1
|
Wu L, Liu J, Du F, Xia H, Liu P, Luo J, Yang Y. Bionic learning in MXene-based actuators: An emerging frontier. Adv Colloid Interface Sci 2025; 342:103525. [PMID: 40300489 DOI: 10.1016/j.cis.2025.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025]
Abstract
Bionics offers valuable insights into the design and application of MXene-based soft actuators, which have garnered significant attention in the fields of flexible electronics and smart materials owing to their exceptional electrical conductivity, tunable interlayer spacing, and responsiveness to diverse external stimuli. This review begins with a comprehensive summary of the main response mechanisms of MXene-based soft actuators under various external stimuli. It presents a detailed analysis of the advantages and limitations of different actuation modes and discusses strategies for composite modification with other materials to enhance MXene performance under multi-stimulus conditions. Inspired by the sensory capabilities of animals and plants in nature, this work explores the potential for biomimetic design and identifies four key challenges for advancing the field: (1) the development of efficient and controllable material synthesis techniques, (2) the electrochemical stability and environmental robustness of devices, (3) the overall performance optimization of actuators, and (4) the nascent exploration of biomimetic learning mechanisms. Finally, future research directions are outlined, offering novel perspectives to promote the broader application of MXene-based soft actuators in biomimetic systems.
Collapse
Affiliation(s)
- Linshan Wu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianhua Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063015, China
| | - Fen Du
- School of Mechanical Engineering, Beijing Institute of Technology, Zhuhai 519099, China
| | - Huanxiong Xia
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063015, China.
| | - Peng Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Juncheng Luo
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ye Yang
- School of Mechanical and Material Engineering, North China University of Technology, Beijing 100144, China.
| |
Collapse
|
2
|
Kallayil A, Patadiya J, Kandasubramanian B, Adamtsevich A, Kchaou M, Aldawood FK. Adaptive Smart Materials in Architecture: Enhancing Durability and Sustainability in Modern Construction. ACS OMEGA 2025; 10:22305-22322. [PMID: 40521511 PMCID: PMC12163855 DOI: 10.1021/acsomega.4c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 06/18/2025]
Abstract
Adaptive materials in civil construction offer superior performance and high potential for 4D printing integration. Smart materials exhibit rapid response times, precise sensor applications, and real-time durability monitoring, with phase-changing materials improving thermal efficiency by 30% and self-sensing concrete detecting microstrains as low as 10 με. These materials enhance fracture toughness (50% increase), corrosion resistance (40% improvement), and fire stability (up to 1200 °C). Smart bricks incorporate phase-change materials, glazing systems, and recyclable composites, with some embedding electrodes achieving conductivity of 10-3 S/m for strain sensing. Additive manufacturing (AM) reduces material waste by 50%, enhances design flexibility (90%), and lowers the carbon footprint (40-60%). This review examines communication protocols such as Zigbee, LoRaWAN, and 5G, which enable real-time data transfer and processing. However, embedded systems in smart bricks may be vulnerable to cyber-attacks and data breaches. Ensuring security involves encryption methods, blockchain technology, intrusion detection systems to protect data integrity and network reliability, 3D-printed smart bricks, categorizing materials, and fabrication mechanisms. Integrating AM with smart materials fosters resilient, energy-efficient construction, essential for sustainable urbanization.
Collapse
Affiliation(s)
- Aiswarya Kallayil
- Polymer
Science, Central Institute of Petrochemical Engineering and Technology
(IPT), HIL Colony, Kochi683501, Kerala, India
| | - Jigar Patadiya
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced
Technology (DU), Ministry of Defence, Girinagar, Pune411025, India
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria3216, Australia
| | - Balasubramanian Kandasubramanian
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced
Technology (DU), Ministry of Defence, Girinagar, Pune411025, India
| | - Aleksey Adamtsevich
- Research
Institute of Construction Materials and Technologies (CM&T), Moscow State University of Civil Engineering, 129337Moscow, Russia
| | - Mohamed Kchaou
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha67714, Saudi Arabia
| | - Faisal Khaled Aldawood
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha67714, Saudi Arabia
| |
Collapse
|
3
|
Yadav A, Fang Z, Wang Y, Qiu K, Tan A, Tang Z, Zhang X, Ji B, Li D, Diao J. Clustered Carbon Nanotubes Damage Endoplasmic Reticulum. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25128-25138. [PMID: 40253626 DOI: 10.1021/acsami.5c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Carbon nanotubes (CNTs) have garnered significant attention in recent years due to their unique properties and their wide-range applicability. However, alongside these promising applications, concerns regarding the potential toxicity of CNTs have emerged. In this context, through this work, we have attempted to explore the nanotoxic effect of CNTs over endoplasmic reticular (ER). Using structure illumination and transmission electron microscopies, we unveiled that during endocytosis processes, CNTs form clusters, which lead to fragmentation of the ER structure by puncturing them, thereby inducing potential nanotoxicity. In addition, RNA sequencing data showed that after incubation with CNTs, activating transcription factor 4 (ATF4), a gene responsible for ER stress, was found to be up-regulated. To explore the molecular mechanism, we employed molecular dynamics and coarse-grained simulations and found that clustering of CNTs can significantly increase the speed of lipid extraction, resulting in severe damage.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Zhou Fang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati 45221, Ohio, United States
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Adrian Tan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Zihan Tang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati 45267, Ohio, United States
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| |
Collapse
|
4
|
Han J, Xu B, Fang C, Wei J, Li Z, Liu X, Yang Y, Wang Q, Zhang J. Hierarchically Porous Wearable Composites for High-Performance Stretchable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500835. [PMID: 40279552 DOI: 10.1002/advs.202500835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/27/2025] [Indexed: 04/27/2025]
Abstract
With the rapid development of wearable electronic devices, the demand for flexible, durable, and high-performance energy storage systems has increased significantly. Nevertheless, maintaining stable electrochemical performance during stretching while ensuring high stretchability and mechanical stability remains a challenge. Herein, this study proposes a novel type of stretchable supercapacitors made from carbon nanotube (CNT) and styrene-butadiene-styrene (SBS) composite scaffolds prepared on pre-stretched carbon fabrics using the breath figure method. Hydrothermal treatment is then performed to grow NiCo-LDH at the treated carbon fabrics. This method induces the formation of a hierarchically porous structure under high humidity conditions, controls the hydrothermal growth of NiCo-LDH in the CNT/SBS composite scaffold, and significantly enhances the electrochemical performance and mechanical stability. The supercapacitor demonstrates remarkable retention of 94% capacitance under 80% tensile strain and sustains a small 8% degradation over 20 000 charge-discharge cycles, achieving a specific capacitance of 4948 mF cm⁻2 at 2 mA cm⁻2. The device has an energy density of 801.6 µWh cm⁻2 (400.6 Wh kg⁻¹) and exhibits excellent performance at a power density of 3.5 mW cm⁻2 (1749.5 W kg⁻¹). These properties make the supercapacitors a potential for next-generation smart wearables and wearable electronics.
