide semiconductors (MOS), evaluates the advances made in the research of different structures of MOF-derived metal oxides in resistive gas sensors, and provides information on their potential applications and future advancements.
Collapse
Affiliation(s)
- Luyu Wang
- College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou, 311599, China.
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Song
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- Design-AI Laboratory, China Academy of Art, Hangzhou 310009, China
| |
Collapse
|
27
|
Anh NPQ, Hiep NT, Lu DV, Nguyen CQ, Hieu NN, Vi VTT. Crystal lattice and electronic and transport properties of Janus ZrSiSZ 2 (Z = N, P, As) monolayers by first-principles investigations. NANOSCALE ADVANCES 2023; 5:6705-6713. [PMID: 38024315 PMCID: PMC10662022 DOI: 10.1039/d3na00631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
From the extending requirements for using innovative materials in advanced technologies, it is necessary to explore new materials for relevant applications. In this work, we design new two-dimensional (2D) Janus ZrSiSZ2 (Z = N, P, As) monolayers and investigate their crystal lattice and dynamic stability by using density functional theory investigations. The two stable structures of ZrSiSP2 and ZrSiSAs2 are then systematically examined for thermal, energetic, and mechanical stability, and electronic and transport properties. The calculation results demonstrate that both the ZrSiSP2 and ZrSiSAs2 monolayers have good thermal stability at room temperature and high energetic/mechanical stabilities for experimental synthesis. The studied structures are found to be in-direct semiconductors. Specifically, with moderate band-gap energies of 1.04 to 1.29 eV for visible light absorption, ZrSiSP2 and ZrSiSAs2 can be considered potential candidates for photovoltaic applications. The applied biaxial strains and external electric fields slightly change the band-gap energies of the monolayers. We also calculate the carrier mobilities for the transport properties based on the deformation potential method. Due to the lower effective masses, the carrier mobilities in the x direction are higher than those in the y direction. The carrier mobilities of the ZrSiSP2 and ZrSiSAs2 monolayers are anisotropic not only in transport directions but also for the electrons and holes. We believe that the results of our work may stimulate further studies to explore more new 2D Janus monolayers with novel properties of the MA2Z4 family materials.
Collapse
Affiliation(s)
- Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology, University of Sciences, Hue University Hue 530000 Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - D V Lu
- Faculty of Physics, The University of Danang - University of Science and Education Da Nang 550000 Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Vietnam
| |
Collapse
|
28
|
Yin H, Sun Z, Liu K, Wibowo AA, Langley J, Zhang C, Saji SE, Kremer F, Golberg D, Nguyen HT, Cox N, Yin Z. Defect engineering enhances plasmonic-hot electrons exploitation for CO 2 reduction over polymeric catalysts. NANOSCALE HORIZONS 2023; 8:1695-1699. [PMID: 37698845 DOI: 10.1039/d3nh00348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Defect sites present on the surface of catalysts serve a crucial role in different catalytic processes. Herein, we have investigated defect engineering within a hybrid system composed of "soft" polymer catalysts and "hard" metal nanoparticles, employing the disparity in their thermal expansions. Electron paramagnetic resonance, X-ray photoelectron spectroscopy, and mechanistic studies together reveal the formation of new abundant defects and their synergistic integrability with plasmonic enhancement within the hybrid catalyst. These active defects, co-localized with plasmonic Ag nanoparticles, promote the utilization efficiency of hot electrons generated by local plasmons, thereby enhancing the CO2 photoreduction activity while maintaining the high catalytic selectivity.
Collapse
Affiliation(s)
- Hang Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Kaili Liu
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Ary Anggara Wibowo
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julien Langley
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Chao Zhang
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sandra E Saji
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Felipe Kremer
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 2601, Australia
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hieu T Nguyen
- School of Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, ACT 2601, Australia.
- Institute for Climate, Energy & Disaster Solutions, Australian National University, ACT 2601, Australia
| |
Collapse
|
29
|
Jin CC, Liu DM, Zhang LX. An Emerging Family of Piezocatalysts: 2D Piezoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303586. [PMID: 37386814 DOI: 10.1002/smll.202303586] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Piezocatalysis is an emerging technique that holds great promise for the conversion of ubiquitous mechanical energy into electrochemical energy through piezoelectric effect. However, mechanical energies in natural environment (such as wind energy, water flow energy, and noise) are typically tiny, scattered, and featured with low frequency and low power. Therefore, a high response to these tiny mechanical energies is critical to achieving high piezocatalytic performance. In comparison to nanoparticles or 1D piezoelectric materials, 2D piezoelectric materials possess characteristics such as high flexibility, easy deformation, large surface area, and rich active sites, showing more promise in future for practical applications. In this review, state-of-the-art research progresses on 2D piezoelectric materials and their applications in piezocatalysis are provided. First, a detailed description of 2D piezoelectric materials are offered. Then a comprehensive summary of the piezocatalysis technique is presented and examines the piezocatalysis applications of 2D piezoelectric materials in various fields, including environmental remediation, small-molecule catalysis, and biomedicine. Finally, the main challenges and prospects of 2D piezoelectric materials and their applications in piezocatalysis are discussed. It is expected that this review can fuel the practical application of 2D piezoelectric materials in piezocatalysis.
Collapse
Affiliation(s)
- Cheng-Chao Jin
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| | - Dai-Ming Liu
- College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon-Materials, Qingdao University of Science & Technology, 99 Songling Road, Qingdao, 266061, P. R. China
| | - Ling-Xia Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
| |
Collapse
|
30
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
31
|
He Q, Sheng B, Zhu K, Zhou Y, Qiao S, Wang Z, Song L. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chem Rev 2023; 123:10750-10807. [PMID: 37581572 DOI: 10.1021/acs.chemrev.3c00389] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
In recent years, there has been significant interest in the development of two-dimensional (2D) nanomaterials with unique physicochemical properties for various energy applications. These properties are often derived from the phase structures established through a range of physical and chemical design strategies. A concrete analysis of the phase structures and real reaction mechanisms of 2D energy nanomaterials requires advanced characterization methods that offer valuable information as much as possible. Here, we present a comprehensive review on the phase engineering of typical 2D nanomaterials with the focus of synchrotron radiation characterizations. In particular, the intrinsic defects, atomic doping, intercalation, and heterogeneous interfaces on 2D nanomaterials are introduced, together with their applications in energy-related fields. Among them, synchrotron-based multiple spectroscopic techniques are emphasized to reveal their intrinsic phases and structures. More importantly, various in situ methods are employed to provide deep insights into their structural evolutions under working conditions or reaction processes of 2D energy nanomaterials. Finally, conclusions and research perspectives on the future outlook for the further development of 2D energy nanomaterials and synchrotron radiation light sources and integrated techniques are discussed.
Collapse
Affiliation(s)
- Qun He
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Beibei Sheng
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Kefu Zhu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yuzhu Zhou
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhouxin Wang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang 321004, China
| |
Collapse
|
32
|
Hu K, Chen Y, Zheng C, Du X, Wang M, Yao Q, Wang H, Fan K, Wang W, Yan X, Wang N, Bai Z, Dou S. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for sodium-ion batteries. RSC Adv 2023; 13:25552-25560. [PMID: 37636507 PMCID: PMC10450392 DOI: 10.1039/d3ra03767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Bismuth is a promising anode material for sodium-ion batteries (SIBs) due to its high capacity and suitable working potential. However, the large volume change during alloying/dealloying would lead to poor cycling performance. Herein, we have constructed a 3D hierarchical structure assembled by bismuth nanosheets, addressing the challenges of fast kinetics, and providing efficient stress and strain relief room. The uniform bismuth nanosheets are prepared via a molten salt-assisted aluminum thermal reduction method. Compared with the commercial bismuth powder, the bismuth nanosheets present a larger specific surface area and interlayer spacing, which is beneficial for sodium ion insertion and release. As a result, the bismuth nanosheet anode presents excellent sodium storage properties with an ultralong cycle life of 6500 cycles at a high current density of 10 A g-1, and an excellent capacity retention of 87% at an ultrahigh current rate of 30 A g-1. Moreover, the full SIBs that paired with the Na3V2(PO4)3/rGO cathode exhibited excellent performance. This work not only presents a novel strategy for preparing bismuth nanosheets with significantly increased interlayer spacing but also offers a straightforward synthesis method utilizing low-cost precursors. Furthermore, the outstanding performance demonstrated by these nanosheets indicates their potential for various practical applications.