Collapse
Affiliation(s)
- Jing Han
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Cuiqin Fang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Juyang Wei
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Zihua Li
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Xinlong Liu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Yujue Yang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Qian Wang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| | - Junze Zhang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong
| |
Collapse
|
5
|
Lee S, Kim H, Kim M, Kang R, Lim I, Jang Y. Rapid and simple on-site salmonella detection in food via direct sample loading using a lipopolysaccharide-imprinted polymer. J Nanobiotechnology 2025; 23:279. [PMID: 40189550 PMCID: PMC11974074 DOI: 10.1186/s12951-025-03341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Salmonella is a major foodborne pathogen that causes salmonellosis, which is characterized by symptoms such as diarrhea, fever, and abdominal cramps. Existing methods for detecting Salmonella, such as culture plating, ELISA, and PCR, are accurate but time-consuming and unsuitable for on-site applications. In this study, we developed a rapid and sensitive electrochemical sensor using a molecularly imprinted polymer (MIP) to detect Salmonella typhimurium (S. typhimurium) by targeting lipopolysaccharides (LPS). Polydopamine (PDA) was used as the polymer matrix because of its cost-efficiency and functional versatility. The sensor demonstrated high sensitivity and selectivity, with a detection limit of 10 CFU/mL and a linear response over the 10²-10⁸ CFU/mL range. The specificity of the sensor was validated against other gram-positive and gram-negative bacteria and showed no significant cross-reactivity. Furthermore, the sensor performed effectively in real food samples, including tap water, milk, and pork, without complex preprocessing. These results highlight the potential of the LPS-imprinted MIP sensor for practical on-site detection of S. typhimurium, improving food safety monitoring and preventing outbreaks in food-handling environments.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Hyunsoo Kim
- DRB Research, DRB Industrial, 28, Gongdandong-ro 55beon-gil, Busan, 46329, Republic of Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Ryun Kang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Inje Lim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, 04763, Korea.
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul, 04736, Korea.
| |
Collapse
|
6
|
Lee S, Yu H, Han MG, Jung H, Jung HT, Kim SM, Jeong HS. Versatile and Fast Electrochemical Activation Method for Carbon Nanotube Fibers with Diverse Active Materials. SMALL METHODS 2025; 9:e2401478. [PMID: 39690746 DOI: 10.1002/smtd.202401478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/08/2024] [Indexed: 12/19/2024]
Abstract
In this study, the challenge of non-electrochemical activity in carbon nanotube fibers (CNTFs) is addressed by developing a modified chlorosulfonic acid (CSA) densification process specifically developed for directly spun CNTFs. This post-treatment method, well-known for enhancing the physical properties of CNTFs, utilizes the double diffusion phenomenon to efficiently integrate a diverse range of active materials, from conductive polymers like polyaniline (PANI) to metal oxides like nickel oxide (NiO), into the fibers. This universal and cost-effective approach not only simplifies the integration process but also significantly boosts both the electrochemical and physical properties of the fibers. For instance, the PANI@CNTF composite exhibited a remarkable 17-fold increase in specific capacitance and a two-fold increase in load value compared to its pristine counterparts. This method proves straightforward, efficient, and versatile, making it suitable for developing fiber-shaped electrodes that advance the capabilities of wearable energy storage systems.
Collapse
Affiliation(s)
- Sungju Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hayoung Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Min Gook Han
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Environmental Engineering, Chungbuk National University, Chungae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, South Korea
| | - Hyewon Jung
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeon-ro, Mapo-gu, Seoul, 04107, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung Min Kim
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong ro, Bondong-eup, Wanju-gun, Jeonbuk, 55324, South Korea
| |
Collapse
|
7
|
Lee CY, Hsu CC, Wang CH, Jeng US, Tung SH, Hu CC, Liu CL. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407622. [PMID: 39358979 DOI: 10.1002/smll.202407622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Thermoelectric generators (TEGs) based on thermogalvanic cells can convert low-temperature waste heat into electricity. Organic redox couples are well-suited for wearable devices due to their nontoxicity and the potential to enhance the ionic Seebeck coefficient through functional-group modifications. Pyrazine-based organic redox couples with different functional groups is comparatively analyzed through cyclic voltammetry under varying temperatures. The results reveal substantial differences in entropy changes with temperature and highlight 2,5-pyrazinedicarboxylic acid dihydrate (PDCA) as the optimal candidate. How the functional groups of the pyrazine compounds impact the ionic Seebeck coefficient is examined, by calculating the electrostatic potential based on density functional theory. To evaluate the thermoelectric properties, PDCA is integrated in different concentrations into a double-network hydrogel comprising poly(vinyl alcohol) and polyacrylamide. The resulting champion device exhibits an impressive ionic Seebeck coefficient (Si) of 2.99 mV K-1, with ionic and thermal conductivities of ≈67.6 µS cm-1 and ≈0.49 W m-1 K-1, respectively. Finally, a TEG is constructed by connecting 36 pieces of 20 × 10-3 m PDCA-soaked hydrogel in series. It achieves a maximum power output of ≈0.28 µW under a temperature gradient of 28.3 °C and can power a small light-emitting diode. These findings highlight the significant potential of TEGs for wearable devices.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Lee CY, Hong SH, Liu CL. Recent Progress in Polymer Gel-Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives. Macromol Rapid Commun 2025; 46:e2400837. [PMID: 39895205 DOI: 10.1002/marc.202400837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Polymer gel-based ionic thermoelectric (i-TE) devices, including thermally chargeable capacitors and thermogalvanic cells, represent an innovative approach to sustainable energy harvesting by converting waste heat into electricity. This review provides a comprehensive overview of recent advancements in gel-based i-TE materials, focusing on their ionic Seebeck coefficients, the mechanisms underlying the thermodiffusion and thermogalvanic effects, and the various strategies employed to enhance their performance. Gel-based i-TE materials show great promise due to their flexibility, low cost, and suitability for flexible and wearable devices. However, challenges such as improving the ionic conductivity and stability of redox couples remain. Future directions include enhancing the efficiency of ionic-electronic coupling and developing more robust electrode materials to optimize the energy conversion efficiency in real-world applications.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shao-Huan Hong
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
9
|
Wu Y, Zhu Z, Liu X, Xue Y. Multilayer Core-Sheath Structured Nickel Wire/Copper Oxide/Cobalt Oxide Composite for Highly Sensitive Non-Enzymatic Glucose Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:411. [PMID: 40137584 PMCID: PMC11946131 DOI: 10.3390/nano15060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
The development of micro glucose sensors plays a vital role in the management and monitoring of diabetes, facilitating real-time tracking of blood glucose levels. In this paper, we developed a three-layer core-sheath microwire (NW@CuO@Co3O4) with nickel wire as the core and copper oxide and cobalt oxide nanowires as the sheath. The unique core-sheath structure of microwire enables it to have both good conductivity and excellent electrochemical catalytic activity when used as an electrode for glucose detecting. The non-enzymatic glucose sensor base on a NW@CuO@Co3O4 core-sheath wire exhibits a high sensitivity of 4053.1 μA mM-1 cm-2, a low detection limit 0.89 μM, and a short response time of less than 2 s.
Collapse
Affiliation(s)
| | | | - Xinjuan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.W.); (Z.Z.)
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (Y.W.); (Z.Z.)
| |
Collapse
|
10
|
Héraly F, Sikdar A, Chang J, Pang B, Yuan J. Humidity-responsive fiber actuators assembled from cellulose nanofibrils. Carbohydr Polym 2025; 348:122785. [PMID: 39562064 DOI: 10.1016/j.carbpol.2024.122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/28/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
Fiber actuators, particularly valuable in soft robotics and environmental sensing, are at the forefront of "smart" materials and materials innovation. In this realm, torsional and tensile biofiber actuators, notable for their cost-effectiveness and biodegradability, mark a critical gap in the development of next-generation functional systems and devices. To address this gap, this study showcased moisture-responsive fiber actuators made from cellulose nanofibrils (CNFs). The initial focus of this contribution was on an innovative torsional actuator, which capitalized on the hydrophilic nature of the CNFs filaments produced through wet-spinning processes. These robust filaments, with a mechanical strength of (237.0 ± 10.7) MPa, were twisted to form the torsional actuator. This actuator demonstrated a rapid rotational response, achieving up to 1180 rpm within merely 10 s of exposure to moisture, and maintained high durability over multiple cycles. Building upon this platform, the study continued and aimed to build up a tensile actuator, which ingeniously integrated a supercoiled nylon fiber core within a moisture-sensitive CNFs sheath. This design enhances the structural support and functionality of the actuator. The pursued transition from torsional to tensile actuator demonstrates an iterative and innovative approach in actuator technology, underscoring the versatility and potential of CNFs in the realm of "smart" actuation materials.