Collapse
Affiliation(s)
- Kunkun Hu
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Cheng Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Xinyu Du
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Qian Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Han Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Kai Fan
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Wensheng Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiangshun Yan
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Nana Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Zhongchao Bai
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| |
Collapse
|
33
|
Nguyen HT, Cuong NQ, Vi VTT, Hieu NN, Tran LPT. Moderate direct band-gap energies and high carrier mobilities of Janus XWSiP 2 (X = S, Se, Te) monolayers via first-principles investigation. Phys Chem Chem Phys 2023; 25:21468-21478. [PMID: 37539527 DOI: 10.1039/d3cp02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Two-dimensional (2D) Janus materials with extraordinary properties are promising candidates for utilization in advanced technologies. In this study, new 2D Janus XWSiP2 (X = S, Se, Te) monolayers were constructed and their properties were systematically analyzed by using first-principles calculations. All three structures of SWSiP2, SeWSiP2, and TeWSiP2 exhibit high energetic stability for the experimental fabrication with negative and high Ecoh values, the elastic constants obey the criteria of Born-Huang, and no imaginary frequency exists in the phonon dispersion spectra. The calculated results from the PBE and HSE06 approaches reveal that the XWSiP2 are semiconductors with moderate direct band-gaps varying from 1.01 eV to 1.06 eV using the PBE method, and 1.39 eV to 1.44 eV using the HSE06 method. In addition, the electronic band structures of the three monolayers are significantly affected by the applied strains. Interestingly, the transitions from a direct to indirect semiconductor are observed for different biaxial strains εb. The transport parameters including the carrier mobility values along the x direction μx and y direction μy were also calculated to study the transport properties of the XWSiP2. The results indicate that the XWSiP2 monolayers not only have high carrier mobilities but also anisotropy in the transport directions for both holes and electrons. Together with the moderate and tunable energy gaps, the XWSiP2 materials are found to be potential candidates for application in the photonic, photovoltaic, optoelectronic, and electronic fields.
Collapse
Affiliation(s)
- Hiep T Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen Q Cuong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam.
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Linh P T Tran
- Faculty of Physics, Hanoi National University of Education, Hanoi 100000, Vietnam
| |
Collapse
|
34
|
Li Y, Ma J, Xu L, Liu T, Xiao T, Chen D, Song Z, Qiu J, Zhang Y. Enhancement of Charge Separation and NIR Light Harvesting through Construction of 2D-2D Bi 4 O 5 I 2 /BiOBr:Yb 3+ , Er 3+ Z-Scheme Heterojunctions for Improved Full-Spectrum Photocatalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207514. [PMID: 36808714 PMCID: PMC10161072 DOI: 10.1002/advs.202207514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Developing full-spectrum photocatalysts with simultaneous broadband light absorption, excellent charge separation, and high redox capabilities is becoming increasingly significant. Herein, inspired by the similarities in crystalline structures and compositions, a unique 2D-2D Bi4 O5 I2 /BiOBr:Yb3+ ,Er3+ (BI-BYE) Z-scheme heterojunction with upconversion (UC) functionality is successfully designed and fabricated. The co-doped Yb3+ and Er3+ harvest near-infrared (NIR) light and then convert it into visible light via the UC function, expanding the optical response range of the photocatalytic system. The intimate 2D-2D interface contact provides more charge migration channels and enhances the Förster resonant energy transfer of BI-BYE, leading to significantly improved NIR light utilization efficiency. Density functional theory (DFT) calculations and experimental results confirm that the Z-scheme heterojunction is formed and that this heterojunction endows the BI-BYE heterostructure with high charge separation and strong redox capability. Benefit from these synergies, the optimized 75BI-25BYE heterostructure exhibits the highest photocatalytic performance for Bisphenol A (BPA) degradation under full-spectrum and NIR light irradiation, outperforming BYE by 6.0 and 5.3 times, respectively. This work paves an effective approach for designing highly efficient full-spectrum responsive Z-scheme heterojunction photocatalysts with UC function.
Collapse
Affiliation(s)
- Yongjin Li
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Junhao Ma
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Liang Xu
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Tong Liu
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Taizhong Xiao
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Daomei Chen
- National Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091P. R. China
| | - Zhiguo Song
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Jianbei Qiu
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P. R. China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
35
|
Zhang T, Zheng Y, Zhao X, Lin M, Yang B, Yan J, Zhuang Z, Yu Y. Scalable Synthesis of Holey Deficient 2D Co/NiO Single-Crystal Nanomeshes via Topological Transformation for Efficient Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206873. [PMID: 36609921 DOI: 10.1002/smll.202206873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Preparation of holey, single-crystal, 2D nanomaterials containing in-plane nanosized pores is very appealing for the environment and energy-related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single-crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As-synthesized 2D Co/NiO-2 nanomesh delivers superior photocatalytic CO2 -syngas conversion efficiency (i.e., VCO of 32460 µmol h-1 g-1 CO and V H 2 ${V_{{{\rm{H}}_2}}}$ of 17840 µmol h-1 g-1 H2 ), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO-1 nanomesh containing larger pore size, respectively. As revealed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the high performance of Co/NiO-2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single-crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well-defined geometric and electronic properties.
Collapse
Affiliation(s)
- Tingshi Zhang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yanting Zheng
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xin Zhao
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Mingxiong Lin
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Bixia Yang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Jiawei Yan
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
36
|
Hiep NT, Anh NPQ, Phuc HV, Nguyen CQ, Hieu NN, Vi VTT. Two-dimensional Janus MGeSiP 4 (M = Ti, Zr, and Hf) with an indirect band gap and high carrier mobilities: first-principles calculations. Phys Chem Chem Phys 2023; 25:8779-8788. [PMID: 36912122 DOI: 10.1039/d3cp00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Novel Janus materials have attracted broad interest due to the outstanding properties created by their out-of-plane asymmetry, with increasing theoretical exploration and more reports of successful fabrication in recent years. Here, we construct and explore the crystal structures, stabilities, electronic band structures, and transport properties - including carrier mobilities - of two-dimensional Janus MGeSiP4 (M = Ti, Zr, or Hf) monolayers based on density functional theory calculations. From the cohesive energies, elastic constants, and phonon dispersion calculations, the monolayers are confirmed to exhibit structural stability with high feasibility for experimental synthesis. All the structures are indirect band-gap semiconductors with calculated band-gap energies in the range of 0.77 eV to 1.01 eV at the HSE06 (Heyd-Scuseria-Ernzerhof) level. Interestingly, by applying external biaxial strain, a semiconductor to metal phase transition is observed for the three Janus structures. This suggests potential for promising applications in optoelectronic and electromechanical devices. Notably, the MGeSiP4 monolayers show directionally anisotropic carrier mobility with a high electron mobility of up to 2.72 × 103 cm2 V-1 s-1 for the ZrGeSiP4 monolayer, indicating advantages for applications in electronic devices. Hence, the presented results reveal the novel properties of the 2D Janus MGeSiP4 monolayers and demonstrate their great potential applications in nanoelectronic and/or optoelectronic devices. This investigation could stimulate further theoretical and experimental studies on these excellent materials and motivate further explorations of new members of this 2D Janus family.
Collapse
Affiliation(s)
- Nguyen T Hiep
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology University of Sciences, Hue University, Hue, Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Vo T T Vi
- Department of Fundamental Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam.
| |
Collapse
|
37
|
Liu F, Fan Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem Soc Rev 2023; 52:1723-1772. [PMID: 36779475 DOI: 10.1039/d2cs00931e] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In the global trend towards carbon neutrality, sustainable energy conversion and storage technologies are of vital significance to tackle the energy crisis and climate change. However, traditional electrode materials gradually reach their property limits. Two-dimensional (2D) materials featuring large aspect ratios and tunable surface properties exhibit tremendous potential for improving the performance of energy conversion and storage devices. To rationally control the physical and chemical properties for specific applications, defect engineering of 2D materials has been investigated extensively, and is becoming a versatile strategy to promote the electrode reaction kinetics. Simultaneously, exploring the in-depth mechanisms underlying defect action in electrode reactions is crucial to provide profound insight into structure tailoring and property optimization. In this review, we highlight the cutting-edge advances in defect engineering in 2D materials as well as their considerable effects in energy-related applications. Moreover, the confronting challenges and promising directions are discussed for the development of advanced energy conversion and storage systems.