Collapse
Affiliation(s)
- Frédéric Héraly
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden
| | - Anirban Sikdar
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden
| | - Jian Chang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden
| | - Bo Pang
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrheniusväg 16C, Stockholm 106 91, Sweden.
| |
Collapse
|
11
|
Krasnov P, Ivanova V, Klyamer D, Bonegardt D, Fedorov A, Basova T. Hybrid Materials Based on Carbon Nanotubes and Tetra- and Octa-Halogen-Substituted Zinc Phthalocyanines: Sensor Response Toward Ammonia from the Quantum-Chemical Point of View. SENSORS (BASEL, SWITZERLAND) 2024; 25:149. [PMID: 39796940 PMCID: PMC11722734 DOI: 10.3390/s25010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
This paper presents the results of quantum-chemical modeling performed by the Density Functional-Based Tight Binding (DFTB) method to investigate the change in the band structure of hybrid materials based on carbon nanotubes and unsubstituted, tetra-, or octa-halogen-substituted zinc phthalocyanines upon the adsorption of ammonia molecules. The study showed that the electrical conductivity of these materials and its changes in the case of interaction with ammonia molecules depend on the position of the impurity band formed by the orbitals of macrocycle atoms relative to the forbidden energy gap of the hybrids. The sensor response of the hybrids containing halogenated phthalocyanines was lower by one or two orders of magnitude, depending on the number of substituents, compared to the hybrid with unsubstituted zinc phthalocyanine. This result was obtained by calculations performed using the nonequilibrium Green's functions (NEGF) method, which demonstrated a change in the electrical conductivity of the hybrids upon the adsorption of ammonia molecules. The analysis showed that in order to improve the sensor characteristics of CNT-based hybrid materials, preference should be given to those phthalocyanines in which substituents contribute to an increase in HOMO energy relative to the unsubstituted macrocycles.
Collapse
Affiliation(s)
- Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry, Siberian Federal University, 26 Kirensky St., 660074 Krasnoyarsk, Russia;
- Qingdao Innovation and Development Center, Harbin Engineering University, 1777 Sansha St., Huangdao Dist., Qingdao 266500, China
| | - Victoria Ivanova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Darya Klyamer
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Dmitry Bonegardt
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| | - Aleksandr Fedorov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Tamara Basova
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Lavrentiev Pr., 630090 Novosibirsk, Russia; (V.I.); (D.K.); (D.B.)
| |
Collapse
|
12
|
Chen X, Chen J, Song X, Du T, Deng X, Deng Z, Hu XG, Zeng X, Yang Z, Yang H, Lan R. Bioinspired Mechanochromic Liquid Crystal Materials: From Fundamentals to Functionalities and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403766. [PMID: 38780131 DOI: 10.1002/adma.202403766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Inspired by intriguing color changeable ability of natural animals, the design and fabrication of artificial mechanochromic materials capable of changing colors upon stretching or pressing have attracted intense scientific interest. Liquid crystal (LC) is a self-organized soft matter with anisotropic molecular alignment. Due to the sensitivity to various external stimulations, LC has been considered as an emerging and appealing responsive building block to construct intelligent materials and advanced devices. Recently, mechanochromic LC materials have becoming a hot topic in multifields from flexible artificial skins to visualized sensors and smart biomimetic devices. In this review, the recent progress of mechanochromic LCs is comprehensively summarized. Firstly, the mechanism and functionalities of mechanochromic LC is introduced, followed by preparation of various functional materials based on mechanochromic LCs. Then the applications of mechanochromic LCs are provided. Finally, the conclusion and outlooks of this field is given. This overview is hoped to provide inspiration in fabrication of advanced functional soft materials for scientists and engineers from multidisciplines including materials science, elastomers, chemistry, and physical science.
Collapse
Affiliation(s)
- Xinyu Chen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jingyu Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinyue Song
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Tongji Du
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinrui Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhaoping Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xingping Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhen Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruochen Lan
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
13
|
Chaudhuri A, Arya V, Bakli C, Chakraborty S. Capillary filling dynamics in closed-end carbon nanotubes-Defying the classical Lucas-Washburn paradigm. J Chem Phys 2024; 161:184702. [PMID: 39513445 DOI: 10.1063/5.0237885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The emergence of two-dimensional (2D) materials such as carbon nanotubes (CNTs) offers the possibility of exploring new regimes of capillarity and wetting that remained inaccessible with traditional microfluidic and nanofluidic substrates. Here, we bring out the non-intuitive capillary filling regimes in closed-end CNTs using molecular-level investigations. Contrary to the existing understanding of the advancing liquid meniscus getting retarded by the viscous resistance offered by an entrapped vapor phase in a three-dimensional capillary, here the liquid meniscus is shown to accelerate toward the later stages of the dynamic wetting, which is attributed to the modified surface friction due to a 2D interface. This apparently counterintuitive observation is qualitatively linked to the local pressure fluctuations across the meniscus caused by the spontaneous bombardment of the entrapped vapor molecules, which may ramify into hitherto unexplored phenomena of a shape-reversed meniscus advancing in the 2-D pore. We further develop a simple analytical model to represent the essential physics of the resulting capillary filling dynamics, featuring significant deviations from the classical Lucas-Washburn paradigm. These results may turn out to be imperative in realizing new regimes of capillarity in 2D materials in multifarious applications, ranging from energy storage and water filtration to thin film flows in integrated electronics and photonic devices.
Collapse
Affiliation(s)
- Abhirup Chaudhuri
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Vinay Arya
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Kim CY, Hwang YH, Chang J, Kong SU, Park SHK, Choi KC. High Mobility, Low Off-Current, and Flexible Fiber-Based a-InGaZnO Thin-Film Transistors toward Wearable Textile OLED Displays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62335-62346. [PMID: 39475539 DOI: 10.1021/acsami.4c12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Fiber-based organic light-emitting diodes (OLEDs) are gaining attention as promising candidates to achieve truly wearable textile displays because of their favorable electrical and mechanical characteristics. However, although fiber OLEDs have been developed into passive-matrix displays, it has not been possible to achieve active OLED operation because of the difficulty of realizing fiber-based thin film transistors (TFTs) with the proper electrical and mechanical performance at the same time. Here, 1D cylindrical fiber-based IGZO TFTs, which simultaneously exhibit a high electrical performance and flexibility, are reported. To address this trade-off relationship, four key stages of a novel fabrication process and unique device structures that suitable for the thermal properties and cylindrical structure of the fiber were applied: (I) prethermal treatment, (II) partially patterned layers, (III) coplanar structure, and (IV) continuous postannealing (CPA) process. As a result, the fabricated fiber-based IGZO TFTs showed high mobility (8.6 cm2/(V s)) and low off-current (∼10-12 A), comparable to that glass-based TFTs, as well as flexibility. Furthermore, based on these valid performances, it was demonstrated that fiber phOLEDs could be driven by fiber-based IGZO TFTs using a wiring connection with Cu wire and Ag paste. The results suggest that this may allow the potential fabrication of fully textile AMOLED displays, integrated with TFTs.
Collapse
Affiliation(s)
- Chan Young Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yong Ha Hwang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyeock Chang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seong Uk Kong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Wang Y, Wang X, Zhao Y, Dong L, Zhou T, Yong Z, Di J. Reversible Electrochemical Swelling of Straight Carbon Nanotube Yarns for High-Performance Linear Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405277. [PMID: 39189539 DOI: 10.1002/smll.202405277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Coiled artificial muscle yarns outperform their straight counterparts in contractile strokes. However, challenges persist in the fabrication complexity and the susceptibility of the coiled yarns to becoming stuck by surrounding objects during contraction and recovery. Additionally, torsional stability remains a concern. In this study, it is reported that straight carbon nanotube (CNT) yarns when driven by a low-voltage electrochemical approach, can achieve a contractile stroke that surpasses even NiTi shape memory alloy fibers. The key lies in the suitable match between a yarn consisting of randomly aligned CNTs and the reversible and substantial electrochemical swelling induced by solvated ions. Wrinkled structures are formed on the surface of the CNT yarn to adapt to the swelling process. This not only assures torsional stability but also enhances the surface area for improved electrode-electrolyte interaction during electrochemical actuation. Remarkably, the CNT artificial muscle yarn generates a contractile stroke of 8.8% and an isometric stress of 7.5 MPa under 2.5 V actuation voltages, demonstrating its potential for applications requiring low energy consumption while maintaining high operational efficiency. This study highlights the crucial impact of CNT orientation on the effectiveness of electrochemically-driven artificial muscles, signaling new possibilities in smart material and biomechanical system development.