Collapse
Affiliation(s)
- Fu Liu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China.
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China. .,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
38
|
Juo JY, Shin BG, Stiepany W, Memmler M, Kern K, Jung SJ. In-situ atomic level observation of the strain response of graphene lattice. Sci Rep 2023; 13:2451. [PMID: 36774393 PMCID: PMC9922254 DOI: 10.1038/s41598-023-29128-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility and mechanical stability at low temperature under UHV conditions. In this work, we have implemented a compact nanoindentation system with a size of [Formula: see text] 160 mm[Formula: see text] [Formula: see text] 5.2 mm in a scanning tunneling microscope (STM) sample holder, which enables the reversible control of strain and gate electric field. A combination of gearbox and piezoelectric actuator allowed us to modulate the depth of the indentation continuously with nanometer precision. The 2D materials were transferred onto the polyimide film. Pd clamp was used to enhance the strain transfer from the polyimide from to the 2D layers. Using this unique technique, strain response of graphene lattice were observed at atomic precision. In the relaxed graphene, strain is induced mainly by local curvature. However, in the strained graphene with tented structure, the lattice parameters become more sensitive to the indentor height change and stretching strain is increased additionally. Moreover, the gate controllability is confirmed by measuring the dependence of the STM tip height on gate voltage.
Collapse
Affiliation(s)
- Jz-Yuan Juo
- grid.419552.e0000 0001 1015 6736Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Bong Gyu Shin
- grid.419552.e0000 0001 1015 6736Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany ,grid.264381.a0000 0001 2181 989XSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 440-746 Republic of Korea
| | - Wolfgang Stiepany
- grid.419552.e0000 0001 1015 6736Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marko Memmler
- grid.419552.e0000 0001 1015 6736Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- grid.419552.e0000 0001 1015 6736Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany ,grid.5333.60000000121839049Institut de Physique, École Poly-technique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Soon Jung Jung
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569, Stuttgart, Germany.
| |
Collapse
|
39
|
Hao Y, Li J, Cao X, Meng L, Wu J, Yang X, Li Y, Liu Z, Gong M. Origin of the Universal Potential-Dependent Organic Oxidation on Nickel Oxyhydroxide. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yaming Hao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jili Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xueting Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lingshen Meng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jianxiang Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhipan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
40
|
Xie M, Tang S, Zhang B, Yu G. Metallene-related materials for electrocatalysis and energy conversion. MATERIALS HORIZONS 2023; 10:407-431. [PMID: 36541177 DOI: 10.1039/d2mh01213h] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As a member of graphene analogs, metallenes are a class of two-dimensional materials with atomic thickness and well-controlled surface atomic arrangement made of metals or alloys. When utilized as catalysts, metallenes exhibit distinctive physicochemical properties endowed from the under-coordinated metal atoms on the surface, making them highly competitive candidates for energy-related electrocatalysis and energy conversion systems. Significantly, their catalytic activity can be precisely tuned through the chemical modification of their surface and subsurface atoms for efficient catalyst engineering. This minireview summarizes the recent progress in the synthesis and characterization of metallenes, together with their use as electrocatalysts toward reactions for energy conversion. In the Synthesis section, we pay particular attention to the strategies designed to tune their exposed facets, composition, and surface strain, as well as the porosity/cavity, defects, and crystallinity on the surface. We then discuss the electrocatalytic properties of metallenes in terms of oxygen reduction, hydrogen evolution, alcohol and acid oxidation, carbon dioxide reduction, and nitrogen reduction reaction, with a small extension regarding photocatalysis. At the end, we offer perspectives on the challenges and opportunities with respect to the synthesis, characterization, modeling, and application of metallenes.
Collapse
Affiliation(s)
- Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Sishuang Tang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Ren X, Wang H, Chen J, Xu W, He Q, Wang H, Zhan F, Chen S, Chen L. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204121. [PMID: 36526607 DOI: 10.1002/smll.202204121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu-O, Cu-S, Cu-Se, Cu-N, and Cu-P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal-air batteries, water-splitting, and CO2 reduction reaction (CO2 RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.