Collapse
Affiliation(s)
- Yulian Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaobo Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yueran Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tao Zhou
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Zhenzhong Yong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Jiangtao Di
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
16
|
Hashiguchi R, Ichikawa H, Kumeta M, Koyama D. Control of myotube orientation using ultrasonication. Sci Rep 2024; 14:25737. [PMID: 39468262 PMCID: PMC11519932 DOI: 10.1038/s41598-024-77277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
This study investigated a technique for controlling the orientation of C2C12-derived myotube cells using ultrasonication for future clinical applications of cultured skeletal muscle tissues. An ultrasonicating cell culture dish, comprising a plastic-bottomed culture dish and a circular glass plate (diameter, 35 mm; thickness, 1.1 mm) attached to an annular piezoelectric ultrasonic transducer (inner diameter, 10 mm; outer diameter, 20 mm; thickness, 1 mm), was constructed. A concentric resonant vibrational mode at 89 kHz was generated on the bottom of the dish, and the orientations of myotube cells were quantitatively evaluated using two-dimensional Fourier transform analysis of phase contrast microscopy images captured over a 14 × 10 mm2 area at the center of the dish. Unsonicated myotube cells grew in random directions, but ultrasonication aligned them circumferentially in the culture dish. The timing of treatment was important, with ultrasonication for 48 h before differentiation having a greater impact on myotube orientation than ultrasonication after differentiation. A larger ultrasonic vibration, with an amplitude of over 20 Vpp, resulted in significantly smaller angles of deviation in the circumferential direction than the control. Ultrasonication enhanced the expression of differentiation-related genes and the formation of aligned myotubes, suggesting that it promotes differentiation of C2C12 cells into myotubes.
Collapse
Affiliation(s)
- Ryohei Hashiguchi
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hidetaka Ichikawa
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
17
|
Chen L, Zhang L, Wu T, Tang C, Song H. Fast Responsive and High-Strain Electro-Ionic Soft Actuator Based on the 3D-Structure MXene-EGaIn/MXene Bilayer Composite Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39099098 DOI: 10.1021/acs.langmuir.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Electro-ionic soft actuators have garnered significant attention owing to their promising applications in flexible electronics, wearable devices, and soft robotics. However, achieving high actuation performance (large bending strain and fast response time) of these soft actuators under low voltage has been challenging due to issues related to ion diffusion and accumulation. In this study, an electro-ionic soft actuator is fabricated using Ti3C2Tx MXene and eutectic gallium-indium (EGaIn) composite material as the bilayer electrode and methylammonium formate/1-ethyl-3-methylimidazolium tetrafluoroborate/poly(vinylidene fluoride) (MAF-EMIMBF4/PVDF) as the ionic liquid-type electrolyte. The research results indicate that the prepared soft actuator exhibits excellent actuation performance with a peak-to-peak displacement of 35 mm and a bending strain of 0.69% (a peak-to-peak strain of 1.38%) under a low voltage (3 V). The electro-ionic soft actuator shows a wide frequency range (0.1-10 Hz), fast response time (0.35 s), and a rise time of 7.5 s. Furthermore, it demonstrates good cyclic durability, with a retention rate of 92.5% of its performance for 10 000 cycles. These excellent performances are attributed to the 3D structure of the Ti3C2Tx-EGaIn/Ti3C2Tx bilayer composite electrode, as well as the characteristics of the low viscosity, high conductivity, small ion volume, and larger volume difference between cations and anions in MAF ionic liquid. The high-performance electro-ionic soft actuator can be used in various fields such as artificial muscles, tactile devices, and soft robots.
Collapse
Affiliation(s)
- Lingfeng Chen
- School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libing Zhang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ting Wu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haijun Song
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
18
|
Suzuki H, Kametaka J, Nakahori S, Tanaka Y, Iwahara M, Lin H, Manzhos S, Kyaw AKK, Nishikawa T, Hayashi Y. N-DMBI Doping of Carbon Nanotube Yarns for Achieving High n-Type Thermoelectric Power Factor and Figure of Merit. SMALL METHODS 2024; 8:e2301387. [PMID: 38470210 DOI: 10.1002/smtd.202301387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The application of carbon nanotube (CNT) yarns as thermoelectric materials for harvesting energy from low-grade waste heat including that generated by the human body, is attracting considerable attention. However, the lack of efficient n-type CNT yarns hinders their practical implementation in thermoelectric devices. This study reports efficient n-doping of CNT yarns, employing 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzimidazole-2-yl) phenyl) dimethylamine (N-DMBI) in alternative to conventional n-dopants, with o-dichlorobenzene emerging as the optimal solvent. The small molecular size of N-DMBI enables highly efficient doping within a remarkably short duration (10 s) while ensuring prolonged stability in air and at high temperature (150 °C). Furthermore, Joule annealing of the yarns significantly improves the n-doping efficiency. Consequently, thermoelectric power factors (PFs) of 2800, 2390, and 1534 µW m-1 K-2 are achieved at 200, 150, and 30 °C, respectively. The intercalation of N-DMBI molecules significantly suppresses the thermal conductivity, resulting in the high figure of merit (ZT) of 1.69×10-2 at 100 °C. Additionally, a π-type thermoelectric module is successfully demonstrated incorporating both p- and n-doped CNT yarns. This study offers an efficient doping strategy for achieving CNT yarns with high thermoelectric performance, contributing to the realization of lightweight and mechanically flexible CNT-based thermoelectric devices.
Collapse
Affiliation(s)
- Hiroo Suzuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Jun Kametaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shinya Nakahori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yuichiro Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Mizuki Iwahara
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Haolu Lin
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan
| | - Aung Ko Ko Kyaw
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Takeshi Nishikawa
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiko Hayashi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
19
|
Jeong YH, Im J, Choi GH, Kim CB, Lee J. Effect of Thermal Oxidation of Carbon Nanotubes during Wet Spinning into Fibers Using Sodium Cholate Surfactant in Aqueous Dispersion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3581. [PMID: 39063873 PMCID: PMC11278946 DOI: 10.3390/ma17143581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Surfactant-based wet spinning is a promising route toward the eco-friendly production of carbon nanotube fibers (CNTFs). However, currently, the properties of surfactant-based wet-spun CNTFs lag behind those produced by other methods, indicating the need for further understanding and research. Here, we explored the surface characteristics of carbon nanotubes (CNTs) that are advantageous for the properties of CNTFs produced by wet spinning, using sodium cholate as a surfactant. Our finding indicates that appropriate thermal oxidation of CNTs enhances the fiber properties, while excessive oxidation undermines them. This implies that the bonding mechanism between CNTs and sodium cholate involves hydrophobic interaction and π-π interaction. Therefore, it is crucial to preserve a clean surface of CNTs in wet spinning using sodium cholate. We believe our research will contribute to the advancement of surfactant-based wet spinning of CNTFs.