Collapse
Affiliation(s)
- Xuehua Ren
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Haoyu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Weili Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, CA, 95060, USA
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
42
|
Wang Y, Xu X, Yin J, Huang G, Guo T, Tian Z, Alsaadi R, Zhu Y, Alshareef HN. MoS 2 -Mediated Epitaxial Plating of Zn Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208171. [PMID: 36401604 DOI: 10.1002/adma.202208171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Metal-based anodes (Li, Zn, etc.) are regarded as promising solutions for next-generation advanced batteries due to their high theoretical specific capacities. However, most of these metal anodes suffer from dendrite growth, which severely restricts their practical applications. Recently, epitaxial anode metal deposition by choosing a suitable substrate has received tremendous attention as an effective strategy to suppress dendrites. However, the epitaxial relationship between plated metal and the substrate has been a subject of debate. Herein, large-area, mono-orientated 2D material (MoS2 ) is used, for the first time, to electrodeposit truly epitaxial Zn anodes. The continuous (without edges) mono-orientated MoS2 films are shown to be an effective strategy for suppressing metal dendrites. In addition, the epitaxial nature of the electrodeposited Zn anode is proven by pole figure analysis, which provides the first demonstration of truly epitaxial Zn anode growth over large area as metal anode protection strategy through epitaxy.
Collapse
Affiliation(s)
- Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Xiangming Xu
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Gang Huang
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Tianchao Guo
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Zhengnan Tian
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Rajeh Alsaadi
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Yunpei Zhu
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
43
|
MOFs for Electrochemical Energy Conversion and Storage. INORGANICS 2023. [DOI: 10.3390/inorganics11020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metal organic frameworks (MOFs) are a family of crystalline porous materials which attracts much attention for their possible application in energy electrochemical conversion and storage devices due to their ordered structures characterized by large surface areas and the presence in selected cases of a redox-active porous skeleton. Their synthetic versatility and relevant host-guest chemistry make them suitable platform for use in stable and flexible conductive materials. In this review we summarize the most recent results obtained in this field, by analyzing the use of MOFs in fuel and solar cells with special emphasis on PEMFCs and PSCs, their application in supercapacitors and the employment in batteries by differentiating Li-, Na- and other metal ion-batteries. Finally, an overview of the water splitting reaction MOF-catalyzed is also reported.
Collapse
|
44
|
Wang W, Song Y, Ke C, Li Y, Liu Y, Ma C, Wu Z, Qi J, Bao K, Wang L, Wu J, Jiang S, Zhao J, Lee CS, Chen Y, Luo G, He Q, Ye R. Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution. ACS NANO 2023; 17:1287-1297. [PMID: 36629409 DOI: 10.1021/acsnano.2c09423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Composition modulation and edge enrichment are established protocols to steer the electronic structures and catalytic activities of two-dimensional (2D) materials. It is believed that a heteroatom enhances the catalytic performance by activating the chemically inert basal plane of 2D crystals. However, the edge and basal plane have inherently different electronic states, and how the dopants affect the edge activity remains ambiguous. Here we provide mechanistic insights into this issue by monitoring the hydrogen evolution reaction (HER) performance of phosphorus-doped MoS2 (P-MoS2) nanosheets via on-chip electrocatalytic microdevices. Upon phosphorus doping, MoS2 nanosheet gets catalytically activated and, more importantly, shows higher HER activity in the edge than the basal plane. In situ transport measurement demonstrates that the improved HER performance of P-MoS2 is derived from intrinsic catalytic activity rather than charge transfer. Density functional theory calculations manifest that the edge sites of P-MoS2 are energetically more favorable for HER. The finding guides the rational design of edge-dominant P-MoS2, reaching a minuscule onset potential of ∼30 mV and Tafel slope of 48 mV/dec that are benchmarked against other activation methods. Our results disclose the hitherto overlooked edge activity of 2D materials induced by heteroatom doping that will provide perspectives for preparing next-generation 2D catalysts.