Collapse
Affiliation(s)
- Yun Ho Jeong
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Jaegyun Im
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Gyeong Hwan Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Jeon W, Lee JM, Kim Y, Lee Y, Won J, Lee S, Son W, Koo YH, Hong JW, Gwac H, Joo J, Kim SJ, Choi C, Park S. Structurally Aligned Multifunctional Neural Probe (SAMP) Using Forest-Drawn CNT Sheet onto Thermally Drawn Polymer Fiber for Long-Term In Vivo Operation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313625. [PMID: 38552258 DOI: 10.1002/adma.202313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yunheum Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joonhee Won
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Somin Lee
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonkyeong Son
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Hoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hocheol Gwac
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Luo Z, Kong N, Usman KAS, Tao J, Lynch PA, Razal JM, Zhang J. Knitting Elastic Conductive Fibers of MXene/Natural Rubber for Multifunctional Wearable Sensors. Polymers (Basel) 2024; 16:1824. [PMID: 39000679 PMCID: PMC11244089 DOI: 10.3390/polym16131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Wearable electronic sensors have recently attracted tremendous attention in applications such as personal health monitoring, human movement detection, and sensory skins as they offer a promising alternative to counterparts made from traditional metallic conductors and bulky metallic conductors. However, the real-world use of most wearable sensors is often hindered by their limited stretchability and sensitivity, and ultimately, their difficulty to integrate into textiles. To overcome these limitations, wearable sensors can incorporate flexible conductive fibers as electrically active components. In this study, we adopt a scalable wet-spinning approach to directly produce flexible and conductive fibers from aqueous mixtures of Ti3C2Tx MXene and natural rubber (NR). The electrical conductivity and stretchability of these fibers were tuned by varying their MXene loading, enabling knittability into textiles for wearable sensors. As individual filaments, these MXene/NR fibers exhibit suitable conductivity dependence on strain variations, making them ideal for motivating sensors. Meanwhile, textiles from knitted MXene/NR fibers demonstrate great stability as capacitive touch sensors. Collectively, we believe that these elastic and conductive MXene/NR-based fibers and textiles are promising candidates for wearable sensors and smart textiles.
Collapse
Affiliation(s)
- Zirong Luo
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
| | - Na Kong
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| | - Ken Aldren S. Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Jinlong Tao
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
| | - Peter A. Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Joselito M. Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Jizhen Zhang
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| |
Collapse
|
22
|
Su G, Wang N, Liu Y, Zhang R, Li Z, Deng Y, Tang BZ. From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400085. [PMID: 38469972 DOI: 10.1002/adma.202400085] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
Collapse
Affiliation(s)
- Gongmeiyue Su
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ni Wang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yangkun Liu
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruoyao Zhang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhao Li
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yulin Deng
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), Guangdong, 518172, P. R. China
| |
Collapse
|
23
|
Hu X, Zhang F, Liu R, Jiang J, Bao X, Liang Y. Fast and Strong Carbon Nanotube Yarn Artificial Muscles by Electro-osmotic Pump. ACS NANO 2024; 18:428-435. [PMID: 38126714 DOI: 10.1021/acsnano.3c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Previous electrochemically powered yarn muscles cannot be usefully operated between extreme negative and extreme positive potentials, since generated stresses during anion injection and cation injection partially cancel because they are in the same direction. We here report an ionomer-infiltrated hybrid carbon nanotube (CNT) yarn muscle that shows unipolar stress behavior in the sense that stress generation between extreme potentials is additive, resulting in an enhanced stress generation. Moreover, the stress generated by this muscle unexpectedly increases with the potential scan rate, which contradicts the fact that scan-rate-induced stress decreases for neat CNT muscles. It is revealed by the electro-osmotic pump effect that the effective ion size injected into the muscle increases with an increase in the scan rate. We demonstrate an electrochemically powered gel-elastomer-yarn muscle adhesive that generates and delivers muscle-contraction-mimicking stimulation to a target tissue.
Collapse
Affiliation(s)
- Xinghao Hu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fengrui Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Runmin Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jinchang Jiang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xianfu Bao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yiming Liang
- Intelligent Robotics Research Center, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| |
Collapse
|
24
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
25
|
Lee CY, Lin YT, Hong SH, Wang CH, Jeng US, Tung SH, Liu CL. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56072-56083. [PMID: 37982689 DOI: 10.1021/acsami.3c09934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Mixed ionic-electronic conducting (MIEC) thermoelectric (TE) materials offer higher ionic conductivity and ionic Seebeck coefficient compared to those of purely ionic-conducting TE materials. These characteristics make them suitable for direct use in thermoelectric generators (TEGs) as the charge carriers can be effectively transported from one electrode to the other via the external circuit. In the present study, MIEC hydrogels are fabricated via the chemical cross-linking of polyacrylamide (PAAM) and polydopamine (PDA) to form a double network. In addition, electrically conducting carboxylated carbon nanotubes (CNT-COOH) are dispersed evenly within the hydrogel via sonication and interaction with the PDA. Moreover, the electrical properties of the hydrogel are further improved via the in situ polymerization of polyaniline (PANI). The presence of CNT-COOH facilitates the ionic conductivity and enhances the ionic Seebeck coefficient via ionic-electronic interactions between sodium ions and carboxyl groups on CNT-COOH, which can be observed in X-ray photoelectron spectroscopy results, thereby promoting the charge transport properties. As a result, the optimum device exhibits a remarkable ionic conductivity of 175.3 mS cm-1 and a high ionic Seebeck coefficient of 18.6 mV K-1, giving an ionic power factor (PFi) of 6.06 mW m-1 K-2 with a correspondingly impressive ionic figure of merit (ZTi) of 2.65. These values represent significant achievements within the field of gel-state organic TE materials. Finally, a wearable module is fabricated by embedding the PAAM/PDA/CNT-COOH/PANI hydrogel into a poly(dimethylsiloxane) mold. This configuration yields a high power density of 171.4 mW m-2, thus highlighting the considerable potential for manufacturing TEGs for wearable devices capable of harnessing waste heat.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ting Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
27
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
28
|
Zhang J, Tang X, Wei J, Cong S, Zhu S, Li Y, Yao J, Lyu W, Jin H, Zhao M, Zhao Z, Li Q. Rainbow-Colored Carbon Nanotubes via Rational Surface Engineering for Smart Visualized Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303593. [PMID: 37635182 PMCID: PMC10582442 DOI: 10.1002/advs.202303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Surface engineering is effective for developing materials with novel properties, multifunctionality, and smart features that can enable their use in emerging applications. However, surface engineering of carbon nanotubes (CNTs) to add color properties and functionalities has not been well established. Herein, a new surface engineering strategy is developed to achieve rainbow-colored CNTs with high chroma, high brightness, and strong color travel for visual hydrogen sensing. This approach involved constructing a bilayer structure of W and WO3 on CNTs (CNT/W/WO3 ) and a trilayer structure of W, WO3 , and Pd on CNTs (CNT/W/WO3 /Pd) with tunable thicknesses. The resulting CNT/W/WO3 composite film exhibits a wide range of visible colors, including yellow, orange, magenta, violet, blue, cyan, and green, owing to strong thin-film interference. This coloring method outperforms other structural coloring methods in both brightness and chroma. The smart CNT/W/WO3 /Pd films with porous characteristics quickly and precisely detect the hydrogen leakage site. Furthermore, the smart CNT/W/WO3 /Pd films allow a concentration as low as 0.6% H2 /air to be detected by the naked eye in 58 s, offering a very practical and safe approach for the detection and localization of leaks in onboard hydrogen tanks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xueqing Tang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Shan Cong
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Siqi Zhu
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yaowu Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jian Yao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Weibang Lyu
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Hehua Jin
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Zhigang Zhao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qingwen Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| |
Collapse
|
29
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
30
|
Li K, Shen H, Xue W. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16232-16243. [PMID: 36942675 DOI: 10.1021/acsami.2c22659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nature-similar muscle is one of the ultimate goals of advanced artificial muscle materials. Currently, a variety of chemical and natural materials have been gradually developed for the preparation of artificial muscles. However, due to the scarcity, biological exclusion, and poor flexibility of the abovementioned materials, it is still a challenging process to maximize the imitation of behaviors shown by real muscles and commercial development. Here, this article presents multidimensional wool yarn artificial muscles, and the wet response behavior of fibers is induced in yarn muscles successfully by virtue of weakening the water-repellent effect of wool scales. Wool artificial muscles are cost-effective and widely available and have good biocompatibility. In addition, wool fiber assemblies are structurally stable, soft, and flexible to be processed into artificial muscles with torsional, contractile, and even multilayered structures, enabling various wet-driven behaviors. On the basis of the theoretical model and numerical simulation, we explained and verified the working mechanism employed in wool artificial yarn muscles. Finally, the yarn muscle was integrated into a wool muscle group through the textile technology, followed by the application to robot bionic arms, displaying the great potential of wool artificial yarn muscles in bionic drivers and the intelligent textile industry.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Wenliang Xue
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
31
|
Choi KH, Kim SJ, Kim H, Jang HW, Yi H, Park MC, Choi C, Ju H, Lim JA. Fibriform Organic Electrochemical Diodes with Rectifying, Complementary Logic and Transient Voltage Suppression Functions for Wearable E-Textile Embedded Circuits. ACS NANO 2023; 17:5821-5833. [PMID: 36881690 DOI: 10.1021/acsnano.2c12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a fibriform electrochemical diode capable of performing rectifying, complementary logic and device protection functions for future e-textile circuit systems is fabricated. The diode was fabricated using a simple twisted assembly of metal/polymer semiconductor/ion gel coaxial microfibers and conducting microfiber electrodes. The fibriform diode exhibited a prominent asymmetrical current flow with a rectification ratio of over 102, and its performance was retained after repeated bending deformations and washings. Fundamental studies on the electrochemical interactions of polymer semiconductors with ions reveal that the Faradaic current generated in polymer semiconductors by electrochemical reactions results in an abrupt current increase under a forward bias, in which the threshold voltages of the device are determined by the oxidation or reduction potential of the polymer semiconductor. Textile-embedded full-wave rectifiers and logic gate circuits were implemented by simply integrating the fibriform diodes, exhibiting AC-to-DC signal conversion and logic operation functions, respectively. It was also confirmed that the proposed fibriform diode can suppress transient voltages and thus protect a low-voltage operational wearable e-textile circuit.
Collapse
Affiliation(s)
- Kwang-Hun Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Jin Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoungjun Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Chul Park
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changsoon Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyunsu Ju
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ah Lim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
32
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
33
|
Han WC, Lee YJ, Kim SU, Lee HJ, Kim YS, Kim DS. Versatile Mechanochromic Sensor based on Highly Stretchable Chiral Liquid Crystalline Elastomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206299. [PMID: 36464625 DOI: 10.1002/smll.202206299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/17/2023]
Abstract
A mechanochromic strain sensor that is capable of distinguishing the orientation, the location, and the degree of deformation based on the highly stretchable membrane of main-chain chiral liquid crystalline elastomer (MCLCE) is proposed. The MCLCE film is designed to exhibit uniform and significant color shift upon the small strain by using step-growth polymerization of liquid crystal (LC) oligomer and its phase-stabilization in solvent mesogen. As conformally placed on the bottom elastomer sheet, the MCLCE film shows multimodal, instantaneous color change for sensing arbitrary in-plane deformation, out-of-plane bending, and nonzero Gaussian deformation. Based on high freedom in the device design, it is also demonstrated that this sensor can display color patterns or encrypted images in response to the localized weight or strain. The simple and straightforward concept proposed here can be applicable in the fields of wearable devices, displays, and soft robotics.
Collapse
Affiliation(s)
- Woong Chan Han
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Hye Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seoungnam-si, Kyounggi-do, 13509, Republic of Korea
| | - Dae Seok Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| |
Collapse
|
34
|
Li L, Sun T, Lu S, Chen Z, Xu S, Jian M, Zhang J. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5701-5708. [PMID: 36661854 DOI: 10.1021/acsami.2c21518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are promising building blocks for the fabrication of novel fibers with structural and functional properties. However, the mechanical and electrical performances of carbon nanotube fibers (CNTFs) are far lower than the intrinsic properties of individual CNTs. Exploring methods for the controllable assembly and continuous preparation of high-performance CNTFs is still challenging. Herein, a graphene/chlorosulfonic acid-assisted wet-stretching method is developed to produce highly densified and well-aligned graphene/carbon nanotube fibers (G/CNTFs) with excellent mechanical and electrical performances. Graphene with small size and high quality can bridge the adjacent CNTs to avoid the interfacial slippage under deformation, which facilitates the formation of a robust architecture with abundant conductive pathways. Their ordered structure and enhanced interfacial interactions endow the fibers with both high strength (4.7 GPa) and high electrical conductivity (more than 2 × 106 S/m). G/CNTF-based lightweight wires show good flexibility and knittability, and the high-performance fiber heaters exhibit ultrafast electrothermal response over 1000 °C/s and a low operation voltage of 3 V. This method paves the way for optimizing the microstructures and producing high-strength and high-conductivity CNTFs, which are promising candidates for the high-value fiber-based applications.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Shichao Lu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
35
|
Tan F, Yu B, Wang Y, Bai Q, Zhang Z. Hierarchically Structured Nanoporous Palladium with Ordered/Disordered Channels for Ultrahigh and Fast Strain. NANO LETTERS 2023; 23:505-513. [PMID: 36630150 DOI: 10.1021/acs.nanolett.2c03833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metallic actuators have increasingly shown the potential to replace conventional piezoelectric ceramics and conducting polymers. However, it is still a great challenge to achieve strain amplitudes over 4% while maintaining fast strain responses. Herein, we fabricated bulk nanoporous palladium (NP-Pd) with microsheet-array-like hierarchically nanoporous (MAHNP) structure by dealloying a eutectic Al-Pd precursor. The hierarchical structure consists of array-like microsized channels/sheets and disordered nanosized networks. The locally ordered channels play a critical role in fast mass transport while nanoligaments accumulate a large surface area for hydrogen adsorption/absorption and desorption. Therefore, the MAHNP-Pd not only obtains a fast strain rate with the maximum value close to 1 × 10-4 s-1 but also exhibits an ultrahigh strain amplitude of 4.68%, exceeding all reported values for bulk electrochemical metallic actuators to date. Additionally, the superiority of the MAHNP structure is demonstrated in transport kinetics as benchmarked with the scenario of unimodal NP-Pd.
Collapse
Affiliation(s)
- Fuquan Tan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| | - Bin Yu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, University of Jinan, West Road of Nan Xinzhuang 336, Jinan250022, P. R. China
| | - Qingguo Bai
- School of Applied Physics and Materials, Wuyi University, Dongcheng Village 22, Jiangmen529020, P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| |
Collapse
|
36
|
Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. Mol Vis 2023. [DOI: 10.3390/c9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Graphite (stacked graphene layers) has been modified in several ways to enhance its potential properties/utilities. One approach is to convert graphite into a unique ‘nano-graphite’ form. Nano-graphite consists of few-layered graphene, multi-layered graphene, graphite nanoplatelets, and other graphene aggregates. Graphite can be converted to nano-graphite using physical and chemical methods. Nano-graphite, similar to graphite, has been reinforced in conducting polymers/thermoplastics/rubbery matrices to develop high-performance nanocomposites. Nano-graphite and polymer/nano-graphite nanomaterials have characteristics that are advantageous over those of pristine graphitic materials. This review basically highlights the essential features, design versatilities, and applications of polymer/nano-graphite nanocomposites in solar cells, electromagnetic shielding, and electronic devices.