Collapse
Affiliation(s)
- Wenbin Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong518057, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chengxuan Ke
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yang Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zongxiao Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Junlei Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kai Bao
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lingzhi Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jingkun Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shan Jiang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Chun-Sing Lee
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ruquan Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong518057, China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
45
|
Luo C, Chen Y, Tian Q, Zhang W, Sui Z. Ultrathin porous MnO2@C nanosheets for high-performance lithium-ion battery anodes. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
47
|
Enhanced Catalytic Oxidation of Toluene over Heterostructured CeO2-CuO-Mn3O4 Hollow Nanocomposites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Ju Z, King ST, Xu X, Zhang X, Raigama KU, Takeuchi KJ, Marschilok AC, Wang L, Takeuchi ES, Yu G. Vertically assembled nanosheet networks for high-density thick battery electrodes. Proc Natl Acad Sci U S A 2022; 119:e2212777119. [PMID: 36161896 PMCID: PMC9546623 DOI: 10.1073/pnas.2212777119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
As one of the prevailing energy storage systems, lithium-ion batteries (LIBs) have become an essential pillar in electric vehicles (EVs) during the past decade, contributing significantly to a carbon-neutral future. However, the complete transition to electric vehicles requires LIBs with yet higher energy and power densities. Here, we propose an effective methodology via controlled nanosheet self-assembly to prepare low-tortuosity yet high-density and high-toughness thick electrodes. By introducing a delicate densification in a three-dimensionally interconnected nanosheet network to maintain its vertical architecture, facile electron and ion transports are enabled despite their high packing density. This dense and thick electrode is capable of delivering a high volumetric capacity >1,600 mAh cm-3, with an areal capacity up to 32 mAh cm-2, which is among the best reported in the literature. The high-performance electrodes with superior mechanical and electrochemical properties demonstrated in this work provide a potentially universal methodology in designing advanced battery electrodes with versatile anisotropic properties.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Steven T. King
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
| | - Xiao Xu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Xiao Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Kasun U. Raigama
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Kenneth J. Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Amy C. Marschilok
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Lei Wang
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Esther S. Takeuchi
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
49
|
Cheng P, Li G, Zeng S, Li Y, Meng X, Xu J. Prediction of highly stable two-dimensional materials of boron and phosphorus: structural and electronic properties. Phys Chem Chem Phys 2022; 24:24413-24418. [PMID: 36189667 DOI: 10.1039/d2cp03243k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of two-dimensional (2D) semiconducting materials has attracted broad research interest, owing to their wide applications in spintronics and optoelectronics. Group III-V 2D materials such as hexagonal boron nitride (h-BN) have been demonstrated with remarkable electronic properties. However, the 2D materials consisting of boron and phosphorus have not been comprehensively explored. Using global structural search combined with first-principles calculations, we have hereby theoretically predicted several stable and metastable boron phosphorus (BmPn) monolayer 2D compounds that have lower formation enthalpies (ΔH) than black phosphorus and α-bulk boron and could be formed at stoichiometries of m/n ≤ 1. Two of these 2D BmPn compounds, i.e., P21/m B1P3 and Cm B2P4, are confirmed to be thermodynamically stable, with bandgaps less than 2 eV. In particular, Cm B2P4 features a narrow bandgap of ∼0.609 eV, near the short wavelength infrared ray (SWIR) region, and it possesses anisotropic mechanical properties. Moreover, we have demonstrated that these compounds can be converted into half-metallic spin-polarized states through charge doping, which promises their applications in spintronic devices.
Collapse
Affiliation(s)
- Puxin Cheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| | - Geng Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China. .,National Supercomputer Center in Tianjin, Tianjin 300457, P. R. China.
| | - Shuming Zeng
- Department of Physics, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yunlong Li
- National Supercomputer Center in Tianjin, Tianjin 300457, P. R. China.
| | - Xiangfei Meng
- National Supercomputer Center in Tianjin, Tianjin 300457, P. R. China.
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.
| |
Collapse
|
50
|
Cheng W, Wang X, Huang J, Wang Y, Yin L, Li J, Kong X, Feng Q. Electrochemical study of reduced graphene oxide@Zn2Ti3O8 nanocomposites as a superior anode for Li-ion battery. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|