Collapse
|
37
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
38
|
García-Beltrán G, Mercado-Zúñiga C, René Torres-SanMiguel C, Gallegos-García G, Torres-Torres C. Photonic encryption by optical activity in Kerr-like carbon-based nanofluids with plasmonic nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Jang Y, Moon JH, Lee C, Lee S, Kim H, Song GH, Spinks GM, Wallace GG, Kim SJ. A Coiled Carbon Nanotube Yarn-Integrated Surface Electromyography System To Monitor Isotonic and Isometric Movements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45149-45155. [PMID: 36169191 DOI: 10.1021/acsami.2c11811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A surface electromyogram (sEMG) electrode collects electrical currents generated by neuromuscular activity by a noninvasive technique on the skin. It is particularly attractive for wearable systems for various human activities and health care monitoring. However, it remains challenging to discriminate EMG signals from isotonic (concentric/eccentric) and isometric movements. By applying nanotechnology, we provide a coiled carbon nanotube (CNT) yarn-integrated sEMG device to overcome sEMG-based motion recognition. When the arm was contracted at different angles, the sEMG-derived root mean square amplitude signals were constant regardless of the angle of the moving arm. However, the coiled CNT yarn-derived open circuit voltage (OCV) signals proportionally increased when the arm's angle increased, and presented negative and positive values depending on the moving direction of the arm. Moreover, isometric contraction is characterized by the onset of EMG signals without an OCV signal, and isotonic contraction is determined by both EMG signals and OCV signals. Taken together, the integration of EMG and coiled CNT yarn electrodes provides complementary information, including the strength, direction, and degree of muscle movement. Therefore, we suggest that our system has high potential as a wearable system to monitor human motions in industrial and human system applications.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Korea
| | - Ji Hwan Moon
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Chanho Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sungmin Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Heesoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyu Hyeon Song
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Geoffrey M Spinks
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
40
|
Zhu Y, Yue H, Aslam MJ, Bai Y, Zhu Z, Wei F. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3478. [PMID: 36234606 PMCID: PMC9565896 DOI: 10.3390/nano12193478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) with superior mechanical properties are expected to play a role in the next generation of critical engineering mechanical materials. Crucial advances have been made in CNTs, as it has been reported that the tensile strength of defect-free CNTs and carbon nanotube bundles can approach the theoretical limit. However, the tensile strength of macro carbon nanotube fibers (CNTFs) is far lower than the theoretical level. Although some reviews have summarized the development of such fiber materials, few of them have focused on the controllable preparation and performance optimization of high-strength CNTFs at different scales. Therefore, in this review, we will analyze the characteristics and latest challenges of multiscale CNTFs in preparation and strength optimization. First, the structure and preparation of CNTs are introduced. Then, the preparation methods and tensile strength characteristics of CNTFs at different scales are discussed. Based on the analysis of tensile fracture, we summarize some typical strategies for optimizing tensile performance around defect and tube-tube interaction control. Finally, we introduce some emerging applications for CNTFs in mechanics. This review aims to provide insights and prospects for the controllable preparation of CNTFs with ultra-high tensile strength for emerging cutting-edge applications.
Collapse
Affiliation(s)
- Yukang Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongjie Yue
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Junaid Aslam
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunxiang Bai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Qian S, Liu M, Dou Y, Fink Y, Yan W. A 'Moore's law' for fibers enables intelligent fabrics. Natl Sci Rev 2022; 10:nwac202. [PMID: 36684517 PMCID: PMC9843301 DOI: 10.1093/nsr/nwac202] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Fabrics are an indispensable part of our everyday life. They provide us with protection, offer privacy and form an intimate expression of ourselves through their esthetics. Imparting functionality at the fiber level represents an intriguing path toward innovative fabrics with a hitherto unparalleled functionality and value. The fiber technology based on thermal drawing of a preform, which is identical in its materials and geometry to the final fiber, has emerged as a powerful platform for the production of exquisite fibers with prerequisite composition, geometric complexity and control over feature size. A 'Moore's law' for fibers is emerging, delivering higher forms of function that are important for a broad spectrum of practical applications in healthcare, sports, robotics, space exploration, etc. In this review, we survey progress in thermally drawn fibers and devices, and discuss their relevance to 'smart' fabrics. A new generation of fabrics that can see, hear and speak, sense, communicate, harvest and store energy, as well as store and process data is anticipated. We conclude with a critical analysis of existing challenges and opportunities currently faced by thermally drawn fibers and fabrics that are expected to become sophisticated platforms delivering value-added services for our society.
Collapse
Affiliation(s)
| | | | - Yuhai Dou
- Institute for Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Yan
- Corresponding author. E-mail:
| |
Collapse
|
42
|
Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang ZL, Zhai J. Elastic Kernmantle E-Braids for High-Impact Sports Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202489. [PMID: 35758560 PMCID: PMC9443433 DOI: 10.1002/advs.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching. For demonstration, the E-braids are mounted to different parts of the trampoline for athletes' locomotor behavior monitoring. Furthermore, the E-braids are proved to act as multifarious intelligent sports gear or wearable equipment such as electronic jump rope and respiration monitoring belt. This study expands the kernmantle structure to soft flexible electronics and then accelerates the development of quantitative analysis in modern sports industry and athletes' healthcare.
Collapse
Affiliation(s)
- Wei Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Aifang Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Yulong Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Mengmeng Jia
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Pengwen Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lele Ren
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Di Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Xiong Pu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junyi Zhai
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
43
|
Guo H, Yan J, Jiang L, Deng S, Lin X, Qu L. Femtosecond Laser Bessel Beam Fabrication of a Supercapacitor with a Nanoscale Electrode Gap for High Specific Volumetric Capacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39220-39229. [PMID: 35994368 DOI: 10.1021/acsami.2c10037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supercapacitors are widely used in electronic systems as energy storage devices. The fabrication of a miniaturized supercapacitor with high specific capacitance has attracted much attention in recent years. Here, we propose a new method to fabricate supercapacitors with a nanoscale electrode gap by using a femtosecond laser. The original femtosecond laser was converted to a nondiffraction Bessel light field with nanoscale beam width and microscale focal depth. Nanoscale processing precision was achieved by regulating the Bessel beam. We fabricated graphene supercapacitors with different electrode gap widths (varying from the microscale to the nanoscale) using this method. Supercapacitors fabricated by this method have advantages in both size miniaturization (electrode gap width down to ∼500 nm) and electrochemical performance improvement (a specific volumetric capacitance of 195 F/cm3). This work demonstrates that the femtosecond laser Bessel beam processing method provides a reliable pathway to fabricate miniaturized supercapacitors with high specific capacitance and other nanoscale electronic devices.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lan Jiang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shengfa Deng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinzhu Lin
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
44
|
Hassan A, Abbas S, Jie L, Youming L, Quanfang C. Investigation of the Advanced Novel Carbon Nanotube (CNT) Yarn and Carbon Nanotube Aluminum/Copper Composite Windings for a Single-Phase Induction Motor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07060-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Huang M, Wang H, Liu G, Wei H, Hu J, Wang Y, Gong X, Mao S, Danilov M, Rusetskyi I, Tang J. Excellent Photonic and Mechanical Properties of Macromorphic Fibers Formed by Eu 3+-Complex-Anchored, Unzipped, Multiwalled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4933. [PMID: 35888400 PMCID: PMC9320603 DOI: 10.3390/ma15144933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022]
Abstract
The macromorphic properties of carbon nanotubes perform poorly because of their size limitations: nanosize in diameters and microsize in length. In this work, to realize these dual purposes, we first used an electrochemical method to tear the surface of multiwalled carbon nanotubes (MWCNTs) to anchor photonic Eu3+-complexes there. Through the polar reactive groups endowed by the tearing, the Eu3+-complexes coordinate at the defected structures, obtaining the Eu3+-complex-anchored, unzipped, multiwalled carbon nanotubes (E-uMWCNTs). The controllable surface-breaking retains the MWCNTs' original, excellent mechanical properties. Then, to obtain the macromorphic structure with infinitely long fibers, a wet-spinning process was applied via the binding of a small quantity of polyvinyl alcohol (PVA). Thus, the wet-spun fibers with high contents of E-uMWCNTs (E-uMWCNT-Fs) were produced, in which the E-uMWCNTs took 33.3 wt%, a high ratio in E-uMWCNT-Fs. On the other hand, due to the reinforcing effect of E-uMWCNTs, the highest tensile strength can reach 228.2 MPa for E-uMWCNT-Fs. Meanwhile, the E-uMWCNT-Fs show high-efficiency photoluminescence and excellent media resistance performance due to the embedding effect of PVA on the E-uMWCNTs. Therefore, E-uMWCNT-Fs can exhibit excellent luminescence properties in aqueous solutions at pH 4~12 and in some high-concentration metal-ion solutions. Those distinguished performances promise outstanding innovations of this work.
Collapse
Affiliation(s)
- Mengjie Huang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Haihang Wang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Gaohan Liu
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Heng Wei
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Jie Hu
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Yao Wang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Sui Mao
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Michail Danilov
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the Ukrainian NAS, 32/34 Palladin Avenue, 03142 Kyiv, Ukraine;
| | - Ihor Rusetskyi
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the Ukrainian NAS, 32/34 Palladin Avenue, 03142 Kyiv, Ukraine;
| | - Jianguo Tang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| |
Collapse
|
46
|
Muralidhar S, Gangaraju V, Shastri M, Marilingaiah NR, dey A, Singh SK, Rangappa D. Silk Fiber Multiwalled Carbon Nanotube-Based Micro-/Nanofiber Composite as a Conductive Fiber and a Force Sensor. ACS OMEGA 2022; 7:20809-20818. [PMID: 35755328 PMCID: PMC9219082 DOI: 10.1021/acsomega.2c01392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Silk cocoon fibers (SFs) are natural polymers that are made up of fibroin protein. These natural fibers have higher mechanical stability and good elasticity properties. In this work, we coated multiwalled carbon nanotubes (MWCNTs) on the surface of SFs using a simple stirring technique with vinegar as the medium. This SF-MWCNT micro-/nanofiber composite was prepared without any adhesives. The characterization results revealed that the SF-MWCNT micro-/nanofiber composite exhibited excellent electrical conductivity (995 Ω cm-1), tensile strength (up to 200% greater elongation), and durability characteristics. In addition, this micro-/nanofiber composite shows a change in resistance from 1450 to 960 Ω cm-1 for an applied mechanical force of 0.3-1 N kg-1. Based on our findings, SF-MWCNT micro-/nanofiber composite-based conductive fibers (CFs) and force sensors (FSs) were developed.
Collapse
Affiliation(s)
- Sindhu
Sree Muralidhar
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Vinay Gangaraju
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Mahesh Shastri
- Department
of Electronics and communications, Nagarjuna
College of Engineering and Technology, Devanahalli 562110, India
| | - Navya Rani Marilingaiah
- Department
of Applied Sciences, Dayanand Sagar University, Kumaraswamy Layout, Bengaluru 560111, India
| | - Arjun dey
- Thermal
Systems Group, ISRO Satellite Centre, Bangalore 560017, India
| | - Sushil Kumar Singh
- Acoustic
Sensor Division, Solid State Physics Laboratory, Defence Research Development Organization (DRDO), New Delhi 110054, India
| | - Dinesh Rangappa
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| |
Collapse
|
47
|
Xiang Y, Li B, Li B, Bao L, Sheng W, Ma Y, Ma S, Yu B, Zhou F. Toward a Multifunctional Light-Driven Biomimetic Mudskipper-Like Robot for Various Application Scenarios. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20291-20302. [PMID: 35442618 DOI: 10.1021/acsami.2c03852] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The systematicness, flexibility, and complexity of natural biological organisms are a constant stream of inspiration for researchers. Therefore, mimicking the natural intelligence system to develop microrobotics has attracted broad interests. However, developing a multifunctional device for various application scenarios has great challenges. Herein, we present a bionic multifunctional actuation device─a light-driven mudskipper-like actuator that is composed of a porous silicone elastomer and graphene oxide. The actuator exhibits a reversible and well-integrated response to near-infrared (NIR) light due to the photothermal-induced contractile stress in the actuation film, which promotes generation of cyclical and rapid locomotion upon NIR light being switched on and off, such as bending in air and crawling in liquid. Furthermore, through rational device design and modulation of light, the mechanically versatile device can float and swim controllably following a predesigned route at the liquid/air interface. More interestingly, the actuator can jump from liquid medium to air with an extremely short response time (400 ms), a maximum speed of 2 m s-1, and a height of 14.3 cm under the stimulation of near-infrared light. The present work possesses great potential in the applications of bioinspired actuators in various fields, such as microrobots, sensors, and locomotion.
Collapse
Affiliation(s)
- Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bianhong Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
48
|
An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. CRYSTALS 2022. [DOI: 10.3390/cryst12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. This article focused on the hierarchical design of the textile-based flexible sensor from a structure point of view. We first reviewed the selection of newly developed functional materials for textile-based sensors, including metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials. Then, the hierarchical structure design principles on different levels from microscale to macroscale were discussed in detail. Special emphasis was placed on the microstructure control of fibers, configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges toward industrialization and commercialization that exist to date were presented.
Collapse
|
49
|
Hwang YH, Noh B, Lee J, Lee HS, Park Y, Choi KC. High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104855. [PMID: 35072356 PMCID: PMC9008425 DOI: 10.1002/advs.202104855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Light-emitting fibers have been intensively developed for the realization of textile displays and various lighting applications, as promising free-form electronics with outstanding interconnectivity. These advances in the fiber displays have been made possible by the successful implementation of the core technologies of conventional displays, including high optoelectronic performance and essential elements, in the fiber form-factor. However, although white organic light-emitting diodes (WOLEDs), as a fundamental core technology of displays, are essential for realizing full-color displays and solid-state lighting, fiber-based WOLEDs are still challenging due to structural issues and the lack of approaches to implementing WOLEDs on fiber. Herein, the first fiber WOLED is reported, exhibiting high optoelectronic performance and a reliable color index, comparable to those of conventional planar WOLEDs. As key features, it is found that WOLEDs can be successfully introduced on a cylindrical fiber using a dip-coatable single white-emission layer based on simulation and optimization of the white spectra. Furthermore, to ensure durability from usage, the fiber WOLED is encapsulated by an Al2 O3 /elastomer bilayer, showing stable operation under repetitive bending and pressure, and in water. This pioneering work is believed to provide building blocks for realizing complete textile display technologies by complementing the lack of the core technology.
Collapse
Affiliation(s)
- Yong Ha Hwang
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Byeongju Noh
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Junwoo Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Ho Seung Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Yongjin Park
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
50
|
Hao J, Zhu Z, Hu C, Liu Z. Photosensitive-Stamp-Inspired Scalable Fabrication Strategy of Wearable Sensing Arrays for Noninvasive Real-Time Sweat Analysis. Anal Chem 2022; 94:4547-4555. [PMID: 35238536 DOI: 10.1021/acs.analchem.2c00593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wearable sweat sensing is essential to the development of personalized health monitoring in a noninvasive manner with molecular-level insight. Hence, there is an increasing demand for convenient, facile, and efficient fabrication of wearable sensing arrays. Inspired by a photosensitive stamp (PS), we present herein a simple, low-cost, and eco-friendly vacuum filtration-transfer printing method (termed PS-VFTP) for the scalable preparation of single-walled carbon nanotube (SWCNT) based flexible electrode arrays. This method can economically yield customized flexible SWCNT arrays with praiseworthy performance, such as high reproducibility, precision, uniformity, conductivity, and mechanical stability. In addition, the flexible SWCNT arrays can be easily functionalized into high-performance electrochemical sensors for the simultaneous monitoring of sweat metabolites (glucose, lactate) and electrolytes (Na+, K+). The integration of wearable sensing arrays with a signal acquisition and processing circuit system in the intelligent wearable sensors empowers them to realize noninvasive, real-time, and in situ sweat analysis during exercise. More meaningfully, such a PS-VFTP strategy can be easily expanded to the economical manufacturing of other flexible electronic devices.
Collapse
Affiliation(s)
- Junxing Hao
- College of Chemistry and Chemical Engineering, Hubei University, 430062 Wuhan, People's Republic of China
| | - Zeqiang Zhu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, People's Republic of China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, 430062 Wuhan, People's Republic of China.,College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, People's Republic of China
| |
Collapse
